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In a bounded domain of R n+1 , n ≥ 2, we consider a second-order elliptic operator,

, where the (scalar) coefficient c(x) is piecewise smooth yet discontinuous across a smooth interface S . We prove a local Carleman estimate for A in the neighborhood of any point of the interface. The "observation" region can be chosen independently of the sign of the jump of the coefficient c at the considered point. The derivation of this estimate relies on the separation of the problem into three microlocal regions and the Calderón projector technique. Following the method of Lebeau and Robbiano [LR95] we then prove the null controllability for the linear parabolic initial problem with Dirichlet boundary conditions associated to the operator ∂ t -∇ x • (c(x)∇ x ).

I  

The question of the null controllability of linear parabolic partial differential equations with smooth coefficients was solved in the 1990's [START_REF] Lebeau | Contrôle exact de l'équation de la chaleur[END_REF][START_REF] Fursikov | Controllability of evolution equations[END_REF]. In the case of discontinuous coefficients in the principal part of the parabolic operator, the controllability issue and its dual counterpart, observability, are not fully solved yet. A result of controllability for a semi-linear heat equation with a coefficient that is discontinuous at an interface was proven in [START_REF] Doubova | Exact controllability to trajectories for semilinear heat equations with discontinuous diffusion coefficients[END_REF] by means of a global Carleman observability estimate. Roughly speaking, as in the case of hyperbolic systems (see e.g. [START_REF] Lions | Contrôlabilité Exacte, Perturbations et Stabilisation de Systèmes Distribués[END_REF]page 356]), the authors of [START_REF] Doubova | Exact controllability to trajectories for semilinear heat equations with discontinuous diffusion coefficients[END_REF] proved their controllability result in the case where the control is supported in the region where the diffusion coefficient is the 'lowest'. In both cases, however, the approximate controllability, and its dual counterpart, uniqueness, are true without any restriction on the monotonicity of the coefficients. It is then natural to question whether or not an observability estimate holds in the case of non-smooth coefficients and arbitrary observation location.

Recently, in the one-dimensional case, the controllability result for parabolic equations was proven for general piecewiseC 1 coefficients in [START_REF] Benabdallah | Carleman estimates for the one-dimensional heat equation with a discontinuous coefficient and applications to controllability and an inverse problem[END_REF], and for coefficients with bounded variations (BV) in [Le 07], which improved the result of [START_REF] Fernández-Cara | On the null controllability of the one-dimensional heat equation with BV coefficients[END_REF]. The proof relies on global Carleman estimates, which moreover allow to treat semilinear equations. Simultaneously, a controllability result for parabolic equations with Date: March 27, 2009. 1 general bounded coefficients in one dimension was proven in [START_REF] Alessandrini | Null-controllability of one-dimensional parabolic equations[END_REF]. The method used there to achieve null controllability is that of [START_REF] Lebeau | Contrôle exact de l'équation de la chaleur[END_REF], which limits the field of applications to linear equations.

In the n-dimensional case, n ≥ 2, a positive answer to the controllability question was given for a class of discontinuous coefficients, with separated variables, that are smooth w.r.t. to all but one variables, which includes the case of stratified media [START_REF]On the controllability of linear parabolic equations with an arbitrary control location for stratified media[END_REF]. The proof relies both on the Carleman estimates of [BDL07a, Le 07] in the one-dimensional case and the method of [START_REF] Lebeau | Contrôle exact de l'équation de la chaleur[END_REF].

In the present article, in the case n ≥ 2, we achieve null controllability for a linear parabolic equation in the case of a coefficient that exhibits jumps of arbitrary signs at an interface. Let Ω be a smooth bounded connected domain in R n . We consider the operator L := ∇ x • (c(x)∇ x ), with possibly additional lower-order terms, and where c(x) satisfies 0 < c min ≤ c(x) ≤ c max < ∞, to ensure uniform ellipticity for L. The coefficient c is assumed smooth apart from across an interface S , where it may jump. The interface S is the boundary of a smooth open subset Ω 1 ⋐ Ω, i.e., Ω 1 lies on one side of S . Let T > 0 and set Q T = (0, T ) × Ω. We set Ω 2 = Ω \ Ω 1 . We prove the following null controllability result.

Theorem 1.1. For an arbitrary time T > 0 and an arbitrary non-empty open subset ω ⊂ Ω and an initial condition q 0 ∈ L 2 (Ω), there exists u ∈ L 2 ((0, T ) × Ω) such that the solution q of (1.1)

            
∂ t q -Lq = 1 ω u in Q T , q(t, x) = 0 on (0, T ) × ∂Ω, q(0, x) = q 0 (x) in Ω, satisfies q(T ) = 0 a.e. in Ω.

