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Abstract This paper considers the resource-constrained activity insertion problem

with minimum and maximum time lags. The problem consists in inserting a single ac-

tivity in a partial schedule while preserving its structure represented through resource

flow networks and minimizing the makespan increase caused by the insertion. In the

general case, we show that finding a feasible insertion that minimizes the project du-

ration is NP-hard. When only minimum time lags are considered and when activity

durations are strictly positive, we show the problem is polynomially solvable, gener-

alizing previously established results on activity insertion for the standard resource-

constrained project scheduling problem.

Keywords Resource-constrained project scheduling · minimum and maximum time

lags · activity insertion problem · complexity

1 Introduction

In the standard resource-constrained project scheduling problem (RCPSP), the prece-

dence relations are simple: an activity cannot start before the end of all its predecessors.

In other words, between the start time of an activity Ai and the start time of its suc-

cessor Aj there is a minimal distance (or minimum time lag) equal to the duration

of Ai. The RCPSP with minimum and maximum time lags (RCPSP/max) involves

generalized precedence relations where the minimum time lag between Ai and Aj can

be any non-negative value and where there is possibly a maximum allowed time lag

between the start time of Ai and the start time of Aj .

Independently of makespan minimization, deciding whether it exists a resource-

feasible schedule that respects both the minimum and maximum time lags is NP-

complete [3] whereas, for the standard RCPSP, this problem is polynomial. For that

reason, the RCPSP/max problem has been extensively studied in the scheduling liter-

ature. For a thorough analysis of this problem, we recommend the book [12]. In this

paper, unlike most approaches that focused on finding a global schedule that minimizes
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the project duration, we illustrate the difficulties brought by the maximum time lags

by considering the apparently simple problem of inserting a single activity inside an

existing schedule.

This problem aims at finding an insertion for this activity satisfying the mini-

mum/maximum time lags and resource constraints, while preserving the partial sched-

ule structure. The objective is to minimize the project duration increase. Such a prob-

lem arises in local search procedures for reinsertion neighborhoods that unschedule

an activity and insert it at another position [2,4,13]. For such procedures finding a

compromise between the quality of the reinsertion operator and its computational re-

quirements is a fundamental issue. Since the last decades, there has been a growing

interest in the predictive-reactive scheduling framework to take account of uncertainty

in scheduling. We refer to recent surveys in the context of manufacturing systems [14]

and project management [15]. Inserting efficiently unexpected activities in an existing

schedule is among the central issues raised by predictive-reactive scheduling reactive

[2,1,5,8].

The interest of preserving the structure of the partial schedule is twofold. First, the

size of the search space is decreased, which is useful both for neighborhood search and

reactive scheduling. Second, this policy tends to minimize the disturbances during the

on-line project execution phase, which is referred to as ensuring the schedule stability.

In [4,13] among others, operation insertion problems are solved in a generalized

job-shop. In [9], the job insertion problem in job-shop scheduling is studied. In [8] and

[10], insertion problems in a general disjunctive scheduling framework capturing a va-

riety of job shop scheduling problems and insertion types are considered. A polyhedral

characterization of feasible insertions is provided and lower and upper bounding proce-

dures are developed. Since disjunctive and job-shop scheduling are particular cases of

the RCPSP where all resources have unit availability, the proposed procedures cannot

be used to solve the problem considered in this paper.

For the RCPSP and the RCPSP/max, we can define the structure of the schedule

by means of resource flow networks, which induce additional precedence constraints

preventing resource over-subscription. With such a structure, the activity insertion

problem has been addressed for the standard RCPSP in [1,2]. An O(n2m) optimal

insertion procedure has been proposed where n is the number of activities and m is the

number of resources. In [1], a tabu search procedure based on the reinsertion of a critical

activity in the current resource flow network has been designed and obtained good

results to solve the standard RCPSP. Hence, an important issue is to establish whether

this approach can be extended to minimum and maximum time lags for proposing a

new class of neighborhood search method for the RCPSP/max.

In this paper, we show that the considered insertion problem is NP-hard in the gen-

eral case. However, when maximum time lags are ignored, a new polynomial algorithm

is issued, generalizing the results obtained in [1,2].

The resource-constrained activity insertion problem is presented in Section 2. The

concept of feasible insertion is introduced in Section 3. Feasibility conditions are de-

scribed in Section 4. The problem complexity is given in Section 5. The particular

case where only minimum time lags are considered is studied in Section 6. Concluding

remarks are drawn in Section 7.



3

2 Problem statement

Activities constituting the project are identified by set V = {A0, . . . , An+1}. Activity

A0 represents by convention the start of the schedule and activity An+1 represents

symmetrically the end of the schedule. The set of non-dummy activities is identified

by A = {A1, . . . , An}. pi denotes the duration of activity i with p0 = pn+1 = 0. We

assume in this paper that pi > 0, ∀Ai ∈ A.

A valuated activity-on-node graph G(V, E, l) is defined where nodes correspond

to activities and arcs correspond to precedence relations. Each arc (Ai, Aj) ∈ E is

valuated by an integer time lag lij . The case lij ≥ 0 corresponds to a minimum time

lag of lij units stating that Aj has to start at least lij time units after the start time

of Ai. In the standard RCPSP, only minimum time lags are considered and lij = pi

for each arc (Ai, Aj) ∈ E. The case lij ≤ 0 corresponds to a maximum time lag

units stating that Ai has to start at the latest −lij time units after the start time of

Aj . Resource constraints are defined as in the standard RCPSP: R = {R1, . . . , Rm}

denotes the set of m resources. Bk denotes the availability of Rk. bi,k represents the

amount of resource Rk used during the execution of Ai.

A solution is a non-preemptive schedule giving the start time Si of each activity

Ai. It is assumed that G includes a path of length at least 0 between A0 and each

activity Ai and a path of length at least pi between each activity Ai and An+1.

The RCPSP with minimum and maximum time lags is the problem (P ) of find-

ing a non-preemptive schedule of minimal makespan Sn+1 subject to precedence and

resource constraints.

min Sn+1 (1)

Sj − Si ≥ lij ∀(Ai, Aj) ∈ E (2)

X

Ai∈At

bi,k ≤ Bk ∀Rk ∈ R, ∀t ≥ 0 (3)

A schedule S is feasible if it satisfies the generalized precedence constraints 2 and

the resource constraints 3 where At = {i ∈ A |Si ≤ t < Si + pi} represents the set of

non-dummy activities in process at time t.

(P ) does not necessarily have a solution and, unfortunately, deciding whether (P )

has a solution is NP-complete [3].

Infeasibility can be due to an inconsistency of the precedence constraints E, in-

dependently of the resource constraints. More precisely, there is no solution to (P ) if

there is a cycle of positive length in G(V, E, l). The Floyd-Warshall (FW) algorithm

can be used to detect in O(n3) time such a cycle. In the remaining of the paper, only

problems for which the temporal constraints are consistent are considered.

