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NON-ASYMPTOTIC RESAMPLING-BASED CONFIDENCE REGIONS AND
MULTIPLE TESTS IN HIGH DIMENSION

By Sylvain Arlot, Gilles Blanchard and Etienne Roquain

Universite Paris-Sud, Fraunhofer FIRST.IDA and Vrije Universiteit

We study generalized bootstrapped confidence regions for the
mean of a random vector whose coordinates have an unknown de-
pendence structure. The dimensionality of the vector can possibly
be much larger than the number of observations and we focus on a
non-asymptotic control of the confidence level. The random vector
is supposed to be either Gaussian or to have a symmetric bounded
distribution. We consider two approaches, the first based on a concen-
tration principle and the second on a direct bootstrapped quantile.
The first one allows us to deal with a very large class of resampling
weights while our results for the second are specific to Rademacher
weights. We present an application of these results to the one-sided
and two-sided multiple testing problem, in which we derive several
resampling-based step-down procedures providing a non-asymptotic
FWER control. We compare our different procedures in a simulation
study, and we show that they can outperform Bonferroni’s or Holm’s
procedures as soon as the observed vector has sufficiently correlated
coordinates.

1. Introduction.

1.1. Goals and motivations. In this work, we assume that we observe a sample Y := (Y1, . . . ,Yn)
of n ≥ 2 i.i.d. observations of an integrable random vector Yi ∈ R

K with dimensionality K pos-
sibly much larger than n , with an unknown dependence structure of the coordinates. Let µ ∈ R

K

denote the common mean of the Yi ; our main goal is to find a non-asymptotic (1−α)-confidence
region G(Y, 1 − α) for µ , of the form:

(1) G(Y, 1 − α) =
{
x ∈ R

K | φ
(
Y − x

)
≤ tα(Y)

}
,

where φ : R
K → R is a measurable function (measuring a kind of distance, for example an

ℓp-norm for p ∈ [1,∞]), α ∈ (0, 1), tα :
(
R

K
)n

→ R is a measurable data-dependent threshold,

and Y = 1
n

∑n
i=1 Yi is the empirical mean of the sample Y.
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As a particular application of such confidence regions, we will focus on the following multiple
testing problem: suppose we want test simultaneously for all vector coordinates 1 ≤ k ≤ K the
null hypotheses Hk : “µk ≤ 0” against Ak : “µk > 0” . A classical type of procedure consists
in rejecting the null hypotheses Hk for indices k ∈ R(Y, α) corresponding to those empirical
means that are larger than a possibly data-dependent threshold t :

(2) R(Y, α) =
{
1 ≤ k ≤ K | Yk > t(Y, α)

}
.

The error of such a multiple testing procedure can be measured by the family-wise error rate
(FWER) defined by the probability that at least one hypothesis is wrongly rejected. Denoting
by H0 = {k | µk ≤ 0} the set of coordinates corresponding to the true null hypotheses, the
FWER of the procedure defined in (2) can be controlled as follows:

P

(
∃k | Yk > t(Y) and µk ≤ 0

)
≤ P

(
sup
k∈H0

{
Yk − µk

}
> t(Y)

)
.

Since µk is unknown under Hk, controlling the above probability by a level α is equivalent to
establish a (1−α)-confidence region for µ of the form (1) , using φ(x) = supk∈H0

(xk). Similarly,
the same reasoning with φ(x) = supk∈H0

|xk| in (1) allows us to test Hk : “µk = 0” against

Ak : “µk 6= 0”, by choosing the rejection set
{
1 ≤ k ≤ K |

∣∣∣Yk

∣∣∣ > tα(Y)
}
.

In the framework we consider in the present work, we emphasize that:

• we aim at obtaining a non-asymptotical result valid for any fixed K and n, with K possibly
much larger than the number of observations n .

• we do not want to make any specific assumption on the dependency structure of the
coordinates of Yi (although we will consider some general assumptions over the distribution
of Y, for example that it is Gaussian).

In the Gaussian case, a traditional parametric method based on the direct estimation of the
covariance matrix to derive a confidence region would not be appropriate in the situation where
K ≫ n , unless the covariance matrix is assumed to belong to some parametric model of lower
dimension, which we explicitly don’t want to posit here. In this sense our approach is closer in
spirit to non-parametric or semiparametric statistics.

This viewpoint is motivated by practical some applications, especially neuroimaging (see [18,
6, 14]). In a magnetoencephalography (MEG) experiment, each observation Yi is a two or
three dimensional brain activity map, obtained as a difference between brain activities with
and without some stimulation. This map is typically composed of 15 000 points, or a time
series of length between 50 and 1 000 of such data. The dimensionality K thus goes from 104

to 107. Such observations are repeated n = 15 up to 4 000 times, but this upper bound is
seldom attained (see [28]). Typically, n ≤ 100 ≪ K. In such data, there are strong dependencies
between locations (the 15 000 points are obtained by pre-processing data of 150 sensors) which
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RESAMPLING-BASED CONFIDENCE REGIONS 3

are highly spatially non-homogeneous, as remarked by [18]. Moreover, there may be long-distance
correlations, e.g. depending on neural connections inside the brain, so that a simple parametric
model of the dependency structure is generally not adequate. Another motivating example is
given by microarray data, where it is common to observe samples of limited size (e.g. less than
100) of a vector in high dimension (e.g. more than 20,000, each dimension corresponding to a
specific gene), and where there the dependency structure can be quite arbitrary.

1.2. Two approaches to our goal. The ideal threshold tα in (1) is obviously the (1−α) quantile

of the distribution of φ
(
Y − µ

)
. However, this quantity depends on the unknown dependency

structure of the coordinates of Yi and is therefore itself unknown.
In this work we consider using a resampling scheme in order to approach tα . The heuristics

of the resampling method (introduced by [8], generalized to exchangeable weighted bootstrap
by [15] and [22]) is that the distribution of the unobservable variable Y − µ is “mimicked” by
the distribution of the observable variable

Y
〈W−W〉

:=
1

n

n∑

i=1

(Wi − W )Yi =
1

n

n∑

i=1

Wi(Y
i − Y) =

(
Y − Y

)〈W 〉
,

conditionally to Y, where (Wi)1≤i≤n are real random variables independent of Y called the
resampling weights, and W = n−1∑n

i=1 Wi . We emphasize that the family (Wi)1≤i≤n itself need
not be independent.

Following this general idea, we investigate two separate approaches in order to obtain non-
asymptotic confidence regions:

• Approach 1 (“concentration approach”):

The expectations of φ
(
Y − µ

)
and φ

(
Y
〈W−W〉

)
can be precisely compared, and the

processes φ
(
Y − µ

)
and EW

[
φ

(
Y
〈W−W〉

)]
concentrate well around their respective ex-

pectations.
• Approach 2 (“direct quantile approach”):

The 1 − α quantile of the distribution of φ

(
Y
〈W−W〉

)
conditionally to Y is close to the

one of φ
(
Y − µ

)
.

The first approach above is closely related to the notion of Rademacher complexity in learning
theory, and our results in this direction are heavily inspired by the recent work of Fromont [9],
who studies general resampling schemes in a learning theoretical setting. It may also be seen
to some extent as a generalization of cross-validation methods. For what concerns the second
approach, we will restrict ourselves specifically to Rademacher weights in our analysis, because
we rely heavily on a symmetrization principle.
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1.3. Relation to previous work. Using resampling to construct confidence regions (see e.g.
[8, 12, 11, 7, 4, 20]) or multiple testing procedures (see e.g. [29, 30, 21, 10, 25]) is a vast field of
study in statistics. Roughly speaking, we can mainly distinguish between two types of results:

• asymptotic results, which are based on the fact that the bootstrap process is asymptotically
close to the original empirical process (see [27]).

• exact randomized tests (see e.g. [23, 24, 26]), which are based on an invariance of the
null distribution under a given transformation ; the underlying idea can be traced back to
Fisher’s permutation test (see [1]).

Because we focus on a non-asymptotic viewpoint, the asymptotic approach mentioned above is
not adapted to the goals we have fixed.

Our “concentration approach” of the previous section is not directly related to either type
of the above previous results, but, as already pointed out earlier, is strongly inspired by results
coming from learning theory. On the other hand, what we called our “quantile approach” in the
previous section is strongly related to exact randomization tests. Namely, we will only consider
symmetric distributions: this is a specific instance of an invariance with respect to a transfor-
mation and will allow us to make use of distribution-preserving randomization via sign-flipping.
The main difference with traditional exact randomization tests is that, because our first goal
is to derive a confidence region, the vector of the means is unknown and therefore, so is the
exact invariant transformation. Our contribution to this point is essentially to show that the
true vector of the means can be replaced by the empirical one in the randomization, for the
price of additional terms of smaller order in the threshold thus obtained. To our knowledge, this
gives the first non-asymptotic approximation result on resampled quantiles with an unknown
distribution mean.

1.4. Notations. Let us now define a few notations that will be useful throughout this paper.

• A boldface letter indicates a matrix. This will almost exclusively concern the K × n data
matrix Y . A superscript index such as Yi indicates the i-th column of a matrix.

• If µ ∈ R
K , Y − µ is the matrix obtained by subtracting µ from each (column) vector of

Y. If c ∈ R and W ∈ R
n, W − c = (Wi − c)1≤i≤n ∈ R

n.
• If X is a random variable, D(X) is its distribution and Var(X) is its variance. We use the

notation X ∼ Y to indicate that X and Y have the same distribution.
• We denote by EW [. . .] , the expectation operator over the distribution of the weight vec-

tor W only, i.e., conditional to Y . We use a similar notation PW for the corresponding
probability operator and EY , PY for the same operations conditional to W . Since Y and
W are always assumed to be independent, the operators EW and EY commute by Fubini’s
theorem.

• The vector σ = (σk)1≤k≤K is the vector of the standard deviations of the data: ∀k, 1 ≤
k ≤ K, σk = Var1/2(Y1

k).
• Φ is the standard Gaussian upper tail function: if X ∼ N (0, 1), ∀x ∈ R, Φ(x) = P(X ≥ x).
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RESAMPLING-BASED CONFIDENCE REGIONS 5

• We define the mean of the weight vector W = 1
n

∑n
i=1 Wi, the empirical mean vector

Y = 1
n

∑n
i=1 Yi, and the resampled empirical mean vector Y

〈W 〉
:= 1

n

∑n
i=1 WiY

i .
• We use the operator |·| to denote the cardinal of a set.

Several properties may be assumed for the function φ : R
K → R that will be used to define

confidence regions of the form (1):

• Subadditivity: ∀x, x′ ∈ R
K , φ (x + x′) ≤ φ(x) + φ (x′) .

• Positive-homogeneity: ∀x ∈ R
K , ∀λ ∈ R

+, φ (λx) = λφ(x) .
• Bounded by the p-norm, p ∈ [1,∞]: ∀x ∈ R

K , |φ (x)| ≤ ‖x‖p , where ‖x‖p is equal to

(
∑K

k=1 |xk|p)1/p if p < ∞ and maxk{|xk|} for p = +∞.

Finally, we define the following possible assumptions on the generating distribution of Y:

(GA) The Gaussian assumption: the Yi are Gaussian vectors.
(SA) The symmetric assumption: the Yi are symmetric with respect to µ i.e. (Yi−µ) ∼ (µ−Yi) .
(BA)(p,M) The bounded assumption:

∥∥Yi − µ
∥∥

p ≤ M a.s.

In this paper, we primarily focus on the Gaussian framework (GA), where the corresponding
results will be more accurate. In addition, under (GA) we will always assume that we know some
upper bound on a p-norm of σ for some p ≥ 1 (this assumption is not restrictive, see discussion
in Section 6.3).

The paper is organized as follows. We first build confidence regions following the two different
techniques sketched above; Section 2 deals with the concentration method with general weights,
and Section 3 with a direct quantile approach using Rademacher weights. We then focus on the
multiple testing problem in Section 4, where we deduce step-down multiple testing procedures
from our previous confidence regions, following the general principles laid down in [26]. Finally,
Section 5 illustrates our results on both confidence regions and multiple testing with a simulation
study. Section 6 gives discussions and concluding remarks. All the proofs are given in Section 7.

2. Confidence region using concentration.

2.1. Main result. We consider here a general resampling weight vector W , that is, a R
n-

valued random vector W = (Wi)1≤i≤n independent of Y satisfying the following properties: for

all i ∈ {1, . . . , n} E
[
W 2

i

]
< ∞ and n−1∑n

i=1 E

∣∣∣Wi − W
∣∣∣ > 0.

We will mainly consider in this section an exchangeable resampling weight vector, that is, a
resampling weight vector W such that (Wi)1≤i≤n has an exchangeable distribution (i.e., invariant
under any permutation of the indices). Several examples of exchangeable resampling weight
vectors are given below in Section 2.4, where we also address the question of how to choose
between different possible distributions of W . An extension of our results to non-exchangeable
weight vectors is studied in Section 2.5.1.

Four constants that depend only on the distribution of W appear in the results below (the
fourth one is defined only for a particular class of weights). They are defined as follows and
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computed for classical resamplings in Table 1:

AW := E

∣∣∣W1 − W
∣∣∣(3)

BW := E



(

1

n

n∑

i=1

(
Wi − W

)2
) 1

2


(4)

CW :=

(
n

n − 1
E

[(
W1 − W

)2
]) 1

2

(5)

DW := a + E

∣∣∣W − x0

∣∣∣ if ∀i, |Wi − x0| = a a.s. (with a > 0, x0 ∈ R) .(6)

Note that these quantities are positive for an exchangeable resampling weight vector W :

0 < AW ≤ BW ≤ CW

√
1 − 1/n.

