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Abstract. We give new stability estimates for the Gel’fand-Calderon inverse bound-
ary value problem.

1. Introduction
Consider the equation

−∆ψ + v(x)ψ = 0, x ∈ D, (1.1)

where
D is an open bounded domain in R

d,

∂D ∈ C2, v ∈ L∞(D), d ≥ 2.
(1.2)

We assume also that
0 is not a Dirichlet eigenvalue for

the operator − ∆ + v in D.
(1.3)

Equation (1.1) arises, in particular, in quantum mechanics, acoustics, electrodynamics.
Formally, (1.1) looks as the Schrödinger equation with potential v at zero energy.

Consider the map Φ such that

∂ψ

∂ν

∣

∣

∂D
= Φ(ψ

∣

∣

∂D
) (1.4)

for all sufficiently regular solutions ψ of (1.1) in D̄ = D ∪ ∂D, where ν is the outward
normal to ∂D. The map Φ is called the Dirichlet-to-Neumann map for equation (1.1) and
is considered as boundary measurements for (1.1).

We consider the following inverse boundary value problem for equation (1.1):

Problem 1.1. Given Φ, find v.
This problem can be considered as the Gel’fand inverse boundary value problem for the

Schrödinger equation at zero energy (see [G], [No1]). This problem can be also considered
as a generalization of the Calderon problem of the electrical impedance tomography (see
[C], [SU], [No1]). Concerning results given in the literature on Problem 1.1 (in its Calderon
or Gel’fand form ) see [KV], [SU], [HN] (note added in proof), [No1], [Al], [Na1], [Na2],
[BU], [P], [Ma], [No2], [No4], [Am] and references therein.

In the present article we show that the Alessandrini stability estimates of [Al] for
Problem 1.1 in dimension d ≥ 3 (see Theorem 2.1 of the next section) admit some princi-
ple improvement. Our new stability estimates (see Theorem 2.2 of the next section) are
obtained by methods developed in [No2], [No3], [No4]. These methods include, in partic-
ular: (1) the ∂̄- approach to inverse ”scattering” at zero energy in dimension d ≥ 3, going
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back to [BC], [HN], and (2) the reduction of Problem 1.1 to inverse ”scattering” at zero
energy, going back to [No1].

The present article is organized as follows. In Section 2, we formulate and discuss old
and new stability estimate for Problem 1.1. In Section 3, we remind (a) definition and
some properties of the Faddeev functions and (b) formulation of the inverse ”scattering”
problem for the Schrödinger equation at zero energy (Problem 3.1). In Section 4, we
remind formulas and equations of [No1], [No2] reducing Problem 1.1 to Problem 3.1. In
Section 5, we remind an approximate reconstruction method of [No1] for Problem 1.1. In
Section 6 we prove Theorem 2.2 in the Born approximation.

2. Stability estimates
We assume for simplicity that

D is an open bounded domain in R
d, ∂D ∈ C2,

v ∈Wm,1(Rd) for some m > d, supp v ⊂ D, d ≥ 2,
(2.1)

where
Wm,1(Rd) = {v : ∂Jv ∈ L1(Rd), |J | ≤ m}, m ∈ N ∪ 0, (2.2)

where

J ∈ (N ∪ 0)d, |J | =
d

∑

i=1

Ji, ∂Jv(x) =
∂|J|v(x)

∂xJ1

1 . . . ∂xJd

d

.

Let
‖v‖m,1 = max

|J|≤m
‖∂Jv‖

L1(R
d

)
. (2.3)

Let
‖A‖ denote the norm of an operator

A : L∞(∂D) → L∞(∂D).
(2.4)

We remind that if v1, v2 are potentials satisfying (1.2), (1.3), where D is fixed, then

Φ1 − Φ2 is a compact operator in L∞(∂D), (2.5)

where Φ1, Φ2 are the DtN maps for v1, v2 respectively, see [No1], [No2]. Note also that
(2.1) ⇒ (1.2).

Theorem 2.1 (variation of the result of [Al]). Let conditions (1.3), (2.1) hold for

potentials v1 and v2, where D is fixed, d ≥ 3. Let ‖vj‖m,1 ≤ R, j = 1, 2, for some R > 0.
Let Φ1, Φ2 denote the DtN maps for v1, v2, respectively. Then

‖v1 − v2‖L∞(D) ≤ C1(ln(1 + ‖Φ1 − Φ2‖
−1))−α1 , (2.6)

where C1 = C1(R,D,m), α1 = (m− d)/m, ‖Φ1 − Φ2‖ is defined according to (2.4).
Theorem 2.1 follows from formulas (3.9)-(3.11), (4.1) (of Sections 3 and 4).
A disadvantage of estimate (2.6) is that

α1 < 1 for any m > d even if m is very great. (2.7)
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Theorem 2.2. Let the assumptions of Theorem 2.1 hold. Then

‖v1 − v2‖L∞(D) ≤ C2(ln(1 + ‖Φ1 − Φ2‖
−1))−α2 , (2.8)

where C2 = C2(R,D,m), α2 = m− d, ‖Φ1 − Φ2‖ is defined according to (2.4).
A principal advantage of estimate (2.8) in comparison with (2.6) is that

