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Abstract

We define the resource-constrained activity insertion problem with minimum and
maximum time lags. The problem aims at inserting a single activity in a partial
schedule while preserving its structure represented through resource flow networks
and minimizing the makespan increase caused by the insertion. We show that find-
ing a feasible insertion position that minimizes the project duration is NP-hard in
the general case. When only minimum time lags are considered and when activ-
ity durations are strictly positive, we show the problem is polynomially solvable,
generalizing previously established results on activity insertion for the standard
resource-constrained project scheduling problem.

Key words: Resource-constrained project scheduling, minimum and maximum
time lags, activity insertion problem, complexity.

1 Introduction

In the standard resource-constrained project scheduling problem (RCPSP),
the precedence relations are simple: an activity cannot start before the end of
all its predecessors. In other words, between the start time of an activity Ai and
the start time of its successor Aj there is a minimal distance (or minimum time
lag) equal to the duration of Ai. The RCPSP with minimum and maximum
time lags (RCPSP/max) involves generalized precedence relations where the
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minimum time lag between Ai and Aj can be any non-negative value and
where there is possibly a maximum allowed time lag between the start time
of Ai and the start time of Aj.

Independently of makespan minimization, simply finding a resource-feasible
schedule that respects both the minimum and maximum time lags is NP-
hard [3] whereas, for the standard RCPSP, this problem is polynomial. For
that reason, the RCPSP/max problem has been extensively studied in the
scheduling literature. For a thorough analysis of this problem, we recommend
the book of Neumann, Schwindt and Zimmermann [9]. In this paper, unlike
most approaches that focused on finding a global schedule that minimizes the
project duration, we illustrate the difficulties brought by the maximum time
lags by considering the apparently simple problem of inserting a single activity
inside an existing schedule.

This problem aims at finding an insertion position satisfying the mininum/maximum
time lags and resource constraints and preserving the partial schedule struc-
ture. The objective is to minimize the project duration increase. Such a prob-
lem arises in local search procedures for reinsertion neighborhoods that un-
schedule an activity and insert it at another position [2,4,10] and also for
reactive insertion of unexpected activities [2]. The interest of preserving the
structure of the partial schedule is twofold. First, it makes it possible to de-
crease the size of the search space, which is necessary for both neighborhood
search and reactive scheduling. Second, this policy tends to minimize the dis-
turbances during the on-line project execution phase, which is referred to as
ensuring the schedule stability.

In [4,10] among others, operation insertion problems are solved in a generalized
job-shop. In [7], the job insertion problem in job-shop scheduling is studied. In
[6], insertion problems in a general disjunctive scheduling framework capturing
a variety of job shop scheduling problems and insertion types are considered
and lower and upper bound procedures are developed. Since disjunctive and
job-shop scheduling are particular cases of the RCPSP where all resources
have unit availability, the proposed procedures do not apply to the problem
considered in this paper.

For the RCPSP and the RCPSP/max, we can define the structure of the sched-
ule by means of resource flow networks, which induce additional precedence
constraints preventing resource over-subscription. With such a structure, the
activity insertion problem has been addressed already for the standard RCPSP
in [1,2]. An O(n2m) optimal insertion procedure has been proposed where n

is the number of activities and m is the number of resources. In [1], a tabu
search procedure based on the reinsertion of a critical activity in the current
resource flow network has been designed and obtained good results to solve
the standard RCPSP. Hence, an important issue is to establish whether this
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approach can be extended to minimum and maximum time lags for proposing
a new class of neighborhood search method for the RCPSP/max.

In this paper, we show that the considered insertion problem is unfortunately
NP-hard in the general case. However, when maximum time lags are ignored,
we propose a new polynomial algorithm, generalizing the results obtained in
[1,2] to the RCPSP with minimum time lags.

2 Problem statement

Activities constituting the project are identified by set V = {A0, . . . , An+1}.
Activity A0 represents by convention the start of the schedule and activity
An+1 represents symmetrically the end of the schedule. The set of non-dummy
activities is identified by A = {A1, . . . , An}. pi denotes the duration of activity
i with p0 = pn+1 = 0. We assume in this paper that pi > 0, ∀Ai ∈ A.

A valuated activity-on-node graph G(V, E, l) is defined where nodes corre-
spond to activities and arcs correspond to precedence relations. Each arc
(Ai, Aj) ∈ E is valuated by an integer time lag lij . lij ≥ 0 corresponds to
a minimum time lag of lij units stating that Aj has to start at least lij time
units after the start time of Ai. In the standard RCPSP, only minimum time
lags are considered and lij = pi for each arc (Ai, Aj) ∈ E. lij ≤ 0 corresponds
to a time lag of −lij units stating that Ai has to start at the latest lij time
units after the start time of Aj . We assume that we have at least the following
arcs in E: an arc (A0, Ai) per activity Ai ∈ A valuated by l0i ≥ 0 and an arc
(Ai, An+1) per activity Ai ∈ A valuated by li(n+1) = pi. Resource constraints
are defined as in the standard RCPSP: R = {R1, . . . , Rm} denotes the set of
m resources. Bk denotes the availability of Rk. bik represents the amount of
resource Rk used during the execution of i.

A solution S is a schedule giving the start time Si of each activity Ai. S is
feasible if it is compatible with the generalized precedence constraints and the
resource constraints which are defined below, where At = {i ∈ A |Si ≤ t <

Si + pi} represents the set of non-dummy activities in process at time t.

Sj − Si ≥ lij ∀(Ai, Aj) ∈ E (1)

∑

Ai∈At

bik ≤ Bk ∀Rk ∈ R, ∀t ≥ 0 (2)

The makespan of a schedule S is equal to Sn+1, the start time of the end
activity. The above-defined set At and constraints state that an activity cannot
be interrupted once it is started. This is referred to as not allowing preemption.
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The RCPSP with minimum and maximum time lags is the problem (P) of
finding a non-preemptive schedule S of minimal makespan Sn+1 such that
S0 = 0 and subject to precedence and resource constraints. This problem does
not necessarily have a solution. This can be due to an inconsistency of the
precedence constraints, independently of the resource constraints. To verify
the consistency of the precedence constraints E, a distance matrix (δij)i,j∈V 2

can be computed where δij is the length of the longest path between i and j in
G(V, E, l). (δij) can be computed in O(n3) by the Floyd-Warshall algorithm.
More precisely, there is no solution if there is a cycle of positive length in
G(V, E, l). In the case the temporal constraints are consistent, the problem
does not necessarily have a solution neither and the corresponding decision
problem is NP-complete [3].

We use the concept of resource-flow network to represent the solutions to (P)
[1,2,5,8,9]. A resource flow f is a (n+2)×(n+2)×m matrix verifying equations
(3-5) defined below:

fijk ≥ 0 ∀Ai ∈ A ∪ {A0}, ∀Aj ∈ A ∪ {An+1}, ∀Rk ∈ R (3)

∑

Ai∈A∪{An+1}

f0ik =
∑

Ai∈A∪{A0}

fi(n+1)k = Bk ∀Rk ∈ R (4)

∑

Aj∈A∪{An+1}

fijk =
∑

Aj∈A∪{A0}

fjik = bik ∀Ai ∈ A, ∀Rk ∈ R (5)

fijk denotes the number of resource Rk units transferred from activity Ai to
activity Aj. We define E(f) as the set of arcs induced by a resource flow f ,
i.e. E(f) = {(Ai, Aj) ∈ V 2|∃Rk ∈ R, fijk > 0}. E(f) can be seen as the
set of precedence constraints represented by the flow. Consider graph Gf =
G(V, E ∪E(f), l(f)) where l(f) is defined as follows. Each arc (i, j) ∈ E with
(i, j) 6∈ E(f) is valuated by lij . Each arc (i, j) ∈ E(f) with (i, j) 6∈ E is
valuated by pi. Each arc (i, j) ∈ E ∩ E(f) is valuated by max(pi, lij).

We say that Aj is a resource successor (predecessor) of Ai if there is a resource
Rk ∈ R such that fijk > 0 (fjik > 0).

Let (δf
ij)Ai,Aj∈V denotes the distance matrix associated with flow f . δ

f
ij is the

length of the longest path from Ai to Aj in Gf . The precedence constraints
induced by the flow are consistent if and only if there is no cycle of positive
length in Gf . In particular, δ

f
0i, ∀Ai ∈ V denotes the earliest start schedule

associated with the flow f . We set δ
f
ij = −∞ if there is no path from Ai to Aj

in Gf .