Moreover, if the weights are i.i.d., we have CW = Var(W1)
1

2 . We can now state the main result
of this section:

Theorem 2.1 Fix α ∈ (0, 1) and p ∈ [1,∞]. Let φ : R
K → R be any function subadditive,

positive-homogeneous and bounded by the p-norm, and let W be an exchangeable resampling
weight vector.

1. If Y satisfies (GA), then

(7) φ
(
Y − µ

)
<

EW

[
φ

(
Y
〈W−W〉

)]

BW
+ ‖σ‖p Φ

−1
(α/2)

[
CW

nBW
+

1√
n

]

holds with probability at least 1 − α. The same bound holds for the lower deviations, i.e.
with inequality (7) reversed and the additive term replaced by its opposite.

2. If Y satisfies (BA)(p,M) and (SA), then

(8) φ
(
Y − µ

)
<

EW

[
φ

(
Y
〈W−W〉

)]

AW
+

2M√
n

√
log(1/α)

holds with probability at least 1−α . If moreover the weight vector satisfies the assumption
of (6), then

(9) φ
(
Y − µ

)
>

EW

[
φ

(
Y
〈W−W〉

)]

DW
− M√

n

√

1 +
A2

W

D2
W

√
2 log(1/α)

holds with probability at least 1 − α .
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RESAMPLING-BASED CONFIDENCE REGIONS 7

Inequalities (7) and (8) give regions of the form (1) that are confidence regions of level at least
1 − α.

In specific situations, it can be the case that an alternate analysis of the problem can lead

to deriving a deterministic threshold tα such that P(φ
(
Y − µ

)
> tα) ≤ α . In this case, we

would ideally like to take the “best of two approaches” and consider the minimum of tα and
the resampling-based thresholds considered above. In the Gaussian case, the following corollary
establishes that we can combine the concentration threshold corresponding to (7) with tα to
obtain a threshold that is very close to the minimum of the two.

Corollary 2.2 Fix α, δ ∈ (0, 1), p ∈ [1,∞] and take φ and W as in Theorem 2.1. Suppose that

Y satisfies (GA) and that tα(1−δ) is a real number such that P

(
φ
(
Y − µ

)
> tα(1−δ)

)
≤ α(1−δ).

Then with probability at least 1 − α, φ
(
Y − µ

)
is less than or equal to the minimum between

tα(1−δ) and

(10)
EW

[
φ

(
Y
〈W−W〉

)]

BW
+

‖σ‖p√
n

Φ
−1
(

α(1 − δ)

2

)
+

‖σ‖p CW

nBW
Φ
−1
(

αδ

2

)
.

Remark 2.3

1. Corollary 2.2 is more precisely a consequence of Proposition 2.8 (ii).
2. The important point to notice in Corollary 2.2 is that, since the last term of (10) becomes

negligible with respect to the rest when n grows large, we can choose δ to be quite small (for
instance δ = 1/n), and obtain a threshold very close to the minimum between tα and the
threshold corresponding to (7). Therefore, this result is more subtle than just considering
the minimum of two testing thresholds each taken at level 1 − α

2 , as would be obtained by
a direct union bound.

3. For instance, if φ = sup(·) (resp. sup |·|), Corollary 2.2 may be applied with tα equal to the
classical Bonferroni threshold (obtained using a simple union bound over coordinates)

(11) tBonf,α :=
1√
n
‖σ‖∞ Φ

−1
(

α

K

)(
resp. t′Bonf,α :=

1√
n
‖σ‖∞ Φ

−1
(

α

2K

))
.

We thus obtain a confidence region almost equal to Bonferroni’s for small correlations and
better than Bonferroni’s for strong correlations (see simulations in Section 5).

The proof of Theorem 2.1 involves results which are of self interest: the comparison between

the expectations of the two processes EW

[
φ

(
Y
〈W−W〉

)]
and φ

(
Y − µ

)
and the concentration

of these processes around their means. These two issues are correspondingly examined in the
two next sections (2.2 and 2.3). In Section 2.4, we give some elements for an appropriate choice
of resampling weight vectors among several classical examples. The last section (2.5) tackles the
practical issue of computation time.
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2.2. Comparison in expectation. In this section, we compare E

[
φ

(
Y
〈W−W〉

)]
and E

[
φ
(
Y − µ

)]
.

We note that these expectations exist in the Gaussian (GA) and the bounded (BA) cases pro-
vided that φ is measurable and bounded by a p-norm. Otherwise, in particular in Propositions 2.4
and 2.6, we assume that these expectations exist. In the Gaussian case, these quantities are equal
up to a factor that depends only on the distribution of W :

Proposition 2.4 Let Y be a sample satisfying (GA) and let W be a resampling weight vector.
Then, for any measurable positive-homogeneous function φ : R

K → R, we have the following
equality:

(12) BW E

[
φ
(
Y − µ

)]
= E

[
φ

(
Y
〈W−W〉

)]
.

Remark 2.5

1. In general, we can compute the value of BW by simulation. For some classical weights, we
give bounds or exact expressions (see Table 1 and Section 7.4).

2. In a non-Gaussian framework, the constant BW is still relevant, at least asymptotically:
Theorem 3.6.13 in [27] uses the limit of BW when n goes to infinity as a normalizing
constant.

3. If the weights satisfy
∑n

i=1(Wi − W )2 = n a.s., then (12) holds for any function φ (and
BW = 1).

When the sample is only supposed to be symmetric we obtain the following inequalities:

Proposition 2.6 Let be Y a sample satisfying (SA), W an exchangeable resampling weight
vector and φ : R

K → R any subadditive, positive-homogeneous function.

(i) We have the general following lower bound:

(13) AW E

[
φ
(
Y − µ

)]
≤ E

[
φ

(
Y
〈W−W〉

)]
.

(ii) If the weight vector satisfies the assumption of (6), we have the following upper bound:

(14) DW E

[
φ
(
Y − µ

)]
≥ E

[
φ

(
Y
〈W−W〉

)]
.

Remark 2.7

1. The bounds (13) and (14) are tight for Rademacher and Random hold-out (n/2) weights,
but far less optimal in some other cases like Leave-one-out (see Section 2.4 for details).

2. When Y is not assumed to have a symmetric distribution and W = 1 a.s., Proposition
2 of [9] shows that (13) holds with E(W1 − W )+ instead of AW . Therefore, assumption
(SA) allows us to get a tighter result (for instance twice sharper with Efron or Random
hold-out (q) weights). Moreover, it can be shown (see [2], Chapter 9) that this factor 2 is
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RESAMPLING-BASED CONFIDENCE REGIONS 9

unavoidable in general without (SA), although it is unnecessary when n goes to infinity.
Nevertheless, we conjecture that an inequality close to (13) holds under an assumption less
restrictive than (SA) (e.g. Y1 is not “too asymmetric”).

2.3. Concentration around the expectation. In this section we present concentration results

for the two processes φ
(
Y − µ

)
and EW

[
φ

(
Y
〈W−W〉

)]
in the Gaussian framework.

Proposition 2.8 Let p ∈ [1,∞], Y a sample satisfying (GA) and φ : R
K → R be any subadditive

function, bounded by the p-norm.

(i) For all α ∈ (0, 1), with probability at least 1 − α the following holds:

(15) φ
(
Y − µ

)
< E

[
φ
(
Y − µ

)]
+

‖σ‖p Φ
−1

(α/2)
√

n
,

and the same bound holds for the corresponding lower deviations.
(ii) Let W be an exchangeable resampling weight vector. Then, for all α ∈ (0, 1), with probability

at least 1 − α the following holds:

(16) EW

[
φ

(
Y
〈W−W〉

)]
< E

[
φ

(
Y
〈W−W〉

)]
+

‖σ‖p CW Φ
−1

(α/2)

n
,

and the same bound holds for the corresponding lower deviations.

The bound (15) with a remainder in n−1/2 is classical. The bound (16) is much more interesting
because it illustrates one of the key properties of resampling: the “stabilization effect”. Indeed,

the resampling quantity EW

[
φ

(
Y
〈W−W〉

)]
concentrates around its expectation at the rate

CW n−1 = o
(
n−1/2

)
for most of the weights (see Section 2.4 and Table 1 for more details).

Thus, compared to the original process, the resampled mean is “almost deterministic” and equal

to BW E

[
φ
(
Y − µ

)]
. In an asymptotic viewpoint, this may be understood through Edgeworth

expansions. Indeed, it is well-known (see for instance [11]) that when φ is smooth enough, the
first non-zero term in the Edgeworth expansion of

EW

[
φ

(
Y
〈W−W〉

)]
− E

[
φ

(
Y
〈W−W〉

)]

is at least of order n−1.

Remark 2.9 Combining expression (12) and Proposition 2.8 (ii), we derive that for a Gaussian
sample Y and any p ∈ [1,∞], the following upper bound holds with probability at least 1 − α:

(17) E

∥∥∥Y − µ
∥∥∥

p
<

EW

[∥∥∥∥Y
〈W−W〉

∥∥∥∥
p

]

BW
+

‖σ‖p CW

nBW
Φ
−1

(α/2) ,
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Efron 2
(
1 − 1

n

)n
= AW ≤ BW ≤

√
n−1

n
CW = 1

Efr., n → +∞ 2

e
= AW ≤ BW ≤ 1 = CW

Rademacher 1 − 1√
n
≤ AW ≤ BW ≤

√
1 − 1

n
CW = 1 ≤ DW ≤ 1 + 1√

n

Rad., n → +∞ AW = BW = CW = DW = 1

rho(q)
AW = 2

(
1 − q

n

)
BW =

√
n
q
− 1

CW =
√

n
n−1

√
n
q
− 1 DW = n

2q
+
∣∣1 − n

2q

∣∣
rho(n/2) AW = BW = DW = 1 CW =

√
n

n−1

Leave-one-out 2

n
= AW ≤ BW = 1√

n−1
CW =

√
n

n−1
DW = 1

regular V -fcv AW = EW = 2

V
≤ BW = 1√

V −1
CW =

√
n(V − 1)−1 DW = 1.

Table 1

Resampling constants for some classical resampling weight vectors.

and a similar lower bound holds. This gives an observable control with high probability of the
Lp-risk of the estimator Y of the mean µ ∈ R

K at the rate CW B−1
W n−1.

2.4. Resampling weight vectors. In this section, we consider the question of choosing some
appropriate exchangeable resampling weight vector W when using Theorem 2.1 or Corollary 2.2.
We define the following classical resampling weight vectors:

1. Rademacher: Wi i.i.d. Rademacher variables, i.e. Wi ∈ {−1, 1} with equal probabilities.
2. Efron (Efron’s bootstrap weights): W has a multinomial distribution with parameters

(n;n−1, . . . , n−1).
3. Random hold-out (q) (rho(q) for short), q ∈ {1, . . . , n}: Wi = n

q 1i∈I , where I is uni-
formly distributed on subsets of {1, . . . , n} of cardinality q. These weights may also be
called cross validation weights, or leave-(n − q)-out weights. A classical choice is q = n/2
(when n is even). When q = n − 1, these weights are called leave-one-out weights. Note
that this resampling scheme is a particular case of subsampling.

For these classical weights, exact or approximate values for the quantities AW , BW , CW and
DW (defined by equations (3) to (6)) can be easily derived (see Table 1). Proofs are given in
Section 7.4, where several other weights are considered. Now, to use Theorem 2.1 or Corollary 2.2,
we have to choose a particular resampling weight vector. In the Gaussian case, we propose the
following accuracy and complexity criteria:

- first, relation (7) suggests that the quantity CW B−1
W can be proposed as accuracy index for

W . Namely, this index enters directly in the deviation term of the corresponding upper bound
and the smaller the index is, the sharper the bound.

- second, an upper bound on the computational burden to compute exactly the resampling
quantity is given by the cardinality of the support of D(W ), thus providing a complexity index.
These two criteria are estimated in Table 2 for classical weights. For any exchangeable weight
vector W , we have CW B−1

W ≥ [n/(n − 1)]1/2 and the cardinality of the support of D(W ) is
larger than n. Therefore, the leave-one-out weights satisfy the best accuracy-complexity trade-
off among exchangeable weights.
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Resampling CW B−1

W (accuracy) |suppL(W )| (complexity)

Efron ≤ 1

2

(
1 − 1

n

)−n −−−−→
n→∞

e
2

(
2n−1

n−1

)
= Ω(n− 1

2 4n)

Rademacher ≤
(
1 − n−1/2

)−1 −−−−→
n→∞

1 2n

rho (n/2) =
√

n
n−1

−−−−→
n→∞

1
(

n
n/2

)
= Ω(n−1/22n)

Leave-one-out =
√

n
n−1

−−−−→
n→∞

1 n

regular V -fcv =
√

n
V −1

V

Table 2

Choice of the resampling weight vectors: accuracy-complexity trade-off.