In case there is no cycle of positive length in G(V, E, l), a distance matrix (δi,j)i,j∈V 2

can be computed where δi,j is the length of the longest path from Ai to Aj in G(V, E, l).

(δi,j) values are returned by FW. By convention, ∆i,j = −∞ means that there is no

path from i to j.

We use the concept of resource-flow network to represent the solutions to (P ) [1,2,

6,11,12]. A resource flow f is a (n + 2)× (n + 2)×m matrix verifying equations (4-6)

defined below:

fi,j,k ≥ 0 ∀Ai ∈ A ∪ {A0}, ∀Aj ∈ A ∪ {An+1}, ∀Rk ∈ R (4)
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X

Ai∈A∪{An+1}

f0,i,k =
X

Ai∈A∪{A0}

fi,n+1,k = Bk ∀Rk ∈ R (5)

X

Aj∈A∪{An+1}

fi,j,k =
X

Aj∈A∪{A0}

fj,i,k = bi,k ∀Ai ∈ A, ∀Rk ∈ R (6)

fi,j,k denotes the number of resource Rk units transferred from activity Ai to activity

Aj .

From flow f , a set of precedence constraints (or arcs) F (f) can be defined as

F (f) = {(Ai, Aj) ∈ V
2|∃Rk ∈ R, fi,j,k > 0}

F (f) is the set of precedence constraints (or arcs) induced by flow f . We say that Aj

is a resource successor of Ai and Ai is a resource predecessor of Aj if (Ai, Aj) ∈ F (f).

From arc set F (f), we define the graph induced by flow f as

G(f) = G (V, E ∪ F (f), L(f))

where arc valuation L(f) : E ∪ F (f)→ N is defined as:

Lij(f) =

8

<

:

lij if (Ai, Aj) ∈ E, (Ai, Aj) 6∈ F (f)

pi if (Ai, Aj) ∈ F (f), (Ai, Aj) 6∈ E

max(pi, lij) if (Ai, Aj) ∈ E ∩ F (f)

Now, let
`

∆i,j(f)
´

Ai,Aj∈V
denote the distance matrix induced by flow f . ∆i,j(f) is

the length of the longest path from Ai to Aj in G(f). The precedence constraints F (f)

induced by the flow are consistent if and only if there is no cycle of positive length

in G(f). In particular, ∆0,i(f), ∀Ai ∈ V denotes the earliest start schedule associated

with the flow f . The following formulation of the RCPSP/max can be derived from

the flow concept (see also Theorems 1 and 2 in [11] and Section 2.13 in [12]).

Definition 1 (RCPSP/max) (P ) can be defined as the problem of finding a resource

flow f verifying (4-6), such that G(f) contains no cycle of positive length and such that

∆0,n+1(f) is minimal.

Hence, a flow f verifying (4-6), such that G(f) contains no cycle of positive length

is said to be feasible. It corresponds to a solution to (P ) giving feasible schedule
`

∆0,i(f)
´

Ai∈V
.

To define the resource constrained activity insertion problem (RCAIP), consider a

partial solution flow f in which all activities but one, denoted by Ax (0 < x < n + 1),

have been scheduled. This amounts to considering a complete solution f to problem

(P−x) identical to (P ) except that bx,k = 0, ∀Rk ∈ R. The RCAIP amounts to compute

a solution to (P ) by inserting activity Ax in the flow f associated with the solution of

(P−x) in such a way that the resource flow assigned to Ax can only be rerouted from

f . The concept of rerouted flow can be formally defined as follows:

Definition 2 (Rerouted flow) A flow f ′ is rerouted toward a flow f for an activity

Ax if there exists values qi,j,k, for all i, j ∈ V and for all Rk ∈ R such that 0 ≤ qi,j,k ≤

fi,j,k and

f
′
x,j,k =

X

Ai∈V

qi,j,k ∀Aj ∈ V, ∀Rk ∈ R (7)

f
′
i,x,k =

X

Aj∈V

qi,j,k ∀Ai ∈ V, ∀Rk ∈ R (8)

f
′
i,j,k = fi,j,k − qi,j,k ∀Ai, Aj ∈ V, ∀Rk ∈ R (9)
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From this definition, the resource-constrained activity insertion problem (Px) can

be defined as follows.

Definition 3 (RCAIP) Given a flow f , feasible for (P−x), the resource-constrained

activity insertion problem (Px) amounts to find a rerouted flow f ′ towards Ax, feasible

for (P ), such that ∆0,n+1(f
′) is minimized.

We have ∆0,n+1(f
′) ≥ ∆0,n+1(f) since by transitivity, any precedence constraint

induced by f is also induced by f ′. Note that an instance of RCAIP is given by tuple

(n, m, p, δ, b, B, x, f).

Consider an example issued from [12], comprising five real activities and a single

resource of three units . Durations and resource demands are given in Table 1. Minimum

and maximum time lags and the corresponding the project network are displayed on

the left side of Figure 1.

Table 1 Activity durations and resource demands

Ai 0 1 2 3 4 5 6

pi 0 6 4 2 4 2 0

bi 0 1 2 2 2 3 0

1 2

3 4 60
0

−1

2

−4
4

5

1 2

3 4 60

5

0
4

0

−1 −4
4

8

6
2

−3

1

{2}

2 −5
2 {2}

{2}4

{1}

{2}2 {2}

1

−3
0

4

8

2 −5

6
2

Fig. 1 Minimum/maximum time lags (left side) and flow f solution to (P
−1) (right side)

0 5 10 14

A3 A4
A5 A2

Fig. 2 Gantt chart of the solution to (P
−1)

A partial schedule for (P ), in which activity A1 is not scheduled, corresponding to

a complete solution of (P−1), is displayed on Figure 2. Resource flow f , corresponding
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to this schedule, is displayed on the right side of Figure 1. Thin arcs correspond to the

original precedence constraints only, while thick arcs are induced by the flow (the flow

value is displayed between braces). Plain thick arcs belong to E ∪ F (f) while thick

dotted arcs are only induced by the flow. As displayed on Figure 1, the non-zero flow

amounts of f are f0,3 = 2, f0,5 = 1, f3,4 = 2, f4,5 = 2, f5,6 = 1, f5,2 = 2, f2,6 = 2.

The activity candidate for insertion A1 is such that bi = 1. Hence, to insert A1 into

f according to the insertion scheme described above, we have to find activities Ai

and Aj such that the amount of flow taken from fi,j and rerouted to A1 is qi,j = 1.