Proposition 1 (P ) can be defined as the problem of finding a resource flow
f verifying (3-5), such that Gf contains no cycle of positive length and such
that δ

f
0(n+1) is minimal.
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Proof The arguments used in Theorem 1 and 2 in [8] hold. See also Section
2.13 in [9] 2

Hence a flow verifying (3-5), such that Gf contains no cycle of positive length
is said to be feasible and is considered in what follows as a solution to (P).

To define the resource constrained activity insertion problem (RCAIP), we
consider a partial solution in which all activities but one, denoted by activity
Ax (0 < x < n + 1), have been scheduled. This amounts to considering a
complete solution to problem (Px) identical to (P) except that bxk = 0, ∀Rk ∈
R.

Consider an example issued from [9], comprising five real activities and a single
resource of three units . Durations and resource demands are given in Table 1.
Minimum and maximum time lags and the corresponding the project network
are displayed on the left side of Figure 1.

Ai 0 1 2 3 4 5 6

pi 0 6 4 2 4 2 0

bi 0 1 2 2 2 3 0

Table 1
Durations and resource demands
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2
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A6A4A3

A5

Fig. 1. Minimum/maximum time lags (left side) and flow f solution to (P1) (right
side)

0 5 10 14

A3 A4
A5 A2

Fig. 2. Gantt chart of the solution to (P1)
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We consider a partial schedule for (P) in which activity A1 is not scheduled,
corresponding to a complete solution of (P1), displayed in Figure 2. The re-
source flow corresponding to this schedule is displayed on the right side of
Figure 1. Thin arcs correspond to the original precedence constraints only
while thick arcs are induced by the flow (the flow value is displayed between
braces). Plain thick arcs belong to E ∪E(f) while thick dotted arcs are only
induced by the flow.

The problem considered in this paper amounts to compute a solution to (P)
by inserting activity Ax in the flow f associated with the solution of (Px) in
such a way that the resource flow assigned to Ax can only be taken from f .
More formally we define the considered resource-constrained activity insertion
problem (RCAIPxf ) as the problem to find qijk such that 0 ≤ qijk ≤ fijk for
all i, j ∈ V , ∀Rk ∈ R and such that the flow f ′ defined by:

f
′k
xj =

∑

Ai∈V

qijk ∀Aj ∈ V, ∀Rk ∈ R (6)

f
′k
ix =

∑

Aj∈V

qijk ∀Ai ∈ V, ∀Rk ∈ R (7)

f
′k
ij = fijk − qijk ∀Ai, Aj ∈ V, ∀Rk ∈ R (8)

verifies equations (3-5), does not create a cycle of positive length in Gf ′

and

minimizes δ
f ′

0(n+1). Note we have δ
f ′

0(n+1) ≥ δ
f
0(n+1) since by transitivity, any

precedence constraint induced by f is also induced by f ′.

In flow f , solution to (P1), presented in Figure 1, the non-zero flow amounts
are f03 = 2, f05 = 1, f34 = 2, f45 = 2, f56 = 1, f52 = 2, f26 = 2. The activity
candidate for insertion A1 is such that bi = 1. Hence, to insert A1 into f

according to the insertion scheme described above, we have to find activities
Ai and Aj such that the amount of flow taken from fij and redirected to A1

is qij = 1. The reader may check that among the non zero flow amounts listed
above, the only valid candidates are Ai = A5 and Aj = A6. Indeed, inserting
A1 before activity A5 or between A2 and A5 violates constraint S2 ≤ S1 + 3
while inserting A1 after A2 violates constraint S2 ≥ S1 + 1. It follows that we
obtain the solution to RCAIPA1f displayed in Figure 3 of makespan 16.

0 5 10 14 16

A3 A4
A5

A1

A2

Fig. 3. Gantt chart of the solution to RCAIP1f
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3 Insertion positions

We define an insertion position as an ordered pair of activity sets (α, β) such
that (α, β) ∈ V 2, α ∩ β = ∅ and verifying:

∑

Ai∈α,Aj∈β

fijk ≥ bxk, ∀Rk ∈ R. (9)

An insertion position induces a set of arcs

E(α, β) = {(Aa, Ax)}Aa∈α ∪ {(Ax, Ab)}Ab∈β.

We consider graph Gfαβ = G(V, E∪E(f)∪E(α, β), l(f, α, β)) where l(f, α, β)
denotes the arc valuation induced by (α, β). l(f, α, β) defines the same values
as l(f) except for the following arcs. For each Aa ∈ α, (Aa, Ax) is valuated by
pa if (Aa, Ax) 6∈ E or by max(pa, lax) otherwise. For each Ab ∈ β, (Ax, Ab) is
valuated by px if (Ax, Ab) 6∈ E or by max(px, lxb) otherwise. Let δ

fαβ
ij denotes

the length of the longest path from Ai to Aj in Gfαβ .

Theorem 1 (RCAIPxf) amounts to find a feasible insertion position (α, β)

such that there is no positive length cycle in Gfαβ and δ
fαβ
0(n+1) is minimized.

Proof Given a feasible solution (qijk) of the insertion problem and its corre-
sponding flow f ′, an insertion position can be defined by setting α = {Ai ∈
V |∃Aj ∈ V, ∃Rk ∈ R, qijk > 0} and β = {Ai ∈ V |∃Aj ∈ V, ∃Rk ∈ R, qjik > 0}.
Equation (9) is obviously verified. Furthermore it holds that E(α, β)∪E(f) =
E(f ′) and l(f, α, β) = l(f ′). We have consequently no positive length path in

Gfαβ and δ
fαβ
0(n+1) = δ

f ′

0(n+1).

Conversely, consider an insertion position such that there is no positive length
cycle in Gfαβ. Subset α (β) corresponds to the set of activities that can
send (receive) resource-flow to (from) Ai and, consequently, that are possi-
ble resource predecessors (successors). For each resource Rk ∈ R, let (qijk)
be computed by the following algorithm. For each resource Rk ∈ R, set
qijk = 0, ∀Ai, Aj ∈ V . Then for each Rk ∈ R and for each Ai, Aj ∈ α × β,
if

∑

Ai,Aj∈α×β qijk < bk, update qijk ← min(bk −
∑

Ai,Aj∈α×β qijk, fijk). Flow
f ′ generated with the so-computed (qijk) verifies obviously equations (3-5).
Furthermore, it is such that E(f ′) ⊆ E(α, β) ∪ E(f). Note that we have not
necessarily the equality since there may be Aa ∈ α and Ab ∈ β such that
qijk = 0, ∀Rk ∈ R. We have for the same reason l(f ′)ij ≤ l(f, α, β)ij for each
(Ai, Aj) ∈ E ∪E(f ′). Consequently there is no cycle of positive length in Gf ′

and δ
f ′

0(n+1) ≤ δ
fαβ
0(n+1). 2
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Theorem 1 shows that, to solve (RCPSPxf ), we can restrict the search space
to pairs of activity sets (α, β) without considering explicitly amounts qij . In
what follows, we refer to a feasible insertion position as an insertion position
(α, β) such that there is no positive length cycle in Gfαβ and we identify the
feasible insertion positions with the solutions to (RCAIPxf ).

4 Feasibility conditions under a makespan upper bound

In this section we establish feasibility conditions of a given insertion position
(α, β).

The search variant of (RCAIPxf ) is considered. It is denoted by (FRCAIPxfv).
The problem is to find a feasible solution to (RCAIPxf ) with a makespan not
greater than v. This can be achieved by searching for a feasible solution to
(RCAIPxf ) after adding an arc from An+1 to A0 valuated by max(−v, l(n+1)0).
Let E(f, v) = E(f) ∪ {(An+1, A0)} and l(f, v) denote the so modified set of
arcs and values. For a given insertion position (α, β), let l(f, v, α, β) denote
the corresponding arc values. With these definitions, (FRCAIPxfv) amounts to
searching for an insertion position (α, β) such that there is no positive length
cycle in Gfvαβ = G(V, E ∪E(f, v) ∪ E(α, β), l(f, v, α, β)).

As a preliminary remark, if there is a positive length cycle in Gfv, there is
obviously no feasible solution to (FRCAIPxfv). Again, this can be determined
in O(n3) by the Floyd-Warshall algorithm. However, according to the last
remark of section 2, if f represents a feasible solution to (Px), there is a
positive length cycle in Gfv if and only if v < δ

f
0(n+1). In what follows, we

assume v ≥ δ
f
0(n+1) and we consider (δfv

ij )Ai,Aj∈V defined as the distance matrix

corresponding to the all-pairs longest path lengths in Gfv.

