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Abstract
We consider the first-order Cauchy problem

ou+a(z,x,Dy)u=0, 0<z<Z

u |.=o = uo,

with Z > 0 and a(z, x, D,) a k X k matrix of pseudodifferential operators of order one, whose principal part
is assumed symmetrizable: there exists L(z, x, &) of order 0, invertible, such that

ap (Zs X, f) = L(Zv X, f) (_iﬁl (Zv X, f) + Y1 (Zv X, é‘:)) (L(Z9 X, f))il 5

where 8, and vy, are hermitian symmetric and y; > 0. An approximation Ansatz for the operator solu-
tion, U(Z', z), is constructed as the composition of global Fourier integral operators with complex matrix
phases. In the symmetric case, an estimate of the Sobolev operator norm in L((H®(R™))*, (H®(R"))*) of
these operators is provided, which yields a convergence result for the Ansatz to U(Z’, z) in some Sobolev
space as the number of operators in the composition goes to co, in both the symmetric and symmetrizable
cases. We thus obtain a representation of the solution operator U(z’,z) as an infinite product of Fourier
integral operators with matrix phases.

Keywords: Hyperbolic system; Symmetrizable system; Pseudodifferential initial value problem; Fourier
integral operator; Matrix phase function; Global Sobolev norm estimate; Multi-product.
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Introduction and notation
Let k,n € N*. We consider the Cauchy problem

(1) ou+a(z,x,Dyu=0, 0<z<Z

() U l=o = U,

with Z > 0, u(z, x) € C, and a(z, x, €) a k x k matrix with entries continuous with respect to (w.r.t.) z with
values in S '(R" x R"), with the usual notation D, = %6&. (Symbol spaces are precisely defined at the end
of this introductory section.)

We write a(z, x, &) = a;(z, x,€) + ap(z, x,£), where a; is the principal part of a and g is a matrix symbol
with entries in S°(R” x R"). The principal part is assumed homogeneous of degree one and symmetrizable
in the sense that there exists a matrix L(z, x, ) with entries in S OR" x R"), with z as a parameter, such that

a1(z, %,€) = L(z, %, &) a1(z, %, €) (L(z, %, €)',

and a(z, x, &) = —iB1(z, x, &) + y1(z, x,£), where 8; and y| are hermitian symmetric k X k matrices. The
matrix y;(z, x, £) is also assumed non-negative. For the precise statements of the assumptions we make on
the symbol a(z, x, &) refer to the subsequent sections.

In the case where, for instance, the eigenvalue multiplicities are constant, the solution operator U(Z’, z) of the
Cauchy problem (1)—(2) is given by Fourier integral operators (FIO). However, in practice, the amplitudes
are only known up to elements of S, i.e., the operator itself is known up to a regularizing operator. We
wish to develop an alternative representation of U(z’, z). The solution operator is approximated by a multi-
product of FIOs, that are given explicitly, and we prove convergence as the number of operators in the
product goes to infinity. The convergence is not up to a regularising operator: the limit we obtain is exactly
U, 2.

When a(z, x, €) is scalar, k = 1, and independent of x and z it is natural to treat such a problem by means of
Fourier transformation:

u(z, x') = f f ¢ =) Yy (x) dE dx,

where d¢ := dé/(2n)". Some assumption needs to be made on the symbol a(¢) for this oscillatory integral
to be well defined. In particular, non-negativity will be imposed on a(¢). When the symbol a depends on
both x and z we can naively expect

3) u(z )~ u(zx') = f f X HO-OX D0 () e i,

for z small, and hence approximately solve the Cauchy problem (1)—(2) for z € [0,z"] with z") small. If
we want to progress in the z direction we have to solve the Cauchy problem

du+azx,Dyu=0, V<z<2,

I/I(Z, ) |z:z(” = I/ll(Z(l), ~)’

which we again approximately solve by
u(z, x') = up(z, x') := f f VOGN Oy, (oD ) 3¢ dix.

This procedure can be iterated until we reach z = Z.

In the scalar case, k = 1, upon appropriate assumptions, this procedure converges [28, 29] and yields the
solution operator of the Cauchy problem (1)—(2). The convergence is obtained in Sobolev spaces. We wish
to extend this type of results to the case of a symmetrizable system, which then yields a representation of
the solution operator as an infinite product of FIOs of the form of (3). The extension is far from being
straightforward mainly because we have to deal with matrix symbols and phases which do not commute
in general and some simple algebraic operations in the scalar case become impossible. Here, we introduce
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classes of FIOs with matrix phase functions. Some care is required for them to be well defined and some
assumptions will be made on the matrix symbol a(z, x, £), which in particular generalize those made in the
scalar case in [28, 29].

Following [28], we define the so-called thin-slab propagator, G, ), as the operator with (matrix) kernel
Glo(¥sx) = f 0 =D 0¥ )~ DG ) g

Note that ¢~ ~9%@xX"8) and ¢~ -94EY4) do not commute in general. Combining all iteration steps above
involves composition of such operators: let 0 <z < --- < z¥ < Z, we then have

W1 (2, X) = Gz ) © Gaio fan) © - -+ 0 G ) (Uo)(X),

if z > z®. We then define the operator Wy . for a subdivision  of the interval [0, Z], B = {z©, 21, ..., ZV},
with0 =z < z0 <« ... <« 2V = Z,

G0 if0<z<zV,
1

g(z,z(k))l_[g(zu)’zml)) if 70 < z < 7D,
i=k

(W”B,z =

According to the procedure described above, Wy . yields an approximation Ansatz for the solution operator
of the Cauchy problem (1)—(2) with step size Ay = sup;_; y(zi — zi=1)-

Note that a similar procedure can be used to show the existence of an evolution system by approximating
it by composition of semigroup solutions of the Cauchy problem with z ’frozen’ in a(z, x, D,) [17, 33]. It
should be noticed that ‘W ; is however not the solution operator of problem (2.1)—(2.2) even in the case
where the symbol a only depends on the transverse variable, x. For instance in the scalar case, k = 1, while
singularities propagate along the bicharacteristics associated with —Im(a;), we however observe that, with
the form of the phase function, the operator G, ;) propagates singularities along straight lines. See [31] for
further details. Furthermore, by composing the operators G, ) and G, »), one convinces oneself that

g(z",z) # g(z”,z’) ° Q(Z’,Z)

in general if 7”7 > 7’ > z € [0, Z] (use again that singularities propagate along straight lines). The family of
operators (G ;) .oe[0.z1 15 thus neither a semigroup nor an evolution system.

Under Holder regularity of order a of a(z, x, &) w.r.t. z, and Lipschitz regularity of L(z, x, &) w.r.t. z in the
symmetrizable case, we shall prove convergence of the Ansatz ‘Wy; ; to the solution operator U(Z’, z) of the
Cauchy problem (1)—(2):

) W2 = UG O)llen e arenyy < AR,

for 0 < r < 1 (Theorem 3.7 in the symmetric case, L(z, x,£) = I, and Theorem 4.15 in the symmetrizable
case). We thus obtain a representation of the solution operator U(z’, z) as an infinite product of FIOs with
matrix phases. As in the scalar case [28], such a result is achieved by first proving a precise estimate of the
Sobolev operator norm of the thin-slab propagator G, . in the symmetric case, L(z, x, &) = I: forall s € R,
there exists M > 0 such that

5 G Oy EHOW < 1T+ MA,

forall 0 < z < 77 < Z with A = 7/ — z sufficiently small (Theorem 2.22). To prove (5), we assume that the
symbols 8 and y; and commute and are diagonalizable with a diagonalizing symbol that is smooth w.r.t. x
and ¢ and bounded w.rt. z, i.e. the symbol a(z, x, &) is assumed to be “geometrically regular”. Note that this
assumption does not exclude the crossing of smooth eigenvalues. Estimate (5) in the symmetric case is then
used to treat the case of a symmetrizable system. We also assume that the symmetrizing symbol L(z, x, £) is
smooth w.r.t. x and & and Lipschitz continuous w.r.t. z. In this case, solutions of (1)—(2) exist and are unique
and we prove the convergence of the proposed Ansatz Wy ; to U(z,0). An estimation of the form of (5) is
however not obtained in the case of a symmetrizable system.
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Multi-composition of FIOs to approximate solutions of Cauchy problems were first proposed in the scalar
case in [24] and [23]. In these articles, the exact solution operator of a first-order hyperbolic equation
is approximated with a different Ansatz. The approximation is made up to a regularizing operator. The
technique is based on the computation and the estimation of the phase functions and amplitudes of the FIO
resulting from these multi-products, a result known as the Kumano-go-Taniguchi Theorem. It is based on
the earlier work of H. Kumano-go in [21]. This approach is synthesized in Chapter 10 of [22].

The case of systems with constant multiplicities in non-diagonal form in also treated in [22, Section 10.4].
However, the system is diagonalized by the application of elliptic pseudodifferential operators and the solu-
tion is only recovered through the use of a parametrix which yields the solution operator up to a regularizing
operator. In the present article, we aim at obtaining an exact representation of the solution operator. Hence
we do not rely on such a diagonalization procedure of the system.

The multi-product technique was further applied to Schrodinger equations with specific symbols [19, 25].
In these latter works, the multi-product in also interpreted as an iterated integral of Feynman’s type and
convergence is studied in a weak sense. The time slicing approximation, closely related to our approach,
allows to give a rigorous mathematical meaning to Feynman path integrals [26, 10]. In [19] a convergence
result in L? is proven. This is the type of results sought here for first-order hyperbolic systems. We however
do not use the apparatus of multi-phases and rather focus on estimating the Sobolev regularity of each term
in the multi-product of FIOs in the proposed Ansatz Wy .. While the resulting product is an FIO, we do
not compute its phase and amplitude. The Sobolev regularity allows us to use an a priori energy estimate
for the Cauchy problem (1)—(2) to prove convergence of the approximating Ansatz to the solution operator.

In [35] (see also [28, Appendix A]), a (microlocal) decoupling of the up-going and down-going wavefields
of the solution to the acoustic wave equation is presented. The resulting one-way wave equations are
of the form of (1)—(2) in the scalar case. In practice, the proposed Ansatz ‘W, can then be used in
geophysical problems for the purpose of imaging the Earth’s interior [7, 6]. As similar decoupling procedure
can be applied to the elasticity system and we obtain two one-way systems of the form of (1)—(2) [5]. One
motivation for this article is to use the proposed approximation Ansatz as a tool to compute approximations
of the exact solutions to the one-way systems of elasticity. Such computations in application to geophysical
problems have been used in [30]. With applications such as imaging in mind, in which one aims mainly at
recovering the singularities in the subsurface (see for instance [37, 4]), we could extend the scalar results of
[31] to the case of systems, which would then yield microlocal convergence results, i.e. convergence of the
wavefront set of Wy (o) to that of U(z, 0)(up) in the sense given in [31].

The outline of the article is as follows. In Section 1, we prove some global regularity results for classes
of scalar FIOs with complex phase. These results are used in the subsequent Sections. In Section 2, we
introduce the thin-slab propagator in the case of a symmetric system, L(z, x, ¢) = I, and prove estimate (5).
In Section 3, we use this estimate to prove the stability of the Ansatz ‘W . and then prove the convergence
result (4). In Section 4, we address the case of a symmetrizable system and prove the convergence result (4)
in this case, assuming Lipschitz regularity of L(z, x, &) w.r.t. z. Some technical proofs have been placed in
Appendix A to ease the reading of the article.

In this article, when the constant C is used, its value may change from one line to another. If we want to
keep track of the value of a constant we shall use another letter. When we write that a function is bounded
w.r.t. z and/or A we shall actually mean that z is to be taken in the interval [0, Z] and A in some interval
[0, Ajuux] unless otherwise stipulated. We shall generally write X, X', X", XD XM for R”, according
to variables, e.g., x, X, ..., ™. We shall sometimes use the variables v, t that belong to Y and 7 which
will denote R™, R™ with possibly n, # n and n, # n. For the sake of concision we introduce

f:f--.f, forn >3, neN.
® —

n times

In a standard way, we set (&) := /1 + |£? for & € R”. Throughout the article, we use spaces of global
symbols; a function a € ¢~ (RY x R?) is in SZfé(Rq X RP),0<p <1,0<6 < 1, if for all multi-indices a, 8
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there exists Cyp > 0 such that
1070 alx, )] < Cop ()" PP, x e RY, £ €RP.
The best possible constants Cyg, i.€.,

Pap(@) = sup (&) AN a(x, ),
(x,6)eRIXRP :
define seminorms for a Fréchet space structure on S m (R’f XR?). As usual we write S 7'(R? X R?) in the case

=1-6,3 1 <p<1,and S”(R? x RP) in the casep =1, 6 = 0. We shall denote by MkS’”é(Rq X R?) the
space of k x k matrices with entries in S ;’f (R?7xR?). By M;(C), we denote the space of k X k matrices with
complex entries, furnished with some norm ||.||s,(c). Seminorms on MkS’” (R? x R?) are naturally built
from ||.]|pm,(c) and the seminorms on S Z’ (R? x RP). It yields a Fréchet space structure on M;S™ 6(R‘1 X RP).
In the case of matrix symbols, we shall also use the notation simplifications given above in the case p=1-06,
and thecasep =1, = 0.

We shall sometimes use the notion of multiple symbols. We set (&;n7) = +/1 +|£% +[n|®. A function
a(x,&,y,1m) € € (R x RP' x R%2 x R”) is in SZ’;S’” R xR xR2 xR7),0<p<1,0<6 < 1,if forall

multi-indices a1, 81, @3, B>, there exists Cg‘lﬁé > ( such that

07105 020 alx, £, y, ] < Cats € PIInlg pysly Pl x e RY, y e R®, £ € R, e R
(See for instance [22, Chapter 2]). For an example of a multiple symbol, we can consider functions of the
form p(x, &)p2(x,v,&,1m)p3(yv, ), with each term being a symbol w.r.t. its respective variables.

We shall use, in a standard way, the notation # for the composition of symbols of pseudodifferential op-
erators (YDO). In the case of matrix symbols, a # b will naturally denote the matrix symbol with entries
(a#Db)ij = X ai # brj. When given an amplitude p(x,y,¢) € MkS’"ﬁ(X X X X R"), p > 6, we shall also
use the notation o {p} (x, &) for the symbol of the DO with amphtude p. For p e M S o " (X X R") we shall
write p* for the symbol of the adjoint operator.

For r € R we let E® be the DO with symbol (¢)". The operator E) maps H® (X) onto H*"(X) unitarily
for all s € R with EC" being the inverse map. We shall use the same notation for the diagonal operator that
maps (H® (X)) onto (H~"(X))* unitarily, k € N*.

1 Some results on Fourier integral operators in the scalar case

1.1 A class of Fourier integral operators with complex phase

Let us consider the amplitude A (z, X', x,&) = —iki(z, X', x,&) + [1(z, X', x, &) that satisfies the following
assumption.

Assumption 1.1. The amplitudes ky(z,.) and l\(z,.) are in #°(10,Z], S (X’ x X x R"), are real valued,

homogeneous of degree one in &, for |€| > 1, and 11(z,.) = 0.

Let 7,z € [0, Z], with ' > z, and let A := 7’ — z. Define the complex function ¢, ) € € (X’ x X X R") by
(1.1) P (¥, x,8) 1= (X" = X&) + i (2, X, x,&) = (&' = xlE) + Aki(z, X', x, &) + iAL (2, ¥, x, &),

and define the complex function ¢, (¥, x,£), homogeneous of degree one, in &, for all ¢ # 0, equal to
B (X, x, &) when |€] = 1.

Lemma 1.2. There exists A; > O such that ¢, ) is a non-degenerate phase function, of positive type, for
0 <A =7 —z< Ay, atany point (x;, X0, &) where Bedz ) = 0.

Proof. We denote by k; and [; the homogeneous extension of k; and ; for all £ # 0. Note that Im(¢ ;) =0
and thus agiﬁ(z/l) = 0 implies /1(z, X', x,€) = 0 by Euler’s formula. Let us consider a point yo = (x;, X0, £0)
where d@ ;) = 0. Then [; vanishes at this point y, and so do all its partial differentials w.r.t. x’, x and &.
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We note that @ (o) = & + Advki(z, X, X0, &0) = 0. Then, because of homogeneity, for A sufficiently
small, & = 0 is the only possible solution, since

sup sup dyki(z, X', x,&) < C.
€l02] ¥y
=1

Thus d¢, ;) does not vanish in X’ X X x (R" \ 0) for A sufficiently small. If we now consider the partial
differentials of dg, @ 2y, - . ., O, Pz ) WLL 1O X1, ..., Xy,

axl'afj&(z’,z)(x,v X, é‘:) = 6ij + Aaxiaf,j(l(z’ )C,, X, f)’

we see that the differentials ddg, (. ), - - - , dOg, () are linearly independent for A sufficiently small, since
axﬁgjkl (z,Xx',x,8), 1 <1i, j <n,are bounded w.r.t. z, X' and x, and homogeneous of degree zero in &. ]

Remark 1.3. In an abusive way, we shall say that the function ¢, . is a complex phase function of positive
type. The function ¢, . is assumed to be homogeneous of degree one in & only when |¢| > 1. This however
is not an obstacle to the subsequent analysis, e.g., FIO properties, since to define such operators the phase
function need not be homogeneous of degree one for small |£|. With the use of cut-off functions in the
amplitude of the operators below, one can in fact modify the phase functions for small |£|.

Proposition 25.4.4 in [13] assesses that a non-degenerate phase function ¢(y, 6) € €~ (¥ x RY), of positive
type at some point (yg, 6y), locally defines a Lagrangian ideal of functions. In the case where there exists a
Lagrangian ideal K, such that in the neighborhood of every point of Kg the ideal is generated by the same
phase function ¢(x, 8), and conversely, the ideal of functions locally generated by ¢ coincides with K (at
a point (yo,m0) € T*(Y) \ 0 associated to a point (yp,6p) € ¥ X RY where ¢ is stationary in the sense of
Proposition 25.4.4 in [13]), we shall say that the phase function ¢(x, 6) globally defines K or that it is a
global phase function. We recall that if K is an ideal of functions on 7*(Y) \ 0, we set

Kr ={(y,m) e T"(N)\ 0; Yu € K, u(y,n) =0}.

Because of the usual twist (x',&,x,&) — (X', &, x,—€) (see Section 25.2 and 25.5 in [13]), we use the
symplectic 2-form 0’ — o on T*(X’ X X), where 0 and o are the symplectic 2-forms on 7*(X”") and T*(X)
respectively. Twisted Lagrangian ideals are called canonical ideals.

Proposition 1.4. There exists Ay > 0 such that if 7/,z € [0,Z] with 0 < A = 7/ — 7z < A, then the phase
Sunction ¢ ) is a global phase function.

This proposition is a generalisation of a similar result in [28]. Here however the symbol k; depend on both
x" and x. Some of the results in this section will also extend results in [28] in a similar manner. These
results will be important in the subsequent sections.

Proof. For (x',x,0) € X’ Xx X X R", set
o(x', x,0) = Re(@y )X, x,0) = (x" = x10) + Aki(z, X', x, 0),
which is a real non-degenerate phase function. The stationary point set for ¢(x’, x, 6), given by
2, ={(x,x,0) € X’ x X X (R"\ 0); dgep(x’, x,0) =0},
is thus a submanifold. Define
Co ={(x,&,x,&) e T"X)xT"(X); 0 e R", dgop(x',x,0) =0, & =0drve(x',x,0), & = —0.0(x', x,0)}.
Observe that the equations

E=0vp(x',x,0) =0+ Aok (X, x,0), x' —x+ Adgki(x',x,0) =0,
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yield a global homogeneous diffeomorphism (x’, &) = f(x, 6) for A sufficiently small, by a Banach fixed-
point argument, since dk;(x’, x, 6) and dgk;(x’, x, 6) are bounded on X’ X X X S Similarly we obtain
that the equation

E=—-0vp(x',x,0) = 60— Ad,ki (¥, x,0)

also defines a global diffeomorphism (x, &) = g(x, ) for A sufficiently small. Thus, for A sufficiently small,
the set C, is the graph of a smooth canonical transformation (hence, a submanifold). Let us denote by « the
natural global isomorphism between X, and C,. Define

Tp =2, N{(X,x,0) € X' x X x (R"\ 0); [;(x, x,0) =0},
Kr = (Zy) C (T*(X) X T*(X)) \ 0.