The reader may check that among the non zero flow amounts listed above, the only

valid candidates are Ai = A5 and Aj = A6. Indeed, inserting A1 before activity A5 or

between A2 and A5 violates constraint S2 ≤ S1 +3 while inserting A1 after A2 violates

constraint S2 ≥ S1 + 1. This yields a solution to P1 displayed on Figure 3 having a

makespan equal to 16.

0 5 10 14 16

A3 A4
A5

A1

A2

Fig. 3 Gantt chart of the solution to P1

3 Feasible insertions

Since flow f , feasible for problem (P−x), is an input data of insertion problem (Px),

∆i,j(f), G(f), F (f) and Lij(f) are simply denoted by ∆i,j , G, F and Lij , respectively.

An insertion is defined as an ordered pair of disjoint activity sets (α, β) such that

(α, β) ∈ V \ {Ax, An+1} × V \ {A0, Ax} and α ∩ β = ∅.

An insertion induces a set of arcs

F (α, β) = {(Aa, Ax)}Aa∈α ∪ {(Ax, Ab)}Ab∈β .

We consider graph

G(α, β) = G (V, E ∪ F ∪ F (α, β), L(α, β))

where L(α, β) denotes the arc valuation induced by (α, β) and is defined as follows:

Lij(α, β) =

8

>

>

>

>

<

>

>

>

>

:

pi if Ai ∈ α, Aj = Ax, (Ai, Ax) 6∈ E

max(pi, lix) if Ai ∈ α, Aj = Ax, (Ai, Ax) ∈ E

px if Ai = Ax, Aj ∈ β, (Ax, Aj) 6∈ E

max(px, lxj) if Ai = Ax, Aj ∈ β, (Ax, Aj) ∈ E

Lij if Ai ∈ V \ α, Aj ∈ V \ β

Let ∆i,j(α, β) denotes the length of the longest path from Ai to Aj in G(α, β). Let

Qk(α, β) denote the amount of resource k units available for insertion in (α, β). Vector
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Q(α, β) is called the insertion capacity. We have

Qk(α, β) =
X

Ai∈α,Aj∈β

fi,j,k

We claim that any insertion (α, β) verifying

Qk(α, β) ≥ bx,k, ∀Rk ∈ R (10)

and such that there is no positive length cycle in G(α, β) is feasible in the sense it yields

at least a feasible solution f ′ to (Px).

In fact, a so-defined feasible insertion may yield several distinct feasible flows and

Algorithm 1 (generateFlowFromInsertion) computes one of them. Feasible flow

f ′ is obtained by rerouting the flow sent from α to β. The algorithm runs in O(n2m).

Qk denote at each inner step the total amount of flow already rerouted to Ax. Flow

f ′ is feasible for (Px) if (α, β) verifies (10) and if G(f ′) does not contain any positive

length cycle. For the latter condition, we have F (f ′) ⊆ F (α, β) ∪ F . hence if G(α, β)

does not have any positive length cycle, G(f ′) does not have any positive length cycle

neither and ∆0,n+1(f
′) ≤ ∆0,n+1(α, β). Given a feasible insertion (α, β), only a subset

of α may actually send flow to Ax after insertion. Hence α is called the set of possible

resource successors. Symmetrically, only a subset of β may receive flow from Ax and

we call β the set of possible resource successors. Note that differents orders for the

enumeration of activities in α and β (steps 3 and 3) may issue different flows.

Furthermore, given a flow f ′, solution to Px rerouted from f through resource

amounts qi,j,k, an insertion (α, β) can be defined by setting α = {Ai ∈ V |∃Aj ∈

V, ∃Rk ∈ R, qi,j,k > 0} and β = {Ai ∈ V |∃Aj ∈ V, ∃Rk ∈ R, qj,i,k > 0}. (α, β) is such

that G(α, β) = G(f ′) and ∆0,n+1(f
′) ≤ ∆0,n+1(α, β).

Algorithm 1 generateFlowFromInsertion(α, β) Compute flow f ′ from insertion

(α, β)

1: qi,j,k ← 0, for all Ai, Aj ∈ V , for all Rk ∈ R.

2: Qk ← 0, for all Rk ∈ R

3: for Ai ∈ α do

4: for Aj ∈ β do

5: for Rk ∈ R do

6: qi,j,k ← max(0, bx,k −Qk)

7: Qk ← Qk + qi,j,k

8: end for

9: end for

10: end for

11: Compute f ′ from f and q with equations (7-9)

From this reduction, we can restrict the search space to pairs of activity sets (α, β)

without considering explicitly amounts of rerouted flow qi,j,k . It follows a simplified

definition of the RCAIP.

Definition 4 (RCAIP) Given a solution flow f to problem (P−x), the resource-

constrained activity insertion problem (Px) amounts to find an insertion (ordered pair

of activity sets) (α, β) verifying capacity condition (10), such that G(α, β) does not

include a positive length cycle and such that ∆0,n+1(α, β) is minimized.



8

4 Insertion feasibility conditions

In this section, feasibility conditions of a given insertion (α, β) are established. The

decision variant of (Px) is considered. The problem is to decide whether a feasible

insertion with a makespan not greater than v exists. The problem amounts to deciding

whether there is a feasible solution to (Px) with l(n+1)0 = −v. If v < ∆0,n+1, there is

a positive length cycle in G and, consequently, the answer is no. In the remaining of

this section, we assume v ≥ ∆0,n+1.

Since only arcs from F (α, β) are added by the insertion of Ax, there are only three

disjoint sets of elementary cycles absent from G that can be generated in G(α, β).

• An elementary cycle belonging to set C1(α, β) involves an arc (Ai, Ax) with Ai ∈ α

and Lix(α, β) = pi and no arc (Ax, Aj) with Aj ∈ β. Note that in G(α, β), a longest

path from Ax to Ai which is not traversing any node of β is also a longest path

from Ax to Ai in G of length ∆x,i. Therefore, if L1(α, β) denotes the length of the

longest cycles in C1(v, α, β), it follows that

L1(α, β) = max
Ai∈α

(pi + ∆x,i).

• An elementary cycle belonging to set C2(α, β) includes an arc (Ax, Aj) with Aj ∈ β

and Lxj(α, β) = px and no arc (Ai, Ax) with Ai ∈ α. Using the same arguments

as in the previous case, the length of the longest path from Aj to Ax in G(α, β) is

equal to ∆j,x. Consequently, the length of the longest cycle in C2(α, β) is

L2(α, β) = px + max
Aj∈β

∆j,x.

• Last, an elementary cycle belonging to set C3(α, β) involves two arcs (Ai, Ax), (Ax, Aj)

with Lix(α, β) = pi and Lxj(α, β) = px. Again, the longest path in G(α, β) from j

to i passes only through arcs existing in G and therefore is of length ∆j,i. Hence,

the length of the longest cycle in C3(α, β) is

L3(α, β) = px + max
(Ai,Aj)∈α×β

(pi + ∆j,i).