The remaining of the section is devoted to the evaluation of the feasibility of
an insertion position (α, β) (without generating graph Gfvαβ nor computing
matrix (δfαβ

ij )). For this purpose, we define the following three categories of
elementary cycles in Gfvαβ involving inserted activity Ax :

• An elementary cycle of type C1(v, α, β) involves an arc (Aa, Ax) with Aa ∈ α

and l(f, v, α, β)ax = pa and no arc (Ax, Ab) with Ab ∈ β. Note that in Gfvαβ ,
a longest path from Ax to Aa not traversing any node of β is also a longest
path from Ax to Aa in Gfv of length δfv

xa (since the path cannot traverse Ax

again). Therefore L1(v, α, β) = maxAa∈α(pa +δfv
xa) is the length of the cycles

of C1(v, α, β) having the largest length.
• An elementary cycle of type C2(v, α, β) includes an arc (Ax, Ab) with Ab ∈ β

and l(f, v, α, β)xb = px and no arc (Aa, Ax) with Aa ∈ α. Using the same
arguments as the ones use in the previous item, the length of the longest
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path from Ab to Ax in Gfvαβ is equal to δ
fv
bx . Consequently, L2(v, α, β) =

px + maxAb∈β(δfv
bx ) denotes the length of the cycle in C2(v, α, β) having the

largest length.
• A cycle of type C3(v, α, β) involves two arcs (Aa, Ax), (Ax, Ab) with l(f, v, α, β)ax =

pa and l(f, v, α, β)xb = px. Again, the longest path in Gfvαβ passes only
through arcs existing in G(V, E ∪ E(f, v), l(v, f)) and thus has length δ

fv
ba .

Hence, let L3(v, α, β) = px + max(Aa,Ab)∈α×β(pa + δ
fv
ba ) be the length of the

cycle of C3(v, α, β) having the largest length.

In what follows, Cq(v, α, β) and Lq(v, α, β) (q = 1, 2, 3) will be simply denoted
Cq and Lq when there is no ambiguity. Figure 4 illustrates the three considered
cycle types.

δ
fv
ba

Aa Ab

Ax
pa

px

δfv
xa

Aa

Ax
pa

δ
fv
bx

px

Ab

Ax

a type C2 cycle

a type C3 cycle

a type C1 cycle

Fig. 4. The three cycle types generated by the insertion

Theorem 2 An insertion position (α, β) is feasible for (FRCAIPxfv) if and
only if max(L1, L2, L3) ≤ 0.

Proof This amounts to show that there is no cycle of positive length in Gfvαβ

if and only if max(L1, L2, L3) ≤ 0.

(⇒ part) If there is no positive length cycle in Gfvαβ , since each Li is not
larger than an actual cycle length, then L1, L2 and L3 are non positive.

(⇐ part) We know that in a valuated digraph there is no positive length cycle
if and only if there is no elementary positive length cycle. Thus, it is sufficient
to show that if max(L1, L2, L3) ≤ 0, there is no elementary positive length
cycle in Gfvαβ . Among the possible elementary cycles, we may restrict to the
ones traversing at least one arc (Aa, Ax) with Aa ∈ α and l(f, v, α, β)ax = pa

(type (i) arc) or one arc (Ax, Ab) with Ab ∈ β and l(f, v, α, β)xb = px (type (ii)
arc). Indeed, any cycle traversing none of these arcs has a length equal to the
length of a cycle in Gfv which is by hypothesis non-negative. Furthermore, at
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most one type (i) arc and at most one type (ii) arc may be traversed by any
elementary cycle.

Suppose now that C denotes an elementary cycle of Gfvαβ with the largest
length but not belonging to any category among C1, C2, nor C3. According to
the presence of type (i) and (ii) arcs there are three possibilities. If C traverses
exactly one type (i) arc and no type (ii) arcs, the path in C from Ax to Aa is
not larger than δfv

xa . Indeed, by construction, for any activities Ai, Aj , Ak we

have δ
fv
ij ≥ δ

fv
ik + δ

fv
kj . Consequently, there exists in C1 a cycle not shorter than

C. For the same reason, if C traverses exactly one type (ii) arc and no type (i)
arcs, the path in C from Ab to Ax is not larger than δ

fv
bx and there exists in C2

a cycle not shorter than C. Last, in the case C traverses exactly one type (i)
arc and one type (ii) arc, the path in C from Ab to Aa is not larger than δ

fv
ba

and there exists in C3 a cycle not shorter than C. It follows that there exists
an elementary longest length cycle that belongs either to C1, C2 or C3. 2

5 Computational complexity of the resource-constrained activity

insertion problem with minimum and maximum time lags

In this section, we prove that (RCAIPxf ) is NP-hard. We show that the deci-
sion problem (DRCAIPxfv), stating whether there exists a feasible solution to
(FRCAIPxfv) or not, is NP-complete by reduction from the independent set
problem. We recall that, given a graph G(V, E), where V is a set of vertices
and E is a set of edges, and an integer k, the independent set problem lies
in finding a subset of vertices W ⊆ V of cardinality k such that ∀x, y ∈ W,
(x, y) 6∈ E (i.e. the vertices of W are pairwise independent). Such a problem
is known to be NP-hard. Let p denotes the number of vertices: p = |V|.

Theorem 3 The decision variant of the resource-constrained activity inser-
tion problem is NP-complete.

Proof The decision variant of the insertion problem amounts to find an an-
swer to the following question. Does-there exist a feasible insertion position
for (FRCAIPxfv)? The problem is obviously in NP since (i) for any tentative
solution (α, β) checking whether constraints (9) are satisfied can be made in
O(n2m) time since |α| ≤ n and |β| ≤ n and (ii) checking whether there is
no type C1, C2 and C3 cycles take O(n), O(n) and O(n2) time, respectively.
Matrix (δfv

ij ) can be computed in O(n3) by the Floyd-Warshall algorithm.

In what follows, we show how to associate to any independent set problem an
instance of the insertion problem with n = 2p + 1 non-dummy activities and
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a single resource of availability B1 = p (the resource index will be omitted in
the rest of the demonstration).

The non-dummy activities are partitioned into three subsets Θ = {A1, . . . , Ap},
Ω = {Ap+1, . . . , A2p} and An = A2p+1, An being the activity to insert. All ac-
tivities but An are such that bi = pi = 1, ∀Ai ∈ Θ∪Ω. For An we have pn = 3
and we set bn to k. The resource flow f is such that

f0i = 1 ∀Ai ∈ Θ

fi(p+i) = 1 ∀Ai ∈ Θ

fj(n+1) = 1 ∀Aj ∈ Ω.

All other resource flows are zero. The precedence constraints E are such that
there is an arc (A0, Ai) with l0i = 0, for each Ai ∈ Θ. There is an arc (Aj , An+1)
with lj(n+1) = 1 for each j ∈ Ω. There is an arc (Ai, Ap+i) with li(p+i) = 2 for
each Ai ∈ Θ. There is an arc (An+1, A0) such that l(n+1)0 = −5 (i.e. the
makespan has to be not greater than 5). For the inserted task An, there is an
arc (A0, An) and an arc (An, An+1) with l0n = 0 and ln(n+1) = 3, respectively.

The set of edges E of the graph of the independent set problem is arbitrarily
orientated. Let G(V,U) denotes the graph so obtained. Now we create in E an
arc (Ap+j, Ai) with l(p+j)i = −3 for each (i, j) ∈ U to represent the edges in E .
Figure 5 shows how the insertion problem instance is built from an example
graph of six nodes. Below each arc the time lag is indicated and the transferred
resource flow is displayed between braces.
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Fig. 5. Reduction from independent set
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It can be easily checked that the minimal distance matrix δfv for the so-defined
insertion problem instance (with v = 5) is such that for each pair Ai, Aj with

i ∈ Θ and j ∈ Ω, we have δ
fv
ji = −3 if (j − p, i) ∈ U and δ

fv
ji = −4 otherwise.

Below we show that there exists an insertion position for An in Gfv if and
only if there exists an independent set of cardinality k in G(V, E). First, one
can observe that if W is an independent set of cardinality k, then there is
a feasible insertion position (α, β). Indeed, if α = {Ai|i ∈ W} and β =
{Ap+i|i ∈W} then, because the flow from Ai ∈ Θ to Ai+p is equal to 1, we have
∑

Ai∈α,Aj∈β fij = k. Consequently (α, β) verifies condition (9). Moreover, there
is no maximum time lags involving the inserted activity An and, consequently,
no possible positive length cycles of types C1 nor C2. For any pair of nodes
x, y ∈W we have no edge (x, y) in E , therefore we have no arc (x+ p, y) in U .
As a result, ∀Aj ∈ Ω, ∀Ai ∈ Θ, we have δ

fv
ji = −4. The largest cycle of type

C3 has a length equal to L3 = max(Aa,Ab)∈α×β(pa + px + δba). Since pa = 1 and
px = 3, we have L3 = 0. It follows that the insertion problem is feasible.

