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Abstract

Magneto-transport experiments have been performed on Quantum Cascade Detectors. These experiments

lead to the identification of the different electronic transitions from subbands in one cascade period to

subbands in the following one. These transitions contribute to the total current flowing through the structure

in the absence of illumination. This dark current is well described within a simplemodel based on the

sum of diffusion events from one cascade to the next one through optical phonon mediated transitions. For

the first time, the optical and electronic properties of such a complex heterostructure can be fully predicted

without any other adjustable parameter than the doping density. This opens the way to a full quantum design

of an infrared detector, in contrast with the phenomenological optimization ofstructures usually performed

in this field.
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I. INTRODUCTION

The electronic transport properties of complex heterostructures are the subject of an increasing

number of theoretical studies. The Quantum Cascade Detector(QCD)1–4 recently proposed and

realized as a photovoltaic version of Quantum Well InfraredPhotodetectors (QWIPs)5, is a typical

example of such a mesoscopic and complex structure. A periodcontains an “active region”

dedicated to the absorption of infrared photons from the ground level to the upper levels of the

structure (E1′ to E7 andE8 as shown in figure 1). A following part is optimized for the electrons

transfer through the period. The QCD structure is designed togenerate an electronic displacement

under illumination through a cascade of quantum levels without the need of an applied bias

voltage (see figure 1). Owing to their photovoltaic behavior, QCDs can work with higher

doping levels than QWIPs and therefore achieve higher quantum efficiencies, longer integration

times. QCDs can also be used at low voltage and present lower dark currents. To optimize the

performances of QCDs, a deep understanding of the transport in these complex heterostructures

is required. In a photovoltaic detector, the zero voltage resistance (usually expressed asR0A

whereA is the area of the device) is one of the relevant figures of merit to characterize the dark

current measured in the absence of illumination.R0A can usually be described with an activation

energyEa, corresponding to the energy of the transition responsiblefor electron transfer from one

contact to the other. In the case of QCDs, this picture has to berevisited because the dark current

generally involves several diagonal transitions from one cascade to the next. In order to reveal

all these parallel contributions, magneto-transport measurements as a function of temperature has

been performed (reported in part III) allowing a clear identification of the different electronic

paths that contribute significantly to the dark current. This technique acts as a very effective tool

for checking that the quantum structure of the detector has been well designed. To address this

complexity, a model of the electronic transport has been developed. This model (presented in part

IV) takes into account all the possible electronic paths through the structure and contribute as

parallel channels to the total current.

Let us first summarize the different rules for the design of a QCD structure, which results in

a trade off. For a high photoresponse, the first requirement is to achieve a large optical matrix

element between the fundamental level (E1′) and the upper levels of the active region (E7/8 in

our structure, whereE7/8 stands for “E7 andE8”). A second important factor is to achieve a
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good extraction of the excited electrons from the upper levels to the right of the structure, down

through the cascade (E7/8 down toEj, j ≤ 6). This implies both a sufficient density of subbands

in the cascade and a good coupling between the different levels (through the electron-phonon

interaction). Further, in the photovoltaic mode the noise of the detector is given by the Johnson

noise,4kBT/R0. A third requirement is therefore to realize a high resistance device. As will

be shown in detail later, the total conductance of a quantum cascade structure can be described

as the sum of the partial conductance of different paths in parallel, each of these paths being an

intersubband phonon-mediated transition from one subbandin a cascade “A” (Ei, i ∈ [1′ − 8′]) to

another subband in the next cascade “B” (Ej, j ∈ [1 − 8]). The total current density can then be

expressed as:

J = e
∑

i∈A

∑

j∈B

(

Gij(V ) − Gji(V )

)