In what follows, Cq(α, β) and Lq(α, β) (q = 1, 2, 3) will be simply denoted Cq and Lq

when there is no ambiguity. Figure 4 illustrates the three considered cycle types.

∆j,i

Ai Aj

Ax
pi

pxpx

Aj

Ax

C2 cycle C3 cycle

∆j,x

Ai

Ax
pi

C1 cycle

∆x,i

Fig. 4 The three cycle types generated by the insertion

The feasibility condition for an insertion (α, β) becomes obvious from the charac-

terization of the three possible cycle sets.
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Proposition 1 An insertion (α, β) is feasible for (Px) if and only if it verifies (10)

and

max
q=1,2,3

Lq(α, β) ≤ 0 (11)

5 Computational complexity

There have been previously established complexity results related to insertion. The

activity insertion problem has already been addressed for the standard RCPSP in [1,

2]. The problem is polynomial and an O(n2m) optimal insertion procedure has been

proposed by the authors. In [9], the authors study the job insertion problem in the stan-

dard job-shop scheduling problem and show the problem is NP-hard. In [8] and [10], a

general insertion problem in disjunctive scheduling is defined. In disjunctive scheduling,

resource constraints are defined through a set of disjunctive arcs e = {i, j} such that, in

any feasible solution called a selection, each disjunctive arc must be orientated yielding

arc (i, j) or arc (j, i). An insertion problem corresponds to a partial orientation (se-

lection) of the disjunctive arcs and an insertion corresponds to a complete orientation

(selection). Among other results, the authors show that when the insertion disjunctive

graph has specific property, the insertion problem becomes solvable in polynomial time,

in particular because feasible insertions correspond to independent sets in a bipartite

graph. A disjunctive arc defines a set of activities that cannot be scheduled in parallel,

i.e. a forbidden set of cardinality 2. The fundamental difference with the work of [9],

[8] and [10] is that we cannot use the disjunctive graph formulation to represent our

problem since in the RCPSP, the resource constraints define forbidden sets of cardi-

nality that can be much larger than 2. Hence, while insertion of single activities are

generally easy in disjunctive graph models the following results show that this is not

the case for our problem. Indeed, we establish the link between feasible insertions and

independent sets in general graphs.

In what follows, we prove that the RCAIP is NP-hard. Hereafter, we define the

decision variant of the RCAIP.

Definition 5 (RCAIP - decision variant) Given a solution flow f to problem

(P−x) and an integer v, does there exist an insertion (α, β) verifying conditions (10-

11) and such that ∆0,n+1(α, β) ≤ v ?

We show that the decision problem is NP-complete by reduction from the indepen-

dent set problem, defined below.

Definition 6 (INDEPENDENT SET - decision variant) Given a graph G(V, E),

where V is a set of vertices and E is a set of edges, and an integer k, does there exist

a subset of vertices W ⊆ V of cardinality k such that ∀x, y ∈ W, (x, y) 6∈ E (i.e. the

vertices of W are pairwise independent) ?

Such a problem is known to be NP-complete [7]. Let p denotes the number of

vertices: p = |V|.

Theorem 1 The decision variant of the RCAIP is NP-complete.

Proof The problem is in NP since (i) for any tentative solution (α, β) checking whether

constraints (10) are satisfied can be made in O(n2m) time since |α| ≤ n and |β| ≤ n
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and (ii) checking whether there is no positive length cycles in C1, C2 and C3 take O(n),

O(n) and O(n2) time, respectively. Initial Matrix (∆i,j) can be computed in O(n3) by

the Floyd-Warshall algorithm.

In what follows, we show how to associate to any independent set problem an

instance of the RCAIP with n = 2p + 1 non-dummy activities and a single resource of

availability B1 = p (the resource index will be omitted in the sequel).

The non-dummy activities are partitioned into three subsets Θ = {A1, . . . , Ap},

Ω = {Ap+1, . . . , A2p} and {An} where An = A2p+1 is the activity to insert. All

activities but An are such that bi = pi = 1, ∀Ai ∈ Θ ∪Ω. For An, we set pn = 3 and

bn = k. The resource flow f is such that

f0,i = 1 ∀Ai ∈ Θ

fi,p+i = 1 ∀Ai ∈ Θ

fj,n+1 = 1 ∀Aj ∈ Ω.

All other resource flows are zero. The precedence constraints E are such that there

is an arc (A0, Ai) with l0i = 0, for each Ai ∈ Θ. There is an arc (Aj , An+1) with

lj(n+1) = 1 for each j ∈ Ω. There is an arc (Ai, Ap+i) with li(p+i) = 2 for each

Ai ∈ Θ. There is an arc (An+1, A0) such that l(n+1)0 = −5 (i.e. the makespan has to

be not greater than 5). For the inserted task An, there is an arc (A0, An) and an arc

(An, An+1) with l0n = 0 and ln(n+1) = 3, respectively.

The set of edges E of the graph of the independent set problem is arbitrarily orien-

tated. Let G(V,U) denotes the graph so obtained. Now we create in E an arc (Ap+j , Ai)

with l(p+j)i = −3 for each (i, j) ∈ U to represent the edges in E . Note that the earliest

schedule resulting from f is optimal for (P−n) since ∆0,n+1 = δ0,n+1 = 3.

Figure 5 shows how the insertion problem instance is built from an example graph

of six nodes. Below each arc the time lag is indicated and the transferred resource flow

is displayed between braces.

It can be easily checked that the minimal distance matrix ∆ for the so-defined

insertion problem instance (with v = 5) is such that for each pair Ai, Aj with i ∈ Θ

and j ∈ Ω, we have ∆j,i = −3 if (j − p, i) ∈ U and ∆j,i = −4 otherwise.

Below we show that there exists an insertion for An in G if and only if there exists

an independent set of cardinality k in G(V, E). First, one can observe that if W is

an independent set of cardinality k, then there is a feasible insertion (α, β). Indeed,

if α = {Ai|i ∈ W} and β = {Ap+i|i ∈ W} then, because the flow from Ai ∈ Θ to

Ai+p is equal to 1, we have
P

Ai∈α,Aj∈β fi,j = k. Consequently (α, β) verifies capacity

condition (10). Moreover, there is no maximum time lags involving the inserted activity

An and, consequently, no possible positive length cycles in C1 nor in C2. For any pair

of nodes x, y ∈ W we have no edge (x, y) in E , therefore we have no arc (x + p, y) in

U . As a result, ∀Aj ∈ β, ∀Ai ∈ α, we have ∆j,i = −4. The longest cycle in C3 has a

length equal to L3(α, β) = max(Ai,Aj)∈α×β(pi + px + ∆j,i). Since pi = 1 and px = 3,

we have L3(α, β) = 0. It follows that the insertion problem is feasible.