Remark 2.10 (Link to leave-one-out prediction risk estimation) Consider using Y for
predicting a new data point Yn+1 ∼ Y1 (independent of Y = (Y1, . . . ,Yn)). The corresponding

Lp-prediction risk is given by E

∥∥∥Y − Yn+1
∥∥∥

p
. In the Gaussian setting, this prediction risk is

proportional to the Lp-risk: E

∥∥∥Y − µ
∥∥∥

p
= (n + 1)

1

2 E

∥∥∥Y −Yn+1
∥∥∥

p
, so that the estimator of the

Lp-risk proposed in Remark 2.9 leads to an estimator of the prediction risk. In particular, using

leave-one-out weights and noting Y
(−i)

the mean of the (Yj, j 6= i, 1 ≤ j ≤ n) , we have then
established that the leave-one-out estimator

1

n

n∑

i=1

∥∥∥Y(−i) − Yi
∥∥∥

p

correctly estimates the prediction risk (up to the factor (1 − 1/n2)
1

2 ∼ 1).

2.5. Practical computation of the thresholds. In practice, the exact computation of the re-

sampling quantity EW

[
φ

(
Y
〈W−W〉

)]
can still be too complex for the weights defined above.

In this section we consider two possible ways to address this issue. First, it is possible to use
non-exchangeable weights with a lower complexity index and for which the exact computation
is tractable. Alternatively, we propose to use a Monte-Carlo approximation, as is often done in
practice to compute resampled quantities. In both cases, the thresholds have to be made slightly
larger in order to keep the level larger than 1−α. This is detailed in the two paragraphs below.

2.5.1. V -fold cross-validation weights. In order to reduce the computation complexity, we
can use “piece-wise exchangeable” weights: consider a regular partition (Bj)1≤j≤V of {1, . . . , n}
(where V ∈ {2, . . . , n} and V |n), and define the weights Wi = V

V −11i/∈BJ
with J uniformly

distributed on {1, . . . , V }. These weights are called the (regular) V -fold cross validation
weights (V -fcv for short).

By applying our results to the process (Ỹj)1≤j≤V where Ỹj = V
n

∑
i∈Bj

Yi is the empirical
mean of Y on block Bj , we can show that Theorem 2.1 can be extended to (regular) V -fold
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12 ARLOT, S., BLANCHARD, G., AND ROQUAIN, E.

cross validation weights with the following resampling constants:

AW =
2

V
BW =

1√
V − 1

CW =

√
n

V − 1
DW = 1 .

Additionally, when V does not divide n and the blocks are no longer regular, Theorem 2.1 can
also be generalized, but the constants have more complex expressions (see Section 7.5 for details).
With V -fcv weights, the complexity index is only V , but we loose a factor [(n−1)/(V −1)]1/2 in
the accuracy index. With regard to the accuracy/complexity tradeoff, the most accurate cross-
validation weights are leave-one-out (V = n), whereas the 2-fcv weights are the best from the
computational viewpoint (but also the less accurate). The choice of V is thus a trade-off between
these two terms and depends on the particular constraints of each problem.

However, it is worth noting that as far as the bound of inequality (7) is tight, having an
accuracy index close to 1 is not necessarily useful. Namely, this will result in a corresponding
deviation term or order n−1 , while there is additionally another unavoidable deviation term or
order n− 1

2 in the bound. This suggests that an accuracy index of order o(n
1

2 ) would actually be

sufficient. In other words, using V -fcv with V = Cn
1

2 and a “large” constant C would result
in only a negligible loss of overall accuracy as compared to leave-one-out. (Of course, we have
to point out that this discussion is specific to the form of our bound (7). We cannot exclude in
principle that a different approach would lead to a different conclusion, unless it can be proved
that the deviation terms in our bound cannot be significantly improved, which is an issue we
don’t address here.)

2.5.2. Monte-Carlo approximation. When we use a Monte-Carlo approximation in order to

evaluate EW

[
φ

(
Y
〈W−W〉

)]
, we draw randomly a small number B of i.i.d. weight vectors

W 1, . . . ,WB and compute

1

B

B∑

j=1

φ

(
Y

〈
W j−W j

〉)
.

This method is quite standard in the bootstrap literature and can be improved in several ways
(see for instance [11], appendix II). In Proposition 2.11 below, we propose an explicit correction
of the concentration thresholds that takes into account B weight vectors, for bounded weights.

Proposition 2.11 Let B ≥ 1 and W 1, . . . ,WB be i.i.d. exchangeable resampling weight vectors
such that W 1

1 − W 1 ∈ [c1, c2] a.s. Let p ∈ [1,∞], φ : R
K → R be any subadditive function,

bounded by the p-norm.
If Y is a fixed sample and for every k ∈ {1, . . . ,K}, Mk is a median of

(
Yi

k

)
1≤i≤n, then, for
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every β ∈ (0, 1),

1

B

B∑

j=1

φ

(
Y

〈
W j−W j

〉)
≥ EW

[
φ

(
Y
〈W−W〉

)]

− (c2 − c1)

√
ln(β−1)

2B

∥∥∥∥∥
1

n

(
n∑

i=1

∣∣∣Yi
k − Mk

∣∣∣
)

k

∥∥∥∥∥
p

(18)

holds with probability at least 1 − β.
If Y is generated according to a distribution satisfying (GA), then, for every β ∈ (0, 1) and

any deterministic ν ∈ R
K ,

(19)

∥∥∥∥∥
1

n

(
n∑

i=1

∣∣∣Yi
k − Mk

∣∣∣
)

k

∥∥∥∥∥
p

≤ E

∥∥∥∥∥
1

n

(
n∑

i=1

∣∣∣Yi
k − νk

∣∣∣
)

k

∥∥∥∥∥
p

+
‖σ‖p Φ

−1
(β/2)

√
n

holds with probability at least 1 − β.

For instance, with Rademacher weights, we can use (18) with c2 − c1 = 2 and β = δα (δ ∈
(0, 1)). Then, in the thresholds built upon Theorem 2.1 and Corollary 2.2, one can replace

EW

[
φ

(
Y
〈W−W〉

)]
by its Monte-Carlo approximation at the price of changing α into (1− δ)α,

and adding

(20)
2

BW

√
ln((δα)−1)

2B

∥∥∥∥∥
1

n

(
n∑

i=1

∣∣∣Yi
k − Mk

∣∣∣
)

k

∥∥∥∥∥
p

to the threshold.
Note that (18) holds conditionally to the observed sample , so that B can be chosen in function

of Y in (20). Therefore, we can choose B with the following strategy: first, compute a rough
estimate test,α of the final threshold (e.g. if φ = ‖·‖∞ and Y is gaussian, take the Bonferroni

threshold ‖σ‖∞ n−1/2Φ
−1

(α/(2K)) or the single test threshold ‖σ‖∞ n−1/2Φ
−1

(α/2)). Second,
choose B such that (20) is much smaller than test,α.

Remark 2.12 In the Gaussian case, (19) gives a theoretical upper bound on the additive term
(if one can bound the expectation term). This is only useful to ensure that the correction (20) is
negligible for reasonable values of B.

3. Confidence region using resampled quantiles.

3.1. Main result. In this section, we consider a different approach to construct confidence
regions, directly based on the estimation of the quantile via resampling. Remember that our
setting is non-asymptotic, so that the standard asymptotic approaches cannot be applied here.
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14 ARLOT, S., BLANCHARD, G., AND ROQUAIN, E.

For this reason, we base our approach on ideas coming from exact randomized tests and consider
here the case where Y1 has a symmetric distribution and where W is an i.i.d Rademacher weight
vector, that is, Wi i.i.d. with W1 ∈ {−1, 1} with equal probabilities.

The idea here is to approximate the quantiles of the distribution D
(
φ
(
Y − µ

))
by the quan-

tiles of the corresponding resampling-based distribution:

(21) D
(

φ

(
Y
〈W−W〉

) ∣∣∣∣Y
)

.

For this, we take advantage of the symmetry of each Yi around its mean. Let us define for a
function φ the resampled empirical quantile by:

qα(φ,Y) := inf

{
x ∈ R

∣∣∣∣ PW

[
φ(Y

〈W 〉
) > x

]
≤ α

}
.

The following lemma, close in spirit to exact test results, easily derives from the “symmetrization
trick”, i.e. from taking advantage of the distribution invariance of the data via sign-flipping.

Lemma 3.1 Let Y be a data sample satisfying assumption (SA) and φ : R
K → R be a measur-

able function. Then the following holds:

(22) P

[
φ(Y − µ) > qα (φ,Y − µ)

]
≤ α .

Of course, since qα (φ,Y − µ) still depends on the unknown µ, we cannot use this threshold to
get a confidence region of the form (1). Therefore, following the general philosophy of resampling,
we propose to replace the true mean µ by the empirical mean Y in the quantile qα (φ,Y − µ).
The main technical result of this section quantifies the price to pay to perform this operation:

Theorem 3.2 Fix δ, α0 ∈ (0, 1). Let Y be a data sample satisfying assumption (SA). Let

f :
(
R

K
)n

→ [0,∞) be a nonnegative measurable function on the set of the data sample. Let

φ : R
K → R be a nonnegative, subadditive, positive-homogeneous function. Denote φ̃(x) =

max (φ(x), φ(−x)) . The following holds:

(23) P

[
φ(Y − µ) > qα0(1−δ)

(
φ,Y −Y

)
+ γ1(α0δ)f(Y)

]
≤ α0 + P

[
φ̃(Y − µ) > f(Y)

]
,

where

γ1(η) =
2B (n, η

2

)− n

n

and

B(n, η) = max

{
k ∈ {0, . . . , n}

∣∣∣∣2
−n

n∑

i=k

(
n

i

)
≥ η

}
,

is the upper quantile function of a Binomial (n, 1
2) variable.
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Remark 3.3 Note that from Hoeffding’s inequality, we have

γ1(α0δ) ≤



2 ln

(
2

α0δ

)

n




1/2

.

We can use this in (23) to derive a more explicit (but slightly less accurate) inequality.

By iteration of Theorem 3.2, we obtain the following corollary:

Corollary 3.4 Fix J a positive integer, (αi)i=0,...,J−1 a finite sequence in (0, 1) and δ ∈ (0, 1).

Consider Y, f , φ and φ̃ as in Theorem 3.2. Then the following holds:

(24) P

[
φ(Y − µ) > qα0(1−δ)(φ,Y − Y) +

J−1∑

i=1

γiqαi(1−δ)(φ̃,Y − Y) + γJf(Y)

]

≤
J−1∑

i=0

αi + P

[
φ̃(Y − µ) > f(Y)

]
,

where, for k ≥ 1, γk = n−k
k−1∏

i=0

(
2B
(

n,
αiδ

2

)
− n

)
.

The rationale behind this result is that the sum appearing inside the probability in (24) should
be interpreted as a series of corrective terms of decreasing order of magnitude, since we expect
the sequence γk to be sharply decreasing. Looking at Hoeffding’s bound, this will be the case if
the levels are such that αi ≫ exp(−n) .

Looking at (24), we still have to deal with the trailing term on the right-hand-side to obtain
a useful result. We did not succeed in obtaining a self-contained result based on the symme-
try assumption (SA) alone. However, to upper-bound the trailing term, we can assume some
additional regularity assumption on the distribution of the data. For example, if the data are
Gaussian or bounded, we can apply the results of the previous section (or apply some other
device like Bonferroni’s bound (11)). Explicit formulas for the resulting thresholds are given in
Section 4 and 5 (with J = 1). We want to emphasize that the bound used in this last step
does not have to be particularly sharp: since we expect (in favorable cases) γJ to be very small,
the trailing probability term on the right-hand side as well as the contribution of γJf(Y) to the
left-hand side should be very minor. Therefore, even a coarse bound on this last term should
suffice.

3.2. Practical computation of the resampled quantile. Since the above results use Rademacher
weight vectors, the exact computation of the quantile qα requires in principle 2n iterations and
thus is too complex as n becomes large. Therefore, it might be relevant to consider a block-wise
Rademacher resampling scheme. For this, let (Bj)1≤j≤V be a regular partition of {1, . . . , n} and
for all i ∈ Bj , Wi = W B

j , where (W B
j )1≤j≤V are i.i.d. Rademacher. This is equivalent to applying
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16 ARLOT, S., BLANCHARD, G., AND ROQUAIN, E.

the previous method to the block-averaged sample (Ỹ1, . . . , ỸV ) , where Ỹj is the average of the
(Yi)i∈Bj . Because the Ỹj are i.i.d. variables, all of the previous results carry over when replac-
ing n by V . However, this results in a loss of accuracy in Theorem 3.2 (and then in Corollary 3.4).

Another way to adress this computation complexity issue is to consider Monte-Carlo quantile
approximation: let W denote a n × B matrix of i.i.d. Rademacher weights (independent of all
other variables), and define

q̃α(φ,Y,W) = inf



x ∈ R

∣∣∣∣
1

B

B∑

j=1

1{φ

(
Y
〈Wj〉

)
≥ x

}
≤ α



 ,

that is, q̃α is defined just as qα except that the true distribution PW of the Rademacher weight
vector is replaced by the empirical distribution constructed from the columns of W , P̃W =
B−1∑B

j=1 δWj . The following result then holds:

Proposition 3.5 Consider the same conditions as in Theorem 3.2 except the function f can
now be a function of both Y and W. We have:

PY,W

[
φ(Y − µ) > q̃α0(1−δ)

(
φ,Y − Y,W

)
+ γ(W, α0δ)f(Y,W)

]

≤ α̃0 + PY,W

[
φ̃(Y − µ) > f(Y,W)

]
,

where α̃0 = ⌊Bα0⌋+1
B+1 ≤ α0 + 1

B+1 and

γ(W, η) := max



y ≥ 0

∣∣∣∣
1

B

B∑

j=1

1{∣∣∣W j
∣∣∣ ≥ y

}
≥ η



 .

is the (1 − η)-quantile of
∣∣∣W
∣∣∣ under the empirical distribution P̃W .