Now let us show that if the insertion is feasible, there is an independent set of
cardinality k. Let (α, β) denotes the feasible insertion position. Obviously, the
insertion position such that α = {A0} and β = Θ ∪ Ω ∪ An+1 is not feasible
since it will increase the project duration to 6, whereas it is bounded by 5.
The same remark holds for the insertion position such that α = A0 ∪ Θ ∪ Ω
and β = {An+1}. Therefore, An can only be located between some activities
of Θ and some activities of Ω (i.e. α ⊂ Θ and β ⊂ Ω). For a feasible (α, β)
insertion position, since no positive length cycles have been generated, we
have δ

fv
ba = −4 ∀Aa ∈ α, ∀Ab ∈ β. Subsequently there is no arc (b − p, a) in

U , ∀Aa ∈ α, ∀Ab ∈ β and no edge (x, y) in E, ∀a ∈ α. Furthermore, since
the insertion is feasible, we have |α| = k therefore α is an independent set of
cardinality k. Figure 6 illustrates the correspondence between an independent
set (bold nodes) and an insertion position. 2
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Fig. 6. A feasible independent set and its corresponding feasible insertion position

While for the standard RCPSP, Artigues et al. proposed a polynomial algo-
rithm to solve the insertion problem [1,2], the introduction of minimum and
maximum time lags clearly makes the problem intractable despite of its appar-
ent simplicity. This illustrates the deep modifications of the problem structure
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brought by the maximum time lags. To confirm this, we exhibit in the fol-
lowing section a polynomial algorithm, able to solve the insertion problem
when only minimum time lags are considered and when activity durations are
strictly positive.

6 A polynomial algorithm for the resource-constrained activity in-

sertion problem with minimum time lags

We suppose in this section that all time lags are non-negative and that pi ≥ 1,
∀Ai ∈ A. We still assume that f represents a feasible solution to (Px) of
makespan δ

f
0(n+1) corresponding to the length of the longest path between 0

and n + 1 in Gf .

We already know that the insertion problem is polynomial for the standard
RCPSP as stated in [2]. The standard RCPSP corresponds to the case where
all minimum time lags are such that lij = pi. it follows that in the case where
all minimum time lags are such that lij ≥ pi, we can trivially show that
the problem is polynomially solvable by transforming the RCPSP instance
with minimum time lags into a standard RCPSP instance as follows. For each
(Ai, Aj) ∈ E, create an activity Aij of duration lij − pi and zero resource
demand and augment E with the precedence constraints (Ai, Aij), (Aij, Aj).
Then, set all arc values to the duration of the origin activity. Since the initial
flow is trivially valid for the so-generated instance, the polynomial insertion
algorithm for the standard RCPSP can be applied. Thus, the problem remains
open only in the case there is at least one minimum time lag such that 0 ≤
lij ≤ pi.

We show that in this case the insertion problem (RCAIPxf ) is polynomially

solvable. We first prove that for any v ≥ δ
f
0(n+1), the following lemma holds.

Lemma 1 ∀Ai, Aj ∈ V 2, δ
fv
ij = max(δf

ij , δ
f
0j + δ

f
i(n+1) − v)

Proof Since δ
fv
ij is the length of the longest path in Gfv, let P denotes such

a longest path. If P traverses arc (An+1, A0) (valuated by −v since we have
no maximum time lags), by definition of the longest paths we have δ

fv
ij =

δ
fv
0j + δ

fv
i(n+1) − v. Since Gfv is obtained from Gf by adding arc (An+1, A0),we

have δ
fv
0i = δ

f
0i and δ

fv
j(n+1) = δ

f
j(n+1). If P does not traverse arc (An+1, A0) it

has for the same reason length δ
f
ij. 2

With this property, we subdivide each cycle type Cq(v, α, β) in Gfvαβ into two
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subtypes, one being independent of v, as follows:

• C1
1(v, α, β) is the subset of elementary cycles C1(v, α, β) (traversing an arc

(Aa, Ax) with Aa ∈ α) such that δfv
xa = δ

f
0a + δ

f
x(n+1) − v. Consequently, the

longest cycle of this type has a length equal to L1
1(v, α, β) = maxAa∈α(δf

0a +
pa) + δ

f
x(n+1) − v.

• C2
1(α, β) is the subset of elementary cycles C1(v, α, β) such that δfv

xa = δf
xa.

The longest cycle of this type is of length L2
1(α, β) = maxAa∈α(δf

xa + pa).
Note we have L2

1(α, β) = −∞ if ∀Aa ∈ α, δf
xa = −∞.

• C1
2(v, α, β) is the subset of elementary cycles C2(v, α, β) (traversing an arc

(Ax, Ab) with Ab ∈ β) such that δ
fv
bx = δ

f
0x + δ

f
b(n+1) − v. The longest cycle

of this type is of length L1
2(v, α, β) = δ

f
0x + px + maxAb∈β(δf

b(n+1))− v.

• C2
2(α, β) is the subset of elementary cycles C2(v, α, β) such that δ

fv
bx = δ

f
bx.

The longest cycle of this type is of length L2
2(α, β) = maxAb∈β(δf

bx)+ px. We

have L2
2(α, β) = −∞ if ∀Ab ∈ β, δ

f
bx = −∞.

• C1
3(v, α, β) is the subset of elementary cycles C3(v, α, β) (traversing an arc

(Aa, Ax) with Aa ∈ α and an arc (Ax, Ab) with Ab ∈ β) such that δ
fv
ba =

δ
f
0a + δ

f
b(n+1) − v. The longest cycle of this type is of length L1

3(v, α, β) =

maxAa∈α(δf
0a + pa) + px + maxAb∈β(δf

b(n+1))− v.

• C2
3(α, β) is the subset of elementary cycles C3(v, α, β) such that δ

fv
ba = δ

f
ba.

The longest cycle of this type is of length L2
3(α, β) = maxAa∈α,Ab∈β(δf

ba +

pa) + px. We have L2
3(α, β) = −∞ if δ

f
ba = −∞.

Figure 7 illustrates the 6 types of relevant cycles.

We consider now the insertion problem (RCAIPxf ) instead of its search vari-
ant. An insertion position (α, β) is feasible for (RCAIPxf ) if there exists an ar-

bitrary large value M ≥ δ
f
0(n+1) such that (FRCAIPxfM ) is feasible. (RCAIPxf )

amounts to finding the smallest M ≥ δ
f
0(n+1) such that there exists a feasible

insertion position for (FRCAIPxfM ). Remarking that L2
1, L2

2 and L2
3 do not

depend on v, the following theorem can be stated:

Theorem 4 An insertion position (α, β) is feasible for (RCAIPxf) if and only
if it satisfies constraints (9) and max (L2

1(α, β), L2
2(α, β), L2

3(α, β)) ≤ 0.

Proof Searching a feasible solution to (RCAIPxf ) amounts to searching a
feasible solution to (FRCAIPxf∞) where v =∞. It follows that for any (α, β),
L1

1(α, β) = L1
2(α, β) = L1

3(α, β) = −∞. It follows that there is no positive
length cycle in Gfαβ if and only if the considered property holds. 2

Thus, the feasibility of an insertion position only depends on the cycle subtype
C2

x.
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Fig. 7. The six types of cycles generated by the insertion (minimum time lags only)

Theorem 5 If (α, β) is a feasible insertion position for (RCAIPxf), we have

δ
fαβ
0(n+1) = max

(

δ
f
0(n+1), L

1
1(0, α, β), L1

2(0, α, β), L1
3(0, α, β)

)

(10)

Proof Since (α, β) is feasible for (RCAIPxf ), we have L1(v, α, β) = L1
1(v, α, β),

L2(v, α, β) = L1
2(v, α, β) and L3(v, α, β) = L1

3(v, α, β), ∀v ≥ δ
f
0(n+1). The

makespan of the solution represented by (α, β) is either equal to δ
f
0(n+1) or

to the smallest value v such that max(L1
1(v, α, β), L1

2(v, α, β), L1
3(v, α, β)) ≤ 0

which yields the expression. 2

The makespan of a feasible insertion position depends on the cycle subtype
C1

x. Below, we derive a necessary and sufficient condition for the existence of
a feasible insertion position and we define a feasible insertion position in the
case the condition is verified.