Now let us show that if the insertion is feasible, there is an independent set of

cardinality k. Let (α, β) denotes the feasible insertion. Any insertion such that α =

{A0} and β ⊆ Θ 6= ∅ is not feasible since it will increase the project duration to 6,

whereas it is bounded by 5. The same remark holds for the insertion such that α ⊆ Ω

and β = {An+1}. Therefore, An can only be located between some activities of Θ

and some activities of Ω (i.e. α ⊆ Θ and β ⊆ Ω). For a feasible (α, β) insertion,
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Fig. 5 Reduction from independent set

since no positive length cycles can generated, we have ∆j,i = −4 ∀Ai ∈ α, ∀Aj ∈ β.

Subsequently there is no arc (j − p, i) in U and no edge (j − p, i) in E, ∀Ai ∈ α,

∀Aj ∈ β. Furthermore, since the insertion is feasible, we have |α| = k therefore α is an

independent set of cardinality k. Figure 6 illustrates the correspondence between an

independent set (bold nodes) and an insertion. ⊓⊔
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Fig. 6 A feasible independent set and its corresponding feasible insertion

While for the standard RCPSP, Artigues et al. proposed a polynomial algorithm to

solve the insertion problem [1,2], the introduction of minimum and maximum time lags

clearly makes the problem intractable despite of its apparent simplicity. This illustrates

the deep modifications of the problem structure brought by the maximum time lags.

To confirm this, we exhibit in the following section a polynomial algorithm, able to

solve the insertion problem when only minimum time lags are considered.
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6 RCAIP with minimum time lags only

We suppose in this section that all time lags are non-negative and that pi ≥ 1, ∀Ai ∈ A.

We still assume that f represents a feasible solution to (P−x) of makespan ∆0,n+1

corresponding to the length of the longest path between 0 and n + 1 in G.

We already know that the insertion problem is polynomial for the standard RCPSP

as stated in [2]. The standard RCPSP corresponds to the case where all minimum time

lags are such that lij = pi. it follows that in the case where all minimum time lags are

such that lij ≥ pi, we can trivially show that the problem is polynomially solvable by

transforming the RCPSP instance with minimum time lags into a standard RCPSP

instance as follows. For each (Ai, Aj) ∈ E, create an activity Aij of duration lij − pi

and zero resource demand and augment E with the precedence constraints (Ai, Aij)

and (Aij , Aj). Then, set all arc values to the duration of the origin activity. Since

the initial flow is trivially valid for the so-generated instance, the polynomial insertion

algorithm for the standard RCPSP can be applied. Thus, the problem remains open

only in the case there is at least one minimum time lag such that 0 ≤ lij ≤ pi. We

show that in this case the insertion problem (Px) remains polynomially solvable. We

now consider the optimization variant, aiming at finding a minimal makespan feasible

insertion (so we have l(n+1)0 = −∞).

6.1 Makespan after insertion

Given, a feasible insertion (α, β), the makespan ∆0,n+1(α, β) after insertion in (α, β)

is either equal to the makespan before insertion ∆0,n+1 or to the length of the longest

path from A0 to An+1 in G(α, β) traversing node Ax. This corresponds to three possible

sets of (0, n + 1) paths.

• The set of paths traversing an arc (Ai, Ax) with (Ai ∈ α) and no arc (Ax, Aj) with

(Aj ∈ β). The longest path of this set has a length equal to

M1(α, β) = max
Ai∈α

(∆0,i + pi) + ∆x,n+1

• The set of paths traversing an arc (Ax, Aj) with (Aj ∈ β) and no arc (Ai, Ax) with

(Ai ∈ α). The longest path of this set has a length equal to

M2(α, β) = ∆0,x + px + max
Aj∈β

(∆j,n+1)

• The set of paths traversing an arc (Ai, Ax) with (Ai ∈ α) and an arc (Ax, Aj) with

(Aj ∈ β). The longest path of this set has a length equal to

M1(α, β) = max
Ai∈α

(∆0,i + pi) + px + max
Aj∈β

(∆j,n+1)

Figure 7 illustrates the 3 types of (0, n + 1) paths.

It follows that the makespan of a feasible insertion (α, β) is equal to

∆0,n+1(α, β) = max
`

∆0,n+1,M1(α, β),M2(α, β),M3(α, β)
´

(12)
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Fig. 7 The 3 types of (0, n + 1) paths generated by the insertion

6.2 Feasibility conditions and feasible insertion

Below, we a necessary and sufficient condition for the existence of a feasible insertion

is derived. In the case the condition is verified, a feasible insertion is provided.

Let γ denote the set of non-dummy activities linked with Ax by a synchronization

constraint, i.e.:

γ = {Ai ∈ A|∆i,x = 0 and ∆x,i = 0}

Note that An+1 6∈ γ since An+1 cannot be synchronized with Ax. Indeed, lx,n+1 =

px ≥ 1. By convention, even if have l0,x = lx,0 = 0, we assume that dummy activity

A0 does not belong to γ. Consequently, for any activity Ai ∈ γ we cannot include

Ai in the set of possible predecessors α (otherwise a cycle of length pa would be

issued) nor in the set of possible successors β (otherwise a cycle of length px would be

issued). Furthermore, in any feasible schedule respecting the precedence constraints,

the synchronized activities must start exactly at the same time. Hence, there exists a

solution to the RCAIP only if the following inequalities hold.

X

Ai∈γ

bi,k + bx,k ≤ Bk ∀Rk ∈ R (13)

In fact, (13) is a necessary and sufficient feasibility condition for the RCAIP. Indeed,

insertion (α0, β0) defined hereafter is feasible if and only if (13) hold, which will be

shown through Lemma 1.

Let α0 denote the set of activities Ai which are not synchronized with Ax and such

that there is a non negative length path from Ai to Ax.

α0 = {Ai ∈ V \ γ|∆i,x ≥ 0}

Let β0 denote the complement set of α0 in V minus the activities synchronized with

Ax.

β0 = V \ (γ ∪ α0)

Lemma 1 The RCAIP is feasible and (α0, β0) is a feasible insertion if and only if γ

satisfies constraints (13).
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Proof First we show that (α0, β0) verifies capacity condition (10) if and only if γ

satisfies constraints (13). Consider insertion (α0, β0) = ({A0}, V \ {A0}). Due to flow

conservation of A0 we have Qk(α0, β0) = Bk. Consider the activities of V \ {A0}

such that ∆i,x ≥ 0. Assume these activities {Ai1 , . . . , Aiw
} are sorted in decreasing

order of ∆iv,x, v = 1, . . . , w. Consider now insertions (αv, βv), v = 1, . . . , w, such

that (αv, βv) = (αv−1 ∪ {Ait
}, βv−1 \ {Aiv

}). In other words, (αv, βv) is obtained by

moving Aiv
from βv−1 to αv−1. Since ∆iv,x ≤ ∆iv−1,x, all the flow received by Aiv

is

received only from {A0, . . . , Aiv−1
} = αv−1 and all the flow sent from Aiv

is sent to

V \ {A0, . . . , Aiv−1
} = βv−1. Consequently Qk(αv, βv) = Qk(αv−1, βv−1) = Bk, for

all Rk ∈ R and for all v = 1, . . . , w.