(1)

where e is the electronic charge andGij is the global electronic transfer rate from subbandi

to subbandj, which depends on the applied biasV and can be calculated with the introduction

of the electron-phonon Hamiltonian. To lower the conductance, it is necessary to “separate” two

successive cascades (thus lowering theG1′j). This separation is nevertheless in contradiction with

the two requirements for a high photoresponse i.e. a good optical couplingE1′ → E7/8 and a

good relaxation couplingE7/8 → Ej (j ≤ 6). Intuitively, a good trade-off is found when the dark

current is governed by the optical transitionE1′ → E7/8. An old principle of infrared detection

is found: it is desirable to have a dark transport with an activation energy as close as possible

to the optical transition. According to theGij formalism, the condition can be expressed simply

by stating thatG1′j has to be of the same order thanG1′7 andG1′8. To calculate the different

transitions rates, an accurate model is necessary. In addition, experimental results of the different

cross transitions are also necessary to validate the model and the whole design process. In the

following, we will show that magneto-transport experiments are a key tool for this purpose.

II. QCD STRUCTURE

The QCD under study is a GaAs/AlGaAs heterostructure with a detection wavelength of8 µm.

It consists of 40 identical periods of 7 coupled GaAs quantumwells (QWs). Al0.34Ga0.66As bar-

riers are used in order to reach a conduction band-offset of275 meV. N-doping of the first QW
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(Nd = 5 × 1011 cm−2) of each period allows to populate its first energy levelE1′ in the con-

duction band with electrons. The layer sequence inÅ starting from the first quantum well is as

follows 68/56.5/20/39.55/23/31/28/31/34/31/39/31/48/22.6 (the barriers are represented in

bold types). Figure 1 recalls the principle of the device: owing to the absorption of a mid-infrared

photon, an electron is excited from the fundamental level ofthe structureE1′ to the two excited

statesE7 andE8 which are delocalized across the first two QWs. High matrix elements between

E7/8 and other energy levels (E6 andE5 in particular) allows the electron to be transferred to the

right QWs as a result of a series of LO-phonon relaxations through the cascade of levels. The

period is repeated in order to increase the induced potential that results from this electron transfer.

By closing the circuit, a significant photocurrent is expected without any applied bias. The studied

samples are100 × 100 µm2 square mesas obtained by Reactive Ion Etching (RIE).

III. MAGNETO-TRANSPORT MEASUREMENTS

R0A is usually described with an activation energyEa, corresponding to the energy of the main

electronic transition in the structure. However, dark current (Idark) in QCDs often originates from

several parallel cross transitions for a fixed temperature.As a result, a simple analysis taking into

account one activation energy only does not accurately describe the system. In this context, our

objective is to identify by magneto-transport measurements, the different transitions involved in

Idark as a function of the temperature.

QCDs are mounted inside an insert at the center of a superconducting coil capable of a max-

imum field of 15 T such that the magnetic field lines are perpendicular to the QWs planes and

parallel to the current flow direction:I ‖ B. The experiment consists of measuringIdark along the

device, kept under constant voltage, while the magnetic field is swept up to its maximum value for

three different temperatures40 K, 80 K and 120 K. Current measurements have been performed

under a bias ofV = 0.1 V for T = 80 K and120 K. At 40 K however, the current measured under

0.1 V was too low and results in a noisy curve. Therefore, a highervoltage of1.5 V is applied to ob-

tain a higher current value and a reliable measurement. A typical result is illustrated in figure 2(a)

for a temperature of120 K. The dark current shows slight oscillations as a function of the magnetic

field, superposed on a general behavior corresponding approximately to a quadratic decrease. The

latter contribution can be accounted for by using a second order polynomial fitaB2 + bB + c. For

example, a possible fit is found takinga = −3.52 × 10−6, b = −2.86 × 10−5, c = 5.75 × 10−3.
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Then, this line shape is removed from the experimentalIdark(B) curve and gives∆Idark shown in

figure 2(b). This latter curve reveals a clear oscillating behavior which can be understood on the

basis of the following arguments.