Let γ0 = {Ai ∈ A|δ
f
ix = 0 and δ

f
xi = 0}. The constraint δ

f
ix = 0 and δ

f
xi = 0 is

called a synchronization constraint and γ0 is the set of non-dummy activities
that are synchronized with Ax. Note that An+1 cannot be synchronized with
Ax since lx(n+1) = px. A0 can only be synchronized with Ax if l0x = 0. By
convention, in the special case where l0x = lx0 = 0, dummy activity A0 does
not belong to γ0. Consequently, for any activity Ai ∈ γ0 we cannot have Ai ∈ α
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(otherwise a cycle of length pa would be issued) nor Ai ∈ β (otherwise a cycle
of length px would be issued). Furthermore, in any feasible schedule respecting
the precedence constraints, the synchronized activities are constrained to start
exactly at the same time. Consequently, there exists a solution to the insertion
problem if the following inequalities hold.

∑

Ai∈γ0

bik + bxk ≤ Bk ∀Rk ∈ R (11)

Let (α0, β0) the insertion position such that α0 = {Ai ∈ V \ γ0|δ
f
ix ≥ 0} and

β0 = V \ (γ0 ∪ α0).

Lemma 2 (RCAIPxf) is feasible and (α0, β0) is a feasible insertion position
if and only if γ0 satisfies constraints (11).

Proof First, we remark that the definition of (α0, β0) implies that A0 ∈ α0

and An+1 ∈ β0 and that α0, β0 and γ0 define a partition of V . Consider a
resource Rk ∈ R. Partitioning the incoming flow of task An+1 ∈ β0 according
to α0, β0 and γ0, we get

Bk =
∑

Ai∈γ0

fi(n+1)k +
∑

Ai∈α0

fi(n+1)k +
∑

Ai∈β0

fi(n+1)k. (12)

The same decomposition applied to the other activities of β0 yields:

∀Aj ∈ β0 \ {An+1}, bjk =
∑

Ai∈γ0

fijk +
∑

Ai∈α0

fijk +
∑

Ai∈β0

fijk (13)

Summing all equations (12) and (13) it comes:

∑

Aj∈β0\{An+1}

bjk + Bk =
∑

Ai∈γ0,Aj∈β0

fijk +
∑

Ai∈α0,Aj∈β0

fijk +
∑

Ai,Aj∈β0

fijk (14)

Consider Ai ∈ γ0. We have δ
f
ix = δ

f
xi = 0. Suppose there exists Aj ∈ α0 and

Rk ∈ R such that fijk > 0. Then δ
f
ij ≥ pi. Since Aj ∈ α0 we have δ

f
jx ≥ 0 which

implies δ
f
ix ≥ pi and yields a positive length cycle with δ

f
xi = 0. It follows that

∀Ai ∈ γ0, ∀Aj ∈ α0 and ∀Rk ∈ R, we have fijk = 0. For any pair of distinct
activities Ai, Aj ∈ γ0, we have also fijk = 0, ∀Rk ∈ R since otherwise a cycle
of length pi would exist. It follows that each activity Ai ∈ γ0 sends flow units
only to activities of β0, which yields ∀Rk ∈ R,

∑

Ai∈γ0,Aj∈β0
fijk =

∑

Ai∈γ0
bik.

Consider Ai ∈ β0, Aj ∈ α0 ∪ γ0 and Rk ∈ R such that fijk > 0. It follows

that δ
f
ij ≥ pi and, in addition, we have δ

f
jx ≥ 0 by definition of α0 and γ0.
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By transitivity, it comes δ
f
ix ≥ pi which implies that Ai ∈ α0, a contradiction.

Consequently each activity Ai ∈ β0 sends flow units only to other activities of
β0, and we have

∑

Ai,Aj∈β0
fijk =

∑

Ai∈β0\{An+1} bik, ∀Ai ∈ β0. Inserting these
results into (14), we get

∑

Ai∈α0,Aj∈β0
fijk = Bk −

∑

Ai∈γ0
bik. It follows that

(α0, β0) can be a feasible insertion position only if γ0 satisfies constraints (11).

It remains to show that if γ0 satisfies constraints (11), (α0, β0) is a feasible
insertion position for (RCAIPxf ). From the definition of α0, there is no path
in Gf from any activity Aa 6= A0 ∈ α0 and x which yields δf

xa = −∞ for
these activities. For the special case of A0 we have δx0 ≤ 0. It follows that
L2

1(α0, β0) ≤ 0. From the definition of β0, we have δ
f
bx = −∞, ∀Ab ∈ β, which

yields L2
2(α0, β0) = −∞. Last, suppose there exists Aa ∈ α0 and Ab ∈ β0 such

that δ
f
ba ≥ 0. Since δf

ax ≥ 0, it comes δ
f
bx ≥ 0 by transitivity of the longest

path lengths and we have Ab ∈ α0 or Ab ∈ γ0, a contradiction. It follows that
∀Aa ∈ α0 and ∀Ab ∈ β0 we have δ

f
ba = −∞ which implies L2

3 = −∞. 2

According to Lemma 2, the necessary and sufficient condition (11) for the
existence of a feasible insertion position can be checked in O(nm). Feasible
insertion position (α0, β0) can be obtained in O(|E ∪ E(f)|) since checking if
δ

f
ix ≥ 0 can be done by a simple depth-first search algorithm in Gf .

To illustrate the feasibility condition, let us consider a RCPSP example with
10 activities and two resources such that B1 = 7 and B2 = 4. The processing
times and the resource demands are indicated on Table 2. Minimum time lags
are displayed on Figure 8. We assume that all activities, except Activity A5

that has to be inserted, are already scheduled as shown on the Gantt diagram
of Figure 10. The flow network f corresponding to this partial schedule is
displayed on Figure 9 and gives a makespan Cmax = 11.

Table 2
Processing times and resource demands

The values of δ
f
0i + pi and δ

f
i(n+1), for all activities Ai, needed to check the

feasibility or compute the makespan of any insertion position can be computed
using the Bellmann-Ford’s algorithm. There are indicated on Table 3.

Sets γ0, α0 and β0 are defined as follows. γ0 = {6} since A6 is the only
activity which is synchronized with activity 5 (S5 = S6). Then we find α0 =
{A0, A2, A3, A4} and β0 = {A1, A7, A8, A9, A10, A11} (see the cut denoted ρ = 0
on Figure 9). This insertion position (α0, β0) is resource-feasible since, ∀k,
∑

(Ai,Aj)∈α0×β0
fijk ≥ b5k.
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Fig. 8. Example of a RCPSP with minimum time lags

Fig. 9. Resource flow network

Table 3
Values of δ

f
0i + pi and δ

f
i(n+1)

In the remaining of the section, we present an algorithm to find an optimal
insertion position. We prove its optimality and provide its time complexity.
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Let (α, β) denotes a feasible insertion position for (RCAIPxf ). Let µ denotes

the subset of α such that µ = {Ai ∈ α|δf
0i + pi = maxAa∈α(δf

0a + pa)} and ν

denotes the subset of β such that ν = {Ai ∈ β|δf
i(n+1) = maxAb∈β(δf

b(n+1))}.

Due to the expression of δ
fαβ
0(n+1) given by equation (10), there is no other

feasible insertion position (α′, β ′) such that Cmax(α
′, β ′) < Cmax(α, β), µ ⊆ α′

and ν ⊆ β ′. Indeed µ denotes the set of activities of α yielding the longest
cycle in C1

1(α, β) given by expression L1
1(α, β). ν denotes the set of activities

of β yielding the longest cycle in C1
2(α, β) given by expression L1

2(α, β). (µ, ν)
denote the subset of (α, β) yielding the longest cycle in C1

3(α, β) given by
expression L1

3(α, β). Thus, to have an insertion position (α′, β ′) of makespan
lower than δ

fαβ
0(n+1) we must have either µ ∩ α′ = ∅ or ν ∩ β ′ = ∅, or both

conditions.

Again, let us consider the insertion position given α0 = {A0, A2, A3, A4} and
β0 = {A1, A7, A8, A9, A10, A11}. The insertion position yields a makespan

δ
fαβ
0(n+1) = max

(

δ
f
0(n+1), L

1
1(0, α0, β0), L

1
2(0, α0, β0), L

1
3(0, α0, β0)

)

= 15.

In Table 3, we may check that µ = {A4} and ν = {A1}, which means that
(α0, β0) is an optimal insertion position among all insertion positions such that
A4 is a resource predecessor and A1 is a resource successor.