Note that for practical purposes, we can choose f(W,Y) to depend on Y only and use another
type of bound to control the last term on the right-hand side, see discussion in the previous
section. The above result tells us that if we replace in Theorem 3.2 the true quantile by an
empirical quantile based on B i.i.d. weight vectors, and the factor γ1 is similarly replaced by
an empirical quantile of |W |, then we lose at most (B + 1)−1 in the corresponding covering
probability. Furthermore, it can be seen easily that if α0 is taken to be a positive multiple of
(B + 1)−1 , then there is no loss in the final covering probability (i.e. α̃0 = α0 ).

4. Application to multiple testing. In this section, we describe how the results of Sec-
tions 2 and 3 can be used to derive multiple testing procedures. We focus on the two following
multiple testing problems:

• One-sided problem: test simultaneously the null hypotheses Hk : “µk ≤ 0” against Ak :
“µk > 0”, for 1 ≤ k ≤ K.
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• Two-sided problem: test simultaneously the null hypotheses Hk : “µk = 0” against Ak :
“µk 6= 0”, for 1 ≤ k ≤ K.

In this context, we detail the link between confidence regions and multiple testing, and explain
how to use the general principle of step-down methods (as exposed in [26]) to obtain sharper
thresholds in this context.

We first introduce a few more notations:

• Put H := {1, . . . ,K}, H0 := {1 ≤ k ≤ K | Hk is true} and H1 its complementary in
H . Note that H0,H1 are of course unknown since the goal of multiple testing is in fact
precisely to estimate these sets.

• For any x ∈ R, the bracket [x] denotes either x in the one-sided context or |x| in the
two-sided context.

• Reordering the coordinates of Y in decreasing order

[
Yσ(1)

]
≥
[
Yσ(2)

]
≥ · · · ≥

[
Yσ(K)

]

with a permutation σ of {1, . . . ,K}, we define for every i ∈ {1, . . . ,K}, Ci (Y) := {σ(j) | j ≥ i}
the set which contains the K − i + 1 smaller coordinates of

[
Y
]

(in the sequel, we simply

write Ci instead of Ci (Y)). In particular, note that C1 = H.
• For any C ⊂ H , define

T (C) := sup
k∈C

[
Yk − µk

]
and T ′(C) := sup

k∈C

[
Yk

]
.

Note that T (H) ≥ T (H0) ≥ T ′(H0) in general and T (H0) = T ′(H0) in the two-sided
context.

4.1. Multiple testing and connection with confidence regions. A multiple testing procedure is
a (measurable) function

R (Y) ⊂ H ,

that rejects the null hypotheses Hk for all k ∈ R(Y). Considering such a multiple testing
procedure R, a type I error arises for the null hypothesis Hk as soon as R rejects Hk although
it was true, i.e. k ∈ R(Y) ∩H0. The family-wise error rate of R is then the probability that at
least one type I error occurs:

FWER(R) := P (|R (Y) ∩H0| > 0) .

Given a level α ∈ (0, 1), our goal is to build a multiple testing procedure R with

(25) FWER(R) ≤ α .
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18 ARLOT, S., BLANCHARD, G., AND ROQUAIN, E.

Of course, choosing the procedure R = ∅ (i.e. the procedure which rejects no null hypothesis)
satisfies trivially this property. Therefore, under the constraint (25), we want the average number
of rejected false null hypotheses, that is,

(26) E|R (Y) ∩H1| ,

to be as large as possible.
A common way to build a multiple testing procedure is to reject the null hypotheses Hk

corresponding to

(27) R (Y) =
{
1 ≤ k ≤ K |

[
Yk

]
> t
}

,

where t is a (possibly data-dependent) threshold. From now on, we will restrict our attention to
multiple testing procedures of the previous form. In this case, the deterministic threshold that
maximizes (26) under the constraint (25) is obviously the (1 − α) quantile of the distribution
of T ′(H0). However, the latter quantile cannot be directly accessed, because it depends both on
the unknown dependency structure between the coordinates of Yi and on the unknown set H0.
The aim of the following sections (4.2, 4.3, 4.4) will be to approach this quantity.

This should be compared to the confidence region context, where the smallest deterministic
threshold for which (1) holds with φ(x) = supk [xk] is the (1 − α) quantile of the distribution of
T (H). Since T (H) ≥ T ′(H0), we observe the following:

1. The thresholds that give confidence regions of the form (1) with φ(x) = supk [xk] also
give multiple testing procedures with a FWER smaller than α (following the thresholding
procedure (27)). Therefore, we can directly derive from Sections 2 and 3 resampling-based
multiple testing procedures with controlled FWER.

2. One might expect to be able to find better (i.e. smaller) thresholds in the multiple testing
framework than in the confidence region framework. Namely, when H1 is “large”, we ex-
pect T (H) to be “significantly larger” than T ′(H0) ; therefore procedures based on upper
bounding T (H) are likely to be too conservative. However, if we try to follow the same
approach as above for bounding directly T ′(H0) , we run into the problem that the function
φ(x) = supk∈H0

[xk] is not observable since H0 is unknown. A method commonly used to
address this issue is to consider step-down procedures. This is examinated in the following
section.

4.2. Background on step-down procedures. We review in this section known facts on step-
down procedures (see [26]). We consider here thresholds t of the following general form:

t : C ⊂ H 7→ t(C) ∈ R .

We call such a threshold a subset-based threshold since it gives a value to each subset of H . Note
that these thresholds can also be possibly data-dependent, but we omit the dependence on Y
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here to lighten notation. A subset-based threshold is said to be non-decreasing if for all subsets
C and C′, we have

C ⊂ C′ ⇒ t(C) ≤ t(C′) .

In our setting, a non-decreasing subset-based threshold is easily obtained by taking a supre-
mum over a subset C of coordinates. In particular, the thresholds derived from Section 2 (resp.
Section 3) define non-decreasing subset-based thresholds, by taking φC(x) = supk∈C [xk] (resp.
φC(x) = 0 ∨ supk∈C [xk]).

Definition 4.1 (Step-down procedure with subset-based threshold) Let t be a non-decreasing
subset-based threshold and note for all i, ti = t(Ci). The step-down procedure with threshold t
rejects {

1 ≤ k ≤ K |
[
Yk

]
≥ tℓ̂

}

where ℓ̂ = max
{
1 ≤ i ≤ K | ∀j ≤ i,

[
Yσ(j)

]
≥ tj

}
when the latter maximum exists, and the pro-

cedure rejects no null hypothesis otherwise.

A step-down procedure of the above form can be computed using the following iterative
algorithm:

Algorithm 4.2

1. Init: define R0 := ∅, E0 := H.

2. Iteration i ≥ 1: put Ei := Ei−1\Ri−1 and Ri =
{
k ∈ Ei |

[
Yk

]
≥ t(Ei)

}

If Ri = ∅, stop and reject the null hypotheses corresponding to:

R (Y) :=
{
σ(k), k ∈ ∪j≤i−1Rj

}
.

Otherwise, go to iteration i + 1 .

We recall here Theorem 1 of [26], adapted to our setting:

Theorem 4.3 (Romano and Wolf, 2005) Let t be a non-decreasing subset-based threshold.
Then the step-down procedure R of threshold t satisfies,

(28) FWER(R) ≤ P(T (H0) ≥ t(H0)) .

As a consequence, Algorithm 4.2 with thresholds derived from Section 2 (resp. Section 3) with
φC(x) = supk∈C [xk] (resp. φC(x) = 0 ∨ supk∈C [xk]) gives a multiple testing procedure with
control of the FWER. We detail this in the following section.

4.3. Using our confidence regions to build step-down procedures. Using Theorem 4.3 and
Corollary 2.2 (wherein we use the Bonferroni threshold), we derive:
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Corollary 4.4 Fix α, δ ∈ (0, 1). Let W be an exchangeable resampling weight vector and suppose
that Y satisfies (GA). Then, in the one-sided context, the step-down procedure with the following
subset-based threshold controls the FWER at level α:

C 7→ min



‖σ‖∞√

n
Φ

−1
(

α(1 − δ)

|C|

)
,

EW

[
supk∈C

{(
Y
〈W−W〉

)

k

}]

BW

+ ε(α, δ, n)




where ε(α, δ, n) =
‖σ‖
∞√
n

Φ
−1
(

α(1−δ)
2

)
+

‖σ‖
∞

CW

nBW
Φ

−1 (αδ
2

)
.

Using Theorem 4.3 and Theorem 3.2 (with α0 = α(1 − γ) and f equal to the Bonferroni
threshold at level αγ/2), we derive:

Corollary 4.5 Fix α, γ, δ ∈ (0, 1). Let W be a Rademacher weight vector and suppose that
Y satisfies (GA). Then, in the one-sided context, the step-down procedure with the following
subset-based threshold controls the FWER at level α:

C 7→ qα(1−γ)(1−δ)

(
0 ∨ φC ,Y − Y

)
+ ε′(α, δ, γ, n, |C|)

where ε′(α, δ, γ, n, k) = 2B(n,α(1−γ)δ/2)−n
n

‖σ‖∞√
n

Φ
−1 (αγ

2k

)
and φC(x) = supk∈C{xk} .

Of course, analogues of Corollaries 4.4 and 4.5 can also be derived for the two-sided problem.

Remark 4.6

1. Note that the above (data-dependent) subset-based thresholds are translation-invariant be-
cause Y−Y is. Therefore, large values of non-zero means µk will not make these thresholds
larger.

2. Both subset-based thresholds of Corollary 4.4 and 4.5 are built in order to improve the
“Bonferroni’s subset-based threshold”

C 7→ ‖σ‖∞√
n

Φ
−1
(

α

|C|

)
.

Therefore, the step-down procedures proposed here are expected to perform better than
Holm’s procedure (i.e. the step-down version of Bonferroni’s procedure, see [13]).

4.4. Uncentered quantile approach for two-sided testing. We now focus specifically on the two-
sided multiple testing problem. A fundamental consequence of Theorem 4.3 is that only a weak
control (i.e., when C = H0) of T ′(C) = supk∈C |Yk| is needed to obtain a step-down procedure
with a strong control (i.e., for arbitrary mean µ ∈ R

K) of the FWER. In this situation, the
main problem dealt with in Section 3 disappears: namely, under the hypothesis that H0 = C , by
definition all the coordinates contributing to the supremum in T ′(C) are assumed to have zero
mean, and therefore, following the reasoning in Lemma 3.1, a direct exact quantile approach is
possible.
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Corollary 4.7 Let W be a Rademacher weight vector and suppose that Y satisfies (SA). Denote
φC(x) = supk∈C |xk| . Then for two-sided testing, the step down procedure with the subset-based
threshold

C 7→ qα (φC ,Y)

controls the FWER at level α.

Note the differences of this result with our main approach (i.e., the analogue of Corollary 4.5
in the two-sided setting):

• there is no additional trailing term ε′ and no “shrinking” in the level of the computed
empirical quantile.

• the data is not recentered around the empirical expectation to compute the quantile.

In the following, we will call the threshold qα (φC ,Y) the “uncentered quantile threshold”, while
the threshold built using our main approach (including the additional term) will be called “re-
centered quantile threshold” for brevity.

To understand the practical consequences of these differences, let us consider an informal and
qualitative argumentation.

• if C = H0 , then the empirical mean Y should be close to 0. Hence, if we assume that
replacing Y by 0 does not change the centered quantile significantly, we conclude that the
uncentered quantile threshold will be smaller (hence better) than the recentered quantile
threshold, since the latter has the same form but at a slightly shrunk level and has an
additional term ε′ . In this situation the uncentered quantile will actually achieve the exact
level (up to 2−n) .

• if on the other hand there are some coordinates with a large non-zero mean in the set
C (by which we mean having a large signal-to-noise (SNR) ratio), then these coordinates
will on average have a large absolute value and hence make the uncentered quantile sig-
nificantly larger; in this case the signal will contribute to the uncentered quantile more
than the noise. By contrast, and as remarked earlier, the recentered quantile threshold is
translation invariant and thus not affected by the relative strength of the signal. Hence, in
this situation, it is likely that the recentered quantile threshold will be smaller.

While the second situation above appears to be detrimental to the uncentered quantile, this
disadvantage will in some sense be “automatically corrected” by the step-down procedure.
Namely, if some coordinates have a large SNR, they will certainly contribute significantly to
the uncentered quantile threshold at the first step of the step-down procedure; however even if
this threshold is relatively large, it will still allow to eliminate at the first step precisely those
coordinates having a very large mean. This will result in an important improvement of the
threshold at the second iteration, and so on, until all coordinates with a large SNR have been
weeded out, so that in the end we actually end up very close to the situation described in the
first point.
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Hence, the conclusion from this qualitative discussion is that, in a situation where some of the
coordinates have a large SNR, we expect that the uncentered quantile will be less accurate (i.e.,
larger) than the centered quantile threshold in the first iteration(s) of the step-down procedure,
but that it will then improve along the iterations and eventually prevail in the race. (This
behavior will be confirmed by our simulations in the next section.)