We follow the method of [START_REF] Lebeau | Contrôle exact de l'équation de la chaleur[END_REF], thus proving local Carleman estimates for an elliptic operator associated to the considered parabolic problem: we introduce the elliptic operator A := -∂ 2

x 0 -L. The variable x 0 is an additional variables in (0, X 0 ), for some X 0 > 0. We provide such a local Carleman estimate for the operator A in a small neighborhood V of a point (y 0 , y) of (0, X 0 ) × S with an "observation" on one side of S , independently of the sign of the jump of c at (y 0 , y). We hence treat all possible cases including the case that can be treated more classically as mentioned above, for which the "observation" is supported in the region where the diffusion coefficient is the 'lowest' [START_REF] Doubova | Exact controllability to trajectories for semilinear heat equations with discontinuous diffusion coefficients[END_REF].

We denote by (., .) the inner product on L 2 ((0, X 0 )×Ω) and by . 0 the induced norm. In the present article, we shall make use of techniques from the semi-classical analysis of pseudodifferential operators (ψDOs) [START_REF] Martinez | An Introduction to Semiclassical and Microlocal Analysis[END_REF]. With h as the small parameter, we set D = h i ∂. Accordingly, we shall use the semi-classical Sobolev norm f 2 k := |α|≤k D α x 0 ,x f 2 0 , k ∈ N. The Carleman estimate we aim to prove is of the form h e ϕ/h w The sign of ∂ n ϕ at the interface locates the side of the interface on which the "observation" takes place (see Section 2 for the application of the local Carleman estimate). To achieve such a Carleman estimate we follow the method of [START_REF]Stabilisation de l'équation des ondes par le bord[END_REF], in the spirit of the work of [START_REF] Bellassoued | Carleman estimates and distribution of resonances for the transparent obstacle and application to the stabilization[END_REF]. In particular, we separate the interface problem into three microlocal regions for which partial Carleman estimates are obtained. In some of these regions we make use of the Calderón-projector technique.

With this local Carleman estimate at the interface, we can then prove an interpolation inequality that first yields an estimation of the loss of orthogonality for the eigenfunctions φ j (x), j ∈ N, of the operator L, with Dirichlet boundary conditions, when these eigenfunctions are restricted to ω. We denote by µ j , j ∈ N, the associated eigenvalues, sorted in an increasing sequence.

Theorem 1.2. For any (a j ) j∈N ⊂ C we have:

µ j ≤µ |a j | 2 ≤ Ce C √ µ ω µ j ≤µ a j φ j (x) 2 dx, µ > 0. (1.2)
Following [START_REF] Lebeau | Contrôle exact de l'équation de la chaleur[END_REF], this estimation then yields a construction of the control function u(t, x) in (1.1), by sequentially acting on a finite yet increasing number of eigenspaces, and we hence obtain the result of Theorem 1.1. We refer the reader to [START_REF] Lebeau | Contrôle exact de l'équation de la chaleur[END_REF] or [LZ98, Section 5, Proposition 2] for the details.

The reader will observe that the proof of the Carleman estimate can be adapted to other elliptic operators with non-smooth coefficients across an interface. Beyond the controllability result of interest in this article, such Carleman estimates have a wide range of applications, including unique continuation properties [START_REF] Hörmander | Linear Partial Differential Operators[END_REF][START_REF] Zuily | Uniqueness and Non Uniqueness in the Cauchy Problem[END_REF][START_REF]The Analysis of Linear Partial Differential Operators[END_REF]. See Remark 2.8 for further details.

The result of this article opens perspectives for future research towards the null controllability of semilinear parabolic equations with non smooth coefficient in space dimension n ≥ 2 and towards more complicated geometrical situations, for instance in the case of coefficients with singularities that do not lie on a smooth interface.

In this article, when the constant C is used, it refers to a constant that is independent of the semi-classical parameter h. Its value may however change from one line to another. If we want to keep track of the value of a constant we shall use another letter. We shall use of the notation η := (1 + |η| 2 ) 1 2 . Let us now introduce semi-classical ψDOs. We denote by S m (R n+1 × R n+1 ), S m for short, the space of smooth functions a(z, ζ, h), defined for h ∈ (0, h 0 ] for some h 0 > 0, that satisfy the following property: for all α, β multi-indices, there exists C α,β ≥ 0, such that

∂ α z ∂ β ζ a(z, ζ, h) ≤ C α,β ζ m-|β| , z ∈ R n+1 , ζ ∈ R n+1 , h ∈ (0, h 0 ].
Then, for all sequences a m-j ∈ S m-j , j ∈ N, there exists a symbol a ∈ S m such that a ∼ j h j a m-j , in the sense that a -j<N h j a m-j ∈ h N S m-N (see for instance [Mar02, Proposition 2.3.2] or [Hör85b, Proposition 18.1.3]), with a m as principal symbol. We define Ψ m as the space of ψDOs A = Op(a), for a ∈ S m , formally defined by

A u(z) = (2πh) -(n+1) e i z-t,ζ /h a(z, ζ, h) u(t) dt dζ, u ∈ S ′ (R n+1 ).
We shall denote the principal symbol a m by σ(A). We shall use techniques of pseudodifferential calculus in this article, such as construction of parametrices, composition formula, formula for the symbol of the adjoint operator, etc. We refer the reader to [START_REF] Taylor | Pseudodifferential Operators[END_REF][START_REF]The Analysis of Linear Partial Differential Operators[END_REF][START_REF] Martinez | An Introduction to Semiclassical and Microlocal Analysis[END_REF]. In the main text the variable z will be (x 0 , x) and ζ = (ξ 0 , ξ).