At zero magnetic field, all the quantum levels of a period haveplane-wave-like energy disper-

sion in the direction parallel to the layers and all the corresponding energy subbands are nearly

parallel (we do not consider the nonparabolicity effects which are negligible in GaAs for our en-

ergies6,7). Most of electrons are localized in the first energy subbandE1′ . LO-phonon absorption

and emission occur between this ground subband and several subbands of the neighboring cas-

cade. At0 V, emission and absorption of LO phonon processes inGij andGji compensate each

other resulting in zero current (the system is at equilibrium). With an applied bias, this equilibrium

between emission and relaxation is broken and results in a dark current. When a magnetic field is

applied, the subbands split into ladders of discrete Landaulevels given by:

En,p = E0

n + (p +
1

2
)~ωc (2)

wheren andp are integers,n is the index of the subband andp index of the Landau level,~ωc =

~eB/m⋆ is the cyclotron energy, andm⋆, the effective mass in GaAs.E0
n is the energy of the

subband edge at zero magnetic field. The effect of the magnetic field on the QCD dark current

is quite similar to what happens in a three-level active region of a quantum cascade laser where

electron-scattering from the upper state is modulated by magnetic field8. Indeed, depending on

the value of the magnetic field, the Landau level arrangementstrongly influences the absorption

or emission of optical phonons from the various|1′, p〉 levels to|n, 0〉, where|n, p〉 designates

thep Landau level originating from subbandn. Figure 3 illustrates the effect of the Landau level

quantization by a magnetic field on the dark current taking asexample level|6, 0〉. Electrons are

mainly localized in the fundamental levelE1′ and are distributed over the different Landau levels

|1′, p〉 according to a Fermi-Dirac distribution. At8.8 T, considering a temperature such that|1′, 5〉

is populated, LO-phonon absorption from|1′, 5〉 to |6, 0〉 is inhibited because this process does not

conserve the energy. For a higher value of the magnetic field (9.6 T), levels |1′, 5〉 and |6, 0〉

are separated by the exact energy of a LO-phonon (~ωLO = 36 meV in GaAs), permitting LO-

phonon absorption or emission: electrons can short-circuit the cascade generating a dark current.

Dark current shows a maximum whenever an electron on the|1′, p〉 level can be excited to a|n, 0〉

Landau level by absorption of one LO-phonon. This is called amagneto-phonon resonance (MPR)

and appear as oscillations of the dark current as a function of the magnetic field. Maxima of these
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oscillations correspond to a Landau levelp in resonance with the upper state minus~ωLO. On

figure 2(a), we can see that these oscillations only begin from 5 T. As Landau levels are broadened

by disorder, their finesse increase as the square root of the magnetic field. Therefore, at high

magnetic fields, the related Landau level becomes increasingly populated, increasing the effect

of MPRs. For a fixed temperature, several transitions1′ → n participate simultaneously to dark

current such that each transition generates its own series of oscillations. Considering a transition

from |1′, p〉 to |n, 0〉, values of magnetic fieldB1′,p, which give rise to resonant optical-phonon

absorption, satisfy the following equation:

En,0 − E1′,p(B1′,p) = ~ωLO (3)

or

∆E0

n−1 − ~ωLO =
p~eB1′,p

m⋆
(4)

where∆E0
n−1 is the energy separation between subband 1 andn at zero magnetic field. Oscilla-

tions appear periodically as a function of the inverse of themagnetic field, the period of which is

given by:
1

B1′,p−1

−
1

B1′,p

=
~e

m⋆(∆E0
n−1 − ~ωLO)

(5)

The measurement ofIdark(V,B−1) allows us to determine∆E0
n−1. However, asIdark(V,B−1) re-

sults from the superposition of several series of oscillations, it remains difficult to identify clearly

the periodicity relative to each contributing transition.For this purpose, we performed a Fourier

transform of the corresponding∆Idark(V,B−1) curves in order to extract the characteristic fre-

quencies of each oscillation series.

Since the working temperature of our QCD is around80 K, we first show the experimental

results at this temperature (figure 4): this is the most important result as far as the device is con-

cerned. For a full understanding of the system, it is also very interesting to show the same results

at40 K and120 K (figure 5 and 6, respectively).

