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The weighted non-central chi-square distribution with 1 degree of freedom, introduced by Chen is generalized to the case of ν degrees of freedom. Thus we obtain the non central moments as well as the central moments in specific cases.

Introduction

In any production process, it is essential to supervise a certain number of variables of interest so that the manufactured goods are in conformity with the specifications defined by the research department. In order to assess the aptitude of a process to respect these specifications, the manufacturers commonly use various indices called capability indices. As the capability of the process is only known through a sample taken from the production, it is necessary to know the distribution of the estimators of these indices in order to estimate them by confidence intervals or to carry out statistical tests on their values. In most of the processes, the target aimed at by the variable of interest is located at the centre of the specifications, and the first indices used relate to this situation. The first indices relating to the asymmetrical case where the target is not located at the centre of the specifications appear in the nineties. However, faced with the difficulty to obtain the properties of the estimators which are in the form of random variables quotients, [START_REF] Grau | On the choice of a capability index for asymmetric tolerances[END_REF] suggest to use rather an incapability index. [START_REF] Chen | Incapability index with asymmetric tolerances[END_REF] continues these works by improving that incapability index. To study the properties of the estimator of this new index, he takes an interest in the distribution of the random variable Z = ( )

2 1 2 ( ,1), ( ,1) Max N N α δ α δ -
, where 1 α and 2 α are two positive numbers, the density of which he gives as an infinite sum of central chi-square distributions in the following form

2 2 2 1 1 2 2 2 2 2 2 1 1 1 2 2 0 2 (( 1) 2) ( ) ( ) ( 1) ( ) ( 1) 2 j j j j j j e j f z f z f z j δ χ χ δ α α α α π + + - ∞ - - - - = Γ +   = + -   Γ +   ∑ .
However, Chen does not study the moments of that variable Z, but he only uses this decomposition in order to obtain the moments of the estimator of its incapability index in the form of an infinite sum. Soon, [START_REF] Chen | A new generalization of C pm for processes with asymmetric tolerances[END_REF], then [START_REF] Pearn | On the generalizations of the capability index Cpmk for asymmetric tolerances[END_REF] use the density of Z to obtain the moments of the capability indices specific to the asymmetrical case, in the form of an infinite sum. More recently [START_REF] Grau | On the choice of a capability index for asymmetric tolerances[END_REF] uses the same principle to extend these results to a more general family of indices including the previous ones. It thus appears that the knowledge of the moments of Z, which is the main purpose of this paper, could allow a different approach to obtain the moments of the estimators of the capability indices, possibly by releasing itself from the infinite sums. By introducing the previous variable Z, Chen (1995) calls it weighted non-central chi-square distribution with one degree of freedom (d.f.). This terminology is justified by the usual presentation of the non-central chi-square distribution. Indeed, if Y is a ( ,1)

N δ distribution, then 2 2 ( ( ,1)) Y N δ = ( ) 2 ( ,1), ( ,1) Max N N δ δ = -
is a non-central chi-square distribution with 1 d.f. and non-centrality parameter 2 δ . In this work, we intend to generalize this distribution to the case of any number ν of d.f., which we will note 2 2 1 2 ( , , ) ν χ δ α α , the density of which is defined by

2 2 2 2 2 2 2 2 2 1 1 2 2 0 2 (( 1) 2) ( ) ( ) ( 1) ( ) ( 1) 2 j j j j j j e j f z f z f z j ν ν δ ν χ χ δ α α α α π + + - ∞ - - - - = Γ +   = + -     Γ + ∑ .
Obviously, for the case where 1 2 1 α α = = , this reduces to 2 2 ( ,1,1)

ν χ δ = 2 2 ( ) ν
χ δ , the probability density function of a non-central chi-square distribution with ν d.f. and non-centrality

( ) ( ) ( 1) ( ) j j j j j f z a f z f z ν ν ν χ χ α α α α + + ∞ - - - - =   = + -     ∑
, where