We now introduce tangential symbols and associated operators. We set z = (z ′ , z n ), z ′ = (z 0 , . . . , z n-1 )

and

ζ ′ = (ζ 0 , . . . , ζ n-1 ) accordingly. We denote by S m T (R n+1 × R n ), S m
T for short, the space of smooth functions b(z, ζ ′ , h), defined for h ∈ (0, h 0 ] for some h 0 > 0, that satisfy the following property: for all α, β multi-indices, there exists C α,β ≥ 0, such that

∂ α z ∂ β ζ ′ b(z, ζ ′ , h) ≤ C α,β ζ ′ m-|β| , z ∈ R n+1 , ζ ′ ∈ R n , h ∈ (0, h 0 ].
As above, for all sequences b m-j ∈ S m-j T , j ∈ N, there exists a symbol b ∈ S m T such that b ∼ j h j b m-j , in the sense that b -j<N h j b m-j ∈ h N S m-N T , with b m as principal symbol. We define Ψ m T as the space of tangential ψDOs B = op(b) (observe the notation we adopt is different from above to avoid confusion), for b ∈ S m T , formally defined by

B u(z) = (2πh) -n e i z ′ -t ′ ,ζ ′ /h b(z, ζ ′ , h) u(t ′ , z n ) dt ′ dζ ′ , u ∈ S ′ (R n+1 ).
We shall also denote the principal symbol b m by σ(B). In the case where the symbol is polynomial in ζ ′ and h, we shall denote the space of associated tangential differential operators by D m T . We shall denote by Λ s the tangential ψDO whose symbol is ζ ′ s . The composition formula for tangential symbols, b ∈ S m T , b ′ ∈ S m ′ T , is given by

(b # T b ′ )(z, ζ ′ ) = (2πh) -n e -i t ′ ,τ ′ )/h b(z, ζ ′ + τ ′ , h) b ′ (z ′ + t ′ , z n , ζ ′ , h) dt ′ dτ ′ (1.3) = |α|≤M (-ih) |α| α! ∂ α ζ ′ b(z, ζ ′ , h) ∂ α z ′ b ′ (z, ζ ′ , h) + (-ih) M+1 (2πh) n |α|=M+1 1 0 (M + 1)(1 -s) M α! e -i t ′ ,τ ′ )/h ∂ α ζ ′ b(z, ζ ′ + τ ′ , h) ∂ α z ′ b ′ (z ′ + st ′ , z n , ζ ′ , h) dt ′ dτ ′ ds,
and yields a tangential symbol in S m+m ′ T . In the main text the variable z will be (x 0 , x ′ , x n ) and ζ ′ = (ξ 0 , ξ ′ ).

Following [START_REF] Lebeau | Contrôle exact de l'équation de la chaleur[END_REF][START_REF]Stabilisation de l'équation des ondes par le bord[END_REF], we shall denote by (., .) 0 the inner product for functions defined on {x n = 0}, i.e., ( f, g)

0 := f (x 0 , x ′ ) g(x 0 , x ′ ) dx 0 dx ′ . The induced norm is denoted by |.| 0 , i.e., | f | 2 0 = ( f, f ) 0 . For s ∈ R we introduce | f | s := |Λ s f | 0 .
The outline of the article is as follows. In section 2, we prove the announced local Carleman estimate at the interface for the elliptic operator A. In Section 3, we prove the interpolation inequality that implies (1.2). The controllability result then follows from [START_REF] Lebeau | Contrôle exact de l'équation de la chaleur[END_REF].

L C    

In the neighborhood of a point (y 0 , y) of (0, X 0 ) × S , we denote by x n the variable that is normal to the interface S and by x ′ the remaining spacial variables, i.e., x = (x ′ , x n ). In particular y = (y ′ , 0). The interface is now given by S = {x; x n = 0}. The transmission conditions at the interface we shall consider are ∀x 0 , x ′ , w| x n =0 -= w| x n =0 + + θ, c∂ x n w| x n =0 -= c∂ x n w| x n =0 + + Θ, (TC) i.e., the continuity of w at the interface as well as the continuity of the normal flux, modulo some error terms θ and Θ. It should be noted that for a function satisfying these transmission conditions we may not have Aw in L 2 in the neighborhood of (y 0 , y). It will however be in L 2 on both sides of the interface. Error terms like θ and Θ will be useful in Section 3 where the Carleman estimate proven in this section is used to achieve the null controllability result of Theorem 1.1.