In these figures, the Fourier transform of the dark current measurements are reported. To put

in evidence the energy of the electronic transitions, the Fourier transform amplitude is plotted as a

function of∆E (through∆E = ~eB/m⋆ +~ωLO) rather than with the initialB-scale. The inset is

a guide for the eye to identify the electronic transitions observed in these spectra. Table I provides

the global transition ratesG1′j, i.e. the number of transitions per second and per square meter from

the fundamental level1′ to the levelj, with j = {2, . . . , 8}, in the neighboring cascade. (see Part
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IV) For each temperature, the experimental results extracted from each spectrum can be faced to

these theoretical calculations.

At 80 K (figure 4), six peaks can be identified. The peaks at52, 64, 83, 118 and145 meV

correspond to LO-phonon assisted cross transitions from the fundamental subband1′ to subbands

3, 4, 5, 6 and7/8 respectively. These peaks are well explained by the model since the calculation

shows significant transition rates,G1′j. The last peak, at around180 meV, is attributed to phonon

absorption from subband2′ to a quasi-bound stateE9′ situated at the border of the conduction band.

This transition is possible because the subbandE2′ is not totally empty and the overlap between

these two statesE2′ andE9′ is significant. We can notice that the two first peaks corresponding

to phonon absorption fromE1′ to E3 andE4 have high amplitudes. These amplitudes are fairly

large, in contradiction with the quantitative values ofG1′j. We attribute this effect to all the electron

relaxations in the cascade that give also rise to oscillation series in the same energy range. As a

result, a quantitative study in this energy range is not accessible for the moment where intercascade

resonances are mixed with intracascade resonances and/or elastic scattering. At higher energies,

the model provides quasi equal global transition rates for transitionsE1′ to E5, E6 andE7/8, in

good accordance with the amplitude of the relative peaks in the spectra. These measurements

show that the magnetic field is a powerful spectroscopic toolto probe the different transitions

responsible for dark current in QCDs.

At 40 K (figure 5), we identify four peaks. Two dominant peaks at49 meV and63.5 meV

originate from the oscillation series associated with absorption of a LO-phonon fromE1′ to E3

andE1′ to E4, respectively. Likewise at higher energies the curve exhibits two peaks at85 meV

and120 meV which representE1′ →E5 andE1′ →E6, respectively. For the same reason as before

a quantitative comparison of the amplitude of these peaks isnot accessible.

Finally, at 120 K (figure 6), we observe the disappearance of the transitionE1′ → E6 and

the parallel enhancement of both transitionsE1′ → E7/8 andE2′ → E9′ . These results are in

excellent agreement with the calculations of the model providing two equal global transition rates

for transitionsE1′ → E7 andE1′ → E8 (see table I). We can add that a non negligible quantity of

electrons are now present in level9′ at high energy: relaxations of electrons from this last subband

will give rise to a higher energy peak in the spectrum that is present in figure 6 from165 to

200 meV. Note that at this high temperature, the intracascade transitions and/or elastic scattering

give a wide peak at low energy.

We have shown that the transitions contributing to the dark current are highly temperature
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dependent. These results can be understood by the fact that dark current is a result of a compromise

between the temperature-dependant number of electrons available at a certain energyEj − ~ωLO

and the matrix element between the fundamental subbandE1′ andEj in the neighboring cascade.

G1′j is proportional to both, for the former preventing highj Ej-paths at low temperature and for

the latter, decreasing the effect for lowj Ej-paths owing to the low spatial overlap betweenE1′

andEj. This explanation appears very clearly in the expression ofthe global transition rateGa
ij

(the superscript “a” means that this rate describes only phonon absorption mediated transitions

from subbandi to subbandj)9:

Ga
ij =

∫

+∞

Ej−~ωLO

Sa
ij(E)f(E)

(

1 − f(E + ~ωLO)

)

nopt ×D(E)dE (6)

whereSa
ij is the electron−LO phonon transition rate10, f(E) andf(E+~ωLO) are the Fermi-Dirac

occupation factor atE andE+~ωLO,D(E) is the two-dimensional density of state of the subband

j andnopt is the Bose−Einstein statistic function which accounts for the phonon population. In

this expression, the compromise emerges from the matrix elementSij and the two termsf(E) and

f(E + ~ωLO) that give approximately the electron density in the subbands i andj.