2 2 2 2 (( 1) 2) ( 1) 2 j j j e j a j δ δ π - Γ + = Γ + .
We thus have

r E Z   =   ( ) ( ) 2 2 2 2 1 2 1 2 r r r r r r A B α α α α + + - , where 
( ) 2 2 2 0 r r j j j A a E ν χ ∞ + =   =   ∑ 2 2 2 0 ( 1/ 2) ( / 2) 2 (2 1) ( / 2) 2 r j j j e j r j j j δ ν δ ν π - ∞ + = Γ + Γ + + = Γ + Γ + ∑ 2 2 ( ) 2 r e δ α δ - = , with 2 0 ( 1/ 2) ( / 2) ( ) 2 (2 1) ( / 2) (1/ 2) r j j r j j r j j j ν α δ δ ν ∞ + = Γ + Γ + + = Γ + Γ + Γ ∑ , and 
( ) 2 2 1/ 2 2 2 1 2 1 2 1 0 0 2 ( 1) ( ( 1) 2) 2 (2 2) ( ( 1) 2) 2 j r j r r j j j j e j r j B a E j j δ ν ν χ δ ν π - + ∞ ∞ + + + + = = Γ + Γ + + +   = =   Γ + Γ + + ∑ ∑ 2 2 1 2 3 / 2 0 2 ( ( 1) 2) 2 ( 3/ 2) ( ( 1) 2) r j j j r j e j j δ δ ν ν + ∞ - + = Γ + + + = Γ + Γ + + ∑ 2 2 ( ) r e δ β δ - = , with 3 / 2 2 1 0 ( ( 1) 2) ( ) 2 ( 3/ 2) ( ( 1) 2) r j j r j r j j j ν β δ δ ν ∞ -- + = Γ + + + = Γ + Γ + + ∑ .
The five following lemmas allow to give expressions of ( ) r α δ and

( ) r β δ in form of finite sums. Lemma 1 : ' 1 ( ) ( ) (2 ) ( ) r r r r β δ δβ δ ν β δ + = + + . Proof We have 2 3 / 2 2 2 1 0 ( ( 1) 2) ( ) 2 ( 3/ 2) ( ( 1) 2) r r j r j r j r j j j ν ν ν δ β δ δ ν ∞ + -- + + + = Γ + + + = Γ + Γ + + ∑ .
By derivation with respect to δ,

2 1 2 ' (2 ) ( ) ( ) r r r r r ν ν ν δ β δ δ β δ + - + + + 1 3/ 2 2 2 0 ( 1 ( 1) 2) 2 ( 3/ 2) ( ( 1) 2) r j r j j r j j j ν ν δ ν ∞ + -- + + = Γ + + + + = Γ + Γ + + ∑ 2 1 1 ( ) r r ν δ β δ + - + = ,
thus the lemma.

Lemma 2 : '' 1 ' 1 1 2 ( ( 1) / 2) ( ) ( ) ( 1) ( ) ( 1) 2 (( 1) / 2) r r r r r ν β δ β δ ν δ β δ ν δ π ν - - + Γ + + = -- + - Γ + . Proof We have ' 3 / 2 2 0 (2 1) ( ( 1) 2) ( ) 2 ( 3/ 2) ( ( 1) 2) r j j r j j r j j j ν β δ δ ν ∞ -- = + Γ + + + = Γ + Γ + + ∑ 3 / 2 2 1 2 ( ( 1) / 2) (2 1) ( ( 1) 2) 2 ( 3/ 2) ( ( 1) 2) 2 (( 1) / 2) r r j j j r j r j j j ν ν δ ν π ν ∞ -- = Γ + + + Γ + + + = + Γ + Γ + + Γ + ∑ 1/ 2 2 2 0 2 ( ( 1) / 2) ( 1 ( 1) 2) 2 (2 1) ( 3/ 2) ( ( 1) 2) 2 (( 1) / 2) r r j j j r r j j j j ν ν δ ν ν π ν ∞ -- + = Γ + + Γ + + + + = + + + Γ + Γ + + Γ + ∑ . By derivation of 1 ' ( ) r ν δ β δ - with respect to δ, 2 ' 1 '' 2 1 1 2 ( ( 1) / 2) ( 1) ( ) ( ) ( 1) ( ) 2 (( 1) / 2) r r r r r ν ν ν ν ν ν δ β δ δ β δ ν δ δ β δ π ν - - - - + Γ + + - + = - + Γ +
, thus the lemma.

