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Strong consistency and asymptotic normality of the Quasi-Maximum Likelihood Estimator (QMLE) are given for a general class of multidimensional causal processes. For particular cases already studied in the literature (for instance univariate or multivariate GARCH, ARCH, ARMA-GARCH processes) the assumptions required for establishing these results are often weaker than existing conditions. The QMLE asymptotic behavior is also given for numerous new examples of univariate or multivariate processes (for instance TARCH or NLARCH processes).

1. Introduction. In this paper the asymptotic behavior of the Quasi-Maximum Likelihood Estimator (QMLE) is studied for general R m -valued stationary process. The time series X = (X t , t ∈ Z) is defined as a solution of the equation:

(1.1)

X t = M θ 0 (X t-1 , X t-2 , . . .) • ξ t + f θ 0 (X t-1 , X t-2 , . . .), ∀ t ∈ Z,
almost everywhere (a.e.). Here M θ 0 (X t-1 , X t-2 , . . .) is a (m × p)-random matrix having almost surely (a.s.) full rank m, the sequence (ξ t ) t∈Z of R prandom vectors (ξ

(k)
t ) 1≤k≤p are independent and identically distributed satisfying E ξ 0 ) = 1 and f θ 0 (X t-1 , X t-2 , . . .) is a sequence of R m -random vectors. Various popular econometric time series models can be written in the form (1.1). The case f θ ≡ 0 and

(1.2) H θ (X t-1 , X t-2 , . . .) := C 0 + q ′ i=1 k j=1 C ij X t-i X ′ t-i C ′ ij + q i=1 k j=1 D ij H θ (X t-i-1 , X t-i-2 , . . .)D ′ ij , where 1 H θ := M θ • M ′ θ ,
corresponds to the BEKK representation of multivariate GARCH(q, q ′ ) defined by Engle and Kroner [START_REF] Engle | Multivariate simultaneous generalized ARCH[END_REF], see also Bollerslev [START_REF] Bollerslev | Modelling the coherence in short-run nominal exchange rates: a multivariate generalized ARCH approach[END_REF]. Their natural generalization, H θ (X t-1 , X t-2 , . . .)

:= B 0 + ∞ i=1 B i X t-i X ′ t-i B ′ i ,
defines the multivariate ARCH(∞) processes. If M θ ≡ I d , a process X satisfying relation (1.1) is a multivariate Non Linear AR(∞) process.

Various methods can be employed to estimate the unknown parameter θ 0 . Maximum Likelihood Estimation (MLE) is a common one. Several authors studied the asymptotic behavior of MLE for particular cases of multivariate processes satisfying (1.1), see for instance Bollerslev and Wooldridge [START_REF] Bollerslev | Quasi-maximum likelihood estimation and inference in dynamic models with time-varying covariances[END_REF], Jeantheau [START_REF] Jeantheau | Strong consistency of estimators for multivariate arch models[END_REF] for multivariate GARCH(q, q ′ ) processes and Dunsmuir and Hannan [START_REF] Dunsmuir | Vector linear time series models[END_REF], Mauricio [START_REF] Mauricio | Exact maximum likelihood estimation of stationary vector ARMA models[END_REF] for multivariate ARMA processes. A proof of the efficiency of those estimators was obtained in Berkes and Horváth [START_REF] Berkes | The efficiency of the estimators of the parameters in GARCH processes[END_REF], in the case of one-dimensional GARCH(q, q ′ ). Even if the convergence rate of the MLE can be optimal this method presents numerous drawbacks. For example, the conditional likelihood depends on the distribution of the innovations ξ t , which is often unknown, and on all the past values of the process X, which are unobserved.

In the present paper we consider an approximation of the MLE called Quasi-Maximum Likelihood Estimation (QMLE). If the sequence (ξ t ) t∈Z is a sequence of standardized Gaussian vectors, the conditional likelihood of X is, up to an additional constant, equal to where u is a finitely-non-zero sequence2 (u n ) n∈N :

L n (θ) := - 1 2 n t=1 q t (θ) (1.4) with q t (θ) := X t -f t θ ′ H t θ -1 X t -f t θ + log det H t θ .
The QMLE θ n is the M-estimator associated with the quasi-likelihood L n given as the maximizer (1.5)

θ n := Argmax θ∈Θ L n (θ).
A basic idea of this paper is to restrict the set of parameters Θ in such a way that moment conditions on ξ 0 imply both the existence of a solution X and finite moments of sufficiently high order for X. This strategy is available for the very general model (1.1) thanks to a result of Doukhan and Wintenberger [START_REF] Doukhan | Weakly dependent chains with infinite memory[END_REF], see Section 2. Then we use the moment conditions to settle both consistency and asymptotic normality, see Section 3.

We restrict the set of the parameters in such a way that we only assume finite moments of orders 2 or 4 on ξ 0 , which are necessary conditions for consistency or asymptotic normality, respectively, see for example Straumann and Mikosch [START_REF] Straumann | Quasi-maximum-likelihood estimation in conditionally heteroscedastic time series: A stochastic recurrence equations approach[END_REF] for some particular classes of non-linear time series models. In turn, these conditions guarantee the existence of moments of order 2 or 4 of X, respectively. Notice that for one-dimensional GARCH models these moment conditions on X can be relaxed, see Francq and Zakoïan [START_REF] Francq | Maximum likelihood estimation of pure garch and arma-garch processes[END_REF], Berkes et al. [START_REF] Berkes | GARCH processes: structure and estimation[END_REF]. For Markovian models, Straumann and Mikosch [START_REF] Straumann | Quasi-maximum-likelihood estimation in conditionally heteroscedastic time series: A stochastic recurrence equations approach[END_REF] achieved the asymptotic normality assuming moment conditions but the corresponding restriction on Θ is non-explicit except for the AGARCH models. In the case of ARCH(∞), the conditions are not comparable with those in Robinson and Zaffaroni [START_REF] Robinson | Pseudo-maximum likelihood estimation of ARCH(∞) models[END_REF]. Our restriction on Θ is stronger whereas we sharpen the moment conditions of order 2 + δ to the order 2 on ξ 0 for the strong consistency. Finally, for multivariate models the conditions are sharper than those in Comte and Lieberman [START_REF] Comte | Asymptotic theory for multivariate GARCH processes[END_REF] and Ling and McAleer [21] who derived the asymptotic normality for particular models under moments of order 4, 6 or 8 on X. In Section 4 we provide for the first time the consistency and asymptotic normality of the QMLE in TARCH, NLARCH and Non Linear AR(∞) models.

But to begin with, the following Section 2 deals with the various assumptions on the general model (1.1) that are needed.

Notation and assumptions.

In the sequel, some standard notation is used:

• The symbol . denotes the usual Euclidean norm of a vector or a matrix (for A a (n × p)-matrix, A = sup Y ≤1 AY , Y ∈ R p ); • For the measurable vector-or matrix-valued function g defined on Θ, g Θ = sup θ∈Θ g(θ) ; • If V is a vector space then V ∞ denotes the set of the finitely-non-zero sequences x i.e., there exists N > 0 such that x = (x 1 , x 2 , . . . , x N , 0, 0, . . .); • The symbol 0 denotes the null sequence in R N ; • If V is a Banach space and Θ is a subset of R d then C(Θ, V ) denotes the Banach space of V -valued continuous functions on Θ equipped with the uniform norm • Θ and L r (C(Θ, V )) (r ≥ 1) denotes the Banach space of random a.e. continuous functions f such that E f r θ < ∞.