To conclude, as well as establishment of the different transitions involved in the transport,

their importance as a function of temperature is also demonstrated: at low temperature, the very

low occupation factor of high energy levels forbids their participation to the transport. At higher

temperature (more than100 K), these high energy levels dominate the transport thanks to their high

matrix element withE1′ . The most interesting situation is at80 K, as it is the optimal temperature

for a focal plane array at8 µm wavelength. At80 K, the different transitionsE1′ → Ej seem to

have similar importance, and are all identified. The “rule ofthumb” for the design of a QCD, as

detailed in the introduction is found again: at this workingtemperature,G1′j for j ≤ 6 should be

slightly lower or equal to theG1′7 andG1′8. To put accurate numbers on these quantities, part IV

concentrates on the modeling of these global transition rates and of the current.

IV. THEORETICAL MODEL OF DARK TRANSPORT IN QCDS

In this part, we will describe in detail the model that leads to theG1′j shown in table I, and

to theI(V ) curve of the QCDs. This model is able, without any adjustable parameter, to give an

excellent value of the resistance of a QCD. Starting from the well-known electron−LO phonon

transition rate8, this model is based on an analogy with the p-n junction, an archetype system where
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two reservoirs (the conduction and valence band) are separated by a conduction bottleneck. In our

case, it has been shown that intra-cascade global transition rates are several orders of magnitude

higher than inter-cascade global transition rates such that two neighboring cascades (A andB)

act as two reservoirs separated by a bottleneck. As a result,in the same way as in a p-n junction,

quasi-Fermi levels can be associated with each cascade and,starting from this hypothesis, a simple

expression can be derived for the resistance of the device atzero bias:

R0A =
kBT

q2

∑

i∈A

∑

j∈B

Gij

(7)

whereT is the temperature and the termGij is defined by the sum ofGa
ij andGe

ij calculated

at equilibrium i.e. without any applied voltage (inGa
ij and Ge

ij, the superscript “a” or “ e”

stands for phonon absorption or emission, respectively). This expression ofR0A as a function

of
∑

i∈A

∑

j∈B Gij results from a calculation of the current from the electronsgoing through an

imaginary surface separating the two reservoirsA andB. The detailed derivation of (7) can be

found in ref9. Here, instead of the classicalR0A parameter, we will present the results through the

conductanceG0 which is directly proportional to the current through the device:

G0

A
=

1

R0A
=

q2

kBT
×

∑

i∈A

∑

j∈B

Gij (8)

According to this expression, transitions appear very clearly as many parallel paths for electrons

to join cascadeB from cascadeA. Expression (8) can also be seen as an Einstein relation, linking

a macroscopic transport propertyG0 to microscopic diffusion coefficientsGij. This relation is

expected since the transport is described as a diffusion process resulting from a non-homogeneous

chemical potential. This is indeed the case in QCDs where the current is calculated as a result of

a variation of the distribution of carriers as a function of the energy from cascadeA to cascadeB.