In a sufficiently small neighborhood V ⊂ R n of (y 0 , y), we place ourselves in normal geodesic coordinates (w.r.t. to the spacial variables x). For convenience, we shall take the neighborhood V of the form (y 0ε, y 0 + ε) × V y ′ × (-ε, ε), where V y ′ is a sufficiently small neighborhood of y ′ . In such coordinate system, the principal part of the differential operator A takes the following form [Hör85b, Appendix C.5] on both sides of the interface:

A 2 = -∂ 2 x 0 -c(x) ∂ 2 x n -r(x, ∂ x ′ /i) ,
with r(x, ξ ′ ) a x n -family of second-order polynomials in ξ ′ that satisfy

r(x, ξ ′ ) ∈ R, and C 1 |ξ ′ | 2 ≤ r(x, ξ ′ ) ≤ C 2 |ξ ′ | 2 , x ∈ V y ′ × (-ε, ε), ξ ′ ∈ R n-1 , (2.1)
for some 0 < C 1 ≤ C 2 < ∞. Note that the transmission conditions (TC) remain unchanged in this change of variables.

We set

R n+1 -= {(x 0 , x), x n < 0}, R n+1 -= {(x 0 , x), x n ≤ 0}, R n+1 + = {(x 0 , x), x n > 0}, R n+1 + = {(x 0 , x), x n ≥ 0}, V g = V ∩ R n+1 -, V d = V ∩ R n+1 + .
For a compact set K of V we set

K g = {(x 0 , x) ∈ K, x n ≤ 0} and K d = {(x 0 , x) ∈ K, x n ≥ 0}. We then denote byC ∞ c (K g ) (resp.C ∞ c (K d )) the space of functions that areC ∞ in R n+1 -(resp. R n+1 
+ ) with support in K g (resp. K d ).
We let ϕ be a (weight) function in all variables. We shall "observe" the solution of the elliptic equation Aw = f on the side x n > 0 and thus choose ∂ x n ϕ(x 0 , x ′ , x n = 0 ± ) > 0. We shall consider three cases in order to treat the general case:

Case 1: c(y ′ , y n = 0 -) < c(y ′ , y n = 0 + ), Case 2: c(y ′ , y n = 0 -) = c(y ′ , y n = 0 + ), Case 3: c(y ′ , y n = 0 -) > c(y ′ , y n = 0 + ).
Recall that Case 3 is the case for which controllability and global Carleman estimates were obtained in [START_REF] Doubova | Exact controllability to trajectories for semilinear heat equations with discontinuous diffusion coefficients[END_REF].

On both sides of S we define A ϕ = h 2 e ϕ/h A 2 e -ϕ/h . Considered as a semi-classical differential operator we denote by a ϕ its principal symbol, which is given by

a ϕ = (ξ 0 + i∂ x 0 ϕ) 2 + c(x) (ξ n + i∂ x n ϕ) 2 + r(x, ξ ′ + i∂ x ′ ϕ) .
We make the following assumption.

Assumption 2.1. The weight function ϕ(x 0 , x) is inC (V) and ϕ| R n+1

∓ ∈C ∞ (V g / d ) and satisfies |∇ (x 0 ,x) ϕ| > 0 in V. We assume ∀x 0 , x ′ , ∂ x n ϕ(x 0 , x ′ , x n = 0 ± ) > 0, ∂ x n ϕ(x 0 , x ′ , x n = 0 + ) -∂ x n ϕ(x 0 , x ′ , x n = 0 -) ≥ C > 0, (2.2) (c∂ x n ϕ)(x 0 , x ′ , x n = 0 + ) -(c∂ x n ϕ)(x 0 , x ′ , x n = 0 -) ≥ 0.
The function ϕ satisfies the sub-ellipticity condition

∀(x 0 , x, ξ 0 , ξ) ∈ V g / d × R n+1 , a ϕ (x 0 , x, ξ 0 , ξ) = 0 ⇒ {Re a ϕ , Im a ϕ }(x, ξ) > 0. (2.3) Case 1: The neighborhood V is chosen sufficiently small such that c(x ′ , x n = 0 + ) -c(x ′ , x n = 0 -) ≥ C > 0, x ′ ∈ V y ′ .
Moreover we assume

(2.4) ∀x 0 , x ′ , ∂ x n ϕ(x 0 , x ′ , x n = 0 + ) 2 -∂ x n ϕ(x 0 , x ′ , x n = 0 -) 2 -∂ x 0 ϕ(x 0 , x ′ , x n = 0) 2 1 c(x ′ , x n = 0 -) - 1 c(x ′ , x n = 0 + ) ≥ C > 0.
Case 2: The neighborhood V is chosen sufficiently small such that |c(x ′ ,

x n = 0 -) -c(x ′ , x n = 0 + )| is itself sufficiently small.
Case 3: The neighborhood V is chosen sufficiently small such that c(x ′ ,

x n = 0 + ) -c(x ′ , x n = 0 -) ≤ -C < 0, x ′ ∈ V y ′ .
Moreover we assume

(2.5) ∀x 0 , x ′ , (c(x ′ , x n = 0 + )) 2 c(x ′ , x n = 0 -) ∂ x n ϕ(x 0 , x ′ , x n = 0 + ) 2 -c(x ′ , x n = 0 -) r(x ′ , x n = 0, ∂ x ′ ϕ(x 0 , x ′ , x n = 0)) ≥ K,
where K is some positive constant and

(2.6) ∀x 0 , x ′ , C 1 1 - c(x ′ , x n = 0 + ) c(x ′ , x n = 0 -)       1 (c∂ x n ϕ)(x 0 , x ′ , x n = 0 -) 2 - 1 (c∂ x n ϕ)(x 0 , x ′ , x n = 0 + ) 2       -C 2 2 (∂ x 0 ϕ) 2 (x 0 , x ′ , x n = 0) 1 c(∂ x n ϕ) 2 (x 0 , x ′ , x n = 0 -) - 1 c(∂ x n ϕ) 2 (x 0 , x ′ , x n = 0 + ) 2 x n =0 + ≥ 0,
where C 1 and C 2 are the constants in (2.1).