2.1. Definition of the parameter sets Θ(r) and Θ(r). In proposition 1 below we provide the existence of a stationary solution of the general model (1.1). Two conditions of different types are used: the first one is a Lipschitz condition on the functions f and M in (1.1), the second one is a restriction on the set of the parameters.

Let us assume that for any

θ ∈ R d , x → f θ (x) and x → M θ (x) are Borel functions on (R m ) ∞ and that Rank M θ (x) = m for all x ∈ (R m ) ∞ . Assume that there exist two sequences (α j (f, θ)) j≥1 and (α j (M, θ)) j≥1 satisfying, for all x, y in (R m ) ∞ , f θ (x) -f θ (y) ≤ ∞ j=1 α j (f, θ) x j -y j , M θ (x) -M θ (y) ≤ ∞ j=1 α j (M, θ) x j -y j .
For some models, as mentioned in remark 2.1, it can be more efficient to replace the condition on M by the existence of a sequence (α j (H, θ)) j≥1 such that

H θ (x) -H θ (y) ≤ ∞ j=1 α j (H, θ) x j x ′ j -y j y ′ j ,
where

H θ := M θ •M ′ θ . Assuming E ξ 0 r < +∞ for some r > 0, we can define the set (2.1) Θ(r) =    θ ∈ R d ∞ j=1 α j (f, θ) + (E ξ 0 r ) 1/r ∞ j=1 α j (M, θ) < 1    .
This set depends on the distribution of ξ 0 via the moments E ξ 0 r . But thanks to the fact that E ξ

(k) 0 ξ (k ′ ) 0 = 0 for k = k ′ and E ξ (k) 0 2 = Var (ξ (k) 0 ) = 1 the set Θ(2) simplifies: Θ(2) =    θ ∈ R d ∞ j=1 α j (f, θ) + √ p ∞ j=1 α j (M, θ) < 1    .
Proposition 1 If θ 0 ∈ Θ(r) for some r ≥ 1 there exists a unique causal (X t is independent of (ξ i ) i>t for t ∈ Z) solution X to the equation (1.1) which is stationary and ergodic and satisfies E X 0 r < ∞.

This result generalizes the one proved by Giraitis et al. [START_REF] Giraitis | Stationary arch models: Dependence structure and central limit theorem[END_REF] for ARCH(∞) models. It automatically yields weak dependence properties, see [START_REF] Doukhan | Weakly dependent chains with infinite memory[END_REF] for details. For such non Markovian models, the classical Lyapunov condition of Bougerol [START_REF] Bougerol | Kalman filtering with random coefficients and contractions[END_REF] cannot be applied.

Let us now consider the special cases of (1.1) where f ≡ 0, m = p = 1 and there exists a Borel function

H θ such that H θ (x) = H θ (x 2 ) for all x ∈ R ∞ .
Corollary 1 The result of Proposition 1 holds if θ 0 ∈ Θ(r) for r ≥ 2 where

(2.2) Θ(r) =    θ ∈ R d E|ξ 0 | r ∞ j=1 α j (H, θ) r/2 < 1    . Remark 2.1
The ARCH(∞) process was defined by Robinson [START_REF] Robinson | Testing for strong serial correlation and dynamic conditional heteroscedasticity in multiple regression[END_REF] as solution of the model:

X t = σ t ξ t , σ 2 t = b 0 (θ 0 ) + ∞ j=1 b j (θ 0 )X 2 t-j , (2.3)
where, for all θ ∈ R d , (b j (θ)) j≥1 are sequences of non-negative real numbers.

Here, f ≡ 0, p = m = 1, α j (M, θ) = b j (θ) and α j (H, θ) = b j (θ). Working with the set Θ(r), larger than Θ(r), gives more general results.

2.2.

Uniform assumptions on Θ. Fix some compact subset Θ of R d . For any sequences x, y of (R m ) ∞ , the functions θ → f θ (x) and θ → M θ (x) are assumed to be continuous on Θ. As in [START_REF] Straumann | Quasi-maximum-likelihood estimation in conditionally heteroscedastic time series: A stochastic recurrence equations approach[END_REF], uniform continuity conditions on Θ are required to apply the QMLE procedure, see Lemma 1 of the Section 3. Assume that f θ (0) Θ < ∞ and M θ (0) Θ < ∞. To settle the assumptions in a short way, let us introduce the generic symbol Ψ for any of the functions f , M or H.

(A1(Ψ)) Let α j (Ψ) = sup θ∈Θ α j (Ψ, θ) be such that j≥1 α j (Ψ) < ∞. (A2) There exists H > 0 such that inf θ∈Θ det H θ (x) ≥ H for all x ∈ (R m ) ∞ . (A3(Ψ)) The function θ ∈ Θ → Ψ θ (x) is 2 times continuously differentiable for all x ∈ (R m ) ∞ and ∂Ψ θ (0) ∂θ Θ + ∂ 2 Ψ θ (0) ∂θ∂θ ′ Θ < ∞.
Moreover assume that there exist two integrable sequences α

(i) j (Ψ) j≥1 , i = 1, 2, such that for all x, y ∈ (R m ) ∞ ∂Ψ θ (x) ∂θ - ∂Ψ θ (y) ∂θ Θ ≤ ∞ j=1 α (1) 
j (Ψ) x j -y j , ∂ 2 Ψ θ (x) ∂θ∂θ ′ - ∂ 2 Ψ θ (y) ∂θ∂θ ′ Θ ≤ ∞ j=1 α (2) 
j (Ψ) x jy j .

If Ψ = H, x jy j in the RHS terms is replaced with x j x ′ jy j y ′ j . The last assumption on the derivatives is just needed for the asymptotic normality of the QMLE.

2.3.

Identifiability and variance conditions. We assume the same identifiability condition as in Jeantheau [START_REF] Jeantheau | Strong consistency of estimators for multivariate arch models[END_REF]:

(Id) For all θ ∈ Θ, (f t θ = f t θ 0 and H t θ = H t θ 0 a.s.) ⇒ θ = θ 0 .

(Var) One of the families (∂f t θ 0 /∂θ i ) 1≤i≤d or (∂H t θ 0 /∂θ i ) 1≤i≤d is a.e. linearly independent, where:

∂f t θ ∂θ := ∂f θ ∂θ (X t-1 , . . .) and ∂H t θ ∂θ := ∂H θ ∂θ (X t-1 , . . .).
The condition (Var) is needed for ensuring finiteness of the asymptotic variance in the result on asymptotic normality. For ARCH(∞), Robinson and Zaffaroni [START_REF] Robinson | Pseudo-maximum likelihood estimation of ARCH(∞) models[END_REF] give sufficient assumptions for both (Id) and (Var). They are easier to verify than (Id) and (Var) but are not as general. Alternative conditions similar to those for ARCH(∞) are not straightforward in the general model (1.1) because of its non-linear character.

3. Asymptotic behavior of the QMLE. If the model satisfies the conditions of Corollary 1, the set Θ(r) can be replaced with Θ(r) in all the results of this section.

3.1.

Invertibility. Here we follow the presentation of Straumann and Mikosch [START_REF] Straumann | Quasi-maximum-likelihood estimation in conditionally heteroscedastic time series: A stochastic recurrence equations approach[END_REF]. The approach of the QMLE is based on an approximation of

f t θ = E(X t | X t-1 , X t-2 , . . .) and H t θ = E (X t -f t θ )(X t -f t θ ) ′ | X t-1 , X t-2 , . . . by f t
θ and H t θ , defined as in the introduction. Invertibility is the property that f t θ and H t θ converge to the unobservable f t θ and H t θ , see Section 3.2 of [START_REF] Straumann | Quasi-maximum-likelihood estimation in conditionally heteroscedastic time series: A stochastic recurrence equations approach[END_REF] for more details. The following lemma states this result which is a necessary step in the proof of the QMLE consistency.