In figure 7, the experimentalG0/A is represented with circles and compared toq2G1′j/kBT ,

wherej = {2, . . . , 8} as a function of1000/T . This figure shows very clearly the progressive

implication of the different transitions to the dark current as a function of the temperature: at

300 K (1000/T = 3.33), as expected, the two curves corresponding toG1′8 andG1′7 are much

closer to the experimental conductance. Around80 K, dark current implicates the quasi totality

of the diagonal transitions. This is an illustration of the rule of thumb for the design of a QCD,

as discussed previously, all the transitionsG1′j show the same order of magnitude, in order to

optimize the trade-off between a high escape probability inthe cascade, a high optical coupling
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betweenE1′ andE7, and a low leakage betweenE1′ andEj, j ≤ 6. As shown in table I,G1′5

andG1′6 are slightly greater thanG1′7 andG1′8 at 80 K, which can be understood in two ways:

either this detector is considered as too noisy for a workingtemperature of80 K, or it is much

more suited for working at higher working temperature. Finally, at 40 K, G0/A is no more close

to Gij/A, as the resistance in the cascade has now to be taken into account and our model, which

only considers diagonal transitions, becomes invalid as the two cascades are no longer in quasi-

equilibrium. Another discrepancy between the model and theexperiment at low temperature is that

we have considered only the optical phonon interaction to transfer the electrons from one subband

to another11–13. Other interactions such as interface roughness scattering can become dominant at

low temperature, as shown by A. Leulietet al.14 Other interactions such as impurities scattering

and alloy scattering can also play a significant role.

Figure 8 compares the calculated (triangles) and measured (circles)G0/A: the agreement is ex-

cellent over five orders of magnitude from300 K to 80 K. This validates the assumptions that

have been made at the basis of this model: the restriction of the transfer mechanisms to the

electron−optical phonon interaction (acoustical phonons, electron−electron interactions, inter-

face roughness scattering, have been neglected), and quasiequilibrium hypothesis inside a cas-

cade. Nevertheless, at lower temperatures, a difference ofabout one or two order of magnitude

exists between the calculated and experimental conductance. In this range of temperature, tran-

sitions inside the cascade are limiting the dark current andnow need to be taken into account to

completely describe the electronic dark transport. The hypothesis of two quasi Fermi levels fails

and the determination of the voltage drop at each point of thestructure is necessary to calculate the

current. Such a complex calculation is beyond the scope of this paper and also not necessary as far

as infrared detection is concerned, since thermal imagers do not work at such low temperatures.

We can now complete these results by a comparison between theactivation energy extracted

from the experimental and calculatedR0A (see figure 9) given by slope of the logarithm of the

R0A as a function of1000/T . From room temperature down to120 K, the two curves exhibit

the same activation energy of120 meV. Magneto-transport measurements have shown that dark

current also implicates higher energy transitions (E1′ → E7/8 andE2′ → E9′). This complexity

is hidden behind a single resistance measurement; this shows the power of magneto transport

measurements. At lower temperature, a discrepancy appears: at 80 K, the experimental activation

energy is first higher (about110 meV) than the energy given by the theoretical predictions ofthe

model (80 meV). Finally, at40 K, the calculated activation energy of46 meV (transitionE1′ →
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E3) is very different from the experimental value of16−17 meV corresponding typically to the

energy of a transition inside the cascade showing again that, at low temperature, the hypothesis of

two separated cascades at quasi-equilibrium fails.

In conclusion, two different regimes in the dark transport are observed: from300 K to 100 K,

dark transport is dominated by cross transitions that is in good agreement with the model. The

model considers that the electronic displacement inside a cascade is several orders of magni-

tude faster than between two consecutive cascades. In the second regime, at lower temperatures,

relaxations in the cascade are less efficient. In particular, electrons are mostly located around

k = 0 and cannot relax easily to subbands separated by less than the energy of a LO-phonon

(E4 − E3 = 17 meV, for example).

Up to now, we have shown that our model can be used to calculatetheR0A parameter in order

to predict the Johnson noise in photovoltaic QCDs at0 V. However, the fullI(V ) of the device

is also interesting as in some cases, working with a small applied bias can become an advantage

for example in a camera. As this kind of device always presents a high non-linear resistance, it

is essential to know the value of the current along the QCD in order to adapt the applied bias

to the capacity of the read-out circuit, the detector and thecameras’ characteristics (f number,

background temperature, integration time).