The set Kr is thus part of a (smooth) submanifold.

Lety = (¥, x,0) € Z4. To any conic neighborhood V,, of v in X’ X X X R" corresponds, through a, a conic
neighborhood U, in (T*(X") x T*(X)) \ O of v = a(y) = (1", &, x,¢&") € Kr. We choose V,, sufficiently small
to apply Proposition 25.4.4 in [13]. In the neighborhood U, the phase function ¢ ;) (x’, x, 6) thus defines
a canonical ideal that we denote by J,.

We now define the ideal K of functions on (T*(X’) x T*(X)) \ 0 defined by the set of ¢ functions u such
that for all v € Ky, and for all y € €.°(U,), we have yu € J,. We see that K is a canonical ideal (see
properties (i)—(iii) in Definition 24.4.1 in [13]) and we have Kg = Kg. At every point of Kg the canonical
ideal KX is thus locally defined by ¢, ;(x’, x, 8), which concludes the proof. ]

Let us denote by Ji.s ;) the canonical ideal globally defined by ¢, .. Considering an amplitude oy ;(x', x, €)
bounded w.r.t. z and 7’ with values in S Z“(X’ x X xR, L < p < 1, we define the distribution kernel in

2
9'(X' x X)
(1.2) A(z’,z)(x,’ X) = fei<x’_x|§>e—Ahl(z,x’,x,é‘) O—(Z’,z)(x/» X, ‘f) df — feiai(;/,z)(x’,x,f) O-(Z’,z)(X’, X, {_-) Jf,

where A = 7 —z,0 < z < 7/ < Z, as an oscillatory integral (see Section 7.8 in [15]). The associated operator,
Az 1s alocal FIO [11, 8]. Because of Proposition 1.4, we have the following proposition.

Proposition 1.5. The operator A ;) is a global FIO with complex phase in R", for A sufficiently small.

Its kernel is in I°(X" X X, (Jiz 1)), Q2. x)-

We denote the half density bundle on X’ X X by Q;(/zxx Note that (J(, ;)" stands for the twisted canonical

ideal, i.e. a Lagrangian ideal (see Section 25.5 in [13]).

Proof. In view of Definitions 24.5.9 and 25.5.1 in [13], and arguing as in the proof of Proposition 1.4, we
see that the canonical ideal J ), globally defined by ¢ ) satisfies Jr yr € T7(X") \ 0 x T*(X) \ 0, which
yields the conclusion. n

1.2 Action on . (R") and .¥’(R")

We shall study the properties of the operator A ;) for small values of the parameter A. As above, these
results generalize some of that proven in [28] and will be used in the subsequent sections.

Composition of global FIOs usually requires the operators to be properly supported. For the composition
of Ay with A~ or with its adjoint, we need not make such a requirement because of the following
proposition which is proven in Appendix A.

Proposition 1.6. There exists Az > 0 such that if 7,z € [0,Z] with 0 < A = 2 — z < A3, then Ay ;) maps
S R") into S (R") and S’ (R") into S’ (R") continuously. Furthermore, the map (o ), u) — Ay (u) is
continuous.
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1.3 Some calculus results
We shall need the following lemma.

Lemma 1.7. Let p,(y,n) be bounded w.r.t. the parameter s with values in S, (Y xR, % <p <1, and
define

(A, y,m) == Afs(,m),

where f; is bounded w.rt. the parameter s with values in S'(Y x R",R") and homogeneous of degree one in
n, for | = 1. Then

Ps(A, y, 1) == ps (v, ii(A, y, 1))

is bounded w.r.t. s and A with values in S;(Y X R"), 0 < A < Ay, for Ay > O sufficiently small. In the case
o’ = 1itis bounded w.r.t. s with values in € ([0, A4],S™(Y x R")).

Proof. Let A4 be small enough such that [ — Afs(y,n)| = Co > 0if |n| = 1 and A € [0, A4]. We then have

L+ Colpl < 1+In=Af(.mI <1+ Cilgl, € R, Inl > 1, A €[0,Aq].
This inequality yields the proper estimates for 97 6[; Py to prove that p; € S7(R” X R”). Bounds w.r.t. to the

parameters s and A come naturally. In the case p’ = 1, derivatives w.r.t. A do not affect the symbol order
and type. The proof is complete. [

Lemma 1.8. Let g(z,y,7n) be a non-negative symbol, bounded w.r.t. 7 with values in S O(Y x R"). Then,
e 29N js bounded w.r.t. A and z with values in S (Y x R")
2

A proof is provided in Section 2.3 below.

Remark 1.9. In fact, one can obtain the symbol e~2@yM 1o be with values in S 2,(Y x R"), with % <p' <1,
by making some special choices of the symbol ¢(z, y, ) (see [28, Section 2] and Section 2.3 below).

In the sequel, in this section we shall thus assume that e~Ah@y) takes values in S 2,(Y x R"), for some p’,
% <p’ < 1. Wesetd” =1 - p’. We have the following proposition.

Proposition 1.10. Let p(x, &) € Sz’,i’d,,(X X R"), with0 < §” < % < p” < 1. Then, for A sufficiently small:
1. The operator p(x, D) o A ), can be put in the form
(p(x, D) 0 Ao ) 1)) = f f O GNGX RO (o E(x) dE dx

with qey (X', x, &) bounded w.r.t. to 7’ and z with values in S ;"1:1’('; o pymax(@ 5y K " x X xR") given by

(1.3) q(z/,z)(x', x, &) = ff o~ KX YIE= o= AL (ZY. %) HiAK: (z,y,x,-f)—kl(z,X’,x,-f))p(xf’ Mo 0, X, &) dp dy.
2. The operator Ay ;) o p(x, Dy), can be put in the form

Az © plr, DY) = f f OGN O (. Eu(x) dE dx

with g (X', x, &) bounded w.rt. to 7’ and z with values in Sgi:llz;,p’,p”),max(é‘,&’,é”)(X, X X X R") given by

(1.4) Q(z’,z)(x/» x,&) = ff ei<X—Y\§—7l>e—A11(Z,X’,y,é‘)eiA(kl(z,x’,y,f)—kl(Z,x',x,f))o-(z/’z)(x',y’ Ep(y,n) dn dy.
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Formulae (1.3)—(1.4) for the amplitudes are to be understood as oscillatory integrals. Note that the form
of formula (1.4) differs from that of formula (2.3) in Theorem 10.2.1 in [22]. Recall however that, for
operators of this form, there is no unique choice for the amplitude.

The proof of Item 1 can be adapted in a straightforward manner from that of Theorem 10.2.2 in [22] for
A sufficiently small. Note that the variable x in (1.3) will then just act as an additional parameter but does
not modify the argumentation of the proof. In Appendix A we only prove Item 2 of the proposition, with a
method close to that of the proof of Theorem 10.2.2 in [22].

Remark 1.11. In fact, the proof of Proposition 1.10 shows that we can replace p(x’, 7)oy (v, x, &) in (1.3)

m,m’

(resp. o (X', y,€)p(y, n) in (1.4)) by any multiple symbol! pi (¥, y, x,&,17) in S min(’ ") max(@ ) and the

two oscillatory integrals (1.4), (1.3) yield symbols in S ﬁ:;l’z’;,p’,p”),max(é, 5. 6,,)(X’ X X x R™).

1.4 Sobolev space regularity
We now turn to global L* and Sobolev space regularity for operators of the form of A, as in (1.2).

Theorem 1.12. Let s € R. There exist C > 0 and As > 0 such that

A ol mo-my < Cp(o 2),

forall 7,z € [0,Z], and 0 < A = 7' — z < As, where p(.) is some appropriately chosen seminorm on
SHX x X X R").

Sobolev norm estimation results often have a local character in the literature (see e.g. [12, 13]). The result
we prove here gives a global Sobolev regularity estimate. It generalizes some results found in [21, 22],
where the phase function is real and in a form close to that used here but only depend on the variables
x" and £. Other global estimates for FIOs can be found for instance in [34, 1]. Note that the real part of
the phase of A . satisfies conditions (A-I)-(A-III) of [1] for A sufficiently small. In the case m = 0, if
the symbol o, ;) were of type 1,0 (or more generally of type 0,0) and the phase function were to be real
(li(z,.) = 0), then, we could apply the regularity result of [1] (see also [2]). Here, because of the symbol
type and the complex phase function we use, we need to prove this regularity result. In the proof, we shall
take advantage of the structure of the phase function.

Proof. We first treat the case in which o ;) (X', x, £) is bounded w.r.t. to z” and z with values in § 2(X’ X X X
R") and prove L? continuity.

The adjoint operator of A ;) is given by

A, W) = f f o RO G () dE d,
from which we find
Fu)(x) := Az 0 AL (w)(X') = f f i e ( f f =6
x e AMEX YOG & (3 T (x,y,7) d’ndy) u(x) dt dx.
With the lemma below we obtain

Fu)(x') = f f S (. €) () dE d,

g}in(pp,)(X’ x X x R™), for A sufficiently small.

there exists a seminorm g on S g such that we have p(f, ;) <

with fi (X', x,€) bounded w.r.t. z and z with values in S

0

Furthermore, for any seminorm p on S min(op’)’

'With the same boundedness w.r.t. to z’ and z and with x as a smooth parameter in (1.3), and x’ as a smooth parameter in (1.4).
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C q(a'(zr,z))z. Thus, for A sufficiently small, 7 is in \Pglin(p o) and bounded on L2 by the Calderén-Vaillancourt
Theorem (see [22, Chapter 7, Sections 1,2] or [38, Section XIII-2]):

. 2
M 0 AL pllazizy < C qloe ),

where ¢ is a properly chosen seminorm on § 2(X’ x X x R™). The result thus follows in this first case.

We now consider the amplitude o ;)(x’, x, £) to be bounded w.r.t. to 2" and z with values in § '(X" X X XR").
We compose the operator A from the left by E¢~™ and from the right by E<*. By Proposition 1.10,
we obtain an operator with a similar form (with a real phase) with an amplitude bounded w.r.t. to 7’ and z
with values in §° in(p,p,)(X " x X x R"), to which we apply the first part of the proof. [

m

Lemma 1.13. The operator ¥ is of the form

Fu)(x) = f f O (X, x, €) u(x) dE dx,

?nin(pp,)(X’ x X x R™), for A sufficiently small.

there exists a seminorm q on S 2 such that we have

with for (X', x, &) bounded w.rt. 7’ and z with values in S

0
min(p,p’)’

P(fir o) < CQ(O—(Z’,Z))Z-

Furthermore, for a seminorm p on S

The proof of Lemma 1.13 can be found in Appendix A.

2 The thin-slab propagator for a symmetric system

2.1 The Cauchy problem

Letk,n € N. Let s € Rand Z > 0. We consider the Cauchy problem

2.1 ou+a(z,x,Du=0, 0<z<Z,

2.2) le=o = up € (HDRM),

where the matrix symbol a(z, x, £) takes values in M;.S (X x R") with z as a parameter.

In this section, we focus on the symmetric case. More precisely, we shall make the following assumption.

Assumption 2.1. The principal matrix symbol of a, a(z, x, &) = —ib(z, x, &) + ¢1(z, x, &), is such that both
by and c| are continuous w.r.t. z with values in MyS'(X x R") and homogeneous of degree one in &, for
|€| > 1. Furthermore, they are hermitian symmetric and c1(z, x, €) is non-negative.

We set the remaining part of the symbol a(z, x, €) as ayp(z, x, &), ap(z, x,€) = a(z, x, &) — a1 (z, x, €), which is
assumed to be continuous w.r.t. z with values in MiS°(X x R").
Adapting the proof of Lemma 23.1.1 in [14] to systems (making use of the sharp Garding inequality for
positive first-order matrix symbols [27, Theorem 3.2], [39], [38, Chapter VII]) for any function in

V= €'(10, 2], (HY R 0 €°([0, Z], (HO DR,

we have the following energy estimate (see also [3, Theorem 6.4.3])

z
(2.3) sup [lu(z. oy < Clu(0, Mgz + € f 19:u + a(z, x, D.)ull oy dz.
z€[0,Z]
0

Then, there exists a unique solution in V to the Cauchy problem (2.1)—(2.2) ([14, Theorem 23.1.2], [3,
Theorem 6.4.5]).

By Proposition 9.3 in [9, Chapter VI] the family of operators (a(z, x, Dx));e[0.7] generates a strongly contin-
uous evolution system. Let U(Z’, z) denote the corresponding evolution system:

UiZ’,7)oU(Z,2)=U(",2), Z27"27 2220,
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with
0.U(z, 20)(uo) + a(z, x, Dx)U(z,20) (o) =0, 0 <29 <z<Z,
U(z0. 20)(uo) = uo € (HO* (RN,
while U(z, z0)(uo) € (H**D(R™)* for all z € [z9, Z]. For the Cauchy problem (2.1)—(2.2) we take zo = 0.

We shall make the following further assumption on a(z, x, &).

Assumption 2.2. There exists w(z, x, &) continuous w.r.t. z with values in MiS°(X x R"), unitary, homoge-
neous of degree zero in &, for |é| = 1, such that

bi(z, %, &) = Wz, %,8) dy(z, %, &) Wz, %, 6)7's iz xé) = Wz, 5,8) de(z, %, &) Wz, %, €))7,

where dy(z, x, &) and d.(z, x,&) are k X k diagonal matrices with entries continuous w.r.t. z with values in
SY(R" x R") and homogeneous of degree one in &, for || > 1. The diagonal entries of d.(z, x,&) are
non-negative since c1(z, x, &) > 0.

This assumption is sometimes referred to as having a “geometrically regular” matrix symbol a(z, x, £) (see
e.g. [32, Definition 2.2 (ii)]).

Assumption 2.2 will be satisfied for instance if the eigenvalues of b;(z, x, ¢) and ¢ (z, x, £) have constant
rnultiplicities2 since bi(z, x,€) and c¢(z, x, &) is hermitian symmetric [18, Section I1.4] and if the matrices
bi(z, x,€) and ci(z, x,€) commute. However, Assumption 2.2 is much more general and allows for the
crossing of smooth eigenvalues.

We set v(z, x, &) := (w(z, x, f))‘1 = (W(z, x, &))" and d(z, x, &) := —idp(z, x, &) + d.(z, x, £). We shall denote by
dpi(z,x,€) and d.(z, x, &), 1 <1 <k, the diagonal entries of the matrices dj(z, x, €) and d.(z, x, ).

Example 2.3. The Dirac operator Z?:l a;D,, + mB has an hermitian symmetric principal symbol. Here the
Dirac matrices are 4 X 4 matrices and are given by

(0 oy . . (0 1 (0 =i (10
ozj—(o_j 0), j=1,2,3, Wl'[hO’]—(l 0)’0—2_(1' O),0'3—(0 _1).

The two eigenvalues *|¢| both have constant multiplicity two. A norm convergence result of a Trotter-
product formula for the Dirac operator can be found in [16].

2.2 The thin-slab propagator
Let0<z<7 <Z Weset,forA=7 -7z
(24) 80 (x, &) 1= e A0ErE),

The function g, .(x, £) is bounded w.r.t. z and smooth w.r.t. A with values in M.S°(XxR") by the following
lemma.

Lemma 2.4. Let q.(y,n) be bounded w.r.t. z with values in MyS°(Y X RP). Then py (y,n) = €240 is
bounded w.r.t. 7 and smooth w.r.t. A with values in MyS°(Y x RP).

Proof. The exponential function for matrices is bounded. In fact, we have
”eM:(,VJ])”Mk(C) < M0l < C, veY,neR?, z€[0,7],

if we choose ||.|[ s, (c) to be the operator norm on M;(C). We now estimate ||y, pa (v, Dl m(c), for 1 < i <n,
and note that
1
Oypa:(v:m) = A f 0D 9 g (y, ;) 1IN g,
0

2in particular if the eigenvalues are simple, i.e., in the strictly hyperbolic case.
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We thus obtain

10y pa v, Mlimec) <C, yeY, neR”.

The estimate for [|0;, pa (v, Mlim.c), for 1 < i < n follows the same. More generally the estimate for

|I0§f6§ Paz (¥, Mlm.c), for arbitrary multi-indices @ and § is obtained by induction. Finally, smoothness
w.r.t. to A and boundedness w.r.t. z are clear with the above estimates. [ |

Remark 2.5. By the proof of Lemma 18.1.10 in [14], the previous lemma can in fact be generalized to
F(q.(y,n) for any function F acting on M(C) such that F(M) = (F;;(M), ..., Fu(M)), with F;;(M) =
Fij(My1,...,My) in @ (CP*,C), 1 <i, j <k

Following the definition of the thin-slab propagator given in the scalar case [28], we define the following
(k X k matrix) kernel

Gox', %) = f T g (X £)eT AN D g,
Such a kernel is well defined since we can write
Go(¥.,x) = f T g (X EW(z, X, E)e M Oy(z, ¥ €) dE,

and thus, each entry of the matrix kernel is a finite sum of scalar kernels of the form of (1.2). Each
component of the associated operator is thus a finite sum of FIOs of the form of A, ;) in Section 1. We
therefore have the following regularity results from Proposition 1.6 and Theorem 1.12.

Proposition 2.6. Let s € R. For A sufficiently small, the operator G ;) with distribution kernel G, ,(x', x),
is a continuous map of (' (R into (F RM)K, ('R into (" (R™)K, and (HO (R into (H® (R™))X.
In particular, there exists C > 0 such that

G @ ol oy < C,
forall7,z€[0,Z], A=7 —z

Let m € R. If the matrix symbol g . is changed into a function bounded w.rt. A and z with values in
MS l’)’f(R” xXR™), p’ € [%, 11, then the associated operator maps (H®(R™))* into (HS™(R™M)¥ continuously,
with a uniform operator-norm estimate as above.

In the sequel, we shall say that operators of the form of G, . are FIOs with the complex matrix phase

2.5 b (X, x,6) = (X' = xg) + b1 (2, X', €) + ic1 (2, X', §).

We aim at giving a more precise estimate of the Sobolev operator norm of the thin-slab propagator in
L((H®®RM)*, (H®(R™))). We shall in fact obtain

G oy moy <1+ MA, A=7 -z,
for some M > 0 and for A sufficiently small (Theorem 2.22). To obtain such an estimate we need to
understand the properties of the matrix symbol ¢~21*¢) when A is small.
2.3 A class of symbols

Here, we follow the developments of [28]. We first introduce some definitions.

Definition 2.7. Let L > 2. A (scalar) symbol q(z,.) bounded w.r.t. 7 with values in S'(R? x R") is said to
satisfy Property (Pr) if it is non-negative and satisfies

(P)  1000q@ y.m)| < Clpy PRIV (1 4 gz, y, ) =0 H/L | 2 €0,Z], y e R?, n € R’

We then setp =1—1/Land 6 = 1/L.
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Examples of symbols with such a property with L > 2 are given in [36]. In fact we have the following
lemma [28].

Lemma 2.8. Let q(z,y,n) be bounded w.r.t. z with values in S'(R? x R"). If ¢ > 0 then q satisfies Prop-
erty (Pr) for L =2.

Remark 2.9. If the symbol ¢(z,y,n) and p(z,y, ) both satisfy Property (Pr) then the amplitude ¢(z,y’,n) +
p(z,y,n) also satisfies Property (P ) (with derivatives w.r.t. y, y’ and ).
The following definition concerns matrix symbols.