Lemma 1 Assume that θ 0 ∈ Θ(r) for r ≥ 2 and that X is the stationary solution of the equation (1.1).

1. If (A1(f )) holds then f t θ ∈ L r (C(Θ, R m )) and (3.1) E f t θ -f t θ r Θ ≤ E X 0 r j≥t α j (f ) r for all t ∈ N * . 2. If (A1(M)) holds then H t θ ∈ L r/2 (C(Θ, M m ))
and there exists C > 0 not depending on t such that

(3.2) E H t θ -H t θ r/2 Θ ≤ C j≥t α j (M ) r/2
for all t ∈ N * .

If (A1(H)) holds then

H t θ ∈ L r/2 (C(Θ, M m )) and (3.3) E H t θ -H t θ r/2 Θ ≤ E X 0 r j≥t α j (H) r/2
for all t ∈ N * .

Moreover, under any of the two last conditions and with (A2), H t θ is an invertible matrix and

H t θ -1 Θ ≤ H -1/m .
The proof is given in Section 5.1.

Strong consistency.

In the following theorem, we assume by convention that if (A1(M)) holds then α j (H) = 0 and if (A1(H)) holds then α j (M ) = 0.

Theorem 1 Assume that θ 0 ∈ Θ for a compact subset Θ ⊂ Θ(2). Let X be the stationary solution of the equation (1.1). Let (A1(f )), (A2) and (Id) hold. Moreover, if (A1(M)) or (A1(f )) hold with

α j (f ) + α j (M ) + α j (H) = O j -ℓ for some ℓ > 3/2, (3.4) then the QMLE θ n defined by (1.5) is strongly consistent, i.e. θ n a.s. -→ n→∞ θ 0 .
The proof is given in Section 5.3.

Asymptotic normality. We use the following convention: if (A3(M)) holds then α

(1) j (H) = 0 and if (A3(H)) holds then α (1)

j (f ) + α (1) j (M ) + α (1) 
j (H) = O j -ℓ ′ for some ℓ ′ > 3/2,
then the QMLE θ n is strongly consistent and asymptotically normal, i.e.,

√ n θ n -θ 0 D -→ n→∞ N d 0 , F (θ 0 ) -1 G(θ 0 )F (θ 0 ) -1 , (3.6)
where the matrices F (θ 0 ) and G(θ 0 ) are defined in (5.10) and (5.14) respectively.

The proof is given in section 5.4.

Examples.

In this section, the previous asymptotic results are applied to several examples. For ARCH, GARCH, AR and GARCH-ARMA processes, the consistency and asymptotic normality have already been settled and we compare the different conditions from the literature with ours.

For other examples, such as TARCH, multivariate ARCH and NLARCH processes, the consistency and the asymptotic normality of the QMLE are novel results. Examples satisfying the conditions of Corollary 1 are studied first.

4.1. ARCH(∞) processes. By Remark 2.1, the set Θ(r) is well-adapted to that case

(4.1) Θ(r) =    θ ∈ R d ∞ j=1 b j (θ) < E |ξ 0 | r -2/r    .
For θ 0 ∈ Θ(r), the existence of a stationary solution and of its r-th order moments is also settled in Giraitis et al. [START_REF] Giraitis | Stationary arch models: Dependence structure and central limit theorem[END_REF]. For an excellent survey about results and applications of ARCH models, we refer the reader to Giraitis et al. [START_REF] Giraitis | Recent advances in ARCH modelling[END_REF]. Here we formulate a version of Theorems 1 and 2 adapted to the context.

Proposition 2 Let Θ be a compact subset of Θ( 2) and X the stationary solution of (2.3). Assume that inf θ∈Θ b 0 (θ) > 0 and that θ → b j (θ) be continuous functions satisfying

sup θ∈Θ b j (θ) = O j -ℓ for some ℓ > 3/2.
1. If (Id) holds then the QMLE θ n is strongly consistent.

Assume that

θ 0 ∈ • Θ with • Θ⊂ Θ(4)
, that ξ 2 0 has a non-degenerate distribution. Let the functions θ → b j (θ) be 2-times continuously differentiable on Θ for all j ∈ N satisfying for all (k, k ′ ) ∈ {1, . . . , d} 2 ,

sup θ∈Θ ∂b j (θ) ∂θ k = O j -ℓ ′ for some ℓ ′ > 3/2 and g≥1 sup θ∈Θ ∂ 2 b j (θ) ∂θ k ∂θ k ′ < ∞;
If there exists a finite subset A ⊂ N such that

(4.2) ∂b j (θ 0 ) ∂θ k j∈A 1≤k≤d
is linearly independent, then the QMLE θ n is asymptotically normal, i.e., it satisfies (3.6).

For the asymptotic normality of the QMLE we use the condition in equation (4.2) coming from Robinson and Zaffaroni [START_REF] Robinson | Pseudo-maximum likelihood estimation of ARCH(∞) models[END_REF] that ensures both (Id) and (Var). Let us compare the results of Proposition 2 with those of Theorems 1 and 2 in Robinson and Zaffaroni [START_REF] Robinson | Pseudo-maximum likelihood estimation of ARCH(∞) models[END_REF]. Those authors obtained the almost sure convergence of the QMLE under moments of order r > 2 (instead of r = 2 here) and a decreasing rate j -ℓ with ℓ > 1 (instead of ℓ > 3/2 here) for the sequence (sup θ∈Θ |b j (θ)|) j≥1 . Concerning the asymptotic normality for r = 4, their conditions on both the first derivatives of θ → b j (θ) are the same as in Proposition 2. They required also conditions on the third derivatives (nothing like this here).

4.2. GARCH(q, q ′ ) models. The GARCH(q, q ′ ) models have been introduced by Engle [START_REF] Engle | Autoregressive conditional heteroscedasticity with estimates of the variance of united kingdom inflation[END_REF]. Here X is the stationary solution of

X t = σ t ξ t , σ 2 t = c 0 (θ 0 ) + q j=1 c j (θ 0 )X 2 t-j + q ′ j=1 d j (θ 0 )σ 2 t-j , (4.3) 
where c j (θ) and d j (θ) are non negative real numbers for all θ ∈ Θ. This model can be embedded in the class of ARCH(∞) models (see Giraitis et al. [START_REF] Giraitis | Recent advances in ARCH modelling[END_REF]), as one needs to set for all z ∈ C

(4.4) b 0 (θ) := c 0 (θ) 1 -q ′ j=1 d j (θ)
and

∞ i=1 b i (θ)z i := q i=1 c i (θ)z i 1 -q ′ i=1 d i (θ)z i .
In the last formula, both the polynomials are supposed to be coprime. The results of Theorems 1 and 2 lead to the consistency and asymptotic normality of the QMLE in that case. However our conditions are not as sharp as those in Berkes and Horvath [START_REF] Berkes | The efficiency of the estimators of the parameters in GARCH processes[END_REF], Francq and Zakoïan [START_REF] Francq | Maximum likelihood estimation of pure garch and arma-garch processes[END_REF] or Straumann and Mikosch [START_REF] Straumann | Quasi-maximum-likelihood estimation in conditionally heteroscedastic time series: A stochastic recurrence equations approach[END_REF]. As a consequence of the expression (4.4), the sequence (sup θ∈Θ b j (θ)) j decreases exponentially fast to 0 and A1(H) holds automatically. From Corollary 1, if θ 0 ∈ Θ(r), where Θ(r) is defined as in (4.1), the GARCH process has solutions of order r as for ARCH(∞). For instance, if q = q ′ = 1 and θ = (c 0 , c 1 , d 1 ), we achieve the optimal condition of existence of a second-order stationary solution as Θ(2) = {c 1 , d 1 such that c 1 > 0 and c 1 + d 1 < 1}. In the property below, we use the identification condition of Francq and Zakoïan [START_REF] Francq | Maximum likelihood estimation of pure garch and arma-garch processes[END_REF].