Note that ϕ is chosen continuous across the interface. In particular, we have

∂ x 0 ϕ| x n =0 -= ∂ x 0 ϕ| x n =0 + , ∂ x ′ ϕ| x n =0 -= ∂ x ′ ϕ| x n =0 + ,
which we shall simply write ∂ x 0 ϕ| x n =0 + and ∂ x ′ ϕ| x n =0 + respectively in the sequel.

The conditions we impose on the weight function ϕ will make sense in the course of the proof of Proposition 2.7 below. In Section 3 we shall construct a weight function that satisfies the properties listed in Assumption 2.1.

From the assumption made on the weight function ϕ we shall obtain the following local Carleman estimate.

Theorem 2.2. Let K be a compact subset of V. Let the coefficient c(x) satisfy Cases 1, 2 or 3. With the weight function ϕ satisfying Assumption 2.1 in V, there exist C > 0 and h 0 > 0 such that

(2.7) h e ϕ/h w 2 0 + h 3 e ϕ/h ∇ x 0 ,x w 2 0 + h|e ϕ/h w| x n =0 ± | 2 0 + h 3 |e ϕ/h ∂ x 0 ,x ′ w| x n =0 ± | 2 0 + h 3 |e ϕ/h ∂ x n w| x n =0 ± | 2 0 ≤ C h 4 e ϕ/h f 2 0 + h|e ϕ/h θ| 2 0 + h 3 |e ϕ/h ∂ x 0 ,x ′ θ| 2 0 + h 3 |e ϕ/h Θ| 2 0 , 0 < h ≤ h 0 , for w satisfying (TC), w| R n+1 ∓ ∈C ∞ c (K g / d ) and where f = A 2 w in V \ S .
Remark 2.3. This Carleman estimate yields the same estimate for the operator A making use of the insensitivity of such estimates to changes of variables and to additional lower-order terms.

The remainder of this section is devoted to the proof of Theorem 2.2.

2.1. Preliminaries. We assume that the function w satisfies (TC) and A 2 w = f . Following [START_REF] Bellassoued | Carleman estimates and distribution of resonances for the transparent obstacle and application to the stabilization[END_REF], we shall consider the transmission problem as a system of two equations on V d coupled at the boundary x n = 0 + .

We thus make the change of variables x n to -x n in V g . This yields the following system in

V d :        (-1 c g (x) ∂ 2 x 0 -(∂ 2 x n -r g (x, ∂ x ′ /i))) w g = F g = 1 c g (x) f g , (-1 c d (x) ∂ 2 x 0 -(∂ 2 x n -r d (x, ∂ x ′ /i))) w d = F d = 1 c d (x) f d , (2.8) 
with

w g | x n =0 + = w d | x n =0 + + θ, c g ∂ x n w g | x n =0 + + c d ∂ x n w d | x n =0 + = Θ, (TC * )
where for a function ψ defined in V, we set

ψ d := ψ| V d and ψ g (x ′ , x n ) = ψ(x ′ , -x n ) for x n > 0. In particular, we have r g (x, ∂ x ′ /i) = r(x ′ , -x n , ∂ x ′ /i), and r d (x, ∂ x ′ /i) = r(x, ∂ x ′ /i) for x n > 0.
If there is no possible confusion, we shall now write ψ = t (ψ g , ψ d ). From Assumption 2.1 we have

∂ x n ϕ g (x 0 , x ′ , x n = 0) < 0, ∂ x n ϕ d (x 0 , x ′ , x n = 0) > 0, (2.9) and c g ∂ x n ϕ g (x 0 , x ′ , x n = 0) + c d ∂ x n ϕ d (x 0 , x ′ , x n = 0) ≥ 0. (2.10) Observe also that condition (2.3) is preserved since {Re a ϕ , Im a ϕ } is invariant under a change of variables [Hör63, Section 8.1, page 186].
We denote by p g / d the symbols of the operators acting on w g / d in (2.8). We set P(x 0 , x, D x 0 , D x ) := Op(diag(p g , p d )) and Φ := diag(ϕ g , ϕ d ). We set v = t (v g , v d ). For v = e Φ/h w, the entries of v satisfy the following boundary condition

v g | x n =0 + = v d | x n =0 + + θ ϕ , c g (D x n + i∂ x n ϕ g )v g | x n =0 + + c d (D x n + i∂ x n ϕ d )v d | x n =0 + = Θ ϕ , (TC ϕ )
where