α2 → +∞ as m→ +∞, (2.9)

in contrast with (2.7).
In the Born approximation, that is in the linear approximation near zero potential,

Theorem 2.2 is proved in Section 6.
For sufficiently small R in dimension d = 3, Theorem 2.2 follows from (3.9) (of Section

3) and results of [No2], [No4]. The scheme of our proof for this case is, actually, similar to
the scheme of our proof for the case of the Born approximation. The main difference is that
instead of the inverse Fourier transform (used in Section 6) we use now the zero-energy
inverse ”backscattering” transform of [No4]. We plan to give this ”nonlinear” ”small-norm”
proof in a separate article.

In the general case, the proof of Theorem 2.2 is not completed yet. However, except
restrictions in time, we see no difficulties for completing this proof by methods of [No2],
[No3], [No4].

3. Faddeev functions
We consider the Faddeev functions G, ψ and h (see [F1], [F2], [HN], [No2]):

G(x, k) = eikxg(x, k), g(x, k) = −
( 1

2π

)d
∫

R
d

eiξxdξ

ξ2 + 2kξ
, (3.1)

ψ(x, k) = eikx +

∫

R
d

G(x− y, k)v(y)ψ(y, k)dy, (3.2)

where x ∈ R
d, k ∈ Σ,

Σ = {k ∈ C
d, k2 = k2

1 + . . .+ k2
d = 0}; (3.3)

h(k, l) =
( 1

2π

)d
∫

R
d

e−ilxv(x)ψ(x, k)dx, (3.4)

where (k, l) ∈ Θ,

Θ = {k ∈ Σ, l ∈ Σ : Imk = Im l}. (3.5)

We remind that:

∆G(x, k) = δ(x), x ∈ R
d, k ∈ Σ; (3.6)

formula (3.2) at fixed k is considered as an equation for

ψ = eikxµ(x, k), (3.7)
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where µ is sought in L∞(Rd); as a corollary of (3.2), ψ satisfies (1.1); h of (3.4) is a
generalized ”scattering” amplitude in the complex domain at zero energy.

Note that, actually, G, ψ, h of (3.1)-(3.5) are zero energy restrictions of functions
introduced by Faddeev as extentions to the complex domain of some functions of the
classical scattering theory for the Schrödinger equation at positive energies. In addition,
G, ψ, h in their zero energy restriction were considered for the first time in [BC]. The
Faddeev functions G, ψ, h were, actually, rediscovered in [BC].

We remind also that, under the assumptions of Theorem 2.1

µ(x, k) → 1 as |Imk| → ∞ (uniformly in x) (3.8)

and, for any c > 1,

|µ(x, k)| < c for |Imk| ≥ ρ1(R,D,m, c), (3.9)

where x ∈ R
d, k ∈ Σ;

v̂(p) = lim
(k,l)∈Θ, k−l=p

|Im k|=|Im l|→∞

h(k, l) for any p ∈ R
d, (3.10)

|v̂(p) − h(k, l)| ≤
C3(D,m)R2

ρ
for (k, l) ∈ Θ, p = k − l,

|Imk| = |Im l| = ρ ≥ ρ2(R,D,m),

(3.11)

where

v̂(p) =
( 1

2π

)d
∫

R
d

eipxv(x)dx, p ∈ R
d. (3.12)

Results of the type (3.8), (3.9) go back to [BC]. Results of the type (3.10), (3.11) (with
less precise right-hand side in (3.11)) go back to [HN]. Estimates (3.8), (3.11) are related
also with some important L2-estimate going back to [SU] on the Green function g of (3.1).

For more information on properties of the Faddeev functions G, ψ, h, see [HN], [No2],
[No4] and references therein.

In the next section we remind that Problem 1.1 (of Introduction) admits a reduction
to the following inverse ”scattering” problem:

Problem 3.1. Given h on Θ, find v on R
d.

4. Reduction of [No1], [No2]
Let conditions (1.2), (1.3) hold for potentials v1 and v2, where D is fixed. Let Φi, ψi,

hi denote the DtN map Φ and the Faddeev functions ψ, h for v = vi, i = 1, 2. Let also
Φi(x, y) denote the Schwartz kernel Φ(x, y) of the integral operator Φ for v = vi, i = 1, 2.
Then (see [No2] for details):

h2(k, l)− h1(k, l) =
( 1

2π

)d
∫

∂D

∫

∂D

ψ1(x,−l)(Φ2 − Φ1)(x, y)ψ2(y, k)dydx, (4.1)
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where (k, l) ∈ Θ;

ψ2(x, k) = ψ1(x, k) +

∫

∂D

A(x, y, k)ψ2(y, k)dy, x ∈ ∂D, (4.2a)

A(x, y, k) =

∫

∂D

R1(x, z, k)(Φ2 − Φ1)(z, y)dz, x, y ∈ ∂D, (4.2b)

R1(x, y, k) = G(x− y, k) +

∫

R
d

G(x− z, k)v1(z)R1(z, y, k)dz, x, y ∈ R
d, (4.3)

where k ∈ Σ. Note that: (4.1) is an explicit formula, (4.2a) is considered as an equation
for finding ψ2 on ∂D from ψ1 on ∂D and A on ∂D × ∂D for each fixed k, (4.2b) is an
explicit formula, (4.3) is an equation for finding R1 from G and v1, where G is the function
of (3.1).