Definition 2.10. Let L > 2, p = 1 — 1/L and 6 = 1/L. Let pa(z,y,1) be a function in € (Y X R", Mi(C))
depending on the parameters A > 0 and z € [0,Z]. We say that py satisfies Property (Qp) if the following
holds

(Qr) 3o — palaz0)z.y.m) = A By ), forlal + B < L, 0<m <1 -5(lal+BI),

where prAmﬁ (z,y,m) is bounded w.r.t. A and z with values in MyS ;™" BI+lel y S RN, It follows that pa(z, y, ) —
Pala=0(z, y, 1) is itself bounded w.r.t. A and z with values in MkSg(Y x R").
In [28], the following three lemmata, are proven in the scalar case, k = 1.

Lemma 2.11. Let q(z,.) be bounded w.r:t. z with values in S (Y x R") and satisfy Property (Pr). Define
oalz, v, n) = e 29D Then pa satisfies Property (Qp), k = 1, for A € [0, Apas] for any Apax > 0. As
Pala=o = 1, pa is itself bounded w.r.t. A and z with values in SS(Y x R").

Lemma 2.12. Let f € € (R) and pa(z,y,n) in € (Y x R") that satisfies Property (Qr), k = 1, and such
that pa(z, .)|a=o is independent of y and n. Then f(oa)(z,y,n) satisfies Property (Qp).

Lemma 2.13. Let pa(z,y,7) € Sg(Y X R”) satisfy Property (Qr), k = 1, such that pa|a=o is constant. Let
fa(z,y,m) be bounded w.r.t. z and A with values in S L(Y xR") be homogeneous of degree one in nforn > 1.

Define i)(A, z,y,m) := 11— Afa(z,y,1). Then pa(z,y,1) := pa(z,y, (A, 2, y,1)) satisfies Property (Qr), k = 1,
for A sufficiently small.

Remark 2.14. These three lemmata naturally extend to diagonal matrix symbols and we shall use them in
this form below.

Proposition 2.15. Let L > 2. Let pa(z,y,1) be bounded w.r.t. z and A with values in MkSg(Y x R") that
satisfies Property (Qr), L > 2, p = 1 = 1/L. Let r(z,.) be bounded w.r.t. z with values in MSO(Y x R™).
Then (rppa)(z,y,n) and (oar)(z, ¥, 1) both satisfy Property (Qp).

Proof. Let a, 8 be multi-indices such that || +|8] < L and let m be such that 0 < m < 1 —6(|a| + |B8]). When
computing agaﬁr(pA — pala=0) we obtain a sum of terms of the form

AN (2,3, MO (0 — pala=o)(@ y. 1),

with @y + @y = @ and By + B, = 8. We choose m’ = m + 6(|a;| + |B1]). We have 0 < m’ < 1 — §(|az| + |B2]).
By Property (Qr), we write

a;lz a]‘;z (on — Palazo)(@ ¥, 1) = Am’+6(|az|+|ﬁ2|)pzl a2 (2 y,7),
with p'A"lQZﬁ 2(z,y,n) bounded w.r.t. z with values in M;.S"™ PL21+dl2l(y » R"). Thus, we have
6;1 6[;1 "z, ¥, n)a;lz 6[,;2 (pA _ ,OA|A:O)(Z’ y, n) — Am+5(|z¥|+W|) (aill ag] r)pyg’azﬁz (, y, )7)
and (4" 6? r)p'Z’QZﬁ *(z,y,n) is bounded w.r.t. A and z with values in MS},(Y x R") with

p=m' —pl|Bal + blaz| — |Bi] = m + §(la1| + |az]) + (6 — DIB1] — plBal = m + ble| — plB,

since 6 = 1 — p. The proof for par can be carried out similarly. [
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Note that the type 1,0 of the matrix symbol r(z,.) was of importance in the proof.

Corollary 2.16. Assume that the entries of the diagonal matrix symbol d.(z, x, &) satisfy Property (Pp), for
L > 2. Then the matrix symbol e=2@%9 satisfies Property (Qr) in MiS g(X x R").

Recall that by Lemma 2.8, by default, the entries of the diagonal matrix symbol d.(z, x, &) satisfy Prop-
erty (Pp), for L =2.

Proof. The matrix symbol e~2%*$) satisfies Property (Q; ), from Lemma 2.11 and Remark 2.14. Then by
Proposition 2.15, the matrix symbol e 2¢1G%8) = yy(z, x, &)e24:CxE)y(z, x, £) satisfies Property (Qp). [ |

Lemma 2.17. Let the matrix amplitudes pa(z, x,y,&) and ua(z, x,y, &) both satisfy Property (Qr) and be
such that pa(z, a=o and ua(z, .)|a=o are constant. Then the amplitude pa(z, x,y, E)ua(z, x, t,€) satisfies
Property (Qp) (with differentials w.r.t. x, y, t, and &).

Proof. Let0 <m < 1. We write

va(z, X%, 9, 1,€) 1= pa(z, X, ¥, ) ua(Z, X, 1, &) — pala=o pala=0(z)
= pa(z, X, 9, ) (Ua(Z, x, 1, &) — pala=0(2)) + (Hala=0(2)) (Pa(z, X, ¥, E) — pala=0(2))
= A"pa( X%, 3, 6) pRP (@ 6,1, €) + A" (ala=0(2)) P02 X, 3, &),

where yZ’OO(z, x,t,&) and p?foo(z, x,,&) are bounded w.r.t. A and z with values in S ! by Property (Qy). Since
HUala=0(z) solely depends on z and is bounded and pa(z, x, y, &) is itself bounded w.r.t. A and z with values in
Sg, we obtain Property (Q;) in the case where no differentiation is applied.

Let @, o/, @” and B8 be mutli-indices such that 1 = |a| + |[@/| + |@”]| + |8] < Landlet0 < m < 1 - 6A.

Computing 8;‘:6;’1 6?”5‘§VA(2, X,y,t,&) we obtain a linear combination of terms of the form

63'63'8§‘pA(z, x,y, §)6§28;’”8§ZM(Z, x6E€), a=a+a, =5 +p,
which, using Property (Q;), we write

Am’+6(|(ll|+|a'\+l31|)+m”+5(|02|+|a”|+¥52\)p21'((11,(Y')ﬁl (Z, X, g)ﬂlz"(ﬂz,ﬂ")ﬁz (Z, X1, é‘:),
with o P and g > bounded w.rt. z and A with values in ) DBy Y« R?) and

S:f‘ﬁw(‘”Z'J"“”')_ijﬂ(X x T x R™) respectively and where 0 < m’ < 1 = 6(|lay| + |&/| + |B1]) and 0 < m” <
1 — 6(laz| + |@”] + |B2]). We may choose m’ and m”” such that m’ + m” = m. Then, the considered term of
Gﬁc’);”' 6;’"6? va(z, X, y, 1, &) is of the form

Amedlatla a8 @B oy ey @ (7, x,1,€),

with p'A”I(”“”/)ﬁ (2, X, Y, §)u’A"”(“2’“")ﬁ 2(z, x,t,&) bounded w.r.t. z and A with values in § ;"Jré(lalﬂa,lﬂa”l)_ﬂﬂ(X X
Y xT xR". [ |

Lemma 2.18. Let pa(z, X, y, &) be an amplitude in MkSg(RZP X RP) depending on the parameters A > 0
and z € [0, Z] that satisfies Property (Qr) for 1 < |a| + |B| < 2 and such that pa(z, .)|a=o is independent of
(x,y,8). Let r(x, &) € MS*(R? X R?) for some s € R. Then

oo 1} (@ X%, 8) = paz. X, %, 6) r(x,€) = NP0z, x,6), 0<m < p -3,

where the function A\ (z, x,£) is bounded w.r.t. A and z with values in MiS ;"H_(‘"_é)(R” x RP).

For a proof see the proof of Lemma 2.22 in [28], which can be directly adapted to the matrix case. We shall
also need the following lemma which is a closely related results.
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Lemma 2.19. Let ga(z, x, &) be an symbol in MkSg(R” X R?) depending on the parameters A > 0 and
z € [0, Z] that satisfies Property (Qr) for |a| = 1 and such that ga(z, .)|a=o is independent of x. Let r,(x,&)
be bounded w.r.t. 7 with values in MiS *(RP x RP) for some s € R. Then

(r: # qa)(@ %, €) = 1:(0.6) qa(e. %, &) = A"} (2, x.6), 0 <m < p,
where the function A} (z, x, £) is bounded w.r.t. A and z with values in MkS;"”_p(RI’ X RP).
For a proof see the proof of Proposition 2.5 in [29], which can be directly adapted to the matrix case.

We shall need the following sharp Gérding inequality.

Theorem 2.20. Let % <p<landsetd=1-p. Let p(x,&) be a real non-negative €~ matrix that satisfies

(2.6) lpCx, Ollmcy < CLE),

2.7 105 p(x, Olimc) < Colé),  lal =1, |I(9§p(x, Olmc) <Cs, 1BI=1,
and

(2.8) L p(x, &) € MSHTIFPI(X X R, for|a + Bl = 2.

Then there exists a non-negative constant C such that
2 k
Re(p(x, D)M, M)((LZ)k’(LZ)k) > —C||u||(L2)k, uc (oy}(Rn)) .

The constant C can be chosen uniformly if the symbol p remains in a set such that the constants in (2.6)—
(2.7) are uniform and ifﬁﬁ&ﬁp(x, &), la + Bl = 2, remain in bounded domains of MkSz_Mé‘“‘_le(X x R")
respectively.

In other words, for the partial differentiation of order zero and one the symbol p behaves like an element
MiS %’0 and like an element of M;S 5_5 for higher-order derivatives. Note that considering p(x, &) to be in

M S é(X x R"), we cannot directly apply the usual sharp Garding inequality to obtain a lower L? bound
when % < p < 1. The proof of Theorem 2.20 can be found in Appendix A.

The following result is at the heart of the precise Sobolev operator-norm estimation of the thin-slab propa-
gator G, ;).

Theorem 2.21. Let k(z, x,&) be a k X k diagonal matrix symbol with non-negative entries, that satisfy
Property (Pr), L > 2. Let m(z, x, €) be a k x k matrix symbol, such that m(z, x,£) and (m(z, x, &))" are both
bounded w.r.t. 7 with entries in S°(X x R"). Set

h(z, x, &) = m(z, x, Ek(z, x, )(m(z, x, &))",

The matrix symbol e™2"*%) is bounded w.r.t. A and z with values in MyS g(X XR™) and the pseudodifferential
operator A ;) = e M@xDY s continuous from (L2(R™)* into (L2(R™))*. There exist A7 > 0 and M > 0
such that Ay ;) satisfies

A o ll@p a2 < 1T+ MA,
forall 7,z € [0,Z] suchthat0 < A =7 —z7 < A

Proof. In the proof, we shall always assume that A is sufficiently small to apply the invoked properties
and results. By Proposition 2.15, the symbols pa(z, x, &) = e K@% and ua(z, x, &) = e @*9 both satisfy

Property (Qp).

We prove that (A ;) © ﬂ?z,,z)u, w2y 2y < (1+ CA)||u||(2Lz)k for all u € (% (R™))*. The pseudodifferential
operator A ;) o A, _, has the matrix amplitude pa(z, x,y, §) = e A M@ which satisfies Property
(Qr) by Lemma 2.17. We then obtain

o {pa(z, X, y, &)} — e X&) = A (2, x, €),
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where A (z, x, €) is bounded w.r.t. z and A with values in MkSg(X X R") by Lemma 2.18 (using m = p — 9).
By the Calderdn-Vaillancourt Theorem (see [22, Chapter 7, Sections 1,2] or [38, Section XIII-2]), we
shall obtain the desired estimate for (A ;) o ?{fz,,z)u, w2y 12y if we prove Re(e 221@xDoy, W2y 2k <
(1+ CA)lull?2y. for all u € (S (R")E,

We set ga(z, x, &) = (1 — e 22@x0) /A for A > 0 and observe that ga(z, x, &) satisfies the conditions listed in
Theorem 2.20 uniformly w.r.t. z and A. In fact, a first-order Taylor formula gives ||ga(z, x, E)lipmc) < C(E).
By Property (Q;) we obtain

10%qa(z X, Olimuc) < €&, lal =1, |I(9§qA(z, %OlImo <€, 1Bl=1,

using m = p in (Qy) in both cases. Finally, if |@ + | = 2, we obtain that 8§§83 qa(z, x, £) is bounded uniformly
w.r.t. zand A with values in MkSﬁ_M‘Sl"‘_pW'(X x R™) by choosing m = p — § in (Qy).

By Theorem 2.20 we thus obtain Re(ga(z, X, D)u, u) 2y 12y = —C||u||(2L2)k for all u € (¥ (R™)* which
yields

2 —2Ah(z,x,D, 2
”u”(LZ)k - Re(e (& )M, u)((Lz)k,(Lz)k) 2 _CA”u”(LZ)k’

which concludes the proof. L]

2.4 Sobolev space regularity estimate for the thin-slab propagator

We now state and prove the main theorem of this section, which will be essential to give a meaning to
infinite products of operators of the form of G, ) in Sections 3 and 4.

Theorem 2.22. Let s € R. There exist Ag > 0 and M > 0 such that
G oy EOy < 1+ MA,

forall 7,z €[0,Z] suchthat 0 < A =7 — 7 < As.

In the proof we assume that the diagonal entries of d, satisfy Property (P, ) for some L > 2. We know that it
is always true for L = 2 by Lemma 2.8 but special choices for ¢; can be made. As before weusep = 1—-1/L
and 6 = 1/Lwithp > 6 forL>2andp =6 =1 for L =2.

Proof. We first observe that we can write,

8068 = I + A8 »(x, &),

with g, ;) bounded w.r.t. A and z with values in M;S O(R" x R™), from Taylor’s formula, and (1.1.9) in [15].
We thus obtain G, ;) = Q(IQ 5 + AG (5, where the operator Q(Ii . is of the same form as G ;) with the
amplitude g . replaced by /. With the last point in Proposition 2.6, we have

G oy oy < C,

for A sufficiently small. Without any loss of generality we can thus assume that g ,(x,&) = I, ie.,
ap(z, x, &) = 0.

Let s € R. Then the kernel of B, ) := G(».) © EC is given by
Beo(o0) = [ et o) g
The kernel of the adjoint operator of B, . is given by

Bl (%) = f I it GO0 G5 £\ g,
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since the matrix b;(z, x, &) and ¢ (z, x, £) are hermitian symmetric. Introducing D,y = By © Bz‘z, o We
find its kernel to be

Dipy(¥', %) = f 0 ) g (@ ) i @O Ber ) (4725 g
which we write
D o', x) = f ¢ (w(z, e Mz, ) (v, €) (w<z, Je M@, .>) (0. &) (&7 de.
With Taylor’s formula we write
v(z, X', &) = v(z, x, &) + (X' — xli(z, X', x, ),
with #(z, X, x, &) bounded w.r.t. zin (M;S°(X’ X X x R"))" by (1.1.9) in [15]. This yields
Dy (X', x) = Dy ya(X', X) + Dy 5y5(x', %) + Dy 5 (X, %),
where

Diooya(¥ ) = f GO (g, x| £)e NG DR (o i ) (£)72 g,

Doy p(X',X) = f ¢z, X, E)e MO — Xi(z, ¥, x, ) w(z, x, E)e MOz, x, £) (£)7V dE,
and
Diz o' x) = — f &y (g, )M OO — iz, 3, x,8)) (&) dE.

We shall prove that the associated operators, namely Dy 2.4, Dz 2.5, and Dz 4 ¢, satisfy
IEY 0 Do 2y © Ellizyzzyy < 1+CA,  IE® 0 (D oy + D oye) © EONlrzy a2y < CA,
for some C > 0, uniformly in z € [0, Z] and A, A sufficiently enough. It will then follow that
”g(z’,z)||((H("))k,(H(’V))k) = ”(Q(Z’,Z))*”((H(’))k,(H(x))k) S Vl + CIA, C’ 2 0,

since E® 0 Dy 0 E® = (E¥ 0 Gy 0 ECY) 0 (EY 0 Gy ;) 0 ET)*, which will conclude the proof.
We first estimate [|E®) o D )4 0 E ($)||(( 1212y~ The entry ij of the matrix kernel D, ), is given by

(D(z’,z),a)ij(x” x) = Z ei(x —xIE)eiA(db,z(z,x ,§)—db,z(z,x»f))l3A’l(Z’ )C/, x, f) Wiz, X,,f)vlj(Z, x’,{;‘) <§>—25 Jf,

1<i<k

where we have set

sz X x, &) = e—A(dc.z(z,X"§)+d(.z(z,x,-§))’

which satisfies Property (Q;) by Lemma 2.11, Remark 2.14 and Lemma 2.17.

Forl e {1,...,k}, with Taylor’s formula, we write

dp (2, %', €) = dpy(z, %, &) = (X' = Xldp (2, X', X, €)),

where the function Jb,l is smooth, homogeneous of degree one in &, |£] > 1, and continuous w.r.t. z with
values in S ' (X’ x X xR™). We thus obtain that the change of variables & — & +Adp (2, X', %, &) = Hiaz v ,0(E)
is a global diffeomorphism for A small enough (uniformly in z € [0,Z]). We denote EI(A, 7, X, x,&) =

H;(lA,z,x’,x) (£). We thus have

(D 1ya)if (X' %) = Z f TR pp iz X X, E) wiz, X E(A, 7, X, X, €))

1<i<k

X vij(z, X E(A, 7, X, %, €)) ED, 2, X 1, E)7 Tialz ¥, x,€) dE,
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where Ja(z, X', x, €) is the Jacobian and we have set

pA,/(Z’ X,, X, f) = ﬁA,l(Z9 xl’ X, EI(A’ 25 )C,, X, é:))
For A sufficiently small, the function &(A, z, x’, x, £) is homogeneous of degree one in &, continuous w.r.t. z,
and ¢~ w.r.t. A with values in S | (X’xXxR") by Lemma 2.24 in [28]. By Lemma 1.7, wi(z, x', &(A, 2, X', X, £))
and v(z, X, E(A, 7, X, x,€)) are € w.rt. A and bounded w.r.t. z with values in S°(X’ x X x R"), and
E(A, 7, X, x, €))7 is € w.rt. A and bounded w.r.t. z with values in S 2°(X’ x X x R") for A sufficiently
small. The amplitude pa (z, X', x, £) is bounded w.r.t. z and A with values in SS(X' x X X R") and satisfies
Property (Qr) by Lemma 2.13 for A sufficiently small.

The Jacobian, J;a(z, X, x, £), is homogeneous of degree zero in &, |¢| > 1, and is continuous w.r.t. z and €~
w.r.t. A with values in S°(R¥" x R") and J1a(z, X', x,8)la=0 = 1. With Taylor’s formula and (1.1.9) in [15],
we thus have
wirz, X' E(A, 7, X, X, E)Wij(z, X E(A, 7, X, x, ONE(A, 7, X, x, €)Y
X Jia(@ X, %, &) = wi(z, X', EWij(2, X', EXEY ™ + Akyija(z, X', x, &),
with kji;a(z, X', x, &) bounded w.r.t. z and A with values in § ~25(X’ x X x R™). We thus obtain

D pa(X', %) = D, ) (X', %) + AD(IZ,’Z)’a(x', X),
where
(D 4 )if(x' - x) = Z f ¢ (pay kija)z X', x, €) dE,
1<i<k
and

(DL i) = Y f Nz, ) €) pai(z, X, x, ) iz, X EXE T dE.
1<i<k
Accordingly, we obtain F(; ;4 := E® 0 Dy, 0 E® = F4  + F From the boundedness of the

(@ 2)a (@.2)a
amplitudes w.r.t. z and A stated above, we obtain [[F}, ) N2y < K, uniformly in z € [0,Z] and

A, A sufficiently enough, by the Calderén-Vaillancourt Theorem (see [22, Chapter 7, Sections 1,2] or [38,
Section XIII-2]).