At this point, it seems that the step-down using the uncentered quantile is both simpler and
more effective than our main approach and thus should always be preferred. However, this quali-
tative discussion also gives us another insight: the step-down procedure based on the uncentered
quantile may need more iterations to converge since the first steps result in an inaccurate thresh-
old. In order to fix this drawback, we propose to use the leverage of the recentered quantile for
the first step in order to weed out in one single step most of coordinates having a large SNR, and
then continue subsequently with the uncentered threshold in the next steps for more accuracy.
We thus obtain the following algorithm:

Algorithm 4.8

1. Reject the null hypotheses corresponding to:

R0 :=
{
k |

∣∣∣Yk

∣∣∣ ≥ qα(1−δ)(1−γ)(‖·‖∞ ,Y − Y) + ε′(α, δ, γ, n,K)
}

.

2. If R0 = H then stop.
Otherwise, consider the set of the remaining coordinates H\R0 and apply on it the step-
down algorithm 4.2 with the subset-based threshold

C 7→ qα(1−γ) (φC ,Y) ,

where φC(x) = supk∈C |xk|.
Proposition 4.9 Fix α, γ, δ ∈ (0, 1). Let W be a Rademacher weight vector and suppose that
Y satisfies (GA). In the two-sided context, the algorithm 4.8 gives a multiple testing procedure
with a FWER smaller than α.

What we expect is that the above algorithm will yield essentially the same final result as
the one of Corollary 4.7 (up to some small loss in the level), while requiring less iterations. In
numerical applications such as neuroimaging with a large number of images, where one iteration
can take up to one day, this can result in a significant improvement.

5. Simulations. For simulations, we consider data of the form Yt = µt + Gt , where t
belongs to a d× d discretized 2D torus of K = d2 “pixels”, identified with T

2
d = (Z/dZ)2 , and G

is a centered Gaussian vector obtained by 2D discrete convolution of an i.i.d. standard Gaussian
field (“white noise”) on T

2
d with a function F : T

2
d → R such that

∑
t∈T

2

d
F 2(t) = 1 . This ensures

that G is a stationary Gaussian process on the discrete torus, it is in particular isotropic with
E
[
G2

t

]
= 1 for all t ∈ T

2
d .
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Fig 1. Left: example of a 128x128 pixel image obtained by convolution of Gaussian white noise with a (toroidal)
Gaussian filter with width b = 18 pixels. Right: average thresholds obtained for the different approaches, see text.

In the simulations below we consider for the function F a “pseudo Gaussian” convolution
filter of bandwidth b on the torus:

Fb(t) = Cb exp
(
−d(0, t)2/b2

)
,

where d(t, t′) is the standard distance on the torus and Cb is a normalizing constant. Note that for
actual simulations it is more convenient to work in the Fourier domain and to apply the inverse
DFT which can be computed efficiently. We then compare the different thresholds obtained by
the methods proposed in this work for varying values of b . Remember that the only information
available to our algorithms is the bound on the marginal variance; the form of the function Fb

itself is of course unknown.

5.1. Confidence balls. On Fig 1 we compare the thresholds obtained when φ = ‖·‖∞ , which
corresponds to L∞ confidence balls. Remember that these thresholds can be also directly used in
the two-sided multiple testing situation (see Section 4). We use the different approaches proposed
in this work, with the following parameters: the dimension is K = 1282 = 16384 , the number
of data points per sample is n = 1000 (much smaller than K, so that we really are in a non-
asymptotic framework), the width b takes even values in the range [0, 40] , the overall level is
α = 0.05 .

Recall that the Bonferroni threshold is

t′Bonf,α :=
1√
n
‖σ‖∞ Φ

−1
(

α

2K

)
.

For the concentration threshold (7)

tconc,α(Y) :=

E

[∥∥∥∥Y
〈W−W〉

∥∥∥∥
∞

∣∣∣Y
]

BW
+ ‖σ‖∞ Φ

−1
(α/2)

[
CW

nBW
+

1√
n

]
,
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we used Rademacher weights. For the “compound” threshold of Corollary 2.2 (with the Bonfer-
roni threshold as deterministic reference threshold)

tconc∧Bonf,α(Y) := min
{
t′Bonf,α,

E

[∥∥∥∥Y
〈W−W〉

∥∥∥∥
∞

∣∣∣Y
]

BW

+
‖σ‖∞√

n
Φ

−1
(

α(1 − δ)

2

)
+

‖σ‖∞ CW

nBW

Φ
−1
(

αδ

2

)




,

we used δ = 0.1. For the quantile approach of Theorem 3.2, we considered the two variants

tquant+Bonf,α(Y) := qα0(1−δ)

(
‖·‖∞ ,Y − Y

)
+

2B
(
n, α0δ

2

)
− n

n
t′Bonf,α−α0

tquant+conc,α(Y) := qα0(1−δ)

(
‖·‖∞ ,Y − Y

)
+

2B
(
n, α0δ

2

)
− n

n
tconc,α−α0

(Y) ,

where we used α0 = 0.9α (= (1 − γ)α, with γ = 0.1) , δ = 0.1 and took f either equal to
the Bonferroni or the concentration threshold, respectively (these values of α0, α, γ, δ will stay
unchanged for all the experiments presented here, including in the next section). Finally, for
comparison purposes, we included in the figure the threshold corresponding to K = 1 (estimation
of a single coordinate mean)

tsingle,α :=
1√
n
‖σ‖∞ Φ

−1
(

α

2

)
.

We also included an estimation of the true quantile (actually, an empirical quantile over 1 000

samples), i.e. tideal,α the 1 − α quantile of the distribution of
∥∥∥Y − µ

∥∥∥
∞

.

Each point represents an average over 50 experiments (except of course for t′Bonf,α and tsingle,α).
The quantiles or expectations with respect to Rademacher weights were estimated by Monte-
Carlo with 1 000 draws (without the additional terms introduced in Section 2.5.2 and Section 3.2).
On the figure, we did not include standard deviations. They are quite low, of the order of 10−3 ,
although it is worth noting that the quantile threshold has a standard deviation roughly twice
as large as the concentration threshold (we did not investigate at this point what part of this
variation is due to the MC approximation).

We also computed the quantile threshold qα(‖·‖∞ ,Y − Y) without second-order term: it is
so close to tideal,α that they would be almost indistinguishable on Fig 1.

The overall conclusion of this first experiment is that the different thresholds proposed in this
work are relevant in the sense that they are smaller than the Bonferroni threshold provided the
vector has strong enough correlations. As expected, the quantile approach appears to lead to
tighter thresholds. (However, this might not be always the case for smaller sample sizes because
of the additional term ε′ .) One advantage of the concentration approach is that the ’compound’
threshold can “fall back” on the Bonferroni threshold when needed, at the price of a minimal
threshold increase.
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5.2. Multiple testing. We now focus on the multiple testing problem. We present here only
the two-sided case because the one-sided case gives similar results, except that we can not use
the “uncentered quantile” method of Corollary 4.7.

We consider the experiment of the previous section, with the following choice for the vector
of means:

(29) ∀(i, j) ∈ {0, . . . , 127}2 , µ(i,j) =
(64 − j)+

64
× 20t′Bonf ,α .

In this situation, note that the half of the null hypotheses are true while the non-zero means
are increasing linearly from (5/16)t′Bonf ,α to 20t′Bonf ,α. The thresholds obtained are given on
Fig 2 (100 simulations). The ideal threshold tideal,α is now derived from the 1 − α quantile of
the distribution of T ′(H0) = supH0

|Y|. We did not report tconc,α and tconc∧Bonf,α in order to
simplify Fig 2. In addition to the previous thresholds, we considered:

• the uncentered quantile defined by:

tquant.uncent.,α(Y) := qα (‖·‖∞ ,Y) ,

and its step down version ts.d.quant.uncent.,α(Y) (see Corollary 4.7).
• the step down version ts.d.quant+Bonf,α(Y) of tquant+Bonf ,α(Y).
• Holm’s threshold tHolm,α(Y) (i.e. the step-down version of Bonferroni’s procedure).

On the right-hand-side of Fig 2, we evaluated the power of the different thresholds tα(Y), defined
as the expected proportion of signal correctly detected (i.e. expected proportion of rejections
among the false null hypotheses):

(30) Power(tα(Y)) := E

( | {1 ≤ k ≤ K | µk 6= 0 and |Yk| > tα(Y)} |
| {1 ≤ k ≤ K | µk 6= 0} |

)
.

For single-step resampling-based procedures, the results of the experiment lead us to conclude
the following:

• the single-step procedure based on our quantile approach (“quant+Bonf”) can outperform
Holm’s procedure as soon as the the coordinates of the vector are sufficiently correlated.

• the single-step procedure based on the uncentered quantile (“quant. uncent”) has bad
performance.

For step-down resampling-based procedures, we draw the following conclusions:

• the step-down procedure based on our quantile approach (“s.d. quant+Bonf”) can outper-
form Holm’s procedure as soon as the coordinates of the vector are sufficiently correlated
(obvious from the point 1).
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Fig 2. Multiple testing problem with µ defined by (29) for different approaches, see text. Left: average thresholds.
Right: power, defined by (30).

• the step-down procedure based on the uncentered quantile (“s.d. quant uncent.”) seems to
be the most accurate threshold of the step-down procedures considered here.

However, when K and n are large, each iteration of the step-down algorithm for the uncentered
quantiles may be quite long to compute while our quantile approach (“quant+Bonf”) provides in
only one step a quite good accuracy. Following Section 4.4, these two methods can be combined
(see Algorithm 4.8, called here “mixed approach”), resulting in a speed-accuracy trade-off.

We illustrate this with a specific simulation study. Consider the same simulation framework
as above except that the bandwidth b is now fixed at 30, the size of the sample is n = 100 , and
the means are given by: ∀(i, j) ∈ {0, . . . , 127}2 , µ(i,j) = f(i + 128j), where

(31) ∀k ∈ {0, . . . , 8 192}, f(k) = 50t′Bonf ,α × exp

(
−(8 192 − k)+

8 192
log(100)

)
,

and f(k) = 0 for the other values of k. In this situation, the non-zero means are increasing
log-linearly from 0.5 t′Bonf,α to 50 t′Bonf,α. With 100 simulations, we computed in Table 3 the
average number of iterations for the above step-down procedures. Additionally, on Fig 3, the
power is given as a function of the number of iterations. We can read the following results:

• The “mixed approach” needs on average significantly less iterations to converge.
• In the case of a very strict computation time constraint, it is possible to stop the step-down

procedures early after a fixed number of iterations. Stopping the mixed approach procedure
after only 2 iterations results in an average power that is virtually undistinguishable from
the power obtained without early stopping. By contrast 3 iterations are needed for the
step-down with uncentered quantile threshold.

While these results are certainly specific to the particular simulation setup we used, they
illustrate that the informal and qualitative analysis we presented in Section 4.4 appears to be
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correct. In particular, the fact that the mixed approach appears to give already very satisfactory
results after the two first iterations reinforces the interpretation that the first step (using the
recentered quantile threshold with remainder term) rules out at once all coordinates with a large
SNR while the second step (using the exact, uncentered quantile) improves the precision once
these high-SNR coordinates have been eliminated.

Therefore, this mixed approach can be an interesting alternative to the uncentered quantile
approach when several long iterations in the step-down algorithm are expected. This situation
arises typically when the signal (non-zero means) has a wide dynamic range (in our above
simulation, the signal-to-noise ratio for non-true null hypotheses had a dynamic range of 100 or
20dB).

Holm’s procedure “ s.d. quant+Bonf” “s.d. quant. uncent.” “mixed approach”

3.25 3.13 4.92 3.94

Table 3

Multiple testing problem with µ corresponding to (31) for different step-down approaches. Average number of
iterations in the step-down algorithm.

1 2 3 4 5 6

0.
5

0.
6

0.
7

0.
8

0.
9

holm
s.d. quant+bonf
s.d. quant. uncent.
mixed approach

Fig 3. Multiple testing problem with µ corresponding to (31) for different step-down approaches. Power in function
of the number of iterations in the step-down algorithm.

6. Discussions and concluding remarks.

6.1. Discussion: confidence regions and tests. In this paper we have first constructed confi-
dence regions of the form (1) and presented an application of this result to (multiple) testing.
Because of the duality between confidence regions and tests, a natural question is whether con-
versely, one could construct tests first and deduce confidence regions. In particular, testing the
(single) null hypothesis Hµ0

: µ = µ0 is very simple using an exact symmetrization test: using
directly Lemma 3.1 we know that the test Tµ0,φ rejecting Hµ0

if φ(Y − µ0) > qα(φ,Y − µ0) has
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significance level bounded by α . We can construct from this the confidence region

Fφ(Y, 1 − α) =
{
µ0 ∈ R

K : Tµ0,φ does not reject Hµ0

}
.

This method avoids completely the problems linked to the direct construction of a confidence
region that we faced in Section 3; furthermore, the above confidence region is almost exactly of
level 1−α (up to 2−n) , while the region constructed in Section 3 is certainly more conservative.
Nevertheless, argue that the approach developed in Section 3 is much more practically relevant:

• the region Fφ(Y, 1−α) constructed above by test inversion is not of the form (1), that is,
it is not a “φ-ball” around the empirical mean. However, it might be required by external
contraints, for example for further analysis, that the confidence region should be of this
form.