Note that formulas and equations (4.1)-(4.3) for v1 ≡ 0 were given in [No1] (see also
[HN] (Note added in proof), [Na1], [Na2]). In this case h1 ≡ 0, ψ1 = eikx, R1 = G(x−y, k).
Formulas and equations (4.1)-(4.3) for the general case were given in [No2].

Formulas and equations (4.1)-(4.3) with fixed background potential v1 reduce Problem
1.1 (of Introduction) to Problem 3.1 (of Section 3).

5. Reconstruction of [No1] in the Born approximation
In the Born approximation, that is in the linear approximation near zero potential,

we have that

h(k, l) ≈ v̂(k − l), (5.1)

h(k, l) ≈
( 1

2π

)d
∫

∂D

∫

∂D

e−ilx(Φ − Φ0)(x, y)e
ikydxdy, (5.2)

where (k, l) ∈ Θ, v̂ is defined by (3.12), Φ0 denotes the DtN map for v ≡ 0.
Formulas (5.1), (5.2) follow from (3.1)-(3.4) and (4.1). Formulas (5.1), (5.2) imply, in

particular, that

v̂(p) ≈
( 1

2π

)d
∫

∂D

∫

∂D

e−il(p)x(Φ − Φ0)(x, y)e
ik(p)ydxdy, (5.3)

k(p) =
p

2
+ i

|p|

2
γ(p), l(p) = −

p

2
+ i

|p|

2
γ(p), p ∈ R

d, (5.4a)

where γ(p) is a piecewise continuous function of p ∈ R
d with values in S

d−1 and such that

γ(p)p = 0, p ∈ R
d. (5.4b)

One can see that formula (5.3) gives a reconstruction method for Problem 1.1, d ≥ 2, in
the Born approximation.

An approximate reconstruction method based on (5.1), (5.2) for Problem 1.1 in di-
mension d ≥ 2 was proposed for the first time in [No1].
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In the next section we show that, in the Born approximation, Theorem 2.2 (of Section
2) follows, actually, from (5.3).

6. Proof of Theorem 2.2 in the Born approximation
We have that

v1(x) − v2(x) =

(
∫

|p|<ρ

+

∫

|p|>ρ

)

e−ipx(v̂1(p) − v̂2(p))dp, (6.1)

|v1(x) − v2(x)| ≤ I1(ρ) + I2(ρ), (6.2a)

I1(ρ) =

∫

|p|<ρ

|v̂1(p) − v̂2(p)|dp, (6.2b)

I2(ρ) =

∫

|p|>ρ

|v̂1(p) − v̂2(p)|dp, (6.2c)

where x ∈ R
d, ρ > 0.

The assumptions ‖vj‖m,1 ≤ R, j = 1, 2, imply that

|v̂1(p) − v̂2(p)| ≤
C4(d,m)R

(1 + |p|)m
, p ∈ R

d. (6.3)

Using (5.3) we obtain that

|v̂1(p) − v̂2(p)| ≤ C5(D)eLρ‖Φ1 − Φ2‖, |p| ≤ ρ,

C5(D) =
( 1

2π

)d
∫

∂D

dx, L = max
x∈D

|x|, (6.4)

where ‖ · ‖ is defined according to (2.4).
Formulas (6.2b), (6.4) imply that

I1(ρ) ≤ C6(D)ρdeLρ‖Φ1 − Φ2‖ ≤ C6(D)eL1ρ‖Φ1 − Φ2‖, ρ > 0,

C6(D) = C5(D)

∫

θ∈S
d−1

dθ, L1 = L+ d. (6.5)

Formulas (6.2c), (6.3) imply that

I2(ρ) ≤ C7(d,m)Rρ−(m−d), ρ > 0. (6.6)

Let
α ∈]0, 1[ be fixed,

‖Φ1 − Φ2‖ = δ, ρ = λ ln(1 + δ−1), λ =
1 − α

L1
.

(6.7)
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Then, due to (6.5), (6.6),

I1(ρ) ≤ C6δ(1 + δ−1)λL1 = C6(1 + δ)1−αδα,

I2(ρ) ≤ C7R(λ ln(1 + δ−1))−(m−d).
(6.8)

Estimate (2.8) for δ = ‖Φ1 − Φ2‖ ≤ 1/2 follows from (6.2a), (6.8). Estimate (2.8) in the
general case (with modified C2) follows from (2.8) for δ ≤ 1/2 and the assumptions that
‖vj‖L1(R

d

)
≤ R, j = 1, 2.

Thus, in the Born approximation Theorem 2.2 is proved. (This proof is valid also for
d = 2).
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