Observe now that
D?z’,z),a = fei<X'—x\§>w(Z’ X, E)pa(z, X, x, Ev(z, x, é‘:)<§>—25 de,
where pa(z, X', x, ) is the diagonal matrix with pa(z, X', x, ) for diagonal entries. Setting,

/’lA(Z’ .X,, X, ‘f) = W(Zs -x/s f)pA(Zs x’s X, f)V(Z, -x’s f)s

the operator (F(j,’z),a is pseudodifferential and has for symbol

(&) # 0 {uaz X', x, )7 #(6)") (v, ).

The matrix amplitude pa(z, x’, x, €) is bounded w.r.t. A and z with values in S S(X’ X X X R™) and satisfies
Property (Q;) by Proposition 2.15. By Lemma 2.18 we see that

o {paa ¥, 5 )| = pale ¥, ¥, E)EV T = Mz, X, 6),
where A, is bounded w.r.t. A and z with values in M;S ;zs(R" X R™). We thus obtain

a _ b 2
7:(z’,z),a - 7:(z’,z),a + A?-(z’,z),a’

b
where ?'(z,’z),a

J20 2 a@ X €) 1= () # (uaz, X', X, E)NE ) # ()W, €) = (&) # uaz, X', X, E)E )W, €)

and 72, ) N2p a2y < K, uniformly in z € [0,Z] and A, A sufficiently small, invoking the same theo-

rems as above.

has for symbol

The proof of the following lemma can be adapted to the matrix case from the proof of Lemma 2.25 in [28].
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Lemma 2.23.

(<§>5 # (IJA(Z, X, X, §)<§>_s))(z’ X, é:) - MA(Z’ X, X, §) = AVA(Z7 X, é‘:),

where va(z, x, &) is bounded w.r.t. 7 and A with values in M;S S(X x R™).

With this lemma we obtain
b _ c 3
ﬁz’,z),a - 7:(1',1),a + Aﬁz’,z),u’

where 7,  , has for symbol pua(z, ¥, ¥, €) and ||Té,’z)’a”((l‘2)k,(l‘2)k) < K® uniformly in z € [0,Z] and A, A

small enough. With Theorem 2.21, we obtain |7, ., [y a2y < 1+K©A, for K > 0, and we thus have
the desired estimate, i.e.,

”7:(1’,1),11||((L2)’°,(L2)") <1+ (K(c) + K(l) + K(z) + K(3))A,

uniformly in z € [0, Z] and A, A small enough.

We now turn to estimating the operator norm || D o5+ D o cll 1212 We observe that (x;—x;)e’ ™) =
—i(?g/e“’"’x‘f ). By integration by parts we obtain

De oy, x) = i f (Ve | Wiz, ¥, )¢ Bz, ¥, x, Ew(z, x, £)e MO (g, x, £) (€)7) dE,
which, by Leibniz formula, we write
D oyp(x',x) = D, (X', x) + AD, ) (X, x),
where

sz,’z),h(x', X) = if s ’x@aé,’z)’b(x', x, &) d€, D(lz,,z),h(x’, X) = if e ’xl’f)a(lz,,z)’b(x’, x, &) d€,

with
0¥ 3 8) = (Vew(z, ¥,8) | MO0, ¥, x, wiz, 5, ez, x,8) (©7)
+w(z, X, £)e MY E) <V§ | ¥(z, X', x, &) w(z, x, §)> e MEXO (7 1 gy (£)72S
e OO (7e o 3 (e, 1.8 N | Velvia x ) 7).
and

s, (7%, 8) = —w(z, ¥, €) (Ved(z, X' .€) e | (g, 1, x,8)) iz, x, e M (g, x,8) (€)™

—w(z, ¥, ©)e M (3(z, ¥, x, Wiz, x,€) | Ved(z,%,£)) e Mz, x, €) (6)7

Note that neither g, OF a/(lz, .., are amplitudes in general. However, we observe that all the kernel com-
ponents (DE’Z, ) »)ij(x’, x) and (D(lz, ) »)ij (X, x), 1 < i, j < k, are of the form of the scalar kernel A¢r (%', x)

in (1.2) in Section 1, with an amplitude bounded w.r.t. z and A with values in S ;'(X" x X x R") and
S ;2S(X % X x R") respectively. If Z)('Z,’z)’b is the operator associated to the kernel D(‘z,’z)’ ,(x, x), forall r € R,
there exists L > 0 such that

1 1
1D 2 llicaoy ooy < LY,

by Theorem 1.12, uniformly in z € [0, Z] and A, A sufficiently small.

In the three terms in the expression of afz, " b(x’, x, &), we write

1
e MOV = 1 - Ad(z, X', &) f e TN D o
0
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We thus obtain

’ _nb ’ 2 ’
D?Z,’Z),b(x . X) = Dp, (X X) + ADE, ) (X, ),

where
Dl (X x) =i f Tl (X x,E) dE,
with
af, Ly (5 %,8) = (Vew(z, ¥, 8) | 92, ¥, x,6)) iz, x,£)e M On(z, x,€) (7

+ (2, X, 6) (Ve |92 ¥, x. (2, x, 6)) e Dz, x,) (6)™>

+ W(Z, XI, f) <f/(Z, x’, X, f)W(Z, X, éf) e_Ad(Z>X~§) | Vg(V(Z, X, é:) <§>—2$)> ,
and

1
D(eryz)’b(xl’ x) = lff ei<X/_x‘f>a(21’,z),b(o—7 X/, X, f) df do,
0

with

0l (0 X, 2,8) = = (Vew(z, ¥, ) | d(z, ¥, £) ™ Dz, ¥, x, Wiz, x, )e Dz, x,8) (©)7)
— Wiz, X, €) d(z, ¥, O)e "D (Ve | 5z, ¥, x, €) wiz, x,£)) e Mz, x,8) ()7
—w(z, ¥, €) d(z, X', £)e ™MD (52, ¥, x, Wiz, x,€) €D | Ve(u(z, x,€) (©7).
The kernel components (D(zz’,z),b)i (X', x), 1 < i, j < k, are of the form of the scalar kernel A¢ ;)(x", x) in

(1.2) in Section 1, with an amplitude bounded w.r.t. z and A with values and S ;zs(X " x X x R"). Hence, for
all r € R, there exists L® > 0 such that

2 2
IDZ. o pllicaoy ooy < LP,

2

uniformly in z € [0,Z] and A, A sufficiently enough, for Z)(Z,‘Z)’b,

D(ZZ, 955 x), by Theorem 1.12.

the operator associated to the kernel

We proceed similarly with the exponential term left in the expression of the three terms that compose
@l (X5 X, €) above, writing

1
e MO — | _ Nd(z, ¥, ) / e TN o7,
0

and we obtain
Dy, (X' x) =D, ,(x',x) + AD[, , ,(x', %),
where
D, (X' x) =i f ei<xl’x‘f>afz,,z)’b(x’, x, &) d¢,
with
af, o, %, ) = (Vew(z ¥,€) | 9z, X', x, O)) wiz, x, E(z, %, €) ()7

+ w(z, x’,éf) <Vf | V(z, X, x, Wz, x, §)> Wz, X, &) <§>72s
+w(z, x', &) <\7(z, X, x,Ew(z, x, &) | V(02 X, &) <§>—23‘)>’
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and for all r € R, there exists L® > 0 such that

3 3
DL 2y ot oy < L,

3

uniformly in z € [0,Z] and A, A sufficiently enough, for Z)(Z,‘Z)’b,

D

the operator associated to the kernel
?Z, »(X's %), with the same argumentation as above.

‘We observe
@ (7.5, 8) = (Velw(z, X T, X, X, W, X, OV X, EXE ) = (Velw(z, ', &)z, ¥, 2, E)(E) )

recalling that v(z, x, &) = (w(z, x,&))™". An integration by parts yields

Dl = [ 0mta, £ o O
and thus we obtain
sz',z),b(x’, X) = fei<x’—xlf>w(z, x’,é—')(V(Z, X’,é:) -z X, g))<§>—2s Jf,
since v(z, X', &) = V(z, x, &) + (X' — x|¥(z, ', x, €)). We have thus obtained
D(Z/’Z)’b(X/’ ) = DEZ”Z)J’(X,’ x) + A(D(lz’,z),b(x/’ x) + D(zz’,z),b(x,a x) + D(Sz/,z),b(x’, X)),
with
1 2 3 ) 3
”D(Z',Z),b + D(z’,z),b + D(Z’,Z),b”((H(r))k,(H(r»fz;))k) < L(l) + L( ) + L( ),
uniformly in z € [0, Z] and A, A sufficiently small.

In a similar fashion, we obtain

Doy o(X',x) = =D, ,(x',x) + AD(,, ,, (', %),

(Z,2).¢

1

with, for the operator D(z’,z),c

associated to the kernel D(lz, 2 L,(x’, X),
1 1
1D o) Moy ey < M7,

for M' > 0, uniformly in z € [0, Z] and A, A sufficiently small. With r = —s we thus obtain the expected
estimate
IE® o Db+ D gye) © E(S)H((LZ)k,(LZ)k) < CA,

uniformly in z € [0, Z] and A, A sufficiently small. [ ]

3 Convergence properties of the Ansatz Wy, in the symmetric case

As in Section 2, the z-family of symbols a;(z,.) satisfies Assumptions 2.1 and 2.2. Let p € [%, 1]. We
assume that ¢; is chosen such that

3.1 Paz,.) 1= &)
takes values in M;.S B(X X R") (see Lemma 2.11 and corollary 2.16).

We first define the Ansatz that approximates the solution operator to (2.1)—(2.2). The regularity properties
of the thin-slab propagator G . given in Proposition 2.6 allow to compose operators of the form of G, ).

We chose to use a constant-step subdivision of the interval [0, Z] but the method and results presented here
can be naturally adapted to any subdivision of [0, Z].

Definition 3.1. Ler B = {(z©,zV, ..., 2™} be a subdivision of [0,Z] with 0 = 2® <z < ... < /M =7
such that z*Y — 720 = Ag. The operator Wy, is defined as
Geo) if0<z<z,
1
Wy, = .
¥ g(z,z(k))l_lg(ﬁn,zu—n) if 70 <z <D,

i=k
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Thanks to the estimate proven in Theorem 2.22 we can now obtain the following proposition.
Proposition 3.2. Let s € R. There exists K > 0 such that for every subdivision B of [0, Z] we have
vz € [0,Z], ||(W‘B,z||((H(:))k,(1.1(s))k) <K,
for Ay sufficiently small.
Proof. By Theorem 2.22, there exits M > 0 such that if A = 7’ — z is small enough then we have
G ol ooy oy S 1+ AM for all z € [0, Z]; we then obtain
ZM\N
||(W”B,z||((H(s))k,([.1<x>)k) <+ A‘BM)N = (1 + T)

which is bounded as it converges to exp(ZM) as N goes to co. [ ]

As in [28], we have the following regularity result for the Ansatz Wy ;.

Proposition 3.3. Let s € R, B a subdivision of [0, Z] as in Definition 3.1 and let uy € (H**V(X))*. Then
the map z — Wy (up) is in @°(10, Z1, (HS*D(X)*) and is piecewise €' ([0, Z], (HO(X))¥) if B is chosen
such that Ay is small enough. The map z — We (uo) is in fact globally Lipschitz with C > 0 such that

Wz (o) = W o (uolllsory < Clz = 2l lluoll gy

where the constant C is uniform w.r.t. B, ' and z, if Ay is sufficiently small.

Before proceeding to estimating the approximation error made between the Ansatz Wy, and the solution
operator U(z,0) of (2.1)—(2.2), we need to establish a yDO-FIO composition formula adapted to the case
of matrix phase functions such as ¢, ;) given in (2.5).

3.1 A composition formula in the case of matrix phases

Composition formulae like those of Proposition 1.10 do not in general straightforwardly extend to the case
of matrix phases. We can however obtain a close-enough result which will be of use in the sequel.

Theorem 3.4. let o', p" € [%, 1]. Let u(z, x,&) be bounded w.r.t. z with values in MkSZf(X X R"), and the
operator Ay ) defined by

ﬂ(z’,z)(“)(x/) - ff ei(x’—xl§>o-(z,’z)(xl’ é_-)e—Adl(Z,X/,X,f) u(x) a‘fé: dx,

where 0 < z <7/ <Z, A =7 —z with oy (¥, &) bounded w.r.t. 7' and z with values in MkS,’;’,i(X x R™M).
Then, for A sufficiently small, we have

1z %, D) 0 Ay = Bz + ARz o),
where for all s € R there exists C > 0 such that
(3.2) |IR(Z’,Z)l|((H(l“))“,(HU*”‘*””))‘() <C, 0<z<7<7Z

and the operator By ;) has for kernel

B(Z’.Z)(x/’x) = fei<X'—xlf> q(z/‘z)(x/’é_-)eiAh(Z,x',f) df,

S m+m’

with 4 (X', &) bounded w.rt. to 2’ and z with values in MiS o0

integral representation

,,)(X X R") and given by the oscillatory

(3.3) qro¥. &)= f f I 1z, X ) 0w (0, EPa(z y, €) Wiz, y, E)e NI DBy 1y &) dy dy,
with pa(z,y,€) given in (3.1).

The proof of Theorem 3.4 can be found in Appendix A.
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3.2 Error estimation, convergence

To estimate the norm of Wy ;up — U(z, 0)(14p) in some Sobolev space, where U(z, 0) is the solution operator
of (2.1)—(2.2), we first need to have an understanding of the infinitesimal error made by the use of the
thin-slab propagator, i.e., find a bound for

0y +ay(x,Dy) 0 G m), 0<z<7<Z ue (H(S))k,

in some properly chosen norm when A = 7’ —z is small. For the next proposition we shall need the following
assumption.

Assumption 3.5. The matrix symbol a(z,.) is in ((/O’a([O, ZILMSI X xRY), 0 < a < 1, ie, Holder
continuous w.r.t. z with values in MS (X x R?), in the sense that,

a(@,x, &) —alz,x, &) = — 2%, z,x,8€), 0<z<7<Z
with a(z', 7, x, &) bounded w.r.t. 7 and z with values in M;S'(R" x R").
It should be noted that Assumption 3.5 concerns the full symbol a(z, .) and not simply its principal symbol.
Proposition 3.6. Let s € R. There exist Ag > 0 and C > 0 such that for 77 —z = A, A € [0, Ag],

34 (02 + az(x, Dy)) © G ol o-nyy < CA”.

The proof is along the lines of that of Theorem 2.8 in [29] and uses the calculus result of Theorem 3.4 since
in the present case phase functions are matrices. The proof can be found in Appendix A

Adapting the proof of energy estimate (2.3) to the case of piecewise #' function yet globally Lipschitz
functions like ‘W .(uo) (see Proposition 3.3) we find that

VA
(3.5 U (z, 0)(uo) = Wes z(uo)llzroye < +C f 0. + a(z, x, D)W (o)l oy dz,
0

with the constant C uniform w.r.t. z and and the subdivision B, for uy € (H*D)~.

let P = {z©,...,zM}. We take z €]z, zZU*V[. Then

(az + a(Zs X, DX)) (W‘B,Z(MO) = (az + a(z, X, Dx))

1
g(z,z(j))l_[g(z(i),zu1))(u0)] = (az + a(z, X, DX)) (g(z,z(j))(uj)) N

i=j

with u; := []; G0 260y (up) Which is in (HS*D(R™) by Theorem 2.22. By Proposition 3.2, the norm of
u; in (H**D(R"))* remains bounded even if || = N becomes very large:

3K 20, llujllgeny < Klluollgorny, j€10,...,NL,N =[Pl €N, ug € (HDR")Y,
if Ag is small enough. By Proposition 3.6, we thus obtain
(3.6) 10 + a(z, x, D)W (uo)ll oy < CKAlluollosrvy,  z € [0,Z]\ B,
with the constants C and K uniform w.r.t. z and ‘B.

An interpolation argument, as in [28] yields the main result of this Section.

Theorem 3.7. Assume that the symbol a(z, .) satisfies Assumptions 2.1 and 2.2, and is in € 0’”([0, Z], MiS'(R"x
R")), i.e. Holder continuous w.r.t. z, with values in MS '(R" x R"), in the sense that, for some 0 < a < 1

a@,x,&) —a(z, x,é) =& -2 a@,z,x,6), 0<z<7 <Z,

or Lipschitz (a = 1), with a(z', z, x, ) bounded w.r.t. 7 and z with values in MS'(R" x R"). Let s € R and
0 < r < 1. Then the approximation Ansatz Wy, converges to the solution operator U(z, 0) of the Cauchy
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problem (2.1)—(2.2) in L((HSDRM)K, (HEI (R uniformly w.rt. z as Ay goes to 0 with a convergence
rate of order a(1 —r):

Wy 2 = UGz, O)ll e aaonyy < CAG' ™, 2 €[0,Z].

Furthermore, the operator Wey ;, strongly converges to the solution operator U(z,0), uniformly w.rt. z €
[0,Z), in L(H"*DR™)Y, (HOTD(RM)Y).

Proof. The case r = 0 is an immediate consequence of (3.5) and (3.6).
From energy estimate (2.3) for s + 1 we have
3.7 1U(z, 0)(wo)llcges-nye < Clluoll gy

From Proposition 3.2 we obtain

(3.8) W 2@o)leonye < Clltollzreony
and thus
(3.9 W (o) — U(z, 0) (o)l sy < Cllullgorny

uniformly w.r.t. z € [0, Z]. The interpolation inequality
”v”(H(“’))k < C”V”(ll._[(';))k ||V||EH(””)"’ 0 <r< la
then yields

W 2(t0) = Uz, 0)uo)ll ey < CAG Nugllggosnye, 0 <7 <1,
uniformly w.r.t. z € [0, Z].
Let ug € (H®*D)* and let & > 0. For the strong convergence in (H**D)* we choose u; € (H**?)* such that
lluo — uillgeny < €. We then write
W (o) — U(z, 0)(uo)ll gy < W (uo — udllgorny + | Wes (1) — Uz, 0)ur)|| gy
+11U(z, 0)(uo — un)llervp < Ce + CAGlurll gy

from estimates (3.7) and (3.8) and the case r = 0 of the first part of the Theorem. This last estimate is
uniform w.r.t. z € [0, Z] and yields the result. [ ]

4 Symmetrizable systems

In this section, we consider the more general situation where the matrix symbol a; is symmetrizable.
Namely we make the following assumption.

Assumption 4.1. There exists a k X k invertible matrix L(z, x,£) that is bounded w.r.t. z with values in
MSOX x R™), homogeneous of degree zero in &, |&] > 1, with (L(z, x,£))™" satisfying the same property,
and such that

(l](Z, X, f) = L(Zv X, f) a'l(Z, X, g) (L(Z’ X, f))_l 5

with ay = —iB + vy satisfying Assumptions 2.1 and 2.2.

Note that this formulation is in fact equivalent to that in which we choose L(z, x, £) to be itself hermitian
symmetric or to the formulation given in [3]: we have

Sz x,8) alz, x, &) = (Lz, %, &)™) a1z, x,6) (Lz x, )",
with S (z, x, &) = (L(z, x, &))" L(z, x,&))~" which is hermitian symmetric.

We shall make the additional following assumption.
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Assumption 4.2. The matrix symbol L(z, x, €) is Lipschitz continuous, in the sense that
L@, x%,6) - Lz, x,6) = (7 - 9L, 2, x,8),
with L(Z', z, x, €) bounded w.r.t. 7 and z with values in MS°(X x R™).

The same property naturally follows for the matrix symbol R(z, x, &) := (L(z, x,&))".

Example 4.3. The first-order system that describes linear anisotropic elastodynamic, written in terms of
velocity and stress field, is smoothly symmetrizable if multiplicities remain constant. Similarly, Maxwell’s
equations are a possible application of the results of this article if multiplicities remain constants. Conical
refraction in crystal optics is thus not considered here.