Based on these dominance rules, in the case the problem is feasible, we can
define a series of Λ ≥ 1 insertion positions (αρ, βρ)0≤ρ≤Λ−1 such that

(αρ, βρ) = (αρ−1 ∪ ν ′
ρ−1, βρ−1 \ νρ−1) ρ = 1, . . . , Λ− 1 (15)
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where

νρ = {Ai ∈ βρ|δ
f
i(n+1) = max

Ab∈βρ

(δf
b(n+1))} ρ = 0, . . . , Λ− 1, (16)

ν ′
ρ = {Ai ∈ νρ|δ

f
xi = −∞} ρ = 0, . . . , Λ− 1, (17)

and

Λ = min{ρ ≥ 1, ∃Rk ∈ R,
∑

(Ai,Aj)∈(αρ−1∪ν′

ρ−1
)×(βρ−1\νρ−1

)fijk < bik} (18)

Namely, starting with ρ = 1, we define insertion position (αρ, βρ) from (αρ−1,

βρ−1) by removing from the set of possible successors βρ−1 the set of activities
νρ−1 involved in the longest cycles in C1

2(αρ−1, βρ−1)∪C
1
3(αρ−1, βρ−1) and adding

to the set of possible successors αρ−1 a subset of activities ν ′
ρ−1 ⊆ νρ−1. This

subset contains by definition activities Ai ∈ νρ−1 such that there is no path in
Gf from Ax to Ai. Indeed, the activities belonging to νρ−1 but not to ν ′

ρ−1 can
not be resource predecessors of Ax without causing the creation of a positive
length cycle. The recursion is stopped before considering (αΛ, βΛ) which would
violate resource feasibility condition (9) as stated by the definition of Λ (18).

In figure 9, cases ρ = 0, ρ = 1 and ρ = 2 are illustrated by cuts in the resource-
flow network. (α1, β1) is generated from (α0, β0) by removing ν0 = {A1} from
β0 and by inserting ν ′

0 = ν0 into α0. (α2, β2) is generated from (α1, β1) by
removing ν1 = {A9} from β1 and by inserting ν ′

1 = ν1 into α1. We will illustrate
the complete generation process at the end of the paper.

For each so-defined insertion position (αρ, βρ), we define a sub-series of λρ ≥ 1
insertion positions (αr

ρ, βρ)r=0,...,λρ−1 defined as follows.

αr
ρ = αρ r = 0 (19)

αr
ρ = αr−1

ρ \ µr−1
ρ r = 1, . . . , λρ − 1 (20)

with

µr
ρ = {Ai ∈ αr

ρ|δ
f
0i + pi = max

Aa∈αr
ρ

(δf
0a + pa)} r = 0, . . . , λρ − 1 (21)

and

λρ = min{r ≥ 1|∃Rk ∈ R,
∑

(Ai,Aj)∈αr−1
ρ \µr−1

ρ ×βρ

fijk < bik}. (22)
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Starting with (α0
ρ, βρ) = (αρ, βρ), we define insertion position (αr

ρ, βρ) from
(αr−1

ρ , βρ) by removing from the set of possible predecessors αr−1
ρ the set of

activities µr−1
ρ involved in the longest cycles in C1

1(α
r−1
ρ , βρ)∪C

1
3(α

r−1
ρ , βρ). The

recursion is stopped before considering (αλρ
ρ , βρ) which would violate resource

feasibility condition (9) as stated by the definition of λρ (22).

In the illustrative example, we have (α0
0, β0) = (α0, β0) = ({A0, A2, A3, A4},

{A1, A7, A8, A9, A10, A11}) and µ0 = {A4}. Consequently α1
0 is generated by

removing A4 from α0
0. The generation process of the sub-series of insertion

positions is fully illustrated at the end of the paper.

We now focus on the demonstration that the considered insertion positions
are feasible and, in addition, dominant for the RCAIP.

Lemma 3 If RCAIPxf is feasible, each insertion position (αr
ρ, βρ), ρ = 0, . . . ,

Λ− 1, r = 0, . . . , λρ − 1, is feasible and
∑Λ−1

ρ=0 λρ ≤ n2.

Proof If (RCAIPxf ) has a solution, then (α0, β0) is feasible as stated through
Lemma 2.

We first show with a recursion argument that if (αρ, βρ) is feasible with ρ ≥ 0
then so is (αρ+1, βρ+1) for ρ+1 < Λ. Feasibility is checked by examining C2

1 , C
2
2

and C3
2 cycles, as stated by Theorem 4. Suppose a positive length type C2

1 cycle
is generated by adding ν ′

ρ to αρ. Since (αρ, βρ) is feasible we have δf
xa +pa ≤ 0,

∀Aa ∈ αρ. To obtain a positive length type C2
1 cycle we must have an activity

Aa ∈ ν ′ such that δf
xa + pa > 0. This yields a contradiction with the definition

of ν ′ stating that for each Aa ∈ ν ′, δf
xa = −∞. No positive length type C2

2

cycle can be generated since (αρ, βρ) is feasible and βρ+1 ⊂ βρ. Suppose now
that a positive length type C3

2 cycle is generated. Since (αρ, βρ) is feasible we

have ∀Aa ∈ αρ, ∀Ab ∈ βρ, δ
f
ba + pa + px ≤ 0. The only way to generate a

type C3
2 cycle is to find Ab ∈ β \ ν and Aa ∈ ν ′ such that δ

f
ba + pa + px > 0.

Suppose that for such two activities we have δ
f
ba ≥ 0. In this case we have

δ
f
b(n+1) ≥ δ

f
ba + δ

f
a(n+1) ≥ δ

f
a(n+1) which implies that Ab ∈ ν, a contradiction.

Consequently, ∀Ab ∈ β \ ν and ∀Aa ∈ ν ′, δ
f
ba = −∞ and no type C3

2 cycle
can be generated. The only feasibility condition that can be violated is the
resource condition (9), which is impossible by definition of Λ (18).

Second, we show that given that (αρ, βρ) is feasible, all considered (αr
ρ, βρ) are

also feasible for r ≤ λρ− 1. This is obviously verified for r = 0, since αr
ρ = αρ.

Suppose now that (αr
ρ, βρ) is feasible. Removing µr

ρ from αr
ρ cannot increase

the length of any cycle. Consequently (α, βρ) with α ⊆ αr
ρ is feasible if and

only if there is a sufficient amount of flow sent from α to β0, which is precisely
the condition ensured by the definition of λρ (22).
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We now provide a bound on the number of considered insertion positions.
For each insertion position (αρ, βρ), there is a finite number of sub-positions
obtained by removing set µr

ρ. Since µr
ρ includes at least one activity there can

be no more than n insertion positions (αr
ρ, βρ) for a fixed ρ (i.e. λρ ≤ n). Also,

set νρ contains at least one activity, so the repeated removal of νρ from βρ

yields at most n insertion positions (αρ, βρ) (i.e. Λ ≤ n). Consequently there
are no more than n2 considered insertion positions. 2

We now present a property of series (αρ, βρ)ρ=0,...,Λ−1 that will allow us to
show the series of insertion positions (αr

ρ, βρ)ρ=0,...,Λ−1,r=0,...,λρ−1 is dominant,
i.e. that is includes an optimal insertion position.

Lemma 4 Each insertion position (αρ, βρ), ρ = 0, . . . , Λ − 1, is such that
among insertion positions (α, β) verifying β ⊆ βρ and β∩νρ 6= ∅ the insertion
positions that verifies in addition α ⊆ αρ are dominant.

Proof

As a preliminary remark, given an insertion position (αρ, βρ) and any other
insertion position (α, β) we have α ⊂ (αρ ∪ βρ). Indeed, any activity Ai not
belonging to αρ ∪ βρ belongs either to γ0 or to a set βρ′ with ρ′ < ρ and to
its subset νρ′ \ ν ′

ρ′ . In the first case, we have a path of length 0 from Ai to
Ax and so Ai cannot be a resource predecessor of Ax. In the second case, the
activity Ai is such that δ

f
xi > 0 (so it is not added to αρ′+1) and so it cannot

be neither a resource predecessor of Ax. It follows that if (α, β) is a feasible
insertion position, α ⊆ αρ if and only if α ∩ βρ = ∅.

Thus, we partition the set of insertion positions verifying β ⊆ βρ and β∩νρ 6= ∅
into two subsets defined by α ∩ βρ = ∅ (i) for the first one and α ∩ βρ 6= ∅ (ii)
for the second one.