θ ϕ = e ϕ/h | x n =0 + θ and Θ ϕ = h i e ϕ/h | x n =0 + Θ. (2.11)
We define the following conjugated operator P ϕ = h 2 e Φ/h Pe -Φ/h , which we shall, in the sequel, treat as a second-order semi-classical differential operator, with h as the small parameter. The principal symbol of P ϕ is given by

p ϕ (x 0 , x, ξ 0 , ξ ′ , ξ n ) = diag(p g ϕ (x 0 , x, ξ 0 , ξ ′ , ξ n ), p d ϕ (x 0 , x, ξ 0 , ξ ′ , ξ n )), with p g / d ϕ (x 0 , x, ξ 0 , ξ ′ , ξ n ) = 1 c g / d (ξ 0 + i∂ x 0 ϕ g / d ) 2 + (ξ n + i∂ x n ϕ g / d ) 2 + r g / d (x, ξ ′ + i∂ x ′ ϕ g / d ).
For the sake of concision, we shall often omit the time and spacial variables in the functions c g

/ d and ϕ g / d ,
as we have just done, when there is no possible confusion. Separating the real and imaginary parts of the principal symbol, we write p g

/ d ϕ = qg / d 2 + i qg / d 1 ,
and following [START_REF] Lebeau | Contrôle exact de l'équation de la chaleur[END_REF] we set

qg / d 2 = ξ 2 n + q g / d 2 , qg / d 1 = 2∂ x n ϕ g / d ξ n + 2q g / d 1 , with q g / d 2 (x 0 , x, ξ 0 , ξ ′ ) = -∂ x n ϕ g / d 2 + 1 c g / d ξ 2 0 -∂ x 0 ϕ g / d 2 + r g / d (x, ξ ′ ) -r g / d (x, ∂ x ′ ϕ g / d ), q g / d 1 (x 0 , x, ξ 0 , ξ ′ ) = 1 c g / d ∂ x 0 ϕ g / d ξ 0 + rg / d (x, ξ ′ , ∂ x ′ ϕ g / d ),
where rg / d (x, ξ ′ , η ′ ) are the symmetric bilinear forms in ξ ′ , η ′ associated to the real quadratic forms r g / d (x, ξ ′ ).

Signs of the imaginary part of the two roots of

p g / d ϕ . At x n = 0 + , the polynomials (in ξ n ) p g / d ϕ (x 0 , x, ξ 0 , ξ ′ , ξ n ) have two complex roots.
Depending on the signs of the imaginary parts of the two roots of the two polynomials, we shall adopt different strategies for the proof of partial Carleman estimates. By "partial" we actually mean that the resulting estimate will only hold in some microlocal region. Once collected together, the partial estimates will yield the result of Theorem 2.2.

Following [START_REF]Stabilisation de l'équation des ondes par le bord[END_REF], we set

µ g / d (x 0 , x, ξ 0 , ξ ′ ) := q g / d 2 (x 0 , x, ξ 0 , ξ ′ ) + q g / d 1 (x 0 , x, ξ 0 , ξ ′ ) 2 ∂ x n ϕ g / d 2 , (2.12)
and define

E g / d ,+ := {(x 0 , x, ξ 0 , ξ ′ ) ∈ V d × R n ; µ g / d (x 0 , x, ξ 0 , ξ ′ ) > 0}, E g / d ,-:= {(x 0 , x, ξ 0 , ξ ′ ) ∈ V d × R n ; µ g / d (x 0 , x, ξ 0 , ξ ′ ) < 0}, Z g / d := {(x 0 , x, ξ 0 , ξ ′ ) ∈ V d × R n ; µ g / d (x 0 , x, ξ 0 , ξ ′ ) = 0}. Remark 2.4. The regions E g / d ,-and Z g / d are bounded. Hence, for |(ξ 0 , ξ ′ )| sufficiently large, say |(ξ 0 , ξ ′ )| > R, then (x 0 , x, ξ 0 , ξ ′ ) ∈ E g,+ ∩ E d,+ , with dist((x 0 , x, ξ 0 , ξ ′ ), Z g / d ) ≥ C > 0.
The following lemma is proven in [LR97, proof of Lemma 3]. For the polynomial p g ϕ , for |(ξ 0 , ξ ′ )| > R, there are two roots, ρ g,+ and ρ g,-with Im ρ g,+ > 0 and Im ρ g,-< 0. As the value of µ g decreases, the root ρ g,-moves towards the real axis, and crosses it in the region Z g .

In the region E g,-the two roots both have positive imaginary parts. The "motion" of the roots of p g ϕ and p d ϕ is illustrated in Figure 1.

Remark 2.6. From the proof of Lemma 3 in [START_REF]Stabilisation de l'équation des ondes par le bord[END_REF], we see that

µ g / d ≥ C > 0 is equivalent to having Im ρ g / d ,+ ≥ C ′ > 0 and Im ρ g / d ,-≤ -C ′ .
With the choice of weight function ϕ made in Assumption 2.1 we have the following proposition.

Proposition 2.7. The properties of the weight function ϕ imply E d,+ ⊂ E g,+ , and

dist(E d,+ , Z g ) ≥ C > 0,
if the neighborhood V y of y is chosen sufficiently small.