With the two assumptions made, the energy estimate (2.3) remains valid [3, Chapter VI] and there exists a
unique solution to the Cauchy problem (2.1)—(2.2) in €([0, Z], (H**D(R™)*) N €' ([0, Z], (HO (R™)F).

The thin-slab propagator G, . is defined as in Section 2. We check that it satisfies the regularity properties
of Proposition 2.6. The approximation Ansatz ‘W, can be defined as in Section 3. As in the previous
sections, we may assume that ¢4 and e~71¢) take values in MiS)(XXR"), p € [3,1] (see Lemma 2.11
and corollary 2.16).

In order to prove the stability of the Ansatz Wy, in the case of a symmetrizable system we first need to
study some basic regularity properties of scalar operators which are closely related to the composition of
scalar operators of the form of

A W) = f f O G NEX D (o £ () dix dE,

where h;(z, x, ) is a scalar symbol of order one.

4.1 Some operator properties

Let 1(z, x, €) and A (z, x, £) be a scalar symbol that satisfies Assumption 1.1, with
hi(z, x,&) = —iki(z, x, &) + Li(z, x, &),  hy(z,x,8) = —ik (2, x,8) + [,(z, x,§),

following the notations of Section 1. Let also o~ »» (X', &, x,17) be a scalar multiple symbol bounded w.r.t.
7, 7 and z with values in S?ml(X’ X R" x X X R"), % < p’ < 1. Asin Section 1, we assume that /; and [,

are such that e and ™4 take value in S5(X x R"), 3 < p < 1 (see Remark 1.9 and Lemma 2.11).
We assume that we have

4.1 C'(m) <€) < Cm),
on the support of o (X', &, x, 7). Setting A =z’ —zand A’ = 7" — z, we formally define the operator

7:(1",1',1)(“)(3(’) — [f ei(,\c’_xlf)e—Arh](z”xué’) ff ei<x_y|’7>e_Nl| Z’x’mo—(z",z',z)(x,’é‘:a X, 77) u(y) dy dn dx df,
with the integrations w.r.t. to the different variables performed in the order y, 7, x, &.

Proposition 4.4. There exists Ay > O such that if 7,7,z € [0, Z] with A, A’ € [0, Ayg], then the operator
F .22 i well defined on ' (R") and the map (07 ., u) & Fr .0(w) is continuous from S ;"™ (X' X R" x
X X R") X S (R") into S (R"),

The proof of Proposition 4.4 can be found in Appendix A.

We now study the Sobolev-space regularity of the operator ¥, » ).

2

Proposition 4.5. Let s € R. The operator F» ., maps HO(R") into HS==")(R™) and there exist C > 0
and Ay > 0 such that

4.2) ||ﬁz”,z’,z)”(H(s),H(sfmﬂn’)) < Cp(o—(z",z’,z)),

forall 7,z € [0,Z], N, A € [0,A1], where p is some appropriately chosen seminorm on S:ff’m’ X' xR"x
X X R").

The proof of Proposition 4.5 can be found in Appendix A.
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4.2 Composition of two thin-slab propagators

Because the matrix symbol L(z, x, &) is not unitary we cannot proceed as in Section 2 and obtain an estimate
for the Sobolev operator norm of G, ) as in Theorem 2.22.

We instead investigate the product G~ .y 0 G ;) With 0 < z < 7' < 7”7 < Z, as it appears in the definition of
the Ansatz Wy . in Section 3.

We define the following matrix-phase FIOs

@3) Hl ) i= [ 600000 L O Ot dx e,
(@.4) i) 1= [ 67 0gi0 (0 60 Rz, X)) e,
(4.5) Heo o)) := f f NG L (X, E)e AN D y(x) dx dE,

and

(4.6) HE (&) = G o)),  ue (HTR)

The proofs of the following three propositions can be found in Appendix A.

Proposition 4.6. Let s € R. There exists an operator K» ., bounded from (H'®(R™))* into (H®(R"))k,
uniformly w.r.t. 7, 7’ and z, such that

Ir Ir _ 1 r ’
Hi oy o Hi oy = Hep gy 0 Hi oy + max(A, A)YK e

,,,,,

for A =7 —zand N = 7" — 7’ both sufficiently small, and where

4.7 M(z, x,Dy) := 1 — L(z, x, D,) o R(z, x, Dy).

In the sequel, we shall often write M, in place of M(z, x, D,) for concision.

Proposition 4.7. Let s € R. There exists an operator K, bounded from (H®)(R™)Y* into (H)(R™))*
uniformly w.rt. 7", 7' and z such that

1 1 _ 1
7{(;”,1’) ° (H(z’,z) - 7{(z”,z’) oHiz + max(A’, MK 2 )5

for A" and A sufficiently small.

Finally, we shall use the following result.

Proposition 4.8. Let s € R. There exists an operator K, bounded from (H®O(R™"))* into (H®)(R"))*
uniformly w.r.t. 7/ and z such that

HY o M(z, %, D) = M(Z,x, D) + AK o,

for A sufficiently small.

4.3 Stability of the Ansatz Wy, and conclusion

Let s € R. Let K > 0. We shall denote by K a generic operator continuous from (H(R"))* into (H*® (R"))¥
such that [| K| zoy (zoy < K. We now define notations for some operators. In the notation J @) .0, below,
we are solely interested in the form of the operator and by its norm estimate rather than by its precise
definition. Thus, in the definition of .« .0), the operators denoted by K may change from one term to
another. We choose to make this abuse of notation for the sake of concision.
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Definition 4.9. Ler N e N. Let 0 =79 <V < ... < /M < Z For0 <1<l <N, we set
Id ifl =1,

Q(Za/) ’’’’ 20y = g(ﬁz')’zuun) l.fl/ -1= l,
G gr-1y © -+ 0 G 0y otherwise,

1d ifr =1,
7-[(121/) ,,,,, 20y T 7_{(121972(1'_1)) = g(zu’),zw—n) iflr—1=1,
7'{(2(1,)&”,7“) o W(Z(l'—l)’z(l’—z)) 0---0 W(z“*”.z”*") o 7‘{(2(,“)&(,)) otherwise,
and
Id ifl =1,
(rz(/’) ,,,,, A0y = W&(l/)’zuun) iflr—1=1,
7‘((10'),1(1'4)) 0---0 H(Z(uz),z(zn)) o H&(Hl)’z(l)) otherwise.

The reader should note that H"

@) 70

we denote by J .« ., an operator of the form (J o .0y = 1d)
1

4.8) T 20y 27‘[(;,,) )

.....

Ir r
+A Z H gm0y © Ko (}{(z‘ml")

= g(zu/),zm) but 7‘{(121,) yyyy

.....

(@), 2y =2 A EmEh z0)
I+1<m;<l'-1
r § Ir r
+ A 7-{(Z(I’) ,,,, Z(’”'“)) ° (]( ° W(z(’”r*l) """" Z(mr_|+1)) o
12— 1<mp<l/ -1 - r r
: ° (H(Z(mzfn,...,z(mul)) oKo ﬂ(z(”’l’“,~-~ 20
I+3my <my—2
I+1<my <my-2
r Ir r
o o o DY
+A E 7-{(1(") ’’’’’ Lm0 K H(Zm,,f]) qqqqq L4y
142" =1<m 4 <I' -1 r r
T © 7—{(2(171271) ’’’’’ L)y oKo H(Z(mrl) _____ 20y

1+3<my<m3—2
I+1<my <my—2

with v’ = E((I' = 1)/2).

In the sequel, the “order” of a term will refer to the power of A appearing in it.

Remark 4.10. Observe that in the definition of 7, @) Z0ys in the case where I’ — [ is even, the last term is in
fact AV=D/2 o ... o K, with the generic operator K appearing (' — 1)/2 times (we do not write K ~0/2
since the operator K may not be the same each time). In the case where I’ — [ is odd, then, there remains one
operator of the type 7{(; ooy OF 7{(12’“,) _____ oy, in €ach term of order E((I'-1)/2) = (I'=1-1)/2. Basically,
in each term in the sums above, the operator K replaces the occurrence of two consecutive operators of the
type given in (4.3)—(4.6) and we cover all possible cases in the sums. We write the first examples of the
operators @) .o, for the reader to get used to their form:
Tt 20y = Hlien oy

z

1
T 0y = 7‘((;“2) oyt AK,

.....

Ir r Ir
j(zmm’zu)) = W(z“*” ’’’’ 20y + A (7( o W(z“*”,z‘“) + W(z“*”,z“”’) o 7() s

_ Ir
T 20y = (}{(z“”)»--’z(”)
l 1
FA (7( o 7_{; . + 7‘((;(”4)&(“3)) oK o 7’{2(1+1>,z(1)) + 7'{(r(l+4> 042y © ‘K)

@, 20) ( ECO
+ A’ K o K,

etc.
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As in Section 3, we shall use uniform subdivisions of [0, Z] but the method and results presented here can
be naturally adapted to any subdivision of [0, Z]. We give an estimation of the operator norm of J ) ,m
that relies on the sharp estimation of the Sobolev operator norm of the thin-slab propagator obtained in
Theorem 2.22 in the case of a symmetric system. The result of Theorem 2.22 in fact applies to the operator
Hy », defined in (4.5), by Assumption 4.1.

The proofs of the following two lemmata can be found in Appendix A.

Lemma 4.11. There exist S > 0 and C > 0 such that, for all subdivision P of [0,Z], P = (20,0 LAWY
with0 =79 <720 < ... <« 2™ = Z gnd 70+ — 70 = Ay, we have

C
(4.9) 1T oyl g ooy < S°€% 0 <I<T <N,

Sfor Ay sufficiently small.

We also compute H"

s gy © T 20y, which will be needed below.

Lemma 4.12. For Ay sufficiently small, i.e. N large, for I' — [ > 3, we have
(}{(,um) 2y © T 0y = T oy + Ag M 0 Ko j(zu'—m,z(l)),
where j(zu'),Zm) is given by (j(z(%(/)) =1d)
j(wu )20y = 7‘(&(,,) _____ 0y

+ Aq; Z ﬂrz(,/)

r
( Z(m]+l)) o (]( o (]_{

(@m=D,.z20)

I+1<m;<l'-1

r r r
+ Ay } : Heaor,amewny © Ko Hinn_n1on) ©
I+2r=1<mp<l/ ~1 .. r r
143 3y 2 ° 7.{(1('”2’”,"',2(”’1”)) oK o 7—{(5"‘1’”,"‘,1(”)
+3<my <mzy -
I+l£m?£m;72
A} § H" Ko H"
T 1427 Ty <I' -1 @, z“”r’”)) ene (@D, -1ty °
+2r =1<m 4 <I' -
:' 2O H o meny O KO H i oy
1+3<my<my -2
/+lsm$sm;72
with v’ = E((I' = 1)/2). We have
7 CcZ ’
(4.10) ||j(zw))zm)II((H(J))A,(H(S))A,) <Se“, 0<I<IZ<N.

for the same constants S and C as in (4.9).

Note that the definition of J . ) is similar to that of J . ., with the terms H; er/ .. Teplaced by H7, .

We now focus on the estimation of the operator norm of G0, ,0) = 7{(50 -y © 7{(’(1) 2oy 1€ the
question of the stability of the Ansatz Wy ;. In the method we shall use, operators of the form of J ) .0,
appear, for which we can now bound the operator norm uniformly w.r.t. N = |B|. We have seen above, in

Proposition 4.6, that

I I
Go,.:0) = 7‘{(;(2),1(1» °© 7{(7(1) ) = (]{ 2@ 71y 7{(2(1),2(0)) + A K + Mo

= 7_{(1;‘[2),.“,1(0)) + A‘B« + MZ(Z) = j(z(z),z(o’) + Mz(l"

Composing with H" on the L.h.s. we obtain

(7 (3) z2)

il i 1
G,...0) = Hlo on 0 H, oH H

52 2 752 ( seeesl

((2) (l)) ((]) (0)) ((3) (')) (
7{[]

- 73

.0y T Ap (7( o Hi o + '}{ 2 22 © (K) + '}{ w20y 0 Mo
=T 0 + ‘}(&3) o 0 Mo = J o 0) + Mo + ApK,
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by Proposition 4.7 and Proposition 4.8. We carry on with these explicit computations to derive the form of
G, = Hr o---oH" We have

@z D,z

it 1 tt
g(z<4> ..... Z0) = 7’{(;4>,Z(3)) 0---0 (zr<1>qz<o>) = (24)31(3)) ° (j(z‘3),z(°)) + Mz(3) + A‘BW)
=T 0y + AgMas 0 Ko j(Zm)’Z(m) + M + AgK + Aq;?‘((lzr(4)’z(3)) oK

=T 0y + M o (Id +AgK o j(zm),z(o))) + ApK + A»BW(I;@’Z(})) oK,
by Proposition 4.7 and Proposition 4.8 and Lemma 4.12. Similarly, we obtain

_ qqlr Ir
G,..20) = Hils wy 0 0 Hln o

= 7—{(125)’1(4>) o [j(z(“),z“”) + M o (Id + AgK o j(zw)’z(m)) + ApK + A*Bﬂ(lr(ét),z(a)) o 7(]
= J 0+ Ag M 0o K o j(z(l),zm)) + My + AgK) o (Id + AgK o j(z(o)z(m))
1 1 1
+ Ay (Higs oy © K+ Higs oy © Higo oy © KO

+ ApG ) oy 0 K + ApK o (Id + AgK o j(z(o,,z(o))) .
By induction we can now obtain

Lemma 4.13. Let | > 5, we have

,,,,,

-4
A1) Geo,.20) = J o0 + ApGo,.. o) 0 K+ M o (Id + Ay Z KoJ, (z<f),z(°))]

J=0
l J=5
=4 i=0

with the convention Y, K o J . .0, = 0.
Proof. Formula (4.11) holds for [ = 5, as we have seen above. For [ > 5, we now write

-4
= G 20y © | T o 0y + ApGo, 0y 0 K+ Mo o [Id + Ag Z Ko j'(zm,z(m))

Jj=0
l Jj=5
+A”l3 Z {Q(Z(“,...,z‘f’) oKo (Id + Asl; Z K o j(z(’),z(o))]]} .

j=4 i=0
We have
(412) g(z“*”,z“’) o j(z“’,z(o)) = j(z(’“'”,z(o)) + AsBMZ(HI) oK o j(z“-»”,z(o))’
by Lemma 4.12. Next, by definition we have
(413) g(z(m)yz(z)) [} (Aq_gg(z(l) """" z(3>) o 7() = A$g(2(1+1) """ Z(s)) o (](
By Proposition 4.8, we obtain

-4 -4

=0

4.14) Q(Z(Hl)’z(l)) o Mz(” o|ld+ Aq; Z Ko jz(j)’z(m) = (MZ(H]) + Ag37() o|ld+ Aq; Z Ko jz(j)’z(m) .
j=0
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Finally we have

l

Jj=5
(415) g(z(lﬂ)’z(/)) o A‘B Z [Q(Z(n """" 20) oKo [Id + As]; Z K o xi—(z(”,z(o)))]

=4 i=0
l J=5
S T T |
j=4 i=0
Since Q(Z(M) ,,,, Z+Dy = Id, we have
-4 1+1-5
A»lﬂ( o [Id + A”l‘ Z Ko sy(z(-f),z‘o’)] = Asug(zml) ’’’’ 24Dy © K o [Id + A«B Z K o j(z(i)’Z(O))] s
j=0 i=0
which yields formula (4.11) at the order / + 1, when summing (4.12)—(4.15) together. [ |
From Lemma 4.11 and Lemma 4.12 we observe that
I
Id + Ag Z Ko T o <C, 0<I<N,

j:() ((H“’)K(M”)")

with C uniform w.r.t. ¥ and [, since Ay = Z/N. As [IM_|[(zoy oy is bounded uniformly w.r.t. z, we
obtain the existence of A > 0 and B > 0 such that

/
”g(z(’),z(o))”((H(x))ky(H(x))k) < A+ A*BB Z |IQ(Z”),Z(/))||((H(5))kq(H(»V))k)’
Jj=3

from Lemma 4.13, which gives, with V;; = HQ(Z“’)»Z“’)||((H<»v))k,<H<s))k)’

]
VigSA+AgBY Vij<A+AyB Y Vi

]
=3 =

Above, we have chosen to use z7? = 0 as the starting value for z. However, similarly, we obtain
v
Vi <A+AyB Z Vij, 0<I<I<N.
Jj=l+1
Define the finite sequence, (W))o<i<y by
!
Wo=1, Wii=A+AyBY W; 0<I<N-1.
=0
Since G0 .0y = 1d, 0 < I < N, we have V;; = 1 and a simple induction gives
V]g[ <Wpy, 0<I< I' <N.

‘We now observe that forall [,/ =2,...,N,

Wi=Wi +ApBWi_ = (1 + AyB)Wy_y = (1 + AyB)'W; = (1 + AyB)'(A + Ay B)

BZ
<(1+ W)N(A +AyB) < Ce.

For the Ansatz ‘W, , in the symmetrizable case, we thus have the following counterpart to Proposition 3.2.
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Theorem 4.14. Let s € R. Under Assumptions 4.1 and 4.2, there exists K’ > 0 such that for every
subdivision B = {Z©, 721, ..., zZ™} of [0,Z] with 0 = @ < 7D < ... < 2™ = Z and Wy, as defined in
Definition 3.1 we have

Yz €[0,Z], ”(W‘B,z||((Hl.s))k,(H(A))k) < K,7

Sfor Ay sufficiently small.

With the stability of ‘W, established, we can proceed with the analysis of its convergence as in Section 3.
There is no difference in the argumentation between the symmetric and the symmetrizable cases there. We
thus obtain a theorem similar to Theorem 3.7, which gives a representation of the solution operator of the
Cauchy problem (2.1)—(2.2) by an infinite product of matrix-phase FIOs.

Theorem 4.15. Let Assumptions 4.1 and 4.2 hold and let further assume that the symbol a(z, .) belongs to
%[0, Z], MS I(R" x R")), i.e. Holder continuous w.r.t. z, with values in MpS'(R" x R"), in the sense
that, for some 0 < @ < 1

aZ,x, & —alz, x,&) = -2 a7, z,x,8), 0<z<7 <Z,

or Lipschitz (o = 1), with a(z', z, x, £) bounded w.r.t. 7 and z with values in MS'(R" x R"). Let s € R and
0 < r < 1. Then the approximation Ansatz Wy, converges to the solution operator U(z,0) of the Cauchy
problem (2.1)—(2.2) in L((HC* DR, (HS(R™)X) uniformly w.r.t. z as Ay goes to 0 with a convergence
rate of order a(1 —r):

W = UG O)lleony eenyy < CAY ", 2 € [0,Z].

Furthermore, the operator ‘W ; strongly converges to the solution operator U(z,0) uniformly w.rt. z €
[0, Z) in L(H DR, (HOTDRM)Y).

A Some technical proofs

A.1 Proof of Proposition 1.6

For the proof of Proposition 1.6 we shall need the following lemma.

Lemma A.1. Let j, r non-negative integers, u € ¥ (R"), f € €¢"*'(R") such that
0<Imf(x)<Co xeR", [fP%)|<C,, xeR", I <s<r+1.

Then we have

(A.16) P

f u(x)(Im f(x))/e“’™ dx| < C Z sup |Du(x)|(|f" (x)* + Im f(x)*7, w >0,

la|<r xeR"
where the constant C is bounded when the function f stays in a domain of((/Hl(R”) where Cy, C1,...,C, 11
can be chosen bounded.

Proof. The proof is the same as that of Theorem 7.7.1 in [15] where u € %y(R"). In fact the further
assumptions on f made here allow to give global bounds that are needed since u € ¥ (R") in the present
case. ]

Proof of Proposition 1.6. At first we shall assume that u € @7’ (R"). As the operator A, , is a global FIO
we then have A ,(u) € €T (R") [13, Section 25.2]. Differentiation of A, ;) (u)(x) w.r.t. to the variable x
is performed as usual for oscillatory integrals [15, end of Section 7.8]. Define

V€, y) = f e HITAMGEIED s (v, X, 1) u(x) dx,
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and set w(&,y) 1= v(£, &,y). We then have
A o) = W', ) y=p, With W(x',y) = f ¢ (g, y) dg.