Lemma 3 :

( )

2 2 2 1 / 2 ( ) ( ) 2 2 e erf δ δ δ β δ ν δ π = + +
, where 2 0 2 ( )

x t erf x e dt π - = ∫ . Proof Note ( ) f L
the Laplace transform of the function f. We have

( ) ( ) ( ) 1 2 1 2 0 0 0 2 1 1 2 2 1 2 2 j j j j j j j j j j p λ λ λ λ - ∞ ∞ ∞ + = = =       =       Γ + Γ +     ∑ ∑ ∑ L = L ( ) 1 1 2 1 2 p p p λ   = +     -   ( ) 2 1 1 2 2 1 2 e erf λ λ λ πλ       = +                 L L ( ) 2 1 2 2 e erf λ λ λ π   = +       L ,
and then for (  )

2 1 1 1 1 0 1 ( 1) ( ) 2 1 2 2 2 j j j j ν ν δ ν δ β δ δ δ π + - - ∞ - =   ∂ - = -     ∂ Γ +   ∑ , we have 2 2 1 1 1 1 1 1 ( 1) ( ) ( / 2) 2 2 2 e erf δ ν ν ν δ β δ δ δ δ δ δ π π - - -     ∂ -   = + -       ∂     ( ) 2 2 2 1 2 1 2 1 1 ( 1) ( 1 ) ( / 2) 2 2 2 e erf ν δ ν ν δ ν δ ν δ δ δ ν δ δ π π - - - -   - = -+ + + -      
, thus the lemma.

Lemma 4 : '' 1 ' 1 ( ) ( ) ( 1) ( ) r r r α δ α δ ν δ α δ - + = -- . Proof We have 2 0 ( 1/ 2) ( / 2) ( ) 2 (2 1) ( / 2) (1/ 2) r j j r j j r j j j ν α δ δ ν ∞ + = Γ + Γ + + = Γ + Γ + Γ ∑ .
By derivation with respect to δ, and( )

' 2 1 1 ( 1/ 2) ( / 2) ( ) 2 2 (2 1) ( / 2) (1/ 2) r j j r j j r j j j j ν α δ δ ν ∞ + - = Γ + Γ + + = Γ + Γ + Γ ∑ 2 1 1 0 ( 1/ 2) ( 1 / 2) 2 (2 ) (2 1) ( / 2) (1/ 2) j r j j j r j j j j δ ν ν ν + ∞ + + = Γ + Γ + + + = + Γ + Γ + Γ ∑ ,
' 1 ' 1 2 1 0 ( 1/ 2) ( 1 / 2) ( ) 2 (2 1) ( / 2) (1/ 2) r j j r j j r j j j ν ν ν δ α δ δ ν ∞ - + + + - = Γ + Γ + + + = Γ + Γ + Γ ∑ , thus 2 ' 1 '' 1 1 ( 1) ( ) ( ) ( ) r r r ν ν ν ν δ α δ δ α δ δ α δ - - - + - + =
, and the lemma.

Lemma 5 :

2 1 2 A ν δ + = .

Proof

We have

2 2 1 2 1 0 ( 1/ 2) (1 / 2) 2 (2 1) ( / 2) 2 j j j e j j A j j δ ν δ ν π - ∞ + = Γ + Γ + + = Γ + Γ + ∑ 2 2 1 2 2 1/ 2 0 (2 ) 2 (1 / 2) 2 2 ( ) (2 1) ( / 2) 2 j j j j e j j j j j δ π ν δ ν π - ∞ + - = Γ Γ + + = Γ Γ + Γ + ∑ 2 2 2 0 ( 2 ) 2 2 ! j j j e j j δ δ ν - ∞ = + = ∑ 2 2 2 2 0 2 2 2 ! 2 j j j e j δ ν δ ν δ δ δ - ∞ = ∂ + = + = ∂ ∑
, thus the lemma.