• more generally, it does not seem clear at all what shape the above region would take or even
if would enjoy some desirable properties such as convexity. This seems very impractical,
particularly in high dimension, where regions which cannot be described under a simple
form seem very difficult to handle. In fact, it seems actually very difficult to obtain any ex-
plicit description of this region short of calculating Tµ0,φ for every point µ0 on a discretized
grid of R

K , which becomes intractable for both computational burden and memory usage
as soon as K is large.

6.2. Discussion: FWER versus FDR in multiple testing. It can legitimately be asked if the
FWER is in fact an appropriate measure of type I error. Namely, the false discovery rate (FDR),
introduced in [3] and defined as the average proportion of wrongly rejected hypotheses among
all the rejected hypotheses, appears to have recently become a de facto standard, in particular
in the setting of a large number of hypotheses to test as we consider here. One reason for the
popularity of FDR is that it is a less strict measure of error as the FWER and to this extent,
FDR-controlled procedures reject more hypotheses than FWER-controlled ones. We give two
reasons why the FWER is still a quantity of interest to investigate. First, the FDR is not always
relevant, in particular for neuroimaging data. Indeed, in this context the signal is often strong
over some well-known large areas of the brain (e.g. the motor and visual cortex). Therefore, if for
instance 95 percent of the detected locations belong to these well-known areas, FDR control (at
level 5%) does not provide evidence for any new true discovery. On the contrary, FWER control
is more conservative, but each detected location outside these well-known areas is a new true
discovery with high probability. Secondly, assuming the FDR or a related quantity is nevertheless
the endgoal, it can be very useful to consider a two-step procedure, where the first step consists
in a FWER-controlled multiple test. Namely, this first step can be used as a means to estimate
the FDR or the FDP (false discovery proportion) of another procedure used in the second step
and thus fine-tune the parameters of this second step for the desired goal. This approach has
been for example advocated in [19] with application to neuroimaging data as well.
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6.3. Discussion: about the variances of the coordinates. In the concentration approach and
in the Gaussian case, the derived thresholds depend explicitly on the p-norm of the vector of
standard deviations σ = (σk)k (an upper bound on this quantity can be used as well). While we
have left aside the problem of determining this parameter if no prior information is available,
there is at least a simple solution available: build (using standard techniques) an individual
upper confidence bound for each σk , then combine these different confidence bounds with the
Bonferroni method. While this naive method will not take into account the possible dependence
between the coordinates for the estimation of σ itself, it will generally only contribute a lower
order term in the final threshold defined by (7).

A second and potentially more crucial problem is that, since the confidence regions proposed
in this paper are balls rather than ellipsoids, these regions will — inevitably — be conservative
when the variances of the coordinates are very different. The standard way to address this issue
is to consider studentized data. While this would solve this heteroscedasticity issue, it also voids
the assumption of independent datapoints – a crucial assumption in all of our proofs. Therefore,
generalizing our approach to studentized observations is an important (and probably challenging)
direction for future research.

6.4. Conclusion. In this paper, we proposed two approaches to build non-asymptotic resampling-
based confidence regions for a correlated random vector:

• The first one is strongly inspired by results coming from learning theory and is based on a
concentration argument. An advantage of this method is that it allows to use a very large
class of resampling weights. However, these concentration-based thresholds have relatively
conservative deviation terms and they are better than the Bonferroni threshold only if
there are very strong correlations in the data. Therefore, using this method when we do
not have any prior knowledge on the correlations can be too risky. To address this issue,
we propose (under the Gaussian assumption) to combine the corresponding concentration
threshold with the Bonferroni threshold to obtain a threshold very close to the minimum
of the two (using the so-called “stabilization property” of the resampling).

• The second method is closer to the idea of randomization tests: it estimates directly
the quantile of φ(Y − µ) using a symmetrization argument (it is therefore restricted to
Rademacher weights). The point is that an exact approach is not possible because we
have to replace the unknown parameter µ by the empirical mean Y. Therefore, the de-
rived thresholds have a remainder term, but it is quite small when n is sufficiently large
(typically n ≥ 1 000).

Our simulations have shown that for confidence regions in supremum norm, the confidence
balls obtained with the second method are better than the regions based on the Bonferroni
threshold, when there are important correlations between the coordinates. Moreover, it seems
that the quantile threshold without the remainder term is very close to the ideal quantile, so
that we may conjecture that the additional term is unnecessary (or at least too large).
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Finally, we have used the two previous methods to derive step-down multiple testing proce-
dures that control the FWER when testing simultaneously the means of a (Gaussian) random
vector (in the one-sided or two-sided context). Because these procedures use translation-invariant
thresholds, the number of iterations in the step-down algorithm is generally small. Moreover,
they can outperform Holm’s procedure when the coordinates of the observed vector has strong
enough correlations. However, these procedures are somewhat too conservative because of the
remainder terms (in the quantile approach, the remainder terms arise as a consequence of em-
pirically recentering the data).

In the two-sided context, an exact step-down procedure based on the resampled quantiles of
the uncentered data is valid and turns out to be more accurate than the above methods (because
no remainder term is then necessary). However, this exact method needs generally more iterations
in the step-down algorithm. Therefore, we propose to combine our quantile approach with the
latter exact method to get a faster procedure with (almost) the same accuracy.

Again, we may conjecture that the step-down procedure using the recentred quantile without
the additional term (or at least with a smaller term) still controls the FWER for a fixed n.
This would give an accurate procedure in both two-sided and one-sided contexts, and the latter
would be faster than the exact step-down procedure in the two-sided context. This is certainly
an interesting direction for future work.

7. Proofs.

7.1. Confidence regions using concentration. In this section, we prove all the statements
of Section 2 except computations of resampling weight constants (made in Section 7.4) and
statements with non-exchangeable resampling weights (made in Section 7.5).

7.1.1. Comparison in expectation.

Proof of Proposition 2.4. Denoting by Σ the common covariance matrix of the Yi, we

have D
(
Y
〈W−W〉

∣∣∣∣W
)

= N (0, (n−1∑n
i=1(Wi − W )2)n−1Σ

)
, and the result follows because

D(Y − µ) = N (0, n−1Σ) and φ is positive-homogeneous. �

Proof of Proposition 2.6. By independence between W and Y, exchangeability of W and the
positive homogeneity of φ, for every realization of Y we have:

AW φ
(
Y − µ

)
= φ

(
E

[
1

n

n∑

i=1

∣∣∣Wi − W
∣∣∣
(
Yi − µ

) ∣∣∣∣Y
])

.
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Then, by convexity of φ,

AW φ
(
Y − µ

)
≤ E

[
φ

(
1

n

n∑

i=1

∣∣∣Wi − W
∣∣∣
(
Yi − µ

)) ∣∣∣∣Y
]

.

We integrate with respect to Y, and use the symmetry of the Yi with respect to µ and again
the independence between W and Y to show finally that

AW E

[
φ
(
Y − µ

)]
≤ E

[
φ

(
1

n

n∑

i=1

∣∣∣Wi − W
∣∣∣
(
Yi − µ

))]

= E

[
φ

(
1

n

n∑

i=1

(
Wi − W

)(
Yi − µ

))]
= E

[
φ

(
Y
〈W−W〉

)]
.

The point (ii) comes from :

E

[
φ

(
Y
〈W−W〉

)]
= E

[
φ

(
1

n

n∑

i=1

(Wi − W )(Yi − µ)

)]

≤ E

[
φ

(
1

n

n∑

i=1

(Wi − x0)(Y
i − µ)

)]
+ E

[
φ

(
1

n

n∑

i=1

(x0 − W )(Yi − µ)

)]
.

Then, by symmetry of the Yi with respect to µ and independence between W and Y, we get

E

[
φ

(
Y
〈W−W〉

)]
≤ E

[
φ

(
1

n

n∑

i=1

|Wi − x0|(Yi − µ)

)]
+ E

[
φ

(
1

n

n∑

i=1

|x0 − W |(Yi − µ)

)]

≤ (a + E|W − x0|)E
[
φ(Y − µ)

]
.

�

7.1.2. Concentration inequalities.

Proof of Proposition 2.8. We use here concentration principles applied to a supremum of
Gaussian random vectors, following closely the approach in [16], Section 3.2.4 . The essential
ingredient is the Gaussian concentration theorem of Cirel’son, Ibragimov and Sudakov ([5] and
recalled in [16], Theorem 3.8), stating that if F is a Lipschitz function on R

N with constant L ,
then for the standard Gaussian measure on R

N we have P [F ≥ E [F ] + t] ≤ 2Φ(t/L) .
Let us denote by A a square root of the common covariance matrix of the Yi. If G is a K ×n

matrix with standard centered i.i.d. Gaussian entries, then AG has the same distribution as Y−
µ . We let for all ζ ∈

(
R

K
)n

, T1(ζ) := φ
(

1
n

∑n
i=1 Aζi

)
and T2(ζ) := E

[
φ
(

1
n

∑n
i=1(Wi − W )Aζi

)]
.

From the Gaussian concentration theorem recalled above, to reach the conclusion we just need
to prove that T1 (resp. T2) is a Lipschitz function with constant ‖σ‖p /

√
n (resp. ‖σ‖p CW /n) with
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respect to the Euclidean norm ‖·‖2,Kn on
(
R

K
)n

. Let ζ, ζ ′ ∈
(
R

K
)n

and denote by (ak)1≤k≤K

the rows of A. Using that φ is 1-Lipschitz with respect to the p-norm (because it is subadditive
and bounded by the p-norm), we get

|T1(ζ) − T1(ζ
′)| ≤

∣∣∣∣

∣∣∣∣
1

n

n∑

i=1

A(ζi − ζ ′i)
∣∣∣∣

∣∣∣∣
p

≤
∣∣∣∣

∣∣∣∣
(〈

ak,
1

n

n∑

i=1

(ζi − ζ ′i)
〉)

k

∣∣∣∣

∣∣∣∣
p

.

For each coordinate k, by Cauchy-Schwartz’s inequality and since ‖ak‖2 = σk, we deduce

∣∣∣∣∣

〈
ak,

1

n

n∑

i=1

(ζi − ζ ′i)
〉∣∣∣∣∣ ≤ σk

∣∣∣∣

∣∣∣∣
1

n

n∑

i=1

(ζi − ζ ′i)
∣∣∣∣

∣∣∣∣
2

.

Therefore, we get

|T1(ζ) − T1(ζ
′)| ≤ ||σ||p

∣∣∣∣
∣∣∣∣
1

n

n∑

i=1

(ζi − ζ ′i)
∣∣∣∣
∣∣∣∣
2

≤ ||σ||p√
n

||ζ − ζ ′||2,Kn,

using the convexity of x ∈ R
K 7→ ‖x‖2

2, and we obtain (i). For T2, we use the same method as
for T1 :

∣∣T2(ζ) − T2(ζ
′)
∣∣ ≤ ‖σ‖p E

∥∥∥∥
1

n

n∑

i=1

(Wi − W )(ζi − ζ ′i)
∥∥∥∥
2

≤
‖σ‖p

n

√√√√E

∥∥∥∥
n∑

i=1

(Wi − W )(ζi − ζ ′i)
∥∥∥∥
2

2

.(32)

Note that since
(∑n

i=1(Wi − W )
)2

= 0, we have E(W1 − W )(W2 − W ) = −C2
W /n. We now

develop
∥∥∥
∑n

i=1(Wi − W )(ζi − ζ ′i)
∥∥∥
2

2
in the Euclidean space R

K :

E

∥∥∥∥
n∑

i=1

(Wi − W )(ζi − ζ ′i)
∥∥∥∥
2

2

= C2
W

(
1 − n−1

) n∑

i=1

∥∥ζi − ζ ′i
∥∥2
2 −

C2
W

n

∑

i6=j

〈
ζi − ζ ′i, ζj − ζ ′j

〉

= C2
W

n∑

i=1

∥∥ζi − ζ ′i
∥∥2
2 −

C2
W

n

∥∥∥∥∥

n∑

i=1

(ζi − ζ ′i)

∥∥∥∥∥

2

2

.
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Consequently,

E

∥∥∥∥
n∑

i=1

(
Wi − W

) (
ζi − ζ ′i

) ∥∥∥∥
2

2

≤ C2
W

n∑

i=1

∥∥ζi − ζ ′i
∥∥2
2 = C2

W

∥∥ζ − ζ ′
∥∥2
2,Kn .(33)

Combining expression (32) and (33), we find that T2 is ‖σ‖p CW /n-Lipschitz. �

Remark 7.1 The proof of Proposition 2.8 is still valid under the weaker assumption (instead of

exchangeability of W ) that E

[
(Wi − W )(Wj − W )

]
can only take two possible values depending

on whether or not i = j.