We shall first prove that y — w(&,y) is bounded w.r.t. to y € R” with values in (R"). Let w = |£] > 1
and &) = &/|¢] € S"!. We then have —(x|¢) + iAhi(z, Y, x, &) = wf(z, Y, x,€) with £ homogeneous of degree
zero in &, for [£] > 1. Note that 0, f(z, v, x,&) = =& + iAD (2, ¥, x,&p). Uniformly w.r.t. z € [0,Z] and
w.rt. y,x € R” we have |0, f(z, v, x,&)| > ¢ > 0, for A sufficiently small. Applying Lemma A.1 and estimate
(A.16) we obtain, for r € N,

W'Vl < Kr Z sup DS (0 o (v, X M) < K" g (07 ) sup IDSu(o)l, > 1,

n <
lal<r *€R i

where ¢, is a seminorm on S, and where the constants K, K} can be chosen uniformly w.r.t. z, y and &,
|€] > 1 since the constants Cy, Ci,...,C,,; of Lemma A.1 can be chosen bounded (as &, € S™1). Now
setting 7 = £ we obtain that for all » € N, K > 0

(A.17) & MWEY < K] g (0@ )supIDiux)l, € € R, 1 = 1.

lel<r
x€R"

We now consider

O W& y) = f TGS (5 0 (9, X, €) +0( (3 % E)—ixi — Adghi (2., X, £)) u(x) dx.
As xu(x) € € (R") and 0z hi(2,y, x, ) is homogeneous of degree zero in & for |£] > 1 estimates similar to
those in (A.17) are valid. Thus y — w(&, y) is bounded w.r.t. to y € R” with values in % (R").

Then, w(x’, y) obtained by Fourier transformation is also bounded w.r.t. to y € R” with values in .’ (R") and
we have, with a multi-index «,

sup XA 5 @)(xX)| < sup sup XWX, y)| < Cqo(07z.2) Polut),
x'eR” yeR” x’eR”

for p, a seminorm on ¥ (R"), g, a seminorm on S o> because of (A.17) and the continuity of the Fourier
transformation on % (R").

Differentiating A ;(u)(x") w.r.t. to x;, i = 1,...,n, we obtain

Dy Ao W) = f O ANET D (5, g (X X, E) + O o)X X, E)iE; = Ay (2, X, x,£))) dE,
and the same method yields, by induction, for @ and § multi-indices,

sup [X, A @) < Cqap(0 ) Pap(td),

x’eR”

for p, s a seminorm on % (R") and ¢, a seminorm on § - We can now relax the assumption made on u,
ie., u € ¢ (R"), by a density argument. Hence the operator A ;) maps 4 (R") into ¥ (R") continuously.
Observe now that the adjoint of A, ;) is of the same form and thus maps % (R") into . (R") continuously.
This concludes the proof. ]

A.2 Proof of Proposition 1.10

As mentioned in the main text we only prove item 2 of the proposition here.
We set p = min(p, p’, p”") and 5 = max(8, &', 5”) and

Al (z,x',y.6)

P, Ey,m) i=e T (X, Ep(,n).

We observe that it is a multiple symbol in S Zlam (X’ x R" x Y x R"). Expression (1.4) can be formally
obtained. We set

‘/’(z’,z)(x/v XY, é‘:’ ]7) = <X - Y|-’f - ’7) + A(k](Z, x/’ Y, g) - kl(Z, x,’ X, f))
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Estimating the partial differentials of ¢, ; w.r.t. X', x and ¢ we have

éﬁxﬁz6ge[¢("‘f)(xl’x’y’§’n) < C@)W’\(f - §>|[3\<x _ y)\a\+|ﬁ’|.

Following [22, proof of Theorem 10.2.2], we find that g ,(x’, x, ) is in ¢, bounded, with bounded
differentials, as £ remains in a bounded domain.

We shall split g, ) into two pieces. Let y € @ (R") be such that (&)

if ¢l > 5 and set xo,8) = x(qlig), with 0 < 7 < 1 and ye(n,€) :

4@ = 4.0 + 4220 Where

Lif |¢] < 1 and (&) = 0
1 — xo(n, &) We then write

4z (X, x, ) = ff Ehp“"”(x/’x’y’g’n)p(zgz),oo(x', &,v,1) dn dy,
With P 2),00(X', &, ¥, 1) = P2y (X', €, 3, 1) Xo(17, ). On the support of x (17, &) we have

(A.18) In— ¢l = %(1 —THE).
We find (V¢ »(x', x,y,&,17)) = (x —y). and have
Vo x,3,€,m) = =& =) + AVyki (2, X', 3, ).
For A sufficiently small, we find
IVy@i (X', %, 3,6 2 ClE =1l > C'¢€),
from (A.18). Then, setting
To = (V) 2(1 = iVyelV,)),  Ti = =ilVy(V,0lVy),

and writing, for / sufficiently large,

Q(Z’,z),m(x/, X, f) - ff einl'Z)(x/’x’y”f’n)(T(t))l(Ti)lp(z',z),oo(xl,f, y, 7]) d’l dy.

The estimates above allow to conclude that g, ;) (X, x, £) is bounded w.r.t. z’ and z with values in S = (X’ X
X X R").

Next, we set p(z’,z),()(x,s f’ Vs 77) = p(z’.z)(x” f, Ys 77) /\/0(77’ ‘f) and write
kl(Zs x/’ ya f) - kl (Z’ x’? X, é‘) = <y - x|]~<1 (Zs -x’s y9 X, é:)>,
by Taylor’s formula. Note that I?l(z, X', v, x,£) is then bounded w.r.t. z with values in § (X' x Y x X xR").

The change of variable n — 1 + Ak, (z, x', y, x, &) is global for A sufficiently small. We obtain
G 8) = [[ € Moo £y - AR @, 3,36 dind.

Observe that |€ — | < %(1 — 7){&’) on the support of yo(77, &) and thus, for A sufficiently small, we have

Clnpy < (&) < C' (),

and
Capy <n—AMki(z, X, y,x,6) <C'(n), iflgl =1,

on the support of the integrand after the change of variable. As in the proof of Lemma 1.7, these estimates
allow to show that p,  ,(x, X',&,y,m) = pro0,&y.n — Aki(z, X', y, x,£)) is bounded w.rt. z’ and z
with values in Sﬁ'"g"' (X x X') x R" X Y x R™), space of multiple symbols. By Theorem 2.2.5 in [22] and

Remark 1 that follows (see also [20]), we see that g ;) 0.0(x', x,£) is bounded w.r.t. 7" and z with values in
S;”gm’(X’ x X X R™). m
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A.3 Proof of Lemma 1.13

Let y € € (R") be such that y(&) = 1if |£] < % and x(&) = 0if |£] = 5 2 and set yoo(,&) 1= 1 — /\(((1 T)@)
with 0 < 7 < 1. we write ¥ = Fo, + ¥ with

Full)(X') = f f SO f (€ u(x) dE dx,
where

S e, x,8) = ff H=An=86) HiAGk (@X'y.£)—ki (z.x.y.m) Xeo(11,8) o z)(x V.67 T, z)(x y, 1) dn dy.

with o, ) = 0 ge ~Ah@xy8) - Thus, the amplitude T (%, ,€) is bounded w.r.t. A and z with values in
S;ﬁm(p (X XY xR".
.0")

We set
(X', y, x.&,m) := (y = xln = &) + Atk (2, X', y.§) = ki (2, X, y. 1))
‘We observe that
Vel < C),  [Vapl < Cp=£:6), Vel < C(y = x),
and we thus find

(A.19) 0 0] < @ i — .6y — ).

Computing the partial differentials of ¢ w.r.t. y and n we find

Vao(x',y, x,&,m) =y — x = AV, ki (2, x,y,1),
Vy‘p(xl,y, x’ f’ n) = Tl - f + A(V}kl(z7 -x’sy9§) - Vyk](z, -xs y, TI))'

We have
(A.20) (V' y, x,£,m)) 2 C(y — x).
To estimate |V,¢| from below we write
Vyp(x',y, x,€,m) = 1= &+ AV ki(z, X, 3, ) = Vyki(z, x,5,m) + A(Vyki (2, X', 3, &) = Vyki(z, x, Y, ),
and with Taylor’s formula we have, for A sufficiently small, we have
In — &+ AV, ki(2, x,y,€) = Vyki(z, x,y,m)| = Clnp - €.
We also have
IA(Vyki(z, X', y, &) = Vyki(z, x,y, 6))] < AC(E).

Thus, for A sufficiently small, on the support of y (7, &), where |7 —&| > %(1 —7)(&), the previous estimates
yield

(A21) |Vy§0(x/9 Vs X, f’ 77)| 2 C|77 - f' > Cl<§>

Introducing
To = (Vo) 2(1 = iV,0lV,)), T = —ilVye 2(V,lV,),

by integration by parts we obtain

f(z’.z),oo(x', X, {_‘) = ff ei(y_x|7l_f>eiA(kl(Z,x’,y,‘f)—kl(Z,x,)'aﬂ))(T(f])l(T{ )I(Xoc(n» g)o_(z Z)(x y’ é:) O—(Z Z)(x y’ )7)) d-n dy
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for an arbitrary large / € N. Because of estimates (A.19), (A.20), and (A.21), we find that f, ;) . is bounded

w.r.t. 7’ and z with values in S (X’ X X X R"). In particular, for a seminorm p on S gﬁn(p o) there exists a

seminorm g on § 2 such that

P(fz.0) <C Q(O'(z’,z))2~

We now consider the remaining part of the operator, Fy. We set yo(7,€) = X(ﬁ) =1 - xe(,8).
Observe that on the support of yo(77, £), we have

(A.22) C(&) < () < Cé).
With Taylor’s formula we write

1

kl(z’ xl’y’ 5) - kl(zv XY, 77) = f(<x’ - x|32kl(z,x + S(-x’ - .X), y.n + S(éj - 77))>
0

+(€ = 70k (2, X + S = x),y,n+ 5 = ))) ds
= (¢ = ki (2 X 3, %, ) + (€ = ki (2 X, 3, %, €, ).

By Theorem 1.1.9 in [15], and (A.22) we observe that, on the support of yj, k, satisfies the estimates of
symbols in S w.r.t. the variables x’, y, x, 5 (or equivalently w.r.t. X, y, x, &), uniformly w.r.t. z. It is also
homogeneous of degree one in (¢, 1), for || large.

Similarly we can consider I:q bounded w.r.t. to z and satisfies the estimates of symbols in S°, w.r.t. the
variables x’, y, x, , and homogeneous of degree zero in (&, i7), for || large. We thus obtain

%(u)(x’) = ff ei(x’—xlf) ([f ei(_v—xlr]—@p(z/,z)(xr’y’ X, f, T])

x eiA(X’—XIfq(z,x’,y,x,&n)) eiA<§—nI1:q(Z,X’,y,x,&n)» dn dy) u(x) dé dx,
where

p(Z',Z)(xl9 y, X, f’ 77) = /\/0(7], é:) Q'(z/,z)(x,, Yy, f) E(Z’,Z)(x’ Yy, 77)

The change of variables

En) = E+ M@ Xy, x, 6, + Ay (2, Xy, %, E0) = Ha g y0(E1)

is a global diffeomorphism for A small enough (uniformly in z’ and z in [0, Z]). We denote

E Mz yxEm) = Hy o o (€,

which, for A sufficiently small, and || sufficiently large, is homogeneous of degree one in (£, 17), continuous
w.r.t. z, and smooth w.r.t. A and satisfies the estimates of symbols in S I w.r.t. to the variables x/, v, x, 1 (or
equivalently w.r.t. X', y, x, &) by Lemma 2.24 in [28] and (A.22). We thus have

Fou)(x) = f f ol =36) ( f f =311 it E=nR1 (0¥ 3K ETNAZY 5 E)
X p(Z/,Z)(-x,’ y3 -x’ (55 ﬁ)(A’ Z, -x’? y’ x’ g’ )7)) jl (A5 Z’ -x/’ )’» x’ §7 77) d )7 dy) M('x) d-g d‘x'

where J1(A, z, x’, y,&,1) is the Jacobian, which is homogeneous of degree zero in (£, 7), and is continuous
w.r.t. z and @ w.r.t. A with values in the space of multiple symbols § *?((X” x X) x R" x ¥ x R") because of
(A.22). For the sake of concision, we denote E(A, 2, X', y, x,&,n) simply by E, with a similar notation for 7.

Note that for A sufficiently small, (A.22) also holds for the new variables. By Lemma 1.7 and (A.22),

g(z,yz)(x’, v, E) and g(z,!z)(x, v, 77) are bounded w.r.t. A and z with values in § ?I;?n(p,p,)((X’ X X)xR" x Y x R"),
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for A sufficiently small. A sin~1i1ar observation holds for x¢(i,£). Because of (A.22), l:q(z, X, v, x,&,1)
satisfies the same properties as k (z, x',y, x,&,n) listed above.

The change of variables y — y — Ak (z, X', y, x,&,7) = Kazx xe(y) is also global diffeomorphism for A
small enough (uniformly in 7’ and z in [0, Z]). We denote ¥(A, z, X, y, x, &, 1) = K(_Al,z,x’,x,-f,rz) (). The function
Y(A,z, X', y, x,&,m) is homogeneous of degree zero in (&, n7), for |n| sufficiently large, continuous w.r.t. z, and
smooth w.r.t. A and satisfies the estimates of symbols in S® w.r.t. to the variables x’, y, x, 5 (or equivalently
w.rt. X', y, x, £) because of (A.22). We obtain

Fu)x') = f f ) f f SO (5, BT
XTUA 2,3, %, 1) To(A 2,3, %, ) iy dy) 0 di,

where J>(A, z, X', y, x, &€, ) is the Jacobian, which is homogeneous of degree zero in (£, i7), for || sufficiently
large, and is continuous w.r.t. z and ¢ w.r.t. A with values in S (X’ x X) x R" x Y x R"). We also see that
symbol types and homogeneities of the terms in the integrals are preserved through this change of variable.
Note that we modify the form of & and 7 according to the second change of variable. We do not write it
explicitly for concision.

Setting
q(z’,z)(xl’ X, Y, f’ 77) = /\,/0(77’ 5) g(z/,z)(-x’, )79 5) E(z',z)(x’ )7, 77) jl (A, Z, X', 5)’ X, é:’ U)JZ(A» Z, .X’, ¥, X, é:a 77),

with the same argumentation as above, because of (A.22), g, ;) is bounded w.r.t. z’ and z with values in the

space of multiple symbols Sg;?n(p p,)((X’ X X)X R" X Y x R"). We have

Fo ) = [[ €9 fegol 5.6 uto) e d,
with
f‘(zl,z)’o(x,, X, é‘:) = ff ei()'—x|7]—§) CI(X,, Y, X, f? 77) dn dy = e_i<D/“|D”>q(-x,’ Yy, X, fv 77) |y:x,n:§ .

From Theorem 2.2.5 in [22] and Remark 1 that follows (see also [20]), we obtain that fi; ;o(x", x, &) is

bounded w.r.t. 7 and z with values in § gﬁn(pp,)(X’ X X x R™).

With the form obtained for fi, )0, from the continuity of the composition-like formula we obtain the second
part of the statement. ]

A.4 Proof of Theorem 2.20: sharp Garding inequality

We follow the proof of the sharp Garding inequality as given in [22, Section 3.4] and [38, Chapter VII]. We
introduce the following function

(A.23) F(£,0) = &) qu&) 2 (¢ - &),

where g is real, even, belongs to @ (|¢] < 1) and satisfies [ g(¢)* d¢ = 1 and we set

W(Z 2.6 = f F( n)p(e )F .7 dn,

which is the so-called Friedrichs’ symmetrization of the symbol p. By Theorem 3.4.2 in [22], since p(x, &) €
MS })(X x R"), the function u(Z, x, ) is a double symbol that belongs to M;S FI;O(R” X X x R"™) (Note that
since we are not interested in an asymptotic formula for u(Z, y, £) the first part of the proof of Theorem 3.4.2
in [22] applies to the case p = ¢ = %). Then we have u(Dy,y, Dy) = v(x, D,), with the symbol v(x, &) €
MkS})(X x R") given by [22, Theorem 2.2.5]

V(.6 = f f DUz x— y,8) dy 2,
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as an oscillatory integral. The operator v(x, D,) is formally self-adjoint and v(x, D,) is non-negative as an
operator, i.e., for u € (% (R"))f we have (v(x, D,)u, w2y 2y = 0 [22, Theorem 3.4.3].

Next, we study the properties of (v — p)(x, £). We set

(. = . x.8) = [ Fen?pimdn = [ e+ o@hgr do
1
= &)+ [ [(1=90p(e + so@ 0@ (@) ds g0 do
0

by the second-order Taylor formula using that [ g(c-)’do = 1 and that g is even. We observe that || < 1
on the support of the function g(o-) which gives

(A.24) CE) < (E+(©)10) < CHE).
From (2.8) we thus obtain that vy(x, &) — p(x, &) € MkSS(X x R™). We now prove the following lemma.

Lemma A.2. The symbol (v — vo)(x, &) belongs to MkSg(X x R").
Proof. We first define

(A.25) VI06E) = =i Y 00 p(d X le=g = =i )| f O, F(&,11) 0x,p(x, 1) F(E,1) d
J J

and prove that v;(x, &) € MkSg(X X R™). From [22, Lemma 3.4.1] aij(g, 1) has the form

I FEN =O™ > 00, @ (-6 7) " @a)( - 667,

yI<1, yisy
where g, € S757"7"(R"). From the definition of F in (A.23) we write the jth term in the sum in (A.25)
as
a2 AwOH=10" Y 0@ [ (-0 Gan-o@™

yI<L, i<y

X 0., p(x, 1) q(( — €& 7) dip
== D Uy ® f (T q)(0) q) By, p(x, € + (€)F o) dor,

<L, i<y

after a change of variable. There are two cases to consider in the sum in (A.26): a) y; = yandb)y; =0
and |y| = 1. From (A.24), and (2.7) and from the fact that ¢, , € § I’})(R”) we find that the contribution from
case a), i.e.,

WOE) = =i ) Uy € f 7 (Fhg)(@) (o) Dy, plx,€ + (€)1 ) dor,
ly1<1

satisfies Iv(lj’“)(x, £)| < C. Computing 6§6§v(1j’“)(x, &) we find it to be a linear combination of terms of the

form

DI ATE f T (Dq)(0) q(0) 1 0x, p(x, € +(€)20) dor, with By + > = B.
lyl<1
From (A.24) and (2.8) we see that 82070, p(x, £ + (£)0) is in MeSp ™ "P)(X x R") uniformly w.r.t,

o, o] <1 and 6[;‘ Wy,(€) is in Sl_})_w‘l(X x R"). As a result, v(lj’a)(x, &) belongs to MkSg(X x R™). We now
consider the contribution from case b) in the sum in (A.26), i.e.,

W) = =i ) U 0(@) f (9)(@) (@) B, p(x, € + (&) ) dor

=1
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We write
0P E+(©)10) = Dy p(x.O) +(©)? Y 0 f (D0, P, E +107E)?) dt.
! 0

Since [ 02.q(0) q(o) do = 0 (g is even), the first term gives no contribution and we obtain

W ==i@) Y vol@ [ f (@9)@) () 1 De s, ). + 104)?) di o

lyl=1.1
Since by (2.8), dgdx, p(x, &) € MS X x R") and ¢,,0(€) € S | O(R") we obtain that v\*”(x, &) € MSO(X x
R") from (A.24).
We have thus proven that v (x, &) € M;S 2(X x R™). We now compute (v — vo)(x, &).

v = )%, &) = f e YEOF mp(x =y, MF(E ) dy dl dny - f F(n)*px,m) dy
®

- f OEOFL ) (p(x = yom) — p(xam) FE ) dy di diy
®

f —yje " YEOF (L, )0y, p(x — sy.mF (€ ) dy dZ dn ds

—i e VE09, F(£, )y, p(x = sy, mF (&, m) dy d¢ d ds,

"2
-

@\

J
after an integration by parts. Arguing similarly, computing (v — vy — v{)(x, £), we obtain

(v—vo - vl)(x 3]

- f > f 00 F(Zm) (0, p(x = 5y.1) = By, pCrm)) F(& ) dy 42 dp ds

J

1
f s f e VEOG (F(m) Y p(x— ' sy, )F(& ) dy d{ dn ds ds’
jl

00
11
0'{ stfﬁz JF @, 77)3)(, o P((1 = s"$)x + s"sy, P F (€, mdnds ds’}.
oo

Observing that

p(x,y,n) = ff s[)i‘f’xlp((l —s')x+ ss'y,n)dsds’
0

is in M;S })(X X Y X R") by (2.8), and then following the proof of Theorem 3.4.2 in [22] we find that its
Friedrichs’ symmetrization,

A8, 8) = [ F@mpteynF & m d,
is in MkS};O(X X R" x Y x R") and thus c')?l_,m,a(x, £, y,€)isin MkSB’O(X X R" X Y x R") and finally we find

v=vo—vx, &) € MkSg(X X R™) by Theorem 2.2.5 in [22]. With vi(x,¢&) € MkSg(X X R™) as proven
above, this concludes the proof. ]
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End of the proof of Theorem 2.20. As a consequence of the previous lemma we find that (v — p)(x,¢) €
MS B(X x R™) and we have

Re(p(x, DX)M, M)((LZ)k’(LZ)k) = (V(X, Dx)l/t, M)((LZ)k’(LZ)k) + Re((p — V)()C, Dx)l/t, M)((LZ)kV(LZ)k) > —C||u||(2L2)k,

by the Calderén-Vaillancourt Theorem (see [22, Chapter 7, Sections 1,2] or [38, Section XIII-2]). [ ]

A.5 Proof of Theorem 3.4

Let s € R. At first we choose the symbols u(z, x, &) and o ;) (x, £) with compact support w.r.t. the variables
x and £ to be able to carry out some integral calculus in a simple manner. In the proof, we shall always
assume that A is sufficiently small to apply the invoked properties and results.