Proposition 3 Assume that Θ is a compact subset of Θ(2) defined in (4.1)
and that X is the stationary solution to (4.3). Assume that inf θ∈Θ c 0 (θ) > 0, that θ → c j (θ) and θ → d j (θ) are continuous functions injective on Θ for all j. If ξ 0 has a non degenerate distribution then the QMLE θ n is strongly consistent.

Moreover if θ 0 ∈ • Θ with • Θ⊂ Θ(4), the functions θ → c j (θ) and Θ → d j (θ) are 2 times continuously differentiable on Θ satisfying for all (k, k ′ ) ∈ {1, . . . , d} 2 , sup θ∈Θ ∂b j (θ) ∂θ k = O j -ℓ ′ for some ℓ ′ > 3/2 and j≥1 sup θ∈Θ ∂ 2 b j (θ) ∂θ k ∂θ k ′ < ∞.
then the QMLE θ n is also asymptotically normal.

Our assumptions induce the finiteness of second order moments of X. However Jeantheau [START_REF] Jeantheau | Strong consistency of estimators for multivariate arch models[END_REF] proves that moment conditions for models satisfying the Markov property are not needed for the consistency of the QMLE. In the case θ = (c 0 , c 1 , . . . , c q , d 1 , . . . , d q ′ ) the Proposition 3 simplifies:

Proposition 4 Assume that Θ is a compact subset of Θ(2) and that X is the solution of (4.3). Then, if ξ 2 0 has a non-degenerate distribution, the QMLE θ n is strongly consistent. Moreover if θ 0 ∈ • Θ with • Θ⊂ Θ(4), then θ n is also asymptotically normal.

4.3. TARCH(∞) models. The process X is called Threshold ARCH(∞) if it satisfies the equations (4.5) X t = σ t ξ t , σ t = b 0 (θ 0 ) + ∞ j=1 b + j (θ 0 ) max(X t-j , 0) -b - j (θ 0 ) min(X t-j , 0) ,
where the parameters b 0 (θ), b + j (θ) and b - j (θ) are assumed to be non negative real numbers. This class of processes is a generalization of the class of TGARCH(p,q) processes (introduced by Rabemananjara and Zakoïan [START_REF] Rabemananjara | Threshold ARCH models and asymmetries in volatility[END_REF]) and AGARCH(p,q) processes (introduced by Ding et al. [START_REF] Ding | A long memory property of stock market returns and a new model[END_REF]). Here

Θ(r) =    θ ∈ R d ∞ j=1 max b - j (θ), b + j (θ) ≤ E |ξ 0 | r -1/r    since α j (M, θ) = max b - j (θ), b + j (θ)
. Consequently, we can settle for the first time the strong consistency and asymptotic normality of the QMLE for TARCH(∞) models:

Proposition 5 Let Θ be a compact subset of Θ(2), X be the stationary solution to (4.5) and assume that (Id) holds. Assume that inf θ∈Θ b 0 (θ) > 0 and sup

θ∈Θ max b - j (θ), b + j (θ) = O j -ℓ for some ℓ > 3/2, then the QMLE is strongly consistent. Moreover if θ 0 ∈ • Θ with • Θ⊂ Θ(4), assume that the functions θ → b 0 (θ), θ → b + j (θ) and θ → b - j (θ) are 2 times continuously differentiable on Θ satisfying, sup θ∈Θ max ∂b + j (θ) ∂θ k , ∂b + -(θ) ∂θ k = O j -ℓ ′ for some ℓ ′ > 3/2 and j≥1 sup θ∈Θ max ∂ 2 b + j (θ) ∂θ k ∂θ k ′ , ∂ 2 b - j (θ) ∂θ k ∂θ k ′ < ∞ for all (k, k ′ ) ∈ {1, . . . , d} 2 .
If (Var) holds then the QMLE θ n is also asymptotically normal.

4.4.

Multivariate ARCH(∞) processes. The multivariate ARCH(∞) processes are defined as solutions to equation (1.1) where

H θ (X t-1 , X t-2 , . . .) := B 0 (θ) + ∞ i=1 B i (θ)X t-i X ′ t-i B ′ i (θ). (4.6) Here B i (θ) is a non-negative definite d × d matrice for all θ ∈ R d . As α j (M, θ) = B j (θ) we have Θ(r) =    θ ∈ R d ∞ j=1 B j (θ) < E ξ 0 r -1/r    . (4.7)
Proposition 6 Let Θ be a compact subset of Θ(2) and X be the stationary solution to (1.1) when relation (4.6) holds. Assume that inf θ∈Θ det B 0 (θ) > 0, (Id) holds and

B j (θ) θ = O j -ℓ for some ℓ > 3/2.
Then the QMLE is strongly consistent. 4), assume that the functions θ → B j (θ) are 2 times continuously differentiable on Θ satisfying for all (k, k ′ ) ∈ {1, . . . , d} 2 ,

Moreover, if θ 0 ∈ • Θ with • Θ⊂ Θ(
∂B j (θ) ∂θ k Θ = O j -ℓ ′ for some ℓ ′ > 3/2 and j≥1 ∂ 2 B j (θ) ∂θ k ∂θ k ′ Θ < ∞.
If (Var) holds, then the QMLE θ n is also asymptotically normal.

For the best of our knowledge, the asymptotic behavior of the QMLE for such models is studied here for the first time.

4.5. Multivariate GARCH(q, q ′ ) models. Multivariate GARCH(q, q ′ ) models refer classically to both VEC and BEKK models. We refer the reader to Section 4.8 for VEC models which are subcases of ARMA-GARCH models. BEKK processes are solutions of equation (4.6) or equivalently

vec(H t ) = vec(C 0 ) + q i=1 C i (θ 0 ) * vec(X t-i X ′ t-i ) + p i=1 D i (θ 0 ) * vec(H t-i ),
where vec is the operator that stacks together the columns of a matrix. For any p × k matrix A: A * i = k j=1 A i,j ⊗ A i,j for i = 1, . . . , p, where ⊗ denoting the Kronecker product. The multivariate ARCH(∞) representation holds with B j satisfying (4.8) B * 0 := 1 -

q ′ j=1 D * j -1 × C * 0 and ∞ i=1 B * i Z i := 1 - q ′ i=1 D * i Z i -1 × q i=1 C * i Z i for all Z ∈ C m .
In the last formula, both the polynomials are supposed to be coprime.

The natural choice θ = (C 0 , C 1 , . . . , C q , D 1 , . . . , D q ′ ) implies that (A1(M)) and (Var) are satisfied. Using the identification condition of Comte and Lieberman [START_REF] Comte | Asymptotic theory for multivariate GARCH processes[END_REF], Proposition 6 becomes more simple: Proposition 7 Let Θ be a compact subset of Θ(2) defined in (4.7) and X be the stationary solution to (1.1) when relations (4.6) and (4.8) hold. If inf θ∈Θ det C 0 (θ) > 0 and (Id) holds, then the strong consistency holds. 4), then θ n is also asymptotically normal.