As explained before, the global current density is evaluated by counting the electronic transi-

tions between two consecutive cascadesA andB. The global current density is given by equa-

tion (1). In equation (1),Gij(V ) is the sum of two global transition rates, one for LO-phonon

absorption and one for the LO-phonon emission. The current densityJ is given by:

J = q
∑

i∈A

∑

j∈B

(

Ga
ij(V ) − Ge

ji(V ) + Ge
ij(V ) − Ga

ji(V )

)

(9)

The differenceGa
ij(V ) − Ge

ji(V ) can be expressed as:

Ga
ij(V ) − Ge

ji(V ) =

∫

+∞

Ej−~ωLO

Sa
ij(E)noptfA(E)

[

1 − fB(E + ~ωLO)

]

D(E)dE × [1 − γ(E)]

γ(E) =
fB(E + ~ωLO)(1 − fA(E))(1 + nopt)

fA(E)(1 − fB(E + ~ωLO))nopt

In QCDs, as in many other photovoltaic detectors, the appliedvoltage is small. In this case, we

can assimilateα(E) = noptfA(E)(1 − fB(E + ~ωLO))D(E) to its value at equilibrium given
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by αeq(E) = noptf(E)(1 − f(E + ~ωLO))D(E). Expressing the Fermi-Dirac function,γ(E) is

simplified to:

γ(E) = exp

(

EB
F − EA

F

kBT

)

= exp

(

−qV

kBT

)

leading us to a final expression:

Ga
ij(V )−Ge

ji(V ) =

∫

+∞

Ej−~ωLO

Sa
ij(E)αeq(E)dE×

[

1 − exp

(

−qV

kBT

)]

= Ga
ij(0)×

[

1 − exp

(

−qV

kBT

)]

The contribution ofGa
ij − Ge

ji to G0/A can be simply expressed asGa
ij(0)q/kBT , and the non-

linear resistance or asymmetry inI(V ) characteristic is furthermore included in the simple expo-

nential term. In this approximation, the QCD shows a standarddiode behavior with an ideality

factor equal to1. We find a similar expression forGe
ij(V ) − Ga

ji(V ):

Ge
ij(V ) − Ga

ji(V ) = Ge
ij(0) ×

[

1 − exp

(

−qV

kBT

)]

Summing the two last expressions, the total current densityis finally given by:

J = j0

[

1 − exp

(

−qV

kBT

)]

with

j0 = q
∑

i∈A

∑

j∈B

(

Ga
ij(0) + Ge

ij(0)

)

= qGtot

Figure 10 and 11 represent the experimental (circles) and calculated (triangles)I(V ) charac-

teristic for a100 µm× 100 µm area pixel at120 K, 80 K, respectively. At120 K, using the global

transition rateGtot = 7.66 × 1021m−2s−1 provided by the model, the agreement between the ex-

perimental and calculated current is excellent over a voltage range of±0.1 V. Let us recall that

this model requires no adjustable parameter other than the doping density. At80 K, a discrepancy

appears between the calculated and experimental curve (figure 11). This divergence was expected

considering the disagreement between the experimental andcalculatedG0/A (a factor 2.3 between

the two). (A perfect agreement can be obtained using a globaltransition rate of1.47×1019m−2s−1).

At 40 K, the calculations disagree with the experimentalI − V characteristics because, the dark

current is now limited by electronic relaxations within thecascade (see above).
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V. CONCLUSION

In this paper, magneto-transport experiments have been performed on quantum cascade detec-

tors. In these complex multiple quantum wells heterostructures, the transport is shown to result

from electronic diffusion events from subbands to subbands. Many different electronic paths are

involved in the transport as different parallel channels. Magneto-transport experiments give a

unique possibility to highlight these different paths, showing separately the intersubband elec-

tron transitions significantly involved in the transport. In particular, it is shown that low energy

transitions are preferred at low temperature, while higherenergy transitions participate at higher

temperatures, where the electronic population in the final subband is thermally activated. This

shows that the conception of a QCD should include the final working temperature as a crucial

quantum design parameter.