We let u € & (R"). We then have
Mz, x, Dy) © Ay pu(x”) = f f e Mz, X ) f f X0 (W, E)e BN EYO y(x) dE dx dy dx’

o o b (o’ £) i (o, N
- ff ) (/f IO, X ), (X, )N DI C D) gy dx’)e’ DX Dy(x) dE dx,

where we have set Ty Z)(z, X, &) = 0@ (X, E)palz, X', &) (recall that the matrices ¢i(z,.) and by(z,.) com-
mute). We set

ZI(z’,z)(x”, é:) - ff ei<xlr,x,|n7§>#(z’ x//’ n)g . (X/, é;)el'Abl(Z,x’,,f)e—iAbMZ,x”’g) d]] dx’.

Observe that g, ;) may not be a symbol. Using properties of the matrix b;(z,.), we write

B8 = [[[ €0, 1) (0 (WG e, ) (8
X (w(z, e IAdb@)y .)) ", &) dn dx’,
and we proceed as in the proof of Theorem 2.22: with Taylor’s formula we write
vz, X', €) = v(z, X7, &) + (¥ = x"[0(z, X', X", §)),
with #(z, X', x”, £) bounded w.r.t. z with values in (MS (X’ x X" x R™))". We obtain
4o =49+ ‘I?Z/,z) + sz',z)’

with g - as given in (3.3) and

A2 @8 i= [[ &G o 8
% W(Z, )C/, f)eiAdb(z,x’,f)<x/ _ X’,|\7(Z, x/, .X", f))e—iAb(z,x",f) d’] dx’,

and

(A28) g8 1= = [[ O o (8
X w(z, ¥, £)eMBEX O BE D (3 [5(z, X, ¥, €)) dn d .

Because of the diagonal form of the term /(4@ £)-d:@x"9) in (3 3), the result of Proposition 1.10 for the
scalar case (see also Remark 1.11), can be applied to the first term, g, ;). The assumptions made above on
the supports of u(z,.) and oy, can thus be relaxed in the expression of the term g in (3.3), which is
then bounded w.r.t. z’ and z with values in MS g;l’(y;;’p,’p,,)(X x R™).

We shall now focus on the remainder terms, qu, ) and 4. .- Note that these two terms are not symbols in
general. However, we shall prove that the remaining operator, with (well-defined) kernel

»”_ b iAby (2
fe’(x xm(CI(z’,z)+qzz’,z))(x"’f) @) d¢,
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can be written in the form A R, ), with R .y satisfying estimate (3.2) and with this regularity property
still holding as we relax the assumptions made above on the supports of u(z,.) and o ;. We shall actually
obtain that the components of the matrix operator R, ;) are sums of scalar FIOs of the form studied in
Section 1.

We write (x; — x7)e"" 1170 = ig, /" ~11"9 An integration by parts yields

Gl n (a6 = —i f f IV e 1 ) | (o (e ) (4, €)
X ¥(z, x’,x”,§)> e i dy

We now expand the first exponential term to first order, i.e.,
1
eiAd/7(z,X',§) =1+ lAdh(Z xl é:) f eitAd},(Z,x',.f) dt
0

and we obtain
b _ ba b1
q(z’,z) - q(z’,z) + Aq(z’,z)’

with

g () = —i f f IOV X ) | (0 (WE D) (L €) T X x7,€)) e D an

and

1
o8 = [ [[[ 0 (T ) | (O e 1 55) (2,
0

Xz, ', X", £)) e dn dx' dt.

1

b1 associated with the latter term, qf;, iy

2 has for kernel

The operator R

=(2'2)

1
Ry (", x) = f f T g (1, x, &) dE d,
0

with

L]b’l «, x",f) = ff X=X =) <V7]H(Z, ¥, 1) | (g(z’,z)(')w(z’ )dy(z, -)etiAdh(z,.)> (xl,f) xi(z, X, x;/’§)> dn dx’.

—(z',2)

Note that qi’;‘ )(t, .) is not a symbol, in general. However, by formula (1.3), each component of the matrix
—(Z°,2

kernel Ré’z’,lz) (x”’, x) is a sum of (scalar) FIO kernels of the form

1
f f Y THOMINGGXTE) ) (X E)dEdt, 1 <1<k,
0

(recall that dj,;, 1 < I < k, are the diagonal entries of the dj,) and with a symbol A, ;) (x”, &) that is bounded

w.r.t. to z” and z with values in S ﬁ;”(’p o p,,)(X” x R"). By Theorem 1.12, we thus obtain

b,1 1
IR o ez oy < K,

uniformly w.r.t. z and A, A sufficiently small. This estimate holds if we relax the assumptions made above
on the supports of u(z, .) and o, ).
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Similarly, we expand to first order the remaining exponential in the term qi’éf’z) and obtain
q(z .2) q(z 2) + Aq(z ,2)’
with
Gy 6) = —i f f I (Ve X ) | (0 (W, ) (8, €) Xz, X, ¥, €)) dndx,

and

1
0200 = = [ [[ (Tt | @y O DO 7 X 4. )
0

X b(z,x", &) iy dx’ dt.

The operator R>2 associated with the latter term, q(, Y has for kernel

(2'2)
1
REZ 0 = [ [0 g2 (el 086" g,
" —\7',Z
0

where q o is in fact a symbol, that is bounded w.r.t. to 7’ and z with values in § ﬁ;}’&p p,,)(X x R"). By

Prop051t10n 2.6, we have
b2 2
”R(Z/,z)||((H("))k,(H(’V_”"'"l>)k) S K( ),

uniformly w.r.t. z and A, A sufficiently small. As above, this estimate holds if we relax the assumptions
made above on the supports of u(z,.) and o ).

For the remaining term, q(bz’ff .» Which is actually a symbol, we ‘undo’ the integration by parts, which reads
(A29) g2 () = [[ IO X 1 D) = e X )

We proceed similarly with the term qu) in (A.28). An expansion to first order of the exponential term
yields

c _ ca c,1
Ao = ey T A4 )
with

4,6 = = [[ IO ) (@O DX = X ) iy

and

q(z Z)(x// é:) = — fff l(x —X \'] f} (Z, ’n)(g(z/’z)(.)w(z’ .))(x',f)

X (dp(z, X, &) — dp(z, x", €)M D=y — x|z, X', X7, &) dnp dX’ dt.

We observe that
c,a bb _
oo T eo = 0.
An integration by parts, in the term q@,l’z) yields
1
(A30) g (x".6) = f f f IO (T, k) | (@ (W D, €)
0

X (dp(z, X, &) = dp(z, x", £)) ™MD =" 57 7y, f)) dn dx’ dt.
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Because of the diagonal form of the term /2@ @X-£)-d@x".9) in (A.30) the result of Proposition 1.10, can
be applied to qzl . (see Remark 1.11). The assumptions made above on the supports of u(z,.) and oy 4

can also be relaxed in the expression of the term qu’,l iy which is then bounded w.r.t. 7’ and z with values in

MiS ﬁ;”&) o p,,)(X x R™). Applying Proposition 2.6 to operator RE;,I ,)» associated with symbol qzzl 4> Which

kernel is

R0 = [0 e g
we obtain

| 3
”Rzz,’z)||((H(x))k’(H(xfm—m’))k) < K( )

Finally, we have obtained R ) = RV 4 RP2 4 RE! which yields the expected estimate,

(z',2) (2) (7,2)°

”ﬂ(z’,z)|I((H(“'))k‘(H("’”’””/))k) < K(l) + K(z) + K(3)

A.6 Proof of Proposition 3.6

In the proof, we shall always assume that A is sufficiently small to apply the invoked properties and results.

We define

Uy =006 Bro:=alx,Dy) oGy

We recall that ||G )|l gy < C by Proposition 2.6 uniformly w.r.t. z” and z. With Assumption 3.5 we
then have

lta(z, x, Dy) — a(z', x,Dy)) o g(z’,z)”((H“‘))k,(H“‘U)k) < CA".
It is thus sufficient to prove
”?I(z’,z) + %(Z/,Z)||((H(x))k,(H(x—l))I<) < CA,
uniformly w.r.t. 7 and z in [0, Z].
‘We have
W HW)(x') = - ff ei<xl’x‘5>g(z,’z)(x’,§) a(z,x', &) e M@y (x) dé¢ dx.
With a first-order Taylor formula, we find
(A31) 8w (%, 8) = I + Ag (%, ),

with g ) bounded w.r.t. A and z with values in M;.S°(R" X R"). We can thus write A, ) = A+ AN
with

Ay HW)(x') = - f f TG L (XL E) alz, X, €) e MY Dy (x) dE dx,

and A

=(Z',2)
Proposition 2.6 since the symbol g ., (x', £)a(z, X', £) is bounded w.r.t. 7’ and z with values in M;S ' (R" x
R").

By Theorem 3.4, we find

is given by the same formula with g ; replaced by I,. We find ||9~:[(Z/’Z)||((H(s))k’(H(sfl))k) < C by

By =By + ARy
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with
(A.32) ||R(Z/,Z)||((H(.v))k’(H(.xfl))k) <C, 0<z<7<7Z

and the operator B, , is given by

B pu(x’) = f f T g (X, £ Y Dy(x) de dx,
with
(A.33) q(zf,z)(x’, &) = ff X =6 a(z, x', M8 5 EPaE Y, EW, Y, f)eiA(db(Z:yf)_db(qulﬂ'f))v(z’ v, &) dn dy,

which is bounded w.r.t. to 7’ and z with values in MS IIJ(X x R™).

Making use of (A.31) once more, we obtain
(A.34) ‘I(z’,z)()@ ‘f) = g(z’ z)(x’ f) + AQ(Z’,Z)(X’ é:),

with both q.. and g, ;) bounded w.r.t. to z" and z with values in MkS (X xR™), with q.. and g, ) given

by express10n (A.33) with the term g, ,(y, &) replaced by I; and g (3, &), respectlvely We then define

the operator %(Z 5 by

B, &) = f f et q, (', &)eB01 @Yy (x) d¢ dx,
> =(Z'2)

and the operator B, by the same formula with q.. replaced by G ;). We have B,y =B, ) + AB . .
1z 2.z
and ||%(Z/,Z)”((H(A))k’(H(.\'fl))k) < C for some C > 0.

It is now sufficient to prove

’
”%(z',z) + §(z’,z)||((1-1(A>)k,(1.1<s71>)k) <CA 0s=z<Z<2Z

when A = 7’ — z is sufficiently small. We may therefore conclude by the second part of Proposition 2.6 and
the following lemma. L

Lemma A.3. The matrix symbol
ka2, x,6) =g, (%,6) = a@ x,&) paz, x.£)

is equal to ARa(z, x, &) with ka(z, x, £) bounded w.r.t. A and z with values in MkS;(R” x R™).

Proof. We first write «a(z, x, &) = ka1(2, X, &) + ka2(2, x, €) with

ka1 (z, X, &) 1= 6_1(2,’1)(% &) — (alz, ) # palz, )(x, &),
KA,Z(Z, X, f) = (a(Z’ ) # PA(Z» ~))(xa é‘:) - d(Z, X, é:) pA(Zv X, g)’

and work on each term separately.

The composition product of ¥/DOs [14, Theorem 18.1.8] gives the following oscillatory integral represen-
tation

(a(z, ) # pate. N(x, &) = f f S (2 1) pazny. &) dip dy.
‘We thus obtain

ka1(2x,8) = f f I 42 ) a2 ys EW(z, 3, E)@NBEIODBETD _ [y s ) dn dy,
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which we write
1
ka1 x.6) = iA f ﬁ N a(z, x, ) palz, ¥, W, y, Oz, x, 3, E)e"™ (2, y, &) dn dy dt,
0

where

/J(Zs XY, f) = db(Z, Y, f) - db(Zs X, f) = <y - xlh(Z9 XY, é:))s

for h(z, x, y, &) continuous w.r.t. z with values in (M;S (X x X x R"))", homogeneous of degree 1 by estimate
(1.1.9) in [15]. We observe that

1
kan(@x &) = A f f f (V, M0 | a2, x, mpaz ys W, v, V(2 x, v, E)E™ D2y £ dn dy dt,
0

which after integration by parts gives

1
ka1ex® = A [ [0 (V00,500 | patery. O W v, € he, o 3,6))
0

% eitAy(z,x,y,E)v(Z’ v, &) dndydt |y-y,

Because of the diagonal form of the term e/***@*V%) the result of Proposition 1.10 for the scalar case,
can be applied. The first composition formula in Proposition 1.10 with x’, # and z as parameters (see also
Remark 1.11) yields «a1(z, x, &) = Aka1(z, x, &) with Ra 1(2, X, ) continuous w.r.t. z and bounded w.r.t. A
with values in MiS J(R" X R").

For the second term ka2(z, X, &), since pa(z, x,€) given in (3.1) satisfies Property (Qr), we can apply
Lemma 2.19 with m = p and obtain ka2(z, X, &) = ARa2(z, x,&) with kaa(z, x, &) bounded w.r.t. z and A
with values in § })(R” x R™). [ |
A.7 Proofs of Propositions 4.4 and 4.5

Proof of Proposition 4.4. In the proof, we shall denote by g a seminorm on § ;",’m’ (X’ xR"x X x R") and
by p a seminorm on %’ (R"), which may change from one line to another.

We set
)i [[[ I dy iy = [ I (6, D) i

which is well defined since & € ./(R"). By Proposition 1.6, for all , «’, 8 multi-indices and all N > 0,
there exist p and g such that

[N O BFEV(X, %, )] < Cq(or z.) pu) (" F P X x e R, £ € R,
with ¢’ = 1 — p’ (Note that we have used (4.1) here).

Defining ¥ as the Fourier transform of v w.r.t. x we obtain for all multi-indices @, ', § and all N > 0 we
have

KN 05 050(x, 1, )| < Cqloer z.0) pw) @™ PP X e R, £ € R,
and thus for all multi-indices @', 8 and all N > 0 we have
KENOT I €,6)] < Cq(or2) pw), X €R', £ €R™.
We now define

wx, x') = /ei<"‘5>e_A/h‘(Z"x’g)f)(x',éf, &) dé¢,
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We have F» » »(u)(x") = w(x’, x"). Applying Proposition 1.6 once more, we find for all multi-indices ¢’,
andallN >0

N %0% w(x, x')| < Cqloqrz)pu), x,x €R",

x7x

which concludes the proof. ]
Proof of Proposition 4.5. The kernel of H,» . = Fir v 0 EC¥ is given by

e e ) o
Hir oo (Xoy) = [ 010800 G (6 i dx .
®
with
A1 (7 X E) ,—Al (z,x, -5
g(z”,z’,z)(x”f’ x,n) = O-(Z”,Z/,Z)(x,’ & x,me 1D ’](an)<77> 5

which is bounded w.r.t. to 7/, 7’ and z with values in S ﬁ’i’;(;;,)(X’ X R"” x X x R"). The kernel of the adjoint
operator 7-((*1,, .o 1s given by

. vty =ik ) AtV —iD Ky (& ) —
H(z”,z’,z)(y’ ) = fez<y 1) =iy 1) i1 1) =i ki (21 f)g(z",z’,z)(tl’f”t’ ) d€ dt diy'.
®
The kernel of H(,» ) o H:

(2,7 2) 1s given by

Koo, 1) = f X =E) I K1 & £) pie—tln) ik, (zx) =Ky (@)
®
X Oy & E X T, (1, e WMD) gy dx ag ag’ dr.

(We freely interchange the order of integration, as is usually done with oscillatory integrals without intro-
ducing regularization cutoff functions explicitly [15, Section 7.8].)

As in the proof of Theorem 2.22, with Taylor’s formula, we write
ky (2, %,1) = ky (2, 1,) = (x = 1lk(z, X, 1,1))
and perform the global change of variables n — n + Ak(z, x,1,77) = H ax(). We denote
(A 2. x, 1) = HZYy (),

which we write 7 for the sake of concision. We have

K(z”,z’,z) (x/, t/) — f ei(x —X|f>eiA ki(z'x ,E)ei<x—t\7]>g(zu,Z”Z)(‘xr, §, X, ﬁ)
®
X T (€ 1, NN (2 x 1) dip dx dE A€ dt,
where Jx(z, x,1,77) is the Jacobian which is bounded w.r.t. 7 and z with values in S°(X x T x R"). By
Lemma 1.7 (adapting the proof to multiple symbols), g(z,,’z,’z)(x’, & x,7) = fi(x',& x,t,n) and g(z,,’z,’z)(t’, &t =

H(, €, x,t,n) are bounded w.r.t. 7, 7 and z with values in S f;l;"(; ;,)(X "XR"X(XxT)xR") and S gl;”(p‘ ;,)(T’ X
R” X (X x T) x R") respectively.

‘We then observe that
Keroo(X 1) = f OGN E (8 £ D INRCTE) 4 G g
®
with

Pz & x, 1,8 = f f Mg X EXT) T (L E 1A X, 1,7) di .
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Adapting the proof of Theorem 18.1.8 in [14], we find that p(» » ;(x', &, x, ¢, ¢’) is a multiple symbol which

is bounded w.r.t. z”, 7’ and z with values in Sﬁf(;?;")”ﬂ)(X’ xR"x (X xT")x R").

Now, adapting the proof of Lemma 1.13 to the case of a multiple symbol we now find that the operator
K . With kernel K,» (¥, 1) is a pseudodifferential operator with an amplitude bounded w.r.t. 7", z’

and z with values in Sif?;;"g S X T XRY).