The result of the proposition implies that the root ρ d,+ crosses the real axis before the root ρ g,-does, as µ d decreases from positive to negative values. This is illustrated in Figure 1. We enforce this root configuration because of the techniques we shall use to prove partial Carleman estimates.

In the case where the roots of the polynomial are separated by the real axis, or in the case where they In fact, the choice of weight function ϕ we have made excludes the situation in which Im ρ g,± > 0 and the root ρ d,+ may cross the real axis. In such a case, the Calderón projector technique cannot be used for

ρ g,- Re ξ n Im ξ n P g ϕ Re ξ n Im ξ n P d ϕ ρ d,- ρ d,+ ρ g,+ (a) Root configuration in E d,+ , µ d > 0; ρ g,-Re ξ n Im ξ n P g ϕ Re ξ n Im ξ n P d ϕ ρ d,- ρ g,+ ρ d,+ (b) Root configuration in Z d , µ d = 0; ρ g,-Re ξ n Im ξ n P g ϕ Re ξ n Im ξ n P d ϕ ρ d,- ρ g,+ ρ d,+ (c) Root configuration in E d,-, µ d < 0.
Figure 1: The root ρ d,+ crosses the real axis before the root ρ g,-does, as µ d decreases.

P g

ϕ or P d ϕ . The classical Carleman technique then yields a quadratic form for the traces of v and its normal derivative D x n v which is of unknown or negative sign, which prevents the derivation of a proper Carleman type estimate.

Proof of Proposition 2.7. The result is clear in the case |(ξ 0 , ξ ′ )| > R by Remark 2.4. We shall thus only

consider the case |(ξ 0 , ξ ′ )| ≤ R. We set W = {(x 0 , x ′ , ξ 0 , ξ ′ ) ∈ [s -ε, s + ε] × V y ′ × R n ; |(ξ 0 , ξ ′ )| ≤ R}. A
sufficient condition to prove the result is then

µ g (x 0 , x, ξ 0 , ξ ′ )| x n =0 + -µ d (x 0 , x, ξ 0 , ξ ′ )| x n =0 + ≥ C > 0, (x 0 , x ′ , ξ 0 , ξ ′ ) ∈ W. (2.13)
In fact, since W is compact, by choosing V sufficiently small in the x n -direction, this inequality remains valid in V d × R n ∩ {|(ξ 0 , ξ ′ )| ≤ R} and the result follows.

We first treat Case 1. Observing that

r d (x, ∂ x ′ ϕ d )| x n =0 + = r g (x, ∂ x ′ ϕ g )| x n =0 + , r(x, ξ ′ , ∂ x ′ ϕ)| x n =0 + := rd (x, ξ ′ , ∂ x ′ ϕ d )| x n =0 + = rg (x, ξ ′ , ∂ x ′ ϕ g )| x n =0 + , we obtain (µ g -µ d )(x 0 , x, ξ 0 , ξ ′ )| x n =0 + = (∂ x n ϕ d | x n =0 + ) 2 -(∂ x n ϕ g | x n =0 + ) 2 + ξ 2 0 -∂ x 0 ϕ| x n =0 + 2 1 c g - 1 c d x n =0 + +        ( 1 c g ξ 0 ∂ x 0 ϕ| x n =0 + + r(x, ξ ′ , ∂ x ′ ϕ))| x n =0 + ∂ x n ϕ g | x n =0 +        2 -        ( 1 c d ξ 0 ∂ x 0 ϕ| x n =0 + + r(x, ξ ′ , ∂ x ′ ϕ))| x n =0 + ∂ x n ϕ d | x n =0 +        2 ,
which, after expansion, we write

(µ g -µ d )(x 0 , x, ξ 0 , ξ ′ )| x n =0 + = (∂ x n ϕ d | x n =0 + ) 2 -(∂ x n ϕ g | x n =0 + ) 2 -∂ x 0 ϕ| x n =0 + 2 1 c g - 1 c d x n =0 +
(2.14)

+ ξ 2 0         1 c g - 1 c d x n =0 + + ∂ x 0 ϕ| x n =0 + 2        1 c g ∂ x n ϕ g 2 - 1 c d ∂ x n ϕ d 2        x n =0 +         + (r(x, ξ ′ , ∂ x ′ ϕ)) 2 | x n =0 +        1 ∂ x n ϕ g 2 - 1 ∂ x n ϕ d 2        x n =0 + + 2 ξ 0 r(x, ξ ′ , ∂ x ′ ϕ) ∂ x 0 ϕ| x n =0 +        1 c g ∂ x n ϕ g 2 - 1 c d ∂ x n ϕ d 2        x n =0 + .
The first line in (2.14) is larger than some positive constant by (2.4) in Assumption 2.1-Case 1. The last three lines in (2.14) can be viewed as a quadratic form in ξ 0 and r(x, ξ ′ , ∂ x ′ ϕ)| x n =0 + . The determinant of the associated symmetric matrix is given by

1 c g - 1 c d 1 ∂ x n ϕ g 2 ∂ x n ϕ d 2 (∂ x n ϕ d ) 2 -(∂ x n ϕ g ) 2 -∂ x 0 ϕ 2 1 c g - 1 c d x n =0 +
, and is thus positive by (2.4). Since the coefficient in front of r(x,

ξ ′ , ∂ x ′ ϕ)| x n =0 + in (2.14) is itself positive
by Assumption 2.1, we find that the quadratic form is nonnegative. The sufficient condition (2.13) hence follows.