Observe now that (α0, β0) is obtained from (αw, βw) by removing the activities

synchronized with Ax (set γ) from the set of possible predecessors αw. Since ∆i,x = 0

for any activity Ai ∈ γ we have ∆i,x ≤ ∆iv,x for all v = 1, . . . , w and so any activity

belonging to γ can only send flow to activities of V \ {A0, . . . , Aiw
} = βw. Hence, we

have

Qk(α0, β0) = Bk −
X

i∈γ

bi,k, ∀Rk ∈ R

Consequently if γ verifies (13), capacity condition (10) is verified by (α0, β0).

Second, we show the length of cycles Cq(α0, β0), q = 1, 2, 3 are non positive. From

the definition of α0, there is no path in G from x to any activity Ai ∈ α0. It yields

∆x,i = −∞ and L1(α0, β0) = −∞. From the definition of β0, there is no path in G

from any activity Aj ∈ β0 and x. Therefore, ∆j,x = −∞ and L2(α0, β0) = −∞. There

is also no path in G from any activity Aj ∈ β0 and any activity Ai ∈ α0, since otherwise

∆j,x ≥ 0. Consequently, ∆j,i = −∞ and L3(α0, β0) = −∞. ⊓⊔

Condition (13) for the existence of a feasible insertion can be checked in O(nm).

Feasible insertion (α0, β0) can be obtained in O(|E∪F |) since checking if ∆i,x ≥ 0 can

be done by a simple depth-first search algorithm in G.

6.3 Dominant insertions

Let (α, β) denotes a feasible insertion. Let µ(α) denotes the subset of α such that

µ(α) = {Ai ∈ α|∆0,i + pi = max
Aa∈α

(∆0,a + pa)},

and ν(β) denotes the subset of β such that

ν(β) = {Ai ∈ β|∆i,n+1 = max
Ab∈β

(∆b,n+1)}.

µ(α) is the set of activities of α yielding the longest path of length M1(α, β). ν(β) is

the set of activities of β yielding the longest path of length M2(α, β). {µ(α), ν(β)} is

the pair of activity subsets yielding the longest path of length M3(α, β). Thus, due

to the expression of the makespan after insertion (12), to obtain an insertion (α′, β′)

of makespan lower than ∆0,n+1(α, β), we must have µ(α) ∩ α′ = ∅ or ν(β) ∩ β′ = ∅.

For any Ai ∈ µ(α) and Aj ∈ ν(β), we conclude that (α, β) is dominant compared to

any other insertion (α′, β′) verifying Ai belongs to the set of possible predecessors α′

and Aj belongs to the set of possible successors β′. Lemma 2 below shows that from

(α0, β0), we can derive an insertion with even stronger dominance properties.
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Given an activity set e, consider the intermediate insertion problem Px(e) aiming

at finding the optimal insertion (α, β) such that β ∩ e 6= ∅, i.e. such that at least one

possible successor belongs to e. Suppose activities of α0 are sorted in increasing ∆0,i+pi

such that α0 = {Ai1 , . . . , Ai|α0|
}. Let α∗

0 denote the smallest subset {Ai1 , . . . , Ai|α∗
0
|
} ⊆

α0 such that Q(α∗
0, β0) ≥ bxk for all Rk ∈ R.

Lemma 2 (α∗
0, β0) is the optimal solution of Px (ν(β0)).

Proof We already know that (α0, β0) dominates any insertion (α, β) such that µ(α0)∩

α 6= ∅ and ν(β0)∩β 6= ∅. By construction, (α∗
0, β0) dominates any insertion (α, β) such

that α ⊆ α0 and ν(β0)∩β 6= ∅. The case α∩β0 6= ∅ remains to be checked. Consider an

insertion (α, β) with ν(β0)∩β 6= ∅, α∩β0 6= ∅ and ∆0,n+1(α, β) < ∆0,n+1(α
∗
0, β0). Let

e = α∩ β0 denote the set of activities of α that belong also to β0. Suppose in addition

that e = {Ai1 , . . . , Ai|e|} is sorted in increasing ∆0,iv
+ piv

and that ∆0,i|e| + pi|e|

is minimal. Then, there is no flow sent from Ai|e| to Aiv
, v < |e|. There is no flow

sent from Ai|e| to any activity of α \ e neither, otherwise we would have ∆i|e|,x ≥ 0

and thus Ai|e| ∈ α0. Hence, all the flow sent by Ai|e| is received by β0 and we have

Qk({Ai|e|}, β0) = bi|e|,k, for all Rk ∈ R. Let Γ (Ai|e|) denote the set of activities

sending flow to Ai|e| (its resource predecessors). Since Ai|e| ∈ α, Γ (Ai|e|) can be

included in α without generating any cycle. Also, Ai|e| can be moved from α to β.

without generating any cycle since Ai|e| ∈ β0 and there is no path from Ai|e| to iv,

v < |e|. By performing both operations, the insertion capacity cannot decrease and

the insertion is still feasible. Furthermore, all activities Aj in Γ (Ai|e|) are such that

∆0,j + pj < ∆0,i|e| + p|e| since pj ≥ 1 for all j, which contradicts the minimality of

∆0,i|e| + pi|e| ⊓⊔

Lemma 2 shows that (α∗
0, β0) dominates any other insertion (α, β) such that at

least one activity in ν(β0) belongs to the set of possible successors β. Thus, we may

now consider only insertions such that ν(β0) ∩ β = ∅. In set ν(β0) some activities are

possible resource predecessors while other activities are not. Let ν′(β) denote the subset

of ν(β) such that ∆x,i = −∞, for all Ai ∈ ν′(β). All activities in ν′(β0) are possible

resource predecessors for Ax. We define a series of insertions (αt, βt)t≥0 starting from

(α0, β0) and performing recurrent modifications as follows:

(αt+1, βt+1) =
`

αt ∪ ν
′(βt), βt \ ν(βt)

´

Lemma 3 (αt+1, βt+1) is feasible if and only if (αt, βt) is feasible and

Qk(αt+1, βt+1) ≥ bx,k, for all Rk ∈ R.