Consider the (ii) sub-case, i.e. an improving insertion position (α, β) such that
β ∩ νρ 6= ∅ and α ∩ βρ 6= ∅.

Let Ω = (βρ ∩ α) ∪ {Ai ∈ βρ|∃Aj ∈ βρ ∩ α, δ
f
ijk ≥ 0}. Ω includes the activities

of α ∩ βρ and all their ancestors in βρ. Note Ω is not empty since α ∩ βρ 6= ∅.
Let Ω− = {Ai ∈ V \ Ω|∃Aj ∈ Ω and Rk ∈ R, fijk > 0} denotes the set of
activities outside Ω that send a non zero amount of flow to activities of Ω and
Ω+ = {Ai ∈ V \Ω|∃Aj ∈ Ω and Rk ∈ R, fjik > 0} denotes the set of activities
outside Ω that receive a non zero amount of flow from the activities of Ω.

We now prove by contradiction that Ω− ⊆ αρ. Suppose this is not the case
and there is an activity Ai ∈ Ω−, Ai 6∈ αρ. We have either Ai ∈ βρ, Ai ∈ γ0

or Ai ∈ βρ′ with ρ′ < ρ and to its subset νρ′ \ ν ′
ρ′ . If Ai ∈ βρ, by definition
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of Ω and Ω′, Ai ∈ Ω and Ai 6∈ Ω′, a contradiction. If Ai ∈ γ0, by definition
of γ0 there is a path from Ax to Ai. Since, by definition of ω′ we have also a
path from Ai to an activity Aj ∈ α ∩ βρ inducing a path from Ax to Aj, a
contradiction with Aj ∈ α. If Ai ∈ βρ′ with ρ′ < ρ and to its subset νρ′ \ ν ′

ρ,

Ai is such that δ
f
xi > 0 (so it is not added to αρ′+1) which yields the same

contradiction as for the preceding case. If follows that Ω− ⊆ αρ.

Consider the activity sets α′ = (α∩ αρ)∪Ω− and β ′ = βρ. Since Ω− ⊆ αρ, we
have α′ ⊆ αρ and α′ ∩ βρ = ∅. If (α′, β ′) is a valid insertion position, then it
belongs to type (i).

We now prove that, if (α, β) is a feasible insertion position, (α′, β ′) is a feasible
insertion position. Recall that α is partitioned into two subsets α ∩ αρ and
α ∩ βρ which yields:

∑

Ai∈α,Aj∈β

fijk =
∑

Ai∈α∩αρ,Aj∈β

fijk +
∑

Ai∈α∩βρ,Aj∈β

fijk (23)

We have Ω+ ⊆ βρ since there is a path from any activity of α ∩ βρ to any
activity of Ω+. Since α∩ βρ ⊆ Ω we have

∑

Ai∈α∩βρ,Aj∈β fijk ≤
∑

Ai∈Ω,Aj∈β fijk.
Since in addition Ω+ includes all activities receiving flow from Ω this yields
∑

Ai∈Ω,Aj∈β fijk ≤
∑

Ai∈Ω,Aj∈Ω+ fijk. Inserting this result into (23) we obtain:

∑

Ai∈α,Aj∈β

fijk ≤
∑

Ai∈α∩αρ,Aj∈β

fijk +
∑

Ai∈Ω,Aj∈Ω+

fijk (24)

The flow conservation implies
∑

∀Ai∈Ω−,Aj∈Ω fijk =
∑

∀Ai∈Ω,Aj∈Ω+ fijk which
immediately yields

∑

Ai∈α,Aj∈β

fijk ≤
∑

Ai∈α∩αρ,Aj∈β

fijk +
∑

∀Ai∈Ω−,Aj∈Ω

fijk (25)

On the other hand we have α ∩ αρ ⊆ α′ and Ω− ⊆ α′. We obtain:

∑

Ai∈α,Aj∈β

fijk ≤
∑

Ai∈α′,Aj∈β

fijk +
∑

∀Ai∈α′,Aj∈Ω

fijk (26)

We remark that β ∩ Ω = ∅ since otherwise there would be a path from an
activity of β to an activity of α∩βρ, which contradicts the feasibility of (α, β).
Furthermore β ⊆ βρ and Ω ⊆ βρ. β and Ω are disjoint subsets of βρ which
yields

∑

Ai∈α,Aj∈β

fijk ≤
∑

Ai∈α′,Aj∈βρ

fijk (27)
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Equation 27 show that (α′, βρ) is an insertion position. Furthermore, since
α′ ⊆ αρ and (αρ, βρ) is feasible, (α′, βρ) is feasible.

We finally show that (α′, βρ) cannot be worse than (α, β). Since by hypothesis

we have νρ ∩ β 6= ∅, it follows that maxAb∈β δ
f
b(n+1) = maxAb∈βρ

δ
f
b(n+1). Since

for each activity of Ai ∈ Ω− we have a path of length at least pi to an activity
of α ∩ βρ. We have maxAa∈α∩βρ

(δf
0a + pa) ≥ maxAa∈Ω−(δf

0a + pa). Since α′ =

α \ (α ∩ βρ) ∪ Ω−, it comes δ
fαβ
0(n+1) ≥ δ

fα′β0

0(n+1). Consequently, we have only
to consider improving insertion positions of the (i) category; i.e. such that
α ⊆ αρ. 2

This property can be simply illustrated by considering the insertion position
(α0, β0) from the illustraive example. We may try to find an insertion position
(α, β) improving (α0, β0) while keeping A1, which belongs to ν0, as a possible
resource successor, i.e. in β. Now, Lemma 4 indicates that, under this condi-
tion, it is not useful to consider as possible resource predecessor any activity
of β0. For instance, given that A1 is a resource successor, it is better to select
A3 ∈ α0 as a resource predecessor than to select A9 ∈ β0 (while the latter
choice would be feasible).

Theorem 6 If (RCAIPxf) is feasible, the insertion position (α, β) of the se-

ries (αr
ρ, βρ)ρ=0,...,Λ−1,r=0,...,λρ−1 having the minimal makespan δ

fαβ
0(n+1) is opti-

mal.

Proof

We show that the set of evaluated insertion positions includes an optimal one.
Let (α∗

ρ, β
∗
ρ) denote the insertion position of minimal makespan among

(αr
ρ′ , βρ′)ρ′=0,...,ρ,r=0,...,λρ′

.

We now establish the following property by recursion: (α∗
ρ, β

∗
ρ) dominates any

insertion position (α, β) such that β ∩ νρ 6= ∅.

We first show the property holds for ρ = 0. Consider an insertion position
(α, β) such that β ∩ ν0 6= ∅. we have β ⊆ β0 since no activity of α0 ∪ λ0

can be a resource successor of Ax. In this case, Lemma 4 states that insertion
positions such that α ⊆ α0 are dominant. Since β ∩ ν0 6= ∅, the only way to
have an insertion position better than (α0, β0) is to remove µ0

0 from α0, then
µ1

0, etc. This yields series (αr
0, β0)r until the amount of flow sent from αr

0 to β0

would become insufficient, which is reached for r = λ0 − 1.

Let us assume the invariant is verified for τ = 0, . . . , ρ − 1 with ρ ≥ 1. To
find an insertion position (α, β) better than (α∗

ρ, β
∗
ρ) with νρ ∩ β 6= ∅, we

consider the following possible disjoint possibilities for β: (a) β ∩ αρ 6= ∅ and
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(b) β ∩ αρ = ∅. Consider first case (a) and let Ai ∈ β ∩ αρ. Note we cannot
have Ai ∈ α0 since (α, β) is feasible and no activity of α0 can be a resource
successor of Ax. Consequently, there exists 0 ≤ τ < ρ with Ai ∈ ντ and, by
recursion, (α, β) is dominated by the insertion position (α∗

τ , β
∗
τ ) already found

at step τ . So, we have only to consider an improving insertion position (α, β)
such that β ⊆ βρ. In this case, Lemma 4 states that insertion positions such
that α ⊆ αρ are dominant. Since β∩νρ 6= ∅, the only way to have an insertion
position better than (αρ, βρ) is to remove µ0

ρ from αρ, then µ1
ρ, etc. This yields

series (αr
ρ, βρ)r until the amount of flow sent from αr

ρ to βρ would become
insufficient, which is reached for r = λρ − 1.