Composing K~ ) on both sides by E (s=m=m") we find that E(="~—"") o F(er.z50 E® is bounded from L? into
L? by the Calderén-Vaillancourt Theorem (see [22, Chapter 7, Sections 1,2] or [38, Section XIII-2]). [ ]

A.8 Proofs of Propositions 4.6, 4.7 and 4.8

Proof of Proposition 4.6. In the proof, we shall always implicitly assume that A and A’ are taken suffi-
ciently small to apply the invoked properties. As in the proof of Theorem 2.22, we observe that there is no
loss of generality in assuming g~ (%, &) = g (X, &) = I.

With Assumption 4.2, we write L(z, X', &) = L(Z', x', &) + (z — DI, 72, %, &) which yields

(A.35) HE () = ff dOL X E)e NNV OR(, ¥ €) u(x) dx dE + AKY )X,
with II‘K(‘;,‘Z)II((HM)k HOP < C, for some C > 0, by Theorem 1.12, since a; satisfies Assumption 2.2.
Since ||H!",

. . .. lr . .
@l (HOW (HOW) < C, it thus suffices to consider the composition of ?{(z,,’z,) with the first term in

(A.35). We call F(,~ » ) the resulting operator. It is formally given by

Fior)(X') = f f X f L ) u(x) dx i,
with
firz (X ) = f f EEN (7 X E)e NNV IR X E) LTy, e A IR(z, y, 1) dy dE.

From the regularity of L(z, x, £) w.r.t. the variables x and £ that we assumed, we write

L(Z,y,m) = L(Z, X', &) + (y = X'|Li(Z, X', €, y,m) + (n = ElLo (2, X', €, y, 1))

with Taylor’s formula. We then have fi.» » (X', n) = fizr 2 2..(X', 1) + fior 2 (X", 1) Where

forza,m) = f f XM ! E)emNNE XD AN Ry ) dy dE,

and

f(z”,z’,z),b(x/7 77) — ff ei(x’—y|§—TI>L(Zl’ x',f)e‘A"’”(Z's""g)R(z’, x’,f)
X ((y = X|Li(Z X, €y, ) + (1 — €L, X €,y m))e "M DRz, y, ) dy dE.

The part of the operator associated to fi.» . 4(x,77) corresponds to 7{(11,,’1,) o 7{& 2
second part associated to fi;» ) »(x’,77). As in the proof of Lemma 1.13, we introduce y € € (R") be such
that y (&) = 1if €] < % and y(¢) = 0if |¢| > % and set yoo(17,¢) := 1 _X((I?T_)i&)’ with 0 < 7 < 1. We have

S 22060 = f 2 90.00(X 1) + fior 2 5 p.0(x",17) where

. We now study the

f(z”,z’,z),b,m(x,, ]7) = ff ei<X17y|§7n>Xoo(77, é:)L(Z/, x/’é;)efA’a](Z’,X’f)R(Z” x”é‘_‘)

X ((y = X|Li(Z X € y,m) + (1 = ElLa(Z, X £, y, m))e 2 S DR(z, y, 1) dy dE,

with a similar definition for fi;» .y 50(x’, ) With (77, &) replaced by xo(1,€) = X(ﬁ) =1—xo(,8).



48 A. Some technical proofs
We consider the component (f(; 7 5.00)ij (X', 1), for 1 < i, j < k. It is a sum of terms of the form

f f IEDy (0, E)or1 (7, X E)o2(Z s X &y, sz, v, 1) dy dE,

with (X', y,&,1n) = (X' —yl€ —n) + Ndp(Z', x',&) + Adg,(2,y, 1), for 1 < [,m < k (we have used Assump-
tion 2.2 made on ; and the notations that were introduced in Section 2). Since e %&¥£) apd =4 dym(@ym)
are bounded w.r.t. 77 and z with values in Sg we may take o1 (z, X', £) and 03(z, y, ) to be bounded w.r.t. 7/
and z with values in $)(X’ x R") and S)(¥ x R") respectively and the term o5(z’, X', £, y,77) to be bounded
w.r.t. 7 with values in the space of multiple symbols §*0(X’ x R" x Y x R").

We observe that |V ¢ < C{¢ — ;&) and |V, < C(x" — y). We thus have
(A.36) 107,001 3EM] < C(g — s £ — yylel.
We note that

(A.37) Vel > C(x' = y),

and we see that

Vyp = —(€ = 1) + AVydp (2, ¥, 1)
==& =) + A(Vydgm(z, y,1) = Vydgm(z, ,£)) + AVydg (2, , ).

With Taylor’s formula we have, for A sufficiently small,
| - (f - TI) + A(Vyd/f,m(z’ Ys 77) - Vydﬂ,m(za Vs g))' = C|77 - gl

We also have

|AVydpm(z, y, )| < AE).

Thus, for A sufficiently small, on the support of y (1, £), where |7 —&| > %(l — 7)(&), the previous estimates
yield

(A.38) IVyel = Clip — &1 2 C'¢6).

Estimates (A.36), (A.37) and (A.38) allow to conclude that f;» - p0(x’,17) is bounded w.r.t. 7, z’ and z
with values in § (X’ X R"), as in the proof of Lemma 1.13. First-order Taylor expansions of the terms
e NM@ND and =AM @D wirt. to A’ and A respectively, in the expression of fi. s . pe(X’,17) thus give

f(z”,z’,z),b,oo(x/’ ) = f 2 200 (', n) + max(4, A/)f(z”,z’,z),fi,oc (', ),

where

ﬁz",z',z),c,oo(x’7 77) — ff ei(x’—)’|§—77>)(m (TI’ f)L(Z/, ¥, f)R(Z/, X, f)
X ((y - xl|Ll (ZI, X/, é:’ Vs TI» + <77 - f'LZ(ZI’ X/, é:’ Vs TI»)R(Z’ Y, 77) dy df
= [ e L ) - L& X ORG ) dy €

and fi;7 7 7)3.0(X’, 1) is bounded w.r.t. Z”, z’ and z with values in S (X’ X R").

We now consider the term fi, 5 5.0(x", 77). In the support of yo(1, £) we have

(A.39) C(&) < () < CKé).

We then note that L(z', X', £), R(Z', x', &), Li(Z, ¥, &€, y, 1), R(z,y,n) satisfy the estimates of symbols of order
0 w.r.t. to the variables x’, y and & (or equivalently w.r.t. x’, y and n) and Ly(Z’, x",&,y,n) satisfies the
estimates of symbols of order —1 w.r.t. the same variables. Proceeding as in the proof of Theorem 2.22 or
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the proof of Theorem 3.4 (integrations by parts and Taylor expansions of some exponential terms), we find
that

f(z",z’,z),b,O(x,’ 77) = f(z”,z’,z),c,O(x/’ 77) + maX(A, Al)f(z”,z’,z),lO(x/a T]),

with

formeo(Xom) = f f AN OLE X ORE X )
X ((y =X |Li(@, %, €, y,m) + (= E|L(Z, ¥, €, y, MRz, y, ) dy d€

= [ o O o)~ L X EDRG o) dy
The operator F. 73,0, associated to fi,» . »13,0(x’, 1), satisfies

||‘7:(Z”,Z/,Z),3,0||((H(s))k’(H(:))k) <C,

uniformly w.r.t. 7/, 7’ and z. In fact, to find such an estimate, because of the multiple symbols involved, we
use Proposition 4.5 in place of Theorem 1.12 of Section 1.

Setting f(z”,z’,z),c(x,’ 77) = f(z”,z’,z),c,O(x/’ 77) + f(z”,z’,z),c,oo(x" 77) we obtain

firzrmeom) = f f Ly, ) - L, X E)R(z, v, 1) dy dE
=L — (L(Z, ) #RE, N ) + Afirr 2 pa(X 1),

with f.r ;) 4(x’, 1) bounded w.r.t. 7, 7’ and z with values in S °(X” x R"), using again Assumption 4.2. This
concludes the proof. |

Proof of Proposition 4.7. We proceed as in the proof of Proposition 4.6 and use the notation introduced
there. The counterpart of the term fi, » » (X', 77) is then

f f FENED (L v ) - L K £)) dy dE,

which in fact vanishes. [ ]

Proof of Proposition 4.8. We write
HE, .y 0 Mz, x,Dy) = H, ) — H 0 Lz, x, Dy) o R(z, x, Dy).
As a particular case of Proposition 4.7, we have
1 1
Hizy 0 L x, Do) = Hiy ) + AKi o,

with [ K 2,1 ll oy oy, < € uniformly w.r.t. z” and z. Arguing as in the proof of Proposition 4.6, with
Proposition 4.5, we obtain

7‘[8,31) - 'H(IZ,,Z) o R(z,x,D,) = M(z,x,D,) + AKz 52,
with [| K 20l gy gy < C uniformly wrt. 2’ and z. Making use of Assumption 4.2, we have M, =
My + AK )3, with ||7((z/,z),3||(( HOY oy < C uniformly w.r.t. 7 and z.
A.9 Proofs of Lemmata 4.11 and 4.12
Proof of Proposition 4.11. From Proposition 2.6 and Theorem 2.22, there exist S > 0 and M > 0 such that
-,
I

S, IHE

S, and, ”7'((1’,1)||((H(.:>)ky(]-1(x))k) < 1+ MA,

S,

((HOK,(HO)) = ((HO(HO)) =

”Z>”<(H<S>>&<H<f>>*> =
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uniformly w.r.t. 7 and z, 0 < z < 7/ < Z, for A = 7’ — z sufficiently small.

We choose S > 1 and Ay sufficiently small such that 1 + MA < S and to apply the invoked properties.
There is no loss of generality in assuming / = 0.

If we consider the generic term in the sum of order r in the definition of J ¢ .« we find

Ir r
| # ) @ KO H iy im0

(Z(l') """" Z(m,+l

2 I'=3r-2
*0+ 0 (rz("‘Z’l)ym‘z""]*])) o 7< o 7_[(2(111171) ’’’’ Z((])) ||((H(‘V))k,(H(‘T))k) S Sr+ Kr(l + MA) " .

The number of terms in the sum of order r is less than (I’ — 1)(/’ —3)--- (' —2r+ 1)/r!. In any case, I’ being
even or odd, we can estimate this number of terms from above by 2’(E(Z;/ 2)). In fact, the number of terms in
the sum is over estimated but this estimation will suffice to our purpose. We obtain

r Ir r
A Z 7_{(1(1')’_"’1("1,»,1)) oK o W(z(rllyfl)"__’z(m,.,l+l)) S
2r—1<mp<l/ -1 r r 5 SNk
: (Z(mrn’_u’z(mpl))Oq(oq-{(z(mrl)’,,_,z(o)) ((HOY(HO))
1<my<my-2
E('/2) e
< (2A)f( K"S"™2(1 + MA) =32,
r

Observe that this estimation is sharp in the case r = 0 but becomes rather crude when r becomes large, from
the over-estimation made above. In particular, for r = E(’/2) this estimate is much larger than the estimates
ABUIDK” (in the case I’ is even) and © S AEU/2 K" (in the case !’ is odd) that we can directly obtain.

Summing the estimates we obtain

||j(z(”),z(0>)”((H(s))k’(H(.‘))k) < Z 2A)

r
r=0

E('/2)
E l’ 2 1’
( ( / ))Krgr+2(l "[ﬁ)l —3r-2

B (E(l’ /2)) ( 2ASK raer

=S%(1 + MA)™2 _
( ) ;4 1+ MA

)r ((1 + MA)Z)

r

In the case where [’ is even we obtain

2ASK

—_
1+ MA

E('/2)
(1+ MA)Z)

2 -2
||j(ZU’),Z(U))||((H(“'))k,(H(“'))k) < S (1 + MA) (

Thus, there exists C > 0 such that
1T conll oy oy < 821+ CAP2 < 821+ ZC/N)Y,

which is bounded, with S 2 exp(CZ) as an upper bound. The case where I’ is odd yields a similar bound. m

Proof of Proposition 4.12. Let us first consider the composition of H (’;,,H) ) with the term of order 0 in

.....

Ir Ir _ Ir r
(A.40) 7-{(1(“1) oHlw oy = 7—[11“1) oyt ApK o 7—17<,,,1) _____ 0y

) [CURL I (z

Let us now consider the composition of ‘H(’f(,,m ) with the term of order r > 1 in J ) .0, in (4.8) in
Definition 4.9. We address three cases in the sum defining the term of order r: m, = I' = 1, m, = I' - 2,
m, < I’ — 3 (the last case only occurs when I’ — [ > 4).

Case 1: m, = I’ — 1. The term under consideration in the sum of order r in (4.8) is

r r r r
A‘B § 7( © 7-{(Z(I’—Z) Z(m,_|+1)) ©:-+0 7—((1(/"2_”,'“ 7z(ml*-l)) o (}( ° 7{(1("'1_]),“',1(1))'

.....

I+2r-3<m,_ <'~3

1+3<my <m3—2
l+1<my<my-2
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After composition with ‘7-( from the Lh.s., we simply obtain

(I/+1) (1/))

(A41) ;3 (l;,,m, iy @ Ko H

l+2r—3$m.,,] <r'-3 .0 7..{

1+3<my <m3—2
l+1<my<my-2

o
@2, 1+

(’”2 I) (m]+l))oq(o(]_{ (my— l) (I))’

which is of order r.

Case 2: m, = I’ — 2. The term under consideration in the sum of order r in (4.8) is

r
Ay wﬂﬂw)« wﬂbéwmy
H2r=3<m,_ <-4 .0 o 7(‘ o 7_{

(Z(mzfl)'m’z(mlﬂ)) Z(ml 1) Z(1))'

/+3§mé <m3-2
I+1<m| <my-2

By Proposition 4.6, we have

Ir
7_{1(“” ) W(zm,z”/‘”) 7‘((7(1/+]) Dy + Aﬁj_;(]( + Mz“"'”'

We thus obtain three terms when composing with 7'( D from the Lh.s.:
r Ir r
(A42) B 7_(,(/'+|) -1y oKo 7_( ' -3) (myp_q+1) .
(z s D) (z ., )
142r-3<m,_ | <I' 4 o HT oK o H"
1+3<m :<m 2 (z(mz—])’_" Zm H)) (z™ D z0)?
DS Sm3

I+1<my <my~-2

and
r r
(A.43) GMamo Ko > Hiyy iy 0K L, o
142r-3<m,._ <l'-4 e r
r W?, 1 [¢] 7‘{(1(”[2 . Z('"IH)) 7( o 7-{(20”1’” ZU))’
I+3<my<m3 -2 T T
I+1<my<my-2
which are of order r and
r+1
(A.44) Ay E KoKo 7-{ . myen) © K o 7—{7%_1 .. gDy ©
1+2r=3<m,_1<l' -4 .
! ° (Z<m2—1>,...,Z<m1+n)°(K°7—( =) .. Ay

I+3<my <mz—2
l+1<my <mpy-2

which is of order r + 1.

Case 3: m, < I’ — 3. The term under consideration in the sum of order r in (4.8) is

r r
‘13 § 7-{(Z(I’ Z(I’ I)) ﬂ(z(l/*l))'.'yz(ll1r+l)) q( W(Z(m,—l) . (m 1+l)) ©
I+2r—1<mp<l'=3 ...0 r ° (K‘ o H"

. (my=1) ... Amj+1) @M=D . )
1+3<my<m3-2 (z L4 ) (Z -,z0)

I+1<my <my-2

which, in fact, contains all the remaining terms of order r in J .« ,o,. By Proposition 4.7 we have

Ir 1 1
%uwm)wwﬂw H o+ ApK.

(z
iti i ... . from the Lh.s. we thus obtain two terms:
(1 +1> (1 ))
r Ir r
(A45) AEB Z }{(Z(’,H),...,Z(m’“)) o (]< o w(z(”lrfl) Z(m, |+1)) o
1+2r=1<mp<l’ -3 e
-l o 7-{(10"2 e gy © Ko 7‘(7(,,,] b 20y
1+3<my<my-2
I+l§m?5m;—2
which is of order r and finally
r+l1 r r
(A46) AT D KoM, . o KoH L, i ©
1+2r—1<mp<l’ -3 . r
. ° W(Z(mzfl)’myz(ml+l)) oK o Wz(ml D 20)?

1+3<my<m3 -2
Lel<m)<my-2

which is of order r.

51
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Let us first consider the resulting terms in which the operator M .1, does not occur.

Term of order 0 There is only one term of order 0 coming from (A.40), i.e. H", .
(Z(l D Z(I))

Terms of order 1 < r < E((I’ +1~-1)/2) — 1 The terms originate either from terms of order r in J o) .0,
and can be found in (A.41), (A.42) and (A.45), or they originate from terms of order r — 1 in J ) ;0
and can be found in (A.44) and (A.46) (and (A.40) in the case r = 1). Gathering these terms we

obtain
r Ir r
Ay } : Haron,amwny © KO My n,1o0) ©
1+2r=1<mp<l’ e} r [e] [e] r
- 7-{(Z(V”Z’”,-“,z‘”’l*”) K 7—{(z(""’”,"-,z‘”)

I+3<my <m3—2
l+1<my<my-2

which is exactly the term of order r in @+ Z0)-

Terms of order E((I’ + 1 —I)/2) In the case where I’ — [ is even, then the term of order E((/’ — [)/2) in
NEGEORY A\% D2g¢o. .. 0K, with the generic operator appearing (I' —[)/2 times. The resulting term

Ir

after composition with H”, =, from the Lh.s. is
(20 +D) z07)

I'=D/2e 4l

A‘(B 7—((;(,,“)’2(,,)) oKo---0K
(I'-1)/2 times

which is exactly the term of order E((" + 1 = [)/2) in J o+ ;0.

In the case where I’ — [ is odd, the terms of order E((’ — [)/2) in (2 20y are

r-1-3)/2
r-1-0)/2 1
A\(B / (7_((Zr</'>’z(1'-1>) oKo---oK+ Z KooK o (rZ(HZ/uH)’Z(HZm)) oKo---0oK )
(I'-1-1)/2 times m=0 (I'-1-1)/2—m times m times
The resulting term after composition with ", = from the Lh.s. is
(Z(l +l)’z(l ))
V+1-D)/2 I=1-1)/2¢ 41

(A4T) AT KooK HAGTT Hlvo vayo KooK

('+1=1)/2 times ('=1-1)/2 times

('=1-3)/2
r-1-0/2 I
+ ASB )/ Z 7-{(;(/,”)’1“,)) o 7( 0:+-0 ‘]( o(]_{g(l+2m+l),z(1+2m)) o) ‘]( 0:+-0 7(
m=0 ('=1-1)/2—m times m times

+ A‘(l/}’flfl)/zMZ”/H) ° (](‘ o 7( 0:++0 7( .
————
(I'-3-1)/2 times
The first term in (A.47) is exactly the term of order (" + 1 — [)/2 in J ¢+ .0y The next two terms,
along with the term of order (/' —1-1)/2 that originate from terms of order (' —1-10)/2—1in J o ,0),

and can be found in (A.44) and (A.46), yield the term of order (I — 1 —1)/2 in J o+ 0. We address
the last term involving the operator M_ ¢, in (A.47) below.

We now consider the terms in which the operator M.y occur. Observe that there is no term of order 0.
The term of order r > 0, given in (A.43) is in fact the term of order r — 1 in the definition of 7 (-3 70
composed from the Lh.s. by AgM_ v+ o K.

In the case where I’ — [ is even, then the higher-order term with the operator M,y occurring originates
from the term of order (I' — 1)/2 — 1 in J ) 0, and yields the last term in Nf (-3 20y, Which is of order
('=D/2-2=E(" -3-1)/2), composed from the Lh.s. by Ag M_s+1, o K (see (A.43)). In the case where
I’ — lis odd, then the higher-order term with an occurrence of the operator M.+, is given in (A.47), i.e.

A% TPAM o KoK o0 K
3 | S ———
(I'-3-1)/2 times

which is the term of order (' —3—1)/2 in the definition of (-» ;0y, composed from the Lh.s. by Ay M w1 0
K.

Adapting the proof of Lemma 4.11, we obtain the norm estimate (4.10) for operators of the form of .7 () Z0)-
]
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