Proof Since (αt, βt) is feasible, we have to show that no positive length cycle is gen-

erated by the operation performed on (αt, βt) to compute (αt+1, βt+1). Obviously,

removing ν(βt) from βt cannot increase any cycle length. Since (αt, βt) is feasible, no

cycle can be added in C2(αt+1, βt+1). Since ∆x,i = −∞, for all Ai ∈ ν′(βt+1), no cycle

is added in C1(αt+1, βt+1). Since ∆i,n+1 = maxAb∈βt
(∆b,n+1), for all Ai ∈ ν′(βq),

there is no path from Aj ∈ βt \ ν(βt) to Ai and no cycle is added in C3(αt+1, βt+1).

Hence (αt+1, βt+1) remains feasible if its resource capacity remains sufficient. ⊓⊔

If αt is feasible, suppose αt = {i1, . . . , i|αt|} where activities iv are sorted in in-

creasing ∆0,it
+ piv

. Let α∗
t denote the smallest subset {i1, . . . , i|α∗

t |
} of αt such that

Q(α∗
t , βt) ≥ bx,k for all Rk ∈ R.
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Note that since set ν(βt) contains at least one activity, there are at most n terms in

the series until βt becomes empty. Suppose insertions (αt, βt)0≤t<ρ are feasible while

(αρ, βρ) is infeasible.

Lemma 4 Each feasible insertion (α∗
t , βt) is an optimal solution of Px (ν(βt)) and all

solutions (α, β) such that β ∩ βρ 6= ∅ are dominated by one solution (α∗
t , βt), t < ρ.

Proof If (αt, βt) is feasible, the same arguments as for lemma 2 can be used to show

that (α∗
t , βt) is the optimal solution of Px (ν(βt)). If (αρ, βρ) is not feasible, we have

a resource Rk ∈ R such that Qk(αρ, βρ) < bx,k (from lemma 3). Hence the flow sent

from αρ to βρ is not sufficient to insert Ax. Consequently, some activities of αρ should

appear as possible successors in β in any feasible solution such (α, β) that β ∩ βρ 6= ∅.

Any possible successor in αρ belongs also to a set ν(βt), t < ρ and so (α, β) is dominated

by (αt, βt) ⊓⊔

Theorem 2 The series (α∗
t , βt)0≤t<ρ is dominant.

Proof The property follows from lemma 4. Any activity Ai belongs to one of the

following sets α0, γ, ν(βt)0≤t<ρ or βρ. If Ai belongs to α0 or to γ, Ai is not a possible

successor of Ax. If Ai belongs to ν(βt) for some t ∈ {0, . . . , ρ−1}, the optimal solution

(α, β) with Ai ∈ β is included in the series. If Ai is in βρ then any insertion such that

Ai ∈ β is dominated by one insertion of the series. ⊓⊔

6.4 Polynomial insertion algorithm

We propose Algorithm 2 (OptInsert) generating the series of dominant insertions in

polynomial time. Set γ of synchronized activities is computed at step 1. The feasibility

condition is checked at step 1. It problem (Px) is feasible, the initial insertion (α0, β0)

is computed at steps 3-4. Loop 6-17 generates insertion series (αt, βt) starting from

(α0, β0). Loop 8-11 compute set α∗
t . Steps 12-16 compute (αt+1, βt+1) from (αt, βt),

ν and ν′. Finally, Step 18 retrieves the optimal insertion and Step 19 compute the

optimal flow. The algorithm can be implemented easily in O(n2m) time.

6.5 Illustrative example

Finally, this section illustrates the behavior of the algorithm. Let us consider a RCPSP

example with 10 activities and two resources such that B1 = 7 and B2 = 4. The

processing times and the resource demands are indicated on Table 2. Minimum time

lags are displayed on Figure 8. We assume that all activities, except Activity A5 that

has to be inserted, are already scheduled as shown on the Gantt diagram of Figure 10.

The flow network f corresponding to this partial schedule is displayed on Figure 9

and gives a makespan Cmax = 11. The arc weight Lij and flow values fi,j,k (between

parenthesis) are displayed near each arc. In the resource flow network, A5 is isolated.

The values of ∆0,i + pi and ∆i,n+1, for all activities Ai, needed to check the feasi-

bility or compute the makespan of any insertion can be computed using the Bellmann-

Ford’s algorithm. They are indicated in Table 3.

Sets γ, α0 and β0 are defined as follows. γ = {6} since A6 is the only activity

which is synchronized with activity 5 (S5 = S6). Then we find α0 = {A0, A2, A3, A4}
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Algorithm 2 OptInsert(x) optimal insertion algorithm

1: γ ← {Ai ∈ A|∆i,x = 0 and ∆x,i = 0};

2: if
P

Ai∈γ bi,k + bx,k ≤ Bk ∀Rk ∈ R then

3: α0 ← {Ai ∈ V \ γ|∆i,x ≥ 0}

4: β0 ← {V \ (γ ∪ α0)}

5: t← 0

6: while Qk(αt, βt) ≥ bi,k for all Rj ∈ R do

7: α← αt

8: while Qk(α, βt) ≥ bi,k for all Rj ∈ R do

9: α∗
t ← α

10: α← α \ {Ai ∈ α∗
t |∆0,i + pi = maxAa∈α∗

t
(∆0,a + pa)}

11: end while

12: ν ← {Ai ∈ βρ|∆i,n+1 = maxAb∈βρ
(∆b,n+1)};

13: ν′ ← {Ai ∈ ν|∆x,i = −∞};

14: αt+1 ← αt ∪ ν′

15: βt+1 ← βt+1 \ ν

16: t← t + 1

17: end while

18: (α∗, β∗) = argmin
τ=0,...,t−1

∆0,n+1(α
∗
τ , βτ )

19: f ←generateFlowFromInsertion(α, β)

20: else

21: The problem is infeasible;

22: end if

Table 2 Processing times and resource demands

i 1 2 3 4 5 6 7 8 9 10

pi 6 1 1 2 5 3 5 3 2 4

(bi,1, bi,2) (2, 1) (1, 0) (3, 1) (2, 0) (1, 2) (2, 1) (2, 0) (1, 1) (1, 2) (1, 1)

Table 3 Values of ∆0,i + pi and ∆i,n+1

i 0 1 2 3 4 5 6 7 8 9 10 11

∆0,i + pi 0 7 1 1 2 6 4 10 7 5 11 11

∆i,n+1 11 10 11 11 9 8 8 5 3 6 4 0

and β0 = {A1, A7, A8, A9, A10, A11} (see the cut denoted t = 0 on Figure 9). This

insertion (α0, β0) is resource-feasible since, B1 − b6,1 = 5 ≥ b5,1 = 1 and B2 − b6,2 =

3 ≥ b5,2 = 2. We may check in Table 3 that µ(α0, β0) = {A4} and ν(α0, β0) = {A1}

with ∆0,4 + p4 = 2 and ∆1,11 = 10. The insertion yields a makespan

∆0,n+1(α, β) = max
`

∆0,n+1,M1(α0, β0),M2(α0, β0),M3(α0, β0)
´

= 17.

since ∆0,n+1 = 11, M1(α0, β0) = ∆0,4 + p4 + ∆5,11 = 10, M2(α0, β0) = ∆0,5 + p5 +

∆1,11 = 16 and M3(α0, β0) = ∆0,4 + p4 + p5 + ∆1,11 = 17. (α0, β0) is an optimal

insertion among all insertion such that A4 is a resource predecessor and A1 is a resource

successor.