Thus, we have established the property that the set of considered insertion
position dominates any insertion position (α, β) such that there exists ρ ∈
{0, . . . , Λ− 1}, β ∩ νρ 6= ∅. Consider β0 the set of possible resource successors
for activity Ax. We have β0 = ν0 ∪ ν1 ∪ . . . ∪ νΛ−1 ∪ βΛ, where βΛ is the set
of activities that remains as possible resource successors but without enough
flow from αΛ to βΛ. It follows that to get a sufficient amount of flow, we must
transfer at least one activity from αΛ to βΛ. Such activity must belong to one
set ντ with 0 ≤ τ < Λ and is consequently dominated. Since any possible
resource successor Ai belong to β0 any insertion position (α, β) with Ai ∈ β

is dominated by an insertion position of series (αr
ρ, βρ)ρ=0,...,Λ−1,r=0,...,λρ−1 2

Algorithm 1 generates all the so-defined dominant insertion positions and
stores the one of minimal makespan through steps 1-1. Note that steps 1-1
correspond to the generation of the sub-series of insertion positions (αr

ρ, βρ). A
variable named α is used to avoid using indices r and ρ. The remaining steps
1-1 actually update flow f (actually inserting activity Ax) from the insertion
position (α∗, β∗) following the principles presented in section 3. The algorithm
can be implemented in O(n2m) time. Note that the preliminary computations
of values δ

f
0i + pi and δ

f
i(n+1), for all activities Ai, can be done through the

Bellman-Ford algorithm in O(n|E ∪E(f)|).

Finally we give the complete behaviour of the algorithm on the illustrative
example. For ρ = 0, starting with (α0, β0), Table 4 displays the various inser-
tion positions that are explored assuming that β0 is kept unchanged, as well
as their evaluation. The insertion position (α0, β0) is feasible and leads to

δ
fαβ
0(n+1) = max

(

δ
f
0(n+1), L

1
1(0, α0, β0), L

1
2(0, α0, β0), L

1
3(0, α0, β0)

)

= 15.

This value can be decreased to 14 by removing A4 from α. At the end of this
phase, since only A0 still belongs to α, the algorithm considers the case ρ = 1,
by transferring the activities belonging to ν ′

0 = ν0 = {A1} from β0 to α0.

Case ρ = 1 is described on Table 5. We know that α1 = {A0, A1, A2, A3, A4}
and β1 = {A7, A8, A9, A10, A11}. For this case, three insertion positions can be
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Algorithm 1. OptInsert(x, f) insert Ax into flow f minimizing the makespan

1: γ0 ← {Ai ∈ A|δ
f
ix = 0 and δ

f
xi = 0};

2: if
∑

Ai∈γ0
bik + bxk ≤ Bk ∀Rk ∈ R then

3: α0 ← {Ai ∈ V \ γ0|δ
f
ix ≥ 0};β0 ← {V \ (γ0 ∪ α0)};

4: (α∗, β∗)← (α0, β0); ρ← 0;
5: repeat

6: α← αρ;
7: while

∑

(Ai,Aj)∈α×βρ
fijk ≥ bxk ∀Rk ∈ R do

8: if δ
fαβρ

0(n+1) < δ
fα∗β∗

0(n+1) then

9: (α∗, β∗)← (α, βρ);
10: end if

11: µ← {Ai ∈ α|δf
0i + pi = maxAa∈α(δf

0a + pa)};
12: α← α \ µ;
13: end while

14: νρ ← {Ai ∈ βρ|δ
f
i(n+1) = maxAb∈βρ

(δf
b(n+1))};

15: ν ′
ρ ← {Ai ∈ νρ|δ

f
xi = −∞};

16: αρ+1 ← αρ ∪ ν ′
ρ; βρ+1 ← βρ \ νρ; ρ← ρ + 1;

17: until ∃Rk ∈ R,
∑

(Ai,Aj)∈αρ×βρ
fijk < bik;

18: for Rk ∈ R do

19: zk ← bxk;
20: for Ai ∈ α∗ do

21: for Aj ∈ β∗ do

22: φ = min(fijk, zk); zk ← zk − φ;
23: fijk ← fijk − φ, fixk ← fixk + φ; fxjk ← fxjk + φ;
24: end for

25: end for

26: end for

27: else

28: There is no solution to (RCAIPxf);
29: end if

Table 4
ρ = 0, α0 = {A0, A2, A3, A4} and β0 = {A1, A7, A8, A9, A10, A11}

considered. The best one (according to the greatest L1
i (0, α, β) values) is found

for α = {A0, A2, A3}. It allows for inserting A5 in the partial schedule while
keeping the Cmax value unchanged. Note that at this point, since an insertion

26



position that keeps the project duration unchanged has been found, it is not
necessary any more to explore further insertion positions. Anyway, in order to
explain all the features of the algorithm, we detail the other stages.

Table 5
ρ = 1, α1 = {A0, A1, A2, A3, A4} and β1 = {A7, A8, A9, A10, A11}

Case ρ = 2 is considered next: the activities belonging to ν ′
1 = ν1 = {A9} from

β1 to α1. It is described on Table 6. We have α2 = {A0, A1, A2, A3, A4, A9} and
β2 = {A7, A8, A10, A11}. For this case, two insertion positions are considered
but, as one can see on the table, they are both worse than the best known one.
At this step, it is not any longer possible to transfer any activity from β to α

because there is a path from A5 to each activity A7, A8, A10 and A11 remaining
in β ( ν ′

ρ = ∅ ∀ρ ≥ 2). For this reason, these activities have been tinted gray
on the resource network of Figure 9. Therefore, these activities can only be
removed from β until the remaining flow becomes lower than the resource
demand. According to the δi(n+1) values, A7 is removed first (see Table 7),
then A10 (see Table 8) and lastly A8 (see Table 9). As one can see on Tables 7-
9, no insertion positions are found that is better than the best one already
known at this point (i.e. α∗ = {A0, A2, A3} and β∗ = {A7, A8, A9, A10, A11}).
Figure 11 displays the obtained schedule after A5 insertion. Note that only
the resource flows coming from A0 and A3 are used (whereas A2 also belongs
to α∗) since f2jk = 0 ∀j ∈ β∗.

Table 6
ρ = 2, α2 = {A0, A1, A2, A3, A4, A9} and β2 = {A7, A8, A10, A11}
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Table 7
ρ = 3, α3 = {A0, A1, A2, A3, A4, A9} and β3 = {A8, A10, A11}

Table 8
ρ = 4, α4 = {0, 1, 2, 3, 4, 9} and β4 = {8, 11}

Table 9
ρ = 5, α5 = {A0, A1, A2, A3, A4, A9} and β5 = {A11}

R1

R2

21 3 4 5 6 7 8 9 10 11 120

A3

A2

A4

A1A3

A1

A6

A6

A7

A8

A8

A5 A9

A10

A10

A9A5

Fig. 11. Complete solution after A5 insertion
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7 Conclusion

In this paper, we considered the problem of inserting a single activity Ax

inside an existing partial schedule while preserving its structure in presence
of minimum and maximum time lags between activities. The objective is to
minimize the project duration increase. We stated that the problem consists of
selecting the best ordered pair of sets (α∗, β∗) inside the resource flow network
associated with the existing partial schedule, so that both the flow taken from
α∗ and sent back to β∗ satisfies the resource demand of Ax and the insertion
does not cause any temporal inconsistency. We have shown, given a pair (α, β),
how the latter constraint can easily be checked by considering three categories
of elementary cycles.

Whereas the insertion problem is polynomially solvable for the standard RCPSP
(where only precedence constraints are taken into account), we showed that
the introduction of minimum and maximum time lags makes the problem NP-
hard. Nevertheless, when only minimum time lags are considered and when
activity durations are strictly positive, the problem turns back polynomially
solvable and we proposed an algorithm to solve it.

Once again, we observed that dealing with maximum time lag constraints is
difficult. It was already known that finding a resource-feasible schedule that
respects both the minimum and maximum time lags is NP-hard. We demon-
trated here that, though apparently easier, even the problem of inserting a
single activity in an already existing resource- and time-feasible schedule is
NP-hard. Therefore, it might appear relevant in some situations to relax max-
imum time lags, intending to find a schedule which minimizes the maximum
time lag violation (a maximum makespan value being preliminary set). In-
deed, in many schedule environments, maximum time lags correspond to user
preferences and hence it makes sense to produce a schedule that does not fully
respect them. In this case, one can also define priorities in order to define a hi-
erarchy among maximum time lags. In this case, a possible objective function
would be the minimization of the weighted sum of the time lag violations.

Another way of tackling insertion problems in presence of maximum time
lags, would be to define another structure of the partial schedule to turn the
RCAIP into a polynomially solvable problem. This remains a critical issue
for designing efficient local search methods for the RCPSP/max based on
individual activity reinsertions.
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