Moreover if θ 0 ∈ • Θ with • Θ⊂ Θ(
The asymptotic normality was settled before by Comte and Lieberman [START_REF] Comte | Asymptotic theory for multivariate GARCH processes[END_REF] for r = 8. Our result needs just moment of order r = 4. 4.6. Multivariate NLARCH(∞) models. Let B j (θ) j≥1 be a sequence of m × d-matrices and B 0 (θ) be a vector of R m . The multivariate LARCH(∞) models introduced by Doukhan et al. [START_REF] Doukhan | A LARCH(∞) vector valued process[END_REF] are extensions of the univariate LARCH(∞) models of Giraits et al. [START_REF] Giraitis | leverage and long memory[END_REF]. They are defined as the stationary solution of the equation:

X t = ζ t B 0 (θ 0 ) + ∞ j=1 B j (θ 0 )X t-j .
Notice that the innovations (ζ t ) t∈Z are here random matrices. In this context, the QMLE is not a suitable estimator since inf θ∈Θ det H θ (x) = 0 except in very specific cases. However, Doukhan and Wintenberger [START_REF] Doukhan | Weakly dependent chains with infinite memory[END_REF] proposed a generalization of LARCH(∞) models, so-called NLARCH(∞) models defined by the equation

X t = ζ t B 0 (θ) + ∞ j=1 B j (θ, X t-j ) , (4.9) 
where now B j (θ, .) : R m → R p are b j (θ)-Lipschitz functions. If the matrices of the innovations are concentrated on the diagonal, we rewrite (4.9) as

X t = M θ 0 (X t-1 , X t-2 , . . .)ξ t , where (ξ t ) i = (ζ t ) i,i and M θ (X t-1 , X t-2 , . . .) ij = δ ij • B 0 (θ)+ ∞ k=1 B k (θ, X t-k ) i .
For instance, consider the multidimensional extension of the TARCH models as

(B j (θ, x)) k = m i=1 B + j,k,i (θ) max(x j,i , 0) + B - j,k,i (θ) min(x j,i , 0),
where B + j,k,i and B - j,k,i are non-negative real numbers. For NLARCH(∞) models we have

Θ(r) =    θ ∈ R d ∞ j=1 Lip x (B j (θ, x)) < E ξ 0 r -1/r    .
Proposition 8 Let Θ be a compact subset of Θ(2), X be the stationary solution to (4.9) and assume that (Id) holds. Assume that for all j ∈ N, the vectors B j (θ, .) ∈ [0, ∞[ p , inf θ∈Θ B 0 (θ) > 0 and for all j ∈ N * , Lip x (B j (θ, x)) Θ = O j -ℓ for some ℓ > 3/2, then the strong consistency holds. Moreover if θ 0 ∈

• Θ with

• Θ⊂ Θ(4), assume that the functions θ → B j (θ, .) are 2 times continuously differentiable on Θ and satisfy

Lip x ∂B j (θ, x) ∂θ k θ = O j -ℓ ′ with ℓ ′ > 3/2 and j≥1 Lip x ∂ 2 B j (θ, x) ∂θ k ∂θ k ′ Θ < ∞ for all (k, k ′ ) ∈ {1, . . . , d} 2 .
If (Var) holds, the QMLE θ n is also asymptotically normal.

4.7.

Multivariate non-linear AR(∞) models. Let us focus on one example where M = I m and f = 0. In this context, (A1(M)) is always satisfied and the QMLE coincides with the least squares error estimator. Here, we restrict ourselves to the cases where

(4.10) f θ (X t-1 , X t-2 , . . .) = A 0 (θ 0 ) + ∞ i=1 A i (θ 0 , X t-i ),
where A i (θ, .) are Lipschitz functions with values in positive definite d × d matrices. Here Θ(r) neither depends on r nor on the distribution of ξ 0 :

Θ(r) =    θ ∈ R d ∞ j=1 Lip x A j (θ, x) < 1    .
Proposition 9 Let Θ be a compact subset of Θ(2), X be the stationary solution to (1.1) when M = I m and (4.10) holds. Under (Id) and if for j ∈ N * , Lip x A j Θ = O j -ℓ for some ℓ > 3/2, then the strong consistency holds. 4), θ n is also asymptotically normal as soon as functions θ → A j (θ, x) are 2 times continuously differentiable on Θ for all x ∈ R m , (Var) holds and

Moreover if θ 0 ∈ • Θ with • Θ⊂ Θ(
Lip x ∂A j ∂θ k Θ = O j -ℓ ′ for some ℓ ′ > 3/2 and ∞ j=1 Lip x ∂ 2 A j ∂θ k θ k ′ Θ < ∞ for all k, k ′ ∈ {1, . . . , d}.
4.8. Multivariate ARMA-GARCH models. Here M θ is concentrated on its diagonal and f is not necessarily identically zero. If f ≡ 0, the model coincides with the VEC-GARCH model, see Jeantheau [START_REF] Jeantheau | Strong consistency of estimators for multivariate arch models[END_REF]. Multidimensional ARMA-GARCH processes were introduced by Ling and McAleer [START_REF] Ling | Asymptotic theory for a vector ARMA-GARCH model[END_REF] as the solution of the system of equations

(4.11) Φ θ (L) • X t = Ψ θ (L) • ε t , ε t = M θ (X t-1 , X t-2 , . . .)ξ t , with diag(H t θ ) = C 0 (θ) + q i=1 C i (θ)diag(ε t-i ε ′ t-i ) + q ′ i=1 D i (θ)diag(H t-i θ ). Here C 0 (θ), C i (θ) and D j (θ) are positive definite matrices, diagA is the diagonal of the matrix A, Φ θ (L) = I m -Φ 1 L -• • • -Φ s L s and Ψ θ (L) = I m -Ψ 1 L -• • • -Ψ s ′ L s ′
are polynomials in the lag operator L and Φ i and Ψ j are squared matrix. We define for all θ ∈ R d

Γ θ (L) := I m + ∞ i=1 Γ i (θ)L i = Ψ -1 θ (L)Φ θ (L)
and

∞ i=1 B i (θ)Z i := 1 - q ′ i=1 D i (θ)Z i -1 × q i=1 C i (θ)Z i for all Z ∈ C m ,
where the polynomials of the right hand side are assumed to be coprime. The equation (4.11) has the representation (1.1) with f θ (X t-1 , X t-2 , . . .

) := ∞ i=1 Γ i (θ)X t-i . We can define, Θ(r) =    θ ∈ R d ∞ i=1 Γ i (θ) + E ξ 0 r 1/r ∞ j=1 B j (θ) < 1    .
If θ 0 ∈ Θ(r) then the existence of a solution is ensured. This existence condition is more explicit than the one of Theorem 2.1. of Ling and McAleer [START_REF] Ling | Asymptotic theory for a vector ARMA-GARCH model[END_REF]. Now we give a version of Theorems 1 and 2 when

θ = (Φ 1 , . . . , Φ s , Ψ 1 , . . . , Ψ s ′ , C 0 , C 1 , . . . , C q , D 1 , . . . , D q ′ ).
Proposition 10 Let Θ be a compact subset of Θ(2), X be the stationary solution to the system (4.11). If inf θ∈Θ det C 0 (θ) > 0 and (Id) holds then θ n is consistent. 4), θ n is also asymptotically normal as soon as (Var) holds. [START_REF] Ling | Asymptotic theory for a vector ARMA-GARCH model[END_REF] also provided consistency and asymptotic normality of the QMLE. Proposition 10 improves their results. Notice that for VEC-GARCH models, Jeantheau [START_REF] Jeantheau | Strong consistency of estimators for multivariate arch models[END_REF] provided the consistency under a weaker condition.