Proposition 1 :

( )

2 2 / 2 1 ( ) 2 2 r r r e erf P Q δ δ β δ π = +
, where

2 2 0 r i r i i Q a δ = = ∑
, and

2 1 2 1 1 r i r i i P b δ - - = = ∑ . Proof
This result is true for r = 1 according to lemma 3. Let us suppose that it is true for the rank r.

We have ( )

2 2 ' ' ' / 2 1 ( ) ( ) ( ) 2 2 r r r r r e erf P Q Q Q δ δ β δ δ π = + + + , ( ) ( ) 2 2 '' '' ' 2 ' '' / 2 1 ( ) ( 2 ) (1 ) 2 2 2 r r r r r r r e erf P Q Q Q Q Q δ δ β δ δ δ δ π = + + + + + + , (1) 
from where according to lemma 2,

'' ' 1 ' 1 1 1 2 ( ( 1) / 2) ( ) 2 ( 1) ( ) ( 1) (( 1) / 2) 2 r r r r r r r r P Q Q P Q ν β δ δ ν δ ν δ ν π - - +   Γ + + = + + + - + --   Γ +   ( ) ( ) 2 2 2 ' '' 1 ' / 2 ( ) 2 ( 1) 2 r r r r e erf Q Q Q Q δ δ ν δ δ ν δ - + + + + + - . Let '' ' 1 ' 1 1 2 ( ( 1) / 2) 2 ( 1) ( ) ( 1) (( 1) / 2) r r r r r r r r P P Q Q P Q ν δ ν δ ν δ ν - - + Γ + + = + + + - + -- Γ + , and 2 ' '' 1 ' 1 ( ) 2 ( 1) 
r r r r r Q Q Q Q Q ν δ δ ν δ - + = + + + + - . (2) 
1 r Q + is obviously an even polynomial of 2(r+1) degrees.

For

1 r P + , we have 1 ' 1 2 2 2 2 1 2 1 0 ( 1) ( ) ( 1) 
(2 1)

r r i i r r i i i i P Q b i a ν δ ν δ δ δ - - - - = =   - + = - - +     ∑ ∑ ( ) ( ) 1 1 ' 2 1 2 1 2 1 2 2 1 ( 1) (0) (0) ( 1) (2 1) r i r r r i i r i P Q b i a a ν δ ν δ δ - - - - + =   = - + + - + + +     ∑ . Now ' 1/ 2 ( ( 1) / 2) (0) 2 (( 1) / 2) r r r ν β π ν - Γ + + = Γ +
according to its definition, and ( )

' ' 1 (0) (0) (0) 2 r r r P Q β π = +
according to the assumption of recurrence, therefore ' ( ( 1) / 2) (0

) (0) 2 (( 1) / 2) r r r r P Q ν ν Γ + + + = Γ +
, and consequently ( )

1 '' ' 2 1 2 1 1 2 1 2 2 1 2 ( 1) (2 1) r i r r r r r i i r i P P Q Q b i a a δ ν δ δ - - - + + =   = + + + - + + +     ∑
, which is definitely an odd polynomial of 2r+1 degrees.

Proposition 2:

( ) 2 0 2 ( / 2) 2 ( / 2) r r k r k k r r Q k k ν δ ν = Γ + = Γ + ∑ ( ) 2 2 ( ) r E ν χ δ   =   . ( 1) 2 r r r Q Q rQ δ ν δ - + + - = . ( 4 
)
Taking δ = 0 in (3), we have ''

2 (0) 2( 1) 2 (0) r r Q a rQ ν + - = , then in (2), '' 1 2 (0) (0) (0) 2( 1) (2 ) (0) r r r r Q Q Q a r Q ν ν ν + = + + - = + , whence 1 (0) (2 )(2 2).....( 2) r Q r r ν ν ν ν + = + + - + , since 1 (0) Q ν = .
In (4), by equalizing the terms of rank 2k-2 ( 1 k r ≠ + ), we have