We now give the dominant insertions computed by Algorithm 2. For t = 0, domi-

nant insertion (α∗
0, β0) is computed by removing as many activities Ai in (α0) of largest
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∆0,i +pi as possible while keeping the insertion capacity sufficient. Here we can remove

activities {2, 3, 4} yielding α∗
t = {0} and ∆0,n+1(α

∗
0, β0) = 16. The next dominant in-

sertion is computed by removing ν(α0, β0) from β0 to obtain β1 and adding ν′(α0, β0)

in α0 to obtain α1. Here since ∆1,5 = −∞ we can insert A1 into α0. The process is

iterated for t = 1 until there remain enough capacity in the insertion. Table 4 displays

the 5 dominant insertions for the illustrative example. Insertions (αt, βt) are displayed

as cuts on the resource flow network in Figure 9. The best insertion is obtained for

α∗
1 = {A0, A2, A3} and β1 = {A7, A8, A9, A10, A11} yielding a makespan equal to 12.

Figure 11 displays the solution obtained after insertion A5 into (α∗
1, β1).
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Table 4 Dominant insertions

t = 0 α0 = {A0, A2, A3, A4} β0 = {A1, A7, A8, A9, A10, A11}

α∗
0 = {A0} ∆0,n+1(α

∗
0, β0) = 16

ν(α0, β0) = {A1} ν′(α0, β0) = {A1}

t = 1 α1 = {A0, A2, A3, A4, A1} β1 = {A7, A8, A9, A10, A11}

α∗
1 = {A0, A2, A3} ∆0,n+1(α

∗
1, β1) = 12

ν(α1, β1) = {A9} ν′(α1, β1) = {A9}

t = 2 α2 = {A0, A2, A3, A4, A1, A9} β2 = {A7, A8, A10, A11}

α∗
2 = {A0, A2, A3, A4, A9} ∆0,n+1(α

∗
2, β2) = 15

ν(α2, β2) = {A7} ν′(α2, β2) = ∅

t = 3 α3 = {A0, A2, A3, A4, A1, A9} β3 = {A8, A10, A11}

α∗
3 = {A0, A2, A3, A4, A9} ∆0,n+1(α

∗
3, β3) = 14

ν(α3, β3) = {A10} ν′(α3, β3) = ∅

t = 4 α4 = {A0, A2, A3, A4, A1, A9} β4 = {A8, A11}

α∗
4 = {A0, A2, A3, A4, A9} ∆0,n+1(α

∗
4, β4) = 13

ν(α4, β4) = {A8} ν′(α4, β4) = ∅

t = 5 α5 = {A0, A2, A3, A4, A1, A9} β5 = {A11}

α∗
5 = {A0, A2, A3, A4, A9} ∆0,n+1(α

∗
5, β5) = 13

ν(α5, β5) = {A11} ν′(α5, β5) = ∅
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Fig. 11 Complete solution after A5 insertion
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7 Conclusion

Whereas the insertion problem is polynomially solvable for the standard RCPSP (where

only precedence constraints are taken into account), we showed that the introduction

of minimum and maximum time lags makes the problem NP-hard. Nevertheless, when

only minimum time lags are considered and when activity durations are strictly posi-

tive, the problem turns back polynomially solvable and we proposed an algorithm to

solve it.

Further research may consist in designing efficient heuristics and/or branch and

bound methods to solve the RCAIP with minimum and maximum time lags. A possi-

ble heuristic is to use the proposed polynomial algorithm as a basic search framework,

while considering maximal time lag violation as a criterion to derive more insertion

solutions. Another way of tackling insertion problems in presence of maximum time

lags, would be to define another structure of the partial schedule to obtain a polyno-

mially solvable insertion problem. This remains a critical issue for designing efficient

local search methods for the RCPSP/max based on activity reinsertions.
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Summary of abbreviations and notations

RCPSP resource-constrained project scheduling problem

RCPSP/Max RCPSP with minimum and maximum time lags

RCAIP resource-constrained activity insertion problem

n number of activities

G(V, E, l) activity-on-node graph

V = {A0, . . . , An+1} set of activities

E set of precedence relations (Ai, Aj)

pi duration of activity Ai

lij time lag for (Ai, Aj) ∈ E

m number of resources

R = {R1, . . . , Rm} set of resources

Bk number of available units for resource Rk

bi,k number of units of Rk required by Ai

Si start time of Ai

At set of activities in process at time t

(P ) short notation for the RCPSP/max problem

(P−x) short notation for the RCPSP/max where bxk = 0, ∀Rk ∈ R

(Px) short notation for the RCAIP where Ax has to be inserted

δi,j longest path from Ai to Aj in G(V, E, l)

fi,j,k number of resource Rk units transferred from Ai to Aj

G(f) or G graph induced by flow f

F (f) or F set of arcs (precedence constraints) induced by flow f

Lij(f) or Lij weight of arc (Ai, Aj) induced by flow f

∆i,j(f) or ∆i,j longest path from Ai to Aj in G(f)

qi,j,k part of flow fi,j,k rerouted to the inserted activity

(α, β) ordered pair of set of activities representing an insertion

α set of possible resource predecessors

β set of possible resource successors

Qk(α, β) amount of Rk units available for insertion in (α, β)

G(α, β) graph issued from the insertion of Ax in (α, β)

F (α, β) set of arcs issued from the insertion of Ax in (α, β)

Li,j(α, β) weight of arc (Ai, Aj) after insertion of Ax in (α, β)

∆i,j(α, β) longest path from Ai to Aj in G(α, β)

Cq(α, β) set of type q cycles in G(α, β) (q = 1, 2, 3)

Lq(α, β) length of the longest cycle in G(α, β) (q = 1, 2, 3)

Mq(α, β) length of the longest path of type q in G(α, β) (q = 1, 2, 3)

γ set of non-dummy activities linked with Ax by a synchronization constraint

µ(α) set of activities i ∈ α of largest ∆0,i + pi

ν(α) set of activities i ∈ β of largest ∆i,n+1

ν′(α) subset of activities i ∈ ν such that ∆x,i = −∞