Moreover if θ 0 ∈ • Θ with • Θ⊂ Θ(

Ling and McAleer

Proofs.

In this section the proofs of the main results are collected in the order of appearance in the paper. First we prove Proposition 1 and Corollary 1, then Lemma 1 that settles the invertibility of the QMLE. With the help of this property we prove the main theorems that state consistency and asymptotic normality of the QMLE.

Proofs of Proposition 1 and Corollary 1.

We apply a result of Doukhan and Wintenberger [START_REF] Doukhan | Weakly dependent chains with infinite memory[END_REF] that gives conditions for the existence of a stationary solution of an equation of type

X t = F X t-1 , X t-2 , . . . ; ξ t a.e. for all t ∈ Z. (5.1) If E ξ 0 r < ∞ and F satisfies for x = (x i ) i≥1 , y = (y i ) i≥1 ∈ (R m ) ∞ , • E F (0; ξ 0 ) r < ∞; • E F x ; ξ 0 -F y ; ξ 0 r 1/r ≤ j≥1 a j x j -y j , with j≥1 a j < 1;
the existence of a unique causal stationary solution X of (5.1), such that E X 0 r < ∞ is proved in [START_REF] Doukhan | Weakly dependent chains with infinite memory[END_REF]. We identify F from (1.1):

F X t-1 , X t-2 , . . . ; ξ t = M θ 0 (X t-1 , X t-2 , . . .) • ξ t + f θ 0 (X t-1 , X t-2 , . . .).
Obviously, E F (0;

ξ 0 ) r < ∞ if E ξ 0 r < ∞ and we have E F x ; ξ 0 -F y ; ξ 0 r 1/r ≤ E (M θ 0 (x) -M θ 0 (y)) • ξ 0 r 1/r + f θ 0 (x) -f θ 0 (y) ≤ E ξ 0 r 1/r M θ 0 (x) -M θ 0 (y) + f θ 0 (x) -f θ 0 (y) .
The condition of Proposition 1 then implies those of [START_REF] Doukhan | Weakly dependent chains with infinite memory[END_REF] on F . In the context of Corollary 1, from H θ (x) = H θ (x 2 ) for all x = (x j ) j≥1 ∈ R ∞ , we have

H θ (x) -H θ (y) ≤ ∞ j=1
α j (H, θ) x jy j and,

E |M 2 θ 0 (x)ξ 2 0 -M 2 θ 0 (y)ξ 2 0 | r/2 2/r = E |ξ 0 | r 2/r | H θ 0 (x 2 ) -H θ 0 (y 2 )| ≤ E |ξ 0 | r 2/r ∞ j=1 α 0 j (H, θ 0 )|x 2 j -y 2 j |.
The results of [START_REF] Doukhan | Weakly dependent chains with infinite memory[END_REF] yield the existence in L r/2 of the solution (X 2 t ) t∈Z of the equation

X 2 t = M 2 θ 0 (X t-1 , X t-2 , . . .)ξ 2 t = H θ 0 (X 2 t-1 , X 2 t-2 , . . .)ξ 2 t a.e.
Moreover, by [START_REF] Doukhan | Weakly dependent chains with infinite memory[END_REF] there exists a measurable function ϕ such that X t = ϕ(ξ t , ξ t-1 , . . .) for all t ∈ Z. The ergodicity of X follows from the Proposition 4.3 in Krengel [START_REF] Krengel | Ergodic Theorems[END_REF]; it states that if (E, E) and ( E, E) are measurable spaces, (v t ) t∈Z is a stationary ergodic sequence of E-valued random elements and ϕ : (E N , E N ) → ( E, E) is a measurable function then the sequence ( v t ) t∈Z defined by v t = ϕ(v t , v t-1 , . . .) is a stationary ergodic process.

5.2.

Proof of Lemma 1. We treat the three assertions of the lemma one after the other. 1. Define f t,p θ = f θ (X t-1 , . . . , X t-p , 0, 0, . . .) for all t ∈ Z and p ∈ N. We have f t,p θ ∈ L r (C(Θ, R m )) because θ 0 ∈ Θ(r) and, using Corollary 1, all the following quantities are finite:

E f t,p θ r Θ 1/r ≤ E f t,0 θ -f t,p θ r Θ 1/r + E f t,0 θ r Θ 1/r ≤ j≥1 α j (f ) E X 0 r 1/r + f θ (0) Θ . For p < q E f t,p θ -f t,q θ r Θ ≤ E p<j≤q α j (f )X t-j r ≤ E X 0 r p<j≤q α j (f ) r . Since j≥1 α j (f ) < ∞, (f t,p θ ) p≥0 satisfies the Cauchy criteria in L r (C(Θ, R m )) and it converges to f t,∞ θ , that is f t θ on σ(X t 1 , . . . , X tn ) for all n ∈ N * and t > t 1 > • • • > t n (those σ-algebras generate σ(X t-1 , X t-2 , . . .) and therefore ≤ E (M t,p θ -M t,q θ r Θ 1/2 × E M t,p θ r Θ 1/2 + E M t,q θ r Θ 1/2 ≤ B E p<j≤q α j (M ) X t-j r 1/2 ≤ B E X 0 r 1/2 p<j≤q α j (M ) r/2
for some constant B > 0.

3. First notice that X 0 X ′ 0 ≤ X 0 2 . Next, as in the previous proofs, (H t,p θ ) p∈N * converges to H t θ in L r/2 (C(Θ, M m )). Thus there exists a subsequence (p k ) k∈N such that

H t,p k θ -H t θ Θ a.s.
-→ k→∞ 0. Thanks to the continuity of the determinant, (det H t,p k θ ) k∈N also converges a.s. to det H t θ . Then det H t θ ≥ H, H t θ is an invertible matrix and in view of elementary relations between matrix norm and determinant

H t θ -1 Θ ≤ H -1/m . 5.3. Proof of Theorem 1.
The proof of the theorem is divided into two parts. In (i) a uniform (in θ) law of large numbers on ( q t ) t∈N * (defined in (1.4)) is established. In (ii), it is proved that L(θ) := -E(q t (θ))/2 has a unique maximum in θ 0 . Those two conditions lead to the consistency of θ n .

(i) Using Proposition 1, with q t = G(X t , X t-1 , • • • ), one deduces that (q t ) t∈Z (defined in (1.3)) is a stationary ergodic sequence. ¿From Straumann and Mikosch [START_REF] Straumann | Quasi-maximum-likelihood estimation in conditionally heteroscedastic time series: A stochastic recurrence equations approach[END_REF], we know that if (v t ) t∈Z is a stationary ergodic sequence of random elements with values in C(Θ, R m ), then the uniform (in θ ∈ Θ) law of large numbers is implied by E v 0 Θ < ∞. As a consequence, (q t ) t∈Z satisfies a uniform (in θ ∈ Θ) strong law of large numbers as soon as E sup θ |q t (θ)| < ∞. But, from the inequality log(x) ≤ x -1 for all x ∈]0, ∞[ and Lemma 1, for all t ∈ Z,

|q t (θ)| ≤ X t -f t (θ) 2 (H) 1/m + m 1 m log H + H t θ M 1/m -1 for all θ ∈ Θ =⇒ sup θ∈Θ |q t (θ)| ≤ X t -f t (θ) 2 Θ (H) 1/m + log H + m × H t θ Θ H 1/m . (5.2)
But for all t ∈ Z, E X t r < ∞, see Corollary 1, and