2 2 2 2 2 2 (2 )(2 1) 2( 2) 2 ( 1) 2 k k k k k k a k a k a ra ν - - - + - + - = , thus 2 2 2 0 ( 1) ( 1)( 2)... ... (2 2) ( 1)...3.2.1(2 2)(2 4)...( 2) k k r k r k r k r a a a k k k k k k ν ν ν ν ν - -+ -+ -+ = = = + - - + - + - + . Since 0 (0) (2 2)(2 4)...( 2) r a Q r r ν ν ν ν = = + - + - + , we have ( ) ( ) 2 (2 2)(2 4)...( 2) 2 ( / 2) (2 2)(2 4)...( 2) 2 ( / 2) r k k r r r r r a k k k k j ν ν ν ν ν ν ν ν ν ν + - + - + Γ + = = + - + - + Γ + , thus ( ) 2 0 2 ( / 2) 2 ( / 2) r r k r k k r r Q k k ν δ ν = Γ + = Γ + ∑ ( ) 2 2 ( ) r E ν χ δ   =  
, (e.g. Johnson et al, 1994, p. 448), and the proposition for 0 k r ≤ < .

In (4), by equalizing the terms of rank 2r-2, we have

2 2 2 2 2 2 (2 )(2 1) (2 2) 2 ( 1) 2 r r r r r r a r a r a ra ν - - - + - + - = , thus 2 2 2 (2 2) r r a a r r ν - = + - . Since ( ) 2 2 1 2 ( / 2) 2 ( 1 / 2) 1 2 ( 1 / 2) r r r r r a r r r r ν ν ν - - Γ + = = -+ - Γ -+
, we have 2 2 1 r a -= , and the proposition for k = r.

Proposition 3 : 

( ) ( ) ( ) ( ) 1 ( 1) / 2 / 2 2 ( 1) / 2 1/ 2 r r k r k k r r P k k ν ν ν - = Γ + + - Γ + = Γ + - Γ + ∑ ( ) ( ) ( ) ( ) ( ) (

  and in a recursive way we obtain the proposition by using the previous expression of 2k a .

Proof

According to lemmas 1 and 2 we have ( )

Taking into account the fact that ( )

/ 2 e erf δ δ is neither polynomial, nor fractional, from (1) we deduce ( )

and ( ) ( )

( )

Proof

This result is true for r = 1 according to lemma 5 and proposition 2. Let us suppose that it is true for rank r. We have

From lemma 4, ( )

according to (2), thus

From propositions 2 and 4, ( )

, expression of r P is obtained from propositions 1 and 4, then the theorem.

In particular, we have In the particular case where 1 ν = , r P is simplified and is equal to

In the case where 1 2 1 α α = = , Z is a chi-square distribution with ν d.f. , and non-centrality parameter 2 δ , and the previous formula gives again ( )

In the case where δ = 0, Z is a weighted chi-square distribution with ν d.f. , of which the density is

 , since r P is odd. The r-th central moment is

Central moments of the

In the general case, the complex expression of the non-central moments does not allow to obtain simple results for the central moments. Simplifications can only be obtained in the case of a non-weighted chi-square distribution or in the case of a central chi-square distribution Théorème 2 : If Z is a non-weighted and non-central chi-square distribution 2 2 ( )

, whence the theorem after gathering the terms of the same rank.

Let us note that the summation on i from 0 to r can be restricted from [(r+1)/2] to r, where [ ] represents the integer part. Indeed

It should be noted that the central moments of a non-central chi-square distribution are usually obtained in a recursive way from cumulants. The previous formula allows to find the central moments with a rank lower or equal to 4 (e.g. Johnson et al, 1994, p. 447), 

For a non-weighted central chi-square distribution, δ = 0 and 1 2 1 α α = = . The theorem is then obtained from theorems 2 or 3.

Conclusion

We suggest an extension of the weighted non-central chi-square distribution introduced by Chen (1998) for 1 d.f., to the case of ν d.f.. This new distribution with 4 parameters is a generalization of the non central chi-square distribution. The non central moments are obtained. The complexity of the expressions does not allow to consider a simple relation for the central moments in the general case. Those are obtained for specific cases which allow in particular to give an expression for the non-central chi-square distribution without requiring the use of cumulants.
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