7.1.3. Main results.

Proof of Theorem 2.1. The case (BA)(p,M) and (SA) is obtained by combining Proposi-
tion 2.6 and McDiarmid’s inequality (see for instance [9]). The (GA) case is a straightforward
consequence of Proposition 2.4 and the proof of Proposition 2.8 (considering the Lipschitz func-
tion T1 − T2). �

Proof of Corollary 2.2. From Proposition 2.8 (i), with probability at least 1 − α(1 − δ),

φ
(
Y − µ

)
is less than or equal to the minimum between tα(1−δ) and E

[
φ
(
Y − µ

)]
+

‖σ‖pΦ
−1

(α(1−δ)/2)√
n

(because these thresholds are deterministic). In addition, Proposition 2.4 and Proposition 2.8 (ii)

give that with probability at least 1−αδ, E

[
φ
(
Y − µ

)]
≤

EW

[
φ

(
Y
〈W−W〉)]

BW
+

‖σ‖pCW

BW n Φ
−1

(αδ/2).

The result follows by combining the two last expressions. �

7.1.4. Monte-Carlo approximation.

Proof of Proposition 2.11. The idea of the proof is to apply McDiarmid’s inequality condi-
tionally to Y (see [17]). For any realizations W and W ′ of the resampling weight vector and any
ν ∈ R

k,
∣∣∣∣φ
(
Y
〈W−W〉

)
− φ

(
Y
〈W ′−W ′〉

)∣∣∣∣ ≤ φ

(
Y
〈W−W〉 − Y

〈W ′−W ′〉
)

≤ c2 − c1

n

∥∥∥∥∥

(
n∑

i=1

∣∣∣Yi
k − νk

∣∣∣
)

k

∥∥∥∥∥
p

since φ is sub-additive, bounded by the p-norm and Wi − W ∈ [c1, c2] a.s.
The sample Y being deterministic, we can take ν equal to the median M of the sample, which

realizes the infimum. Since W 1, . . . ,WB are independent, McDiarmid’s inequality gives (18).
When Y satisfies (GA), a proof very similar to the one of (15) in Proposition 2.8 can be

applied to the remainder term with any deterministic ν. We then obtain (19). �
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7.2. Quantiles. Remember the following inequality coming from the definition of the quantile
qα : for any fixed Y

(34) PW

[
φ
(
Y

〈W 〉)
> qα(φ,Y)

]
≤ α ≤ PW

[
φ
(
Y

〈W 〉) ≥ qα(φ,Y)
]

.

Proof of Lemma 3.1. We introduce the notation Y •W = Y.diag(W ) for the matrix obtained
by multiplying the i-th column of Y by Wi , i = 1, . . . , n .

We have

PY

[
φ(Y − µ) > qα(φ,Y − µ)

]
= EW

[
PY

[
φ
(
(Y − µ)

〈W 〉)
> qα(φ, (Y − µ) • W )

]]

= EY

[
PW

[
φ

(
(Y − µ)

〈W 〉
)

> qα(φ,Y − µ)

]]

≤ α .(35)

The first equality is due to the fact that the distribution of Y satisfies assumption (SA), hence
the distribution of (Y − µ) invariant by reweighting by (arbitrary) signs W ∈ {−1, 1}n . In the
second equality we used Fubini’s theorem and the fact that for any arbitrary signs W as above
qα(φ, (Y − µ) • W ) = qα(φ,Y − µ) ; finally the last inequality comes from (34). �

Proof of Theorem 3.2. Put γ1 = γ1(α0δ) for short and define the event

Ω =
{
Y | qα0

(φ,Y − µ) ≤ qα0(1−δ)(φ,Y − Y) + γ1f(Y)
}

;

then we have using (35) :

(36) P

[
φ(Y − µ) > qα0(1−δ)(φ,Y − Y) + γ1f(Y)

]

≤ P

[
φ(Y − µ) > qα0

(φ,Y − µ)
]
+ P [Y ∈ Ωc]

≤ α0 + P [Y ∈ Ωc] .

We now concentrate on the event Ωc . Using the subadditivity of φ, and the fact that (Y − µ)
〈W 〉

=

(Y − Y)
〈W 〉

+ W (Y − µ) , we have for any fixed Y ∈ Ωc:

α0 ≤ PW

[
φ((Y − µ)

〈W 〉
) ≥ qα0

(φ,Y − µ)

]

≤ PW

[
φ((Y − µ)

〈W 〉
) > qα0(1−δ)(φ,Y − Y) + γ1f(Y)

]

≤ PW

[
φ((Y − Y)

〈W 〉
) > qα0(1−δ)(φ,Y − Y)

]
+ PW

[
φ(W (Y − µ)) > γ1f(Y)

]

≤ α0(1 − δ) + PW

[
φ(W (Y − µ)) > γ1f(Y)

]
.
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For the first and last inequalities we have used (34), and for the second inequality the definition
of Ωc. From this we deduce that

Ωc ⊂
{
Y | PW

[
φ(W (Y − µ)) > γ1f(Y)

]
≥ α0δ

}
.

Now using the homogeneity of φ, and the fact that both φ and f are nonnegative:

PW

[
φ(W (Y − µ)) > γ1f(Y)

]
= PW

[∣∣∣W
∣∣∣ >

γ1f(Y)

φ(sign(W )(Y − µ))

]

≤ PW

[∣∣∣W
∣∣∣ >

γ1f(Y)

φ̃(Y − µ)

]

= 2PW

[
1

n
(2Bn, 1

2

− n) >
γ1f(Y)

φ̃(Y − µ)

]
,

where Bn, 1
2

denotes a binomial (n, 1
2 ) variable (independent of Y). From the two last displays

and the definition of γ1 , we conclude

Ωc ⊂
{
Y

∣∣∣∣ φ̃(Y − µ) > f(Y)

}
,

which, put back in (36), leads to the desired conclusion. �

Proof of Corollary 3.4. Define the function

g0(Y) = q(1−δ)α0
(φ,Y − Y) +

(
J−1∑

i=1

γiq(1−δ)αi
(φ̃,Y −Y) + γJf(Y)

)
,

and for k = 1, . . . , J ,

gk(Y) = γ−1
k

(
J−1∑

i=k

γiq(1−δ)αi
(φ̃,Y − Y) + γJf(Y)

)
,

with the convention gJ = f . For 0 ≤ k ≤ J − 1, applying Theorem 3.2 with the function gk+1

yields the relation

PW

[
φ(Y − µ) > gk(Y)

]
≤ αk + PW

[
φ(Y − µ) > gk+1(Y)

]
.

Therefore,

PW

[
φ(Y − µ) > g0(Y)

]
≤

J−1∑

i=0

αi + P

[
φ̃(Y − µ) > f(Y)

]
,
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as announced. �

Proof of Proposition 3.5. Let us first prove that an analogue of Lemma 3.1 holds with qα0

replaced by q̃α0
. First, we have

EWPY

[
φ(Y − µ) > q̃α0

(φ,Y − µ,W)
]

= EW ′EWPY

[
φ
(
(Y − µ)

〈W ′〉)
> q̃α0

(φ, (Y − µ) • W ′,W)

]

= EYPW,W ′

[
φ
(
(Y − µ)

〈W ′〉)
> q̃α0

(φ,Y − µ,W ′ • W)

]
,

where W ′ denotes a Rademacher vector independent of all other random variables and W ′•W =
diag(W ′).W denotes the matrix obtained by multiplying the i-th row of W by W ′

i , i = 1, . . . , n .
Note that (W ′,W ′ • W) ∼ (W ′,W). Therefore, by definition of the quantile q̃α0

, the latter
quantity is equal to

EYPW,W ′


 1

B

B∑

j=1

1{φ((Y − µ)
〈Wj〉

) ≥ φ((Y − µ)
〈W ′〉

)

}
≤ α0


 ≤ ⌊Bα0⌋ + 1

B + 1
,

where the last step comes from Lemma 7.2 taken from [26] (see below).
The rest of the proof is similar to the one of Theorem 3.2, where PW is replaced by the empirical

distribution based on W , P̃W = 1
B

∑B
j=1 δWj . Thus, (34) becomes for any fixed Y,W:

P̃W

[
φ
(
Y

〈W 〉)
> q̃α0

(φ,Y,W)
]
≤ α0 ≤ P̃W

[
φ
(
Y

〈W 〉) ≥ q̃α0
(φ,Y,W)

]
.

Then, the role of Ω is taken by

Ω̃ :=
{
Y,W | q̃α0

(φ,Y − µ,W) ≤ q̃α0(1−δ)(φ,Y − Y,W) + γf(Y,W)
}

,

where we put γ = γ(W, α0δ) for short. We then have similarly to (36):

PY,W

[
φ(Y − µ) > q̃α0(1−δ)(φ,Y − Y) + γf(Y,W)

]
≤ ⌊Bα0⌋ + 1

B + 1
+ PY,W

[
Ω̃c
]

,

and following further the proof of Theorem 3.2, we obtain

Ω̃c ⊂



Y,W

∣∣∣∣∣ P̃W


|W | >

γf(Y,W)

φ̃
(
Y − µ

)


 ≥ α0δ




 ,

which gives the result. �

We have used the following Lemma:
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Lemma 7.2 (Essentially Lemma 1 of [26]) Let Z0, Z1, . . . , ZB be exchangeable real-valued
random variables. Then for all α ∈ (0, 1),

P


 1

B

B∑

j=1

1 {Zj ≥ Z0} ≤ α


 ≤ ⌊Bα⌋ + 1

B + 1
≤ α +

1

B + 1
.

The first inequality becomes an equality if Zi 6= Zj a.s. For example, it is the case if the Zis are
i.i.d. variables from a distribution without atoms.

We provide a proof for completeness.

Proof of Lemma 7.2. Let U denote a random variable uniformly distributed in {0, . . . , B} and
independent of the Zis. We then have

P


 1

B

B∑

j=1

1 {Zj ≥ Z0} ≤ α


 = P




B∑

j=0

1 {Zj ≥ Z0} ≤ Bα + 1




= PUP(Zi)




B∑

j=0

1 {Zj ≥ ZU} ≤ Bα + 1




= P(Zi)PU




B∑

j=0

1 {Zj ≥ ZU} ≤ ⌊Bα⌋ + 1




≤ ⌊Bα⌋ + 1

B + 1
.

Note that the last inequality is an equality if the Zis are a.s. distinct. �

7.3. Multiple testing.

Proof of Theorem 4.3. (from [26]) We use the notations of Definition 4.1. If the procedure
rejects at least one true null hypothesis, we may consider j0 = min{j ≤ ℓ̂ | Hσ(j) is true }. By

definition of a step-down procedure, we have [Yσ(j0)] ≥ tj0. By definition of j0, we have H0 ⊂ Cj0

so that, since t is non-decreasing, t(Cj0) ≥ t(H0). Finally, we can obtain (28) as follows:

FWER(R) ≤ P

(
∃j0 | Hσ(j0) is true and

[
Yσ(j0)

]
≥ t(H0)

)

≤ P
(
T ′(H0) ≥ t(H0)

)

≤ P (T (H0) ≥ t(H0)) .

�
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Proof of Proposition 4.9. First note that

qα(1−γ)

(
sup
H0

|·| ,Y
)

≤ qα(1−γ)(‖·‖∞ ,Y − µ) .

Recall that from the proof of Theorem 3.2, with probability larger than 1 − αγ we have

qα(1−γ)(‖·‖∞ ,Y − µ) ≤ qα(1−δ)(1−γ)

(
‖·‖∞ ,Y − Y

)
+ ε′(α, δ, γ, n,K) .

Take Y in the event where the above inequality holds. If the global procedure rejects at least
one true null hypothesis, we denote j0 the first time that this occurs (j0 = 0 if it is in the first
step). There are two cases:

• if j0 = 0 then we have

T (H0) ≥ qα(1−δ)(1−γ)

(
‖·‖∞ ,Y − Y

)
+ ε′(α, δ, γ, n,K) ≥ qα(1−γ)

(
sup
H0

|·| ,Y
)

• if j0 ≥ 1, following the proof of Theorem 4.3, T (H0) ≥ qα(1−γ)

(
supH0

|·| ,Y).
In both cases, T (H0) ≥ qα(1−γ)

(
supH0

|·| ,Y), which occurs with probability smaller than α(1−
γ). �

7.4. Exchangeable resampling computations. In this section, we compute constants AW , BW ,
CW and DW (defined by (3) to (6)) for some exchangeable resamplings. This implies all the
statements in Tab. 1. We first define several additional exchangeable resampling weights:

• Bernoulli (p), p ∈ (0, 1) : pWi i.i.d. with a Bernoulli distribution of parameter p. A
classical choice is p = 1

2 .
• Efron (q), q ∈ {1 . . . , n} : qn−1W has a multinomial distribution with parameters (q;n−1, . . . , n−1).

A classical choice is q = n.
• Poisson (µ), µ ∈ (0,+∞) : µWi i.i.d. with a Poisson distribution of parameter µ. A

classical choice is µ = 1.

Notice that Y
〈W−W〉

and all the resampling constants are invariant under translation of the
weights, so that Bernoulli (1/2) weights are completely equivalent to Rademacher weights in
this paper.

Lemma 7.3 1. Let W be Bernoulli (p) weights with p ∈ (0, 1). Then,

2(1 − p) −
√

1 − p

pn
≤ AW ≤ BW ≤

√
1

p
− 1

√
1 − 1

n

CW =

√
1

p
− 1 and DW ≤ 1

2p
+

∣∣∣∣
1

2p
− 1

∣∣∣∣ +

√
1 − p

np
.
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2. Let W be Efron (q) weights with q ∈ {1, . . . , n}. Then,

AW ≤ BW ≤
√

n − 1

n
and CW = 1 .