E f t θ r Θ +E H t θ r/2 Θ < ∞, see Lemma 1.
As a consequence, the right hand side of (5.2) has a finite first moment and therefore

E sup θ∈Θ |q t (θ)| < ∞.
The uniform strong law of large numbers for (q t (θ)) directly follows and hence

L n (θ) n -L(θ) Θ a.s.
-→ n→∞ 0 with L(θ) := -1 2 E q 0 (θ) . Θ ≥ H -m for all t ∈ Z, there exists C > 0 not depending on t such that inequality (5.4) becomes:

sup θ∈Θ q t (θ) -q t (θ) ≤ C X t + f t θ Θ + f t θ Θ × H t θ -H t θ Θ + f t θ -f t θ Θ
¿From the Hölder and Minkowski inequalities and by virtue of 3/2 = 1+1/2,

E sup θ∈Θ q t (θ) -q t (θ) 2/3 ≤ C E X t + f t θ Θ + f t θ Θ 2 1/3 × E H t θ -H t θ Θ + E f t θ -f t θ Θ 2/3 ≤ C ′ j≥t α j (f ) + α j (M ) 2/3 , (5.5)
with C ′ > 0 not depending on θ and t. Now, consider for n ∈ N * ,

S n := n t=1 1 t sup θ∈Θ q t (θ) -q t (θ) .
Applying the Kronecker lemma (see Feller [START_REF] Feller | An Introduction to Probability Theory and its Applications[END_REF], p. 238), if lim n→∞ S n < ∞ It remains to bound P(A m,n ). From the Bienaymé-Chebyshev inequality,

P(A m,n ) = P m t=n+1 1 t sup θ∈Θ q t (θ) -q t (θ) > ε ≤ 1 ε 2/3 E m t=n+1 1 t sup θ∈Θ q t (θ) -q t (θ) 2/3 ≤ 1 ε 2/3 m t=n+1 1 t 2/3 E sup θ∈Θ q t (θ) -q t (θ) 2/3 .
Using (5.5) and condition (3.4), since ℓ > 3/2, there exists C > 0 such that

∞ j=t α j (f ) + α j (M ) + α j (H) 2/3 ≤ C t 2(ℓ-1)/3 .
Thus, t -2/3 E sup θ∈Θ q t (θ)-q t (θ)

2/3 ≤ C t -2ℓ/3 for some C > 0 and

∞ t=1 1 t 2/3 E sup θ∈Θ q t (θ) -q t (θ) 2/3 < ∞ as ℓ > 3/2. Thus lim n→∞ lim m→∞ P(A m,n ) -→ n→∞ 0 and 1 n • L n -L n Θ a.s.
-→ n→∞ 0.

(ii) See Proposition 2.1. of Jantheau [START_REF] Jeantheau | Strong consistency of estimators for multivariate arch models[END_REF].

5.4. Proof of Theorem 2. Let V be a Banach space (thereafter V = R m or V = M m ) and D (2) C(Θ, V ) denote the Banch space of V -valued 2 times continuously differentiable functions on Θ equipped with the uniform norm

g (2),Θ = g Θ + ∂g ∂θ Θ + ∂ 2 g ∂θ∂θ ′ Θ .
We start by proving the following preliminary lemma:

Lemma 2 Let θ 0 belong to Θ(r) (r ≥ 2) and assume that (A3(f )) and (A3(M)) or (A3(H)) hold. Then

f t θ ∈ L r D (2) C(Θ, R m ) and H t θ ∈ L r/2 D (2) C(Θ, M m ) .
In view of the results of Lemmas 1 and 2, the functions ∂L n (θ)/∂θ and ∂ 2 L n (θ)/∂θ 2 are measurable and a.s. finite for all θ ∈ Θ. Their asymptotic properties are described in the next two lemmas Lemma 3 Let θ 0 belong to Θ(r) (r ≥ 4) and assume that (A3(f )) and (A3(M)) or (A3(H)) hold, then

(5.6) n -1/2 ∂L n (θ 0 ) ∂θ D -→ n→∞ N d (0, G(θ 0 )),
where G(θ 0 ) = (G(θ 0 )) 1≤i,j≤d is finite and its expression is given in (5.14).

Lemma 4 Let θ 0 belong to Θ(r) (r ≥ 4) and assume that (A3(f )) and (A3(M)) or (A3(H)) hold, then

(5.7) 1 n ∂ 2 L n (θ) ∂θ∂θ ′ - ∂ 2 L(θ) ∂θ∂θ ′ Θ a.s. -→ n→∞ 0 with ∂ 2 L(θ) ∂θ∂θ ′ := - 1 2 E ∂ 2 q 0 ∂θ∂θ ′ (θ) .
We postponed the proofs of Lemmas 1-4 to the end of the Section and continue with the proof of Theorem 2. From Theorem 1, we have

θ n a.s. -→ n→∞ θ 0 . (5.8) Since θ 0 ∈ • Θ, a Taylor expansion of ∂L n (θ 0 )/∂θ i ∈ R implies (5.9) ∂L n ( θ n ) ∂θ i = ∂L n (θ 0 ) ∂θ i + ∂ 2 L n (θ n,i ) ∂θ∂θ i ( θ n -θ 0 ),
for n sufficiently large such that the θ n,i ∈ Θ, which are between θ n and θ 0 for all 1 ≤ i ≤ d. Using equations (5.7) and (5.8), we conclude with the uniform convergence theorem that

F n := -2 1 n ∂ 2 L n (θ n,i ) ∂θ∂θ i 1≤i≤d a.s.
-→ n→∞ F (θ 0 ).

One obtains F (θ 0 ) ij = E ∂ 2 q 0 (θ 0 )/∂θ i ∂θ j for 1 ≤ i, j ≤ d. With similar arguments as for (5.13), since X tf t θ 0 = M θ 0 ξ t , with ξ t independent of (X t-1 , X t-2 , . . .),

E X t -f t θ 0 ′ ∂ 2 H t θ -1 ∂θ i ∂θ j X t -f t θ 0 = 2E Tr (H t θ 0 -2 ∂H t θ 0 ∂θ j ∂H t θ 0 ∂θ i -Tr H t θ 0 -1 ∂ 2 H t θ 0 ∂θ j ∂θ i
¿From equation (5.15), we then derive the explicit expression

(5.10) F (θ 0 ) ij = E 2 ∂f t θ 0 ∂θ j ′ H t θ 0 -1 ∂f t θ 0 ∂θ i + Tr (H t θ 0 -2 ∂H t θ 0 ∂θ j ∂H t θ 0 ∂θ i . Under Assumption (Var), F (θ 0 ) is a positive definite d × d matrix. Indeed, for all Y = (y 1 , . . . , y d ) ∈ R d , Y ′ F (θ 0 )Y = E 2 1≤i≤d y i ∂f t θ 0 ∂θ i ′ H t θ 0 -1 1≤i≤d y i ∂f t θ 0 ∂θ i + Tr (H t θ 0 -2 1≤i≤d y i ∂H t θ 0 ∂θ i 2 .
These two terms are nonnegative and at least one of them is positive under Assumption (Var). Then F (θ 0 ) is an invertible matrix and there exists n large enough such that F n is an invertible matrix. Moreover, (5.9) implies,

n( θ n -θ 0 ) = -2F -1 n ∂L n ( θ n ) ∂θ - ∂L n (θ 0 ) ∂θ . Therefore, if 1 √ n ∂L n ( θ n ) ∂θ P -→ n→∞ 0, using Lemma 3 one obtains Theorem 2. Since ∂ L n ( θ n ) ∂θ = 0 ( θ n is a local extremum for L n ), E 1 √ n ∂L n ∂θ - ∂ L n ∂θ Θ -→ The differences E H t θ -H t θ r/2 Θ ≤ C j≥t α j (M ) r/2
can also be bounded:

E ∂H t θ ∂θ i - ∂ H t θ ∂θ i r/2 Θ ≤ C j≥t α j (M ) r/2 + j≥t α (1) 
j (M ) r/2 , E ∂ H t θ -1 ∂θ i - ∂ H t θ -1 ∂θ i r/2 Θ ≤ C j≥t α j (M ) r/2 + j≥t α (1) 
j (M ) r/2
.