A model describing the transport in quantum cascade structures has also been developed. It

relies on the modeling of the current as a diffusion from two reservoirs at quasi equilibrium (cas-

cadesA andB), separated by a bottleneck. To calculate the transfer rates between the subbands,

a simple perturbative approach has been developed (where they are expressed as a function of the

transfer rate at0 V) considering the electron-optical phonon interaction only. The model and the

important assumptions have been validated by several experimental results: magneto transport,

R0A andI(V ) curves.R0A as a function of the temperature is fitted by our model with an excel-

lent approximation of more than 5 orders of magnitude down to∼ 100 K, with only the doping

density as an adjustable parameter. Furthermore, theI(V ) curve of the diode, which is important

for detector integration with a read-out circuit, can also be predicted with the model, within an

excellent agreement also down to100 K (for our example of a QCD with an optical transition at

155 meV). The agreement begins to fail at lower temperature.

This kind of model is a crucial tool for the conception of a QCD structure. The QCD is the first

detector which can be completely realized and optimized without the use of phenomenological

parameter due to the fact that in a QCD, electrons only occupy two dimensional states, allowing

the realization of a robust model. This is in strong contrastto other detectors such as QWIPs

where 3D states in the continuum result in complications such as capture and escape probabilities.

These are difficult to calculate and therefore considered asadjustable parameters that have been

determined experimentally during the past 15 years.
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FIG. 1: Conduction band diagram of one period of an8 µm QCD showing the energy levels. Note that

the ground state of the first QW belongs to the former period and is notedE1′ . The arrows illustrate the

electronic path during a detection event.
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FIG. 2: (a) Dark current as a function of the magnetic field for a fixed value of the voltage0.1 V at 120 K.

(b) Dark current as a function of the magnetic field where the contribution of the magneto-resistance of the

contacts has been subtracted.
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FIG. 3: Schematic of the fundamental energy levelE1′ and the levelE6 at B = 0 T and for two different

magnetic fields. AtB = 0 T, E1′ andE6 have free particle-like dispersion in the direction parallel to

the layersE = ~
2k2

‖/2m⋆ wherek‖ is the corresponding wave number. The magnetic field breaks the

subbands into two ladders of Landau levels, represented by horizontalsegments (solid line for landau ladder

originating from the fundamentaln = 1′ state and dotted line for then = 6 state). The black arrows

represent LO-phonon absorption, allowed forB = 9.6 T but forbidden for8.8 T. For sake of clarity, all

Landau levels have been lowered by~eB/2m⋆.
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FIG. 4: Fourier Transform amplitude of experimental∆Idark vs∆E = ~eB/m⋆ + ~ωLO at 80K.
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FIG. 5: Fourier Transform amplitude of experimental∆Idark vs∆E = ~eB/m⋆ + ~ωLO at 40K.
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FIG. 6: Fourier Transform amplitude of experimental∆Idark vs∆E = ~eB/m⋆ + ~ωLO at 120K.
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FIG. 9: Calculated (triangles) and experimental (circles) activation energy as a function of the temperature.
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G1′j(m−2s−1) 40 K 80 K 120 K

1′ → 2 3.72 × 1014 6.40 × 1016 3.44 × 1017

1′ → 3 3.16 × 10
15 6.76 × 1017 4.19 × 1018

1′ → 4 1.52 × 10
15

3.01 × 10
18 3.93 × 1019

1′ → 5 9.18 × 1013
5.10 × 10

18 2.09 × 1020

1′ → 6 1.32 × 1012
5.03 × 10

18 8.72 × 1020

1′ → 7 2.56 × 1010
3.49 × 10

18
2.03 × 10

21

1′ → 8 2.90 × 109
2.32 × 10

18
2.46 × 10

21

TABLE I: Values of the global transition ratesG1′j for j = {2, . . . , 8} at 40, 80 and120 K. Bold characters

correspond to the highest values of the global transition rates for each temperature.
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