Moreover, if q ≤ n,

AW = 2

(
1 − 1

n

)q

.

3. Let W be Poisson (µ) weights with µ > 0. Then,

AW ≤ BW ≤ 1√
µ

√
1 − 1

n
and CW =

1√
µ

.

Moreover, if µ = 1,
2

e
− 1√

n
≤ AW .

4. Let W be Random hold-out (q) weights with q ∈ {1, . . . , n}. Then,

AW = 2

(
1 − q

n

)
BW =

√
n

q
− 1

CW =

√
n

n − 1

√
n

q
− 1 and DW =

n

2q
+

∣∣∣∣1 − n

2q

∣∣∣∣ .

Proof of Lemma 7.3. We consider the following cases:

General case. We first only assume that W is exchangeable. Then, from the concavity of
√·

and the triangular inequality, we have

E |W1 − E[W1]| −
√

E

(
W − E[W1]

)2
≤ E |W1 − E[W1]| − E

∣∣∣W − E[W1]
∣∣∣

≤ AW ≤ BW ≤
√

n − 1

n
CW .(37)

Independent weights. When we suppose that the Wi are i.i.d.,

(38) E |W1 − E[W1]| −
√

Var(W1)√
n

≤ AW and CW =
√

Var(W1) .

Bernoulli. These weights are i.i.d. with Var(W1) = p−1 − 1, E[W1] = 1 and

E |W1 − 1| = p
(
p−1 − 1

)
+ (1 − p) = 2(1 − p) .

With (37) and (38), we obtain the bounds for AW , BW and CW . Moreover, Bernoulli (p) weights
satisfy the assumption of (6) with x0 = a = (2p)−1. Then,

DW =
1

2p
+ E

∣∣∣∣W − 1

2p

∣∣∣∣ ≤
1

2p
+

∣∣∣∣1 − 1

2p

∣∣∣∣+ E

∣∣∣W − 1
∣∣∣ ≤ 1

2p
+

1

p

∣∣∣∣
1

2
− p

∣∣∣∣+

√
1 − p

np
.
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Efron. We have W = 1 a.s. so that

CW =

√
n

n − 1
Var(W1) = 1 .

If moreover q ≤ n, then Wi < 1 implies Wi = 0 and

AW = E |W1 − 1| = E [W1 − 1 + 21 {W1 = 0}]

= 2P(W1 = 0) = 2

(
1 − 1

n

)q

.

The result follows from (37).

Poisson. These weights are i.i.d. with Var(W1) = µ−1, E[W1] = 1. Moreover, if µ ≤ 1, Wi < 1
implies Wi = 0 and

E |W1 − 1| = 2P(W1 = 0) = 2e−µ .

With (37) and (38), the result follows.

Random hold-out. These weights are such that {Wi}1≤i≤n takes only two values, with W = 1.
Then, AW , BW and CW can be directly computed. Moreover, they satisfy the assumption of (6)
with x0 = a = n/(2q). The computation of DW is straightforward. �

7.5. Non-exchangeable weights. In Section 2.5.1, we considered non-exchangeable weights in
order to reduce the complexity of computation of expectations w.r.t. the resampling randomness.
Then, we are mainly interested in non-exchangeable weights with small support. This is why we
focus on the two following cases:

1. deterministic weights
2. V -fold weights (V ∈ {2, . . . , n}) : let (Bj)1≤j≤V be a partition of {1, . . . , n} and W B ∈ R

V

an exchangeable resampling weight vector of size V . Then, for any i ∈ {1, . . . , n} with
i ∈ Bj, define Wi = W B

j .

We will often assume that the partition (Bj)1≤j≤V is “regular”, i.e. that V divides n and |Bj| =
n/V for every j ∈ {1, . . . , V }. When V does not divide n, the Bj can be chosen approximatively
of the same size.

In the following, we make use of five constants that depend only on the resampling scheme:
BW and DW stay unchanged (see definitions (4) and (6)), we modify the definitions of AW and
CW (notice that we stay consistent with (3) and (5) when W is exchangeable), and we introduce
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a fifth constant EW (which is equal to AW in the exchangeable case):

AW :=
1

n

n∑

i=1

E

∣∣∣Wi − W
∣∣∣(39)

CW :=
√

nBW if W is deterministic(40)

CW :=
√

max
j

|Bj|CW B +
√

nE

∣∣∣W B − W
∣∣∣ if W is V -fold(41)

EW :=

√√√√ 1

n

n∑

i=1

(
E|Wi − W |

)2
.(42)

We can now state the main theorem of this section.

Theorem 7.4 Let W be either a deterministic or V -fold resampling weight vector, and define
the constants AW , BW , CW , DW and EW by (39), (4), (40), (41), (6) and (42). Then, all the
results of Theorem 2.1 and Corollary 2.2 hold, with only a slight modification in (8):

φ
(
Y − µ

)
<

EW

[
φ

(
Y
〈W−W〉

)]

AW
+

M√
n

√

1 +
A2

W

E2
W

√
2 log(1/α) .

Proof of Theorem 7.4. In the Gaussian case, we use the same proof as Theorem 2.1 and
Corollary 2.2, but we replace the concentration result (16) by the one of Proposition 7.6.

In the bounded case, the proof is identical (it relies on Mc Diarmid inequality), but we no
longer have AW = EW because the weights are non-exchangeable. �

Remark 7.5 When V divides n, the constants of a (regular) V -fold weight vector are derived
from those of the associated exchangeable weight vector W B in the following way:

AW = EW = AW B BW = BW B CW =

√
n

V
CW B .

We now give two natural examples of non-exchangeable weights:

1. Hold-out (q) : Wi = n
q 1 {i ∈ I} for some deterministic subset I ⊂ {1, . . . , n} of cardinality

q. A classical choice is q = ⌊n/2⌋.
2. V -fold cross validation (possibly non-regular), V ∈ {2, . . . , n} : V -fold weights with W B

leave-one-out (which is often called cross-validation). More precisely, Wi = V
V −11 {i /∈ BJ},

J uniform on {1, . . . , V }), (Bj)1≤j≤V partition of {1, . . . , n}.
The terms “hold-out”, “cross-validation” and “V -fold cross-validation” refer to slightly different
procedures which inspired these weights. In those two cases, we can compute the resampling
constants :
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1. Hold-out (q) :

AW = 2

(
1 − q

n

)
BW = EW =

√
n

q
− 1

CW =

√

n

(
n

q
− 1

)
and DW =

n

2q
+

∣∣∣∣1 − n

2q

∣∣∣∣ .

2. V -fold cross validation (possibly non-regular):

AW =
2

V − 1

V∑

j=1

|Bj|
n

(
1 − |Bj |

n

)

BW =
1

V − 1

V∑

j=1

√
|Bj|
n

(
1 − |Bj |

n

)

CW =
√

max
j

|Bj |
√

V

V − 1
+

√
n

V − 1

V∑

j=1

∣∣∣∣
|Bj |
n

− 1

V

∣∣∣∣

DW =
1

V − 1

V∑

j=1

(
1

2
+

∣∣∣∣
1

2
− |Bj |

n

∣∣∣∣
)

EW =
2

V − 1

√√√√
V∑

j=1

|Bj|
n

(
1 − |Bj|

n

)2

.

When the partition (Bj)1≤j≤V is almost regular, i.e. maxj

∣∣|Bj| − nV −1
∣∣ ≤ 1 and n ≫ V ≥ 3,

then CW B−1
W ≤

√
n/(V − 1) (1 + o(1)) which is close to its value in the “regular” case. This

means that the concentration thresholds behave as in the regular case provided that n is large
enough.

The proofs of these results are given at the end of this section. Before this, we give analogues
of the results of Section 2.2 and 2.3 in the non-exchangeable case.

7.5.1. Expectations. The Proposition 2.4 is valid with non-exchangeable weights. The proof
of Proposition 2.6 remains unchanged with non-exchangeable weights, with AW defined by (39).

7.5.2. Concentration inequalities. Whereas Proposition 2.8 deals only with exchangeable
weights, we can derive a similar result for deterministic and V -fold exchangeable weights. This
is the object of the following result.

Proposition 7.6 Let p ∈ [1,+∞], Y a sample satisfying (GA) and φ : R
K → R any subadditive

function, bounded by the p-norm. Let W be some resampling weight vector among

(i) Deterministic weights.
(ii) V -fold exchangeable resampling weight for some V ∈ {2, . . . , n}.
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Then, for all α ∈ (0, 1), (16) and the corresponding lower bound hold with CW defined by (40)
(deterministic case) (41) (V -fold case).

Proof of Proposition 7.6. Deterministic weights (i): we can use (15) and the corresponding

lower bound with BW σ instead of σ because D(Y〈W−W〉)
= D(BW (Y− µ)). The result follows

with CW =
√

nBW .

V -fold weights (ii): the proof is widely inspired from the one of Proposition 2.8. We have to
compute the Lipschitz constant of T2 defined by

T2(ζ) = Eφ

(
1

n

n∑

i=1

(
Wi − W

)
Aζi

)
.

For all ζ, ζ ′ ∈ R
K , we use the triangular inequality and the same arguments as in the proof of

Proposition 2.8:

∣∣T2(ζ) − T2(ζ
′)
∣∣

≤ E

∥∥∥∥∥
1

n

n∑

i=1

(
Wi − W

)
A(ζi − ζ ′i)

∥∥∥∥∥
p

≤ E

∥∥∥∥∥
1

n

n∑

i=1

(
Wi − W B

)
A(ζi − ζ ′i)

∥∥∥∥∥
p

+ E

∣∣∣W B − W
∣∣∣
∥∥∥∥∥
1

n

n∑

i=1

A(ζi − ζ ′i)

∥∥∥∥∥
p

≤
‖σ‖p

n

√√√√
E

∥∥∥∥∥

n∑

i=1

(Wi − W B)(ζi − ζ ′i)

∥∥∥∥∥

2

2

+ E

∣∣∣W B − W
∣∣∣
‖σ‖p√

n

∥∥ζ − ζ ′
∥∥
2,Kn

Using the exchangeability of the W B , we show that

E

∥∥∥∥∥

n∑

i=1

(Wi − W B)(ζi − ζ ′i)

∥∥∥∥∥

2

2

= E

∥∥∥∥∥∥

V∑

j=1

(
W B

j − W B
) ∑

i∈Bj

(
ζi − ζ ′i

)
∥∥∥∥∥∥

2

2

≤ C2
W B

V∑

j=1

∥∥∥∥∥∥

∑

i∈Bj

(
ζi − ζ ′i

)
∥∥∥∥∥∥

2

2

≤ C2
W B

V∑

j=1

|Bj|
∑

i∈Bj

∥∥ζi − ζ ′i
∥∥2
2

by convexity of ‖·‖2
2. Finally, this implies that T2 is Lipschitz of parameter

‖σ‖p

n

√
max

j
|Bj |CW B +

‖σ‖p√
n

E

∣∣∣W B − W
∣∣∣ .

�
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7.5.3. Computation of the constants. We first remark that the following statements are
straightforward:

• if W is deterministic, BW = EW .
• if W is regular V -fold exchangeable,

AW = EW = AW B BW = BW B CW =

√
n

V
CW B .

In the hold-out (q) case, we compute AW , BW and DW exactly as in the Random hold-out
(q) case.

In the general V -fold cross-validation case, we use the following trick : conditionally to the
index J of the removed block, W is a deterministic hold-out (n − |BJ |) weight multiplied by a

factor c(J) = V (n−|BJ |)
(V −1)n . This allows to compute AW , BW and DW from the hold-out case: for

instance,

AW =
1

V

V∑

j=1

[
2c(J)

(
1 − q

n

)]

=
2

V − 1

V∑

j=1

|Bj |
n

(
1 − |Bj |

n

)
.

This also shows

E

∣∣∣W B − W
∣∣∣ =

1

V

V∑

j=1

∣∣∣∣
V

V − 1

n − |BJ |
n

− 1

∣∣∣∣

from which we obtain CW . The computation of EW is done directly by noting that

E

∣∣∣W B
j − W

∣∣∣ =
V

V − 1
E

∣∣∣∣1 {j 6= J} − 1 +
|BJ |
n

∣∣∣∣ =
2

V − 1

(
1 − |Bj|

n

)
,

E2
W =

1

n

n∑

i=1

(E
∣∣∣Wi − W

∣∣∣)2

=
V∑

j=1

|Bj |
n

(E
∣∣∣W B

j − W
∣∣∣)2

=

(
2

V − 1

)2 V∑

j=1

|Bj|
n

(
1 − |Bj|

n

)2

.
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We now prove the last statement about “almost regular” V -fold cross-validation: when maxj |Bj | ≤
nV −1 + 1,

CW ≤
√

n

V
+ 1

√
V

V − 1
+

V
√

n

n(V − 1)

≤
√

n

V − 1



1 +

√
V

n
+

V

n



 .

If moreover V −1 + n−1 ≤ 1/2, we have:

BW ≥ V

V − 1

√(
1

V
− 1

n

)(
1 − 1

V
+

1

n

)

=
1√

V − 1

√

1 +
V 2

(V − 1)n

(
2

V
− 1 − 1

n

)

≥ 1√
V − 1

− V

(V − 1)
√

n

√(
1 +

1

n
− 2

V

)

+
.
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