Finally, using Hölder inequalities, it exists another constant C ≥ 0 satisfying

E ∂q t (θ) ∂θ i - ∂ q t (θ) ∂θ i Θ ≤ C j≥t α j (f ) + α j (M ) + α j (H) + α (1) 
j (f ) + α (1) j (M ) + α (1) 
j (H) . Using Assumption (A3(M)):

Under (3.5), 1 √ n n t=1 E ∂q t (θ) ∂θ i - ∂ q t (θ) ∂θ i Θ -→ n→∞ 0,
∂H t,p θ ∂θ i Θ ≤ 2 M t,p θ Θ ∂M t,p θ ∂θ i Θ ≤ M θ (0) Θ + ∞ j=1 α j (M ) X t-j ∂M θ (0) ∂θ i Θ + ∞ j=1 α (1) 
j (M ) X t-j .

Using E X 0 r < ∞ and the Hölder and Minkowsky inequalities: As a consequence,

E ∂H t,p θ ∂θ i r/2 Θ ≤ C M θ (0) r Θ + E X 0 r ∞ j=1 α j (M )
E ∂q t (θ 0 ) ∂θ k |F t =E X t -f t θ 0 ′ ∂ H t θ 0 -1 ∂θ k X t -f t θ 0 |F t + Tr H t θ 0 -1 ∂H t θ 0 ∂θ k .
We conclude by noticing that the first term of the sum is equal to

E Tr ∂ H t θ 0 -1 ∂θ k X t -f t θ 0 X t -f t θ 0 ′ |F t = Tr ∂ H t θ 0 -1 ∂θ k H t θ 0 .
In order to apply the Central Limit Theorem for martingale-differences, see [START_REF] Billingsley | Convergence of Probability Measures[END_REF] To simplify the expression, we assume here that ξ t and -ξ t have the same distribution in order that E ξ t ξ ′ t Aξ t = 0 for A a matrix.

Proof of the Lemma 4. ¿From the proof of Proposition 1 and from the result of Lemma 2, the second derivative process (∂ 2 q t (θ)/∂θ 2 ) t∈Z is stationary ergodic (it is a measurable function of X t , X t-1 , . . .). Therefore it satisfies a Uniform Law of Large Numbers (ULLN) if its first uniform moment is bounded.

  k = k ′ and E ξ

Θ

  denotes the interior of a compact subset Θ ⊂ R d . Let X be the stationary solution of the equation (1.1). Assume that the conditions of Theorem 1 and (A3(f )), (Var) hold. Moreover, if (A3(M)) or (A3(H)) holds with(3.5) α

  , for all θ ∈ Θ and t ∈ N * , On the other hand, for an invertible matrix A ∈ M m (R), andH ∈ M m (R), det(A + H) = det(A) + det(A) • Tr (A -1 ) ′ H + o( H ), where Tr (A -1 ) ′ H ≤ A -1 • H . Using the relation H t θ -1

  Feller's arguments, it remains to show that for all ε > 0,P(∀n ∈ N, ∃m > n such that |S m -S n | > ε) := P(A) = 0. Let ε > 0 and denote A m,n := {|S m -S n | > ε} for m > n. Notice that A = n∈N m>n A m,n . For n ∈ N * , the sequence of sets (A m,n ) m>n is obviously increasing, and if A n := m>n A m,n , then lim m→∞ P(A m,n ) = P(A n ). Observe that (A n ) n∈Nis a decreasing sequence of sets and thus, lim n→∞ lim m→∞ P(A m,n ) = lim n→∞ P(A n ) = P(A).

/ 2 Θ 2 Θ

 22 and Theorem 2 follows.Proof of Lemma 2. Here, we focus on the case of H θ under (A3(f )) and (A3(M)). The other cases are simpler.With the same method and notation as in the proof of Lemma 1, the result holds as soon as the function θ ∈ Θ → H t,p θ is proved to satisfy a Cauchy criterion in L r/2 D (2) C(Θ, M m ) . Using the proof of Lemma 1, we already have E H t,p θ r< ∞. It remains to bound the quantities ∀ i, j ∈ {1, . . . , d}, ∀p ∈ N * .

r 1/ 2 × 2 . 2 H

 222 ∂MIn the same way, there exists another constant C > 0 such that E ∂

  , we have to prove that E ∂q t (θ 0 )∂θ Using the relationX tf t θ 0 = M t θ 0 ξ t for all t ∈ Z, thenLet us compute the expectation of the square of the second term of the sum, with Tr(ABC) = Tr(CAB) = Tr(ACB) for symmetric matrices A, B and C, Θ ≤ H -1/m and the independence of ξ t and F t , there exists C > 0 such that Therefore, since r ≥ 4, the moment conditions for the CLT are fulfilled We compute the asymptotic covariance matrix of ∂q t (θ 0 ) ∂θ . Thus, (G(θ 0 )) ij

	= E	∂q t (θ 0 ) ∂θ i	∂q t (θ 0 ) ∂θ j				
	= E 4	∂f t θ 0 ∂θ i	′	H t θ 0	-1 ∂f t θ 0 ∂θ j	-Tr H t θ 0	-1 ∂H t θ 0 ∂θ i	Tr H t θ 0	-1 ∂H t θ 0 ∂θ j
	(5.14)	+p m 4 + (p -1) Tr H t θ 0	-2 ∂H t θ 0 ∂θ i	∂H t θ 0 ∂θ j	.
	∂q t (θ 0 ) ∂θ k	= -2	∂f t θ 0 ∂θ k	′		H t θ 0	-1 M t θ 0 ξ t -ξ ′ t M t θ 0	′ H t θ 0	-1 ′ ∂H t θ 0 ∂θ k	H t θ 0	-1 M t θ 0 ξ t
				+ Tr H t θ 0	-1 ∂H t θ 0 ∂θ k	
	(5.13)		E (ξ ′ t ξ t ) 2 Tr M t θ 0	′ H t θ 0	-1 ∂H t θ 0 ∂θ k	H t θ 0	-1 ∂H t θ 0 ∂θ k	H t θ 0	-1 M t θ 0
				= E (ξ ′ t ξ t ) 2 Tr H t θ 0	-2 ∂H t θ 0 ∂θ k	2	.
	θ 0 Using this relation, the bound H t	-1
	E	∂q t (θ 0 ) ∂θ k	2	≤C E		∂f t θ 0 ∂θ k	2	M t θ 0	2	× E ξ t	2 + E	∂θ k ∂H t θ 0	2
							+E ξ ′ t ξ t	2 × E	∂θ k ∂H t θ 0	2
					E	∂q t (θ 0 ) ∂θ	2	=	d k=1	E	∂q t (θ 0 ) ∂θ k	2	< ∞.

2

< ∞.

This means that un = 0 only for finitely many n ∈ N.
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