We now treat Case 2. We write

(µ g -µ d )(x 0 , x, ξ 0 , ξ ′ )| x n =0 + = (∂ x n ϕ d | x n =0 + ) 2 -(∂ x n ϕ g | x n =0 + ) 2 (2.15) + 1 c d ξ 0 ∂ x 0 ϕ| x n =0 + + r(x, ξ ′ , ∂ x ′ ϕ))| x n =0 + 2 1 (∂ x n ϕ g | x n =0 + ) 2 - 1 (∂ x n ϕ d | x n =0 + ) 2 + 1 c g - 1 c d x n =0 + ξ 2 0 -∂ x 0 ϕ| x n =0 + 2 + 2ξ 0 ∂ x 0 ϕ| x n =0 + r(x, ξ ′ , ∂ x ′ ϕ))| x n =0 + + ∂ x 0 ϕ| x n =0 + ξ 0 c d | x n =0 + + 1 c g -1 c d 2 x n =0 + (∂ x n ϕ g | x n =0 + ) 2 (ξ 0 ∂ x 0 ϕ| x n =0 + ξ 0 ) 2 .
With |(ξ 0 , ξ ′ )| ≤ R, we see that the last two terms in the previous expression can be made as small as desired by choosing the neighborhood V y ′ sufficiently small, which implies |c(x ′ ,

x n = 0 -) -c(x ′ , x n = 0 + )| small.
The sum of the first two terms in (2.15) is larger than some positive constant by the properties of ϕ in Assumption 2.1, which yields the conclusion.

We finally treat Case 3. Then

c g | x n =0 + > c d | x n =0 + .
In particular, note that

c d (∂ x n ϕ d ) 2 | x n =0 + ≥ c g (∂ x n ϕ g ) 2 | x n =0 + , (2.16)
from Assumption 2.1. Observe that in this case we have

c g q g 2 (x 0 , x, ξ 0 , ξ ′ )| x n =0 + ≥ λ(x 0 , x ′ , ξ 0 , ξ ′ ), c d q d 2 (x 0 , x, ξ 0 , ξ ′ )| x n =0 + ≥ λ(x 0 , x ′ , ξ 0 , ξ ′ ),
where

λ(x 0 , x ′ , ξ 0 , ξ ′ ) = ξ 2 0 -∂ x 0 ϕ 2 -c d (∂ x n ϕ d ) 2 x n =0 + + c d r(x, ξ ′ ) x n =0 + -c g r(x, ∂ x ′ ϕ)| x n =0 + .
Let K be the constant appearing in (2.5). In the case λ(x 0 , x ′ , ξ 0 , ξ ′ ) > K/2, then locally, for x n ≥ 0, |x n | small, this remains valid with K/2 changed into K/4. Locally, we thus have µ g ≥ K/(4c max ) > 0 and

µ d ≥ K/(4c max ) > 0, from the definitions of µ g / d in (2.
12). In the region λ(x 0 , x ′ , ξ 0 , ξ ′ ) > K/2 the result is hence clear.

We now treat the region λ(x 0 , x ′ , ξ 0 , ξ ′ ) ≤ K/2. By choosing the neighborhood V sufficiently small, arguing as above, it is now sufficient to prove that

µ g (x 0 , x, ξ 0 , ξ ′ )| x n =0 + -µ d (x 0 , x, ξ 0 , ξ ′ )| x n =0 + ≥ C > 0, (x 0 , x ′ , ξ 0 , ξ ′ ) ∈ W,
where W = W ∩{(x 0 , x ′ , ξ 0 , ξ ′ ); λ(x 0 , x ′ , ξ 0 , ξ ′ ) ≤ K/2} which is compact. From Assumption 2.1, we observe that we have

(∂ x n ϕ d | x n =0 + ) 2 -(∂ x n ϕ g | x n =0 + ) 2 ≥ c d 2 1 c d + 1 c g 1 c d - 1 c g x n =0 + ∂ x n ϕ d | x n =0 + 2 .
With λ(x 0 , x ′ , ξ 0 , ξ ′ ) ≤ K/2 in W, we then obtain

(µ g -µ d )(x 0 , x, ξ 0 , ξ ′ )| x n =0 + = Q + ξ 2 0 ∂ x 0 ϕ| x n =0 + 2        1 c g ∂ x n ϕ g 2 - 1 c d ∂ x n ϕ d 2        x n =0 +
(2.17)

+ (r(x, ξ ′ , ∂ x ′ ϕ)) 2 | x n =0 +        1 ∂ x n ϕ g 2 - 1 ∂ x n ϕ d 2        x n =0 + + 2 ξ 0 r(x, ξ ′ , ∂ x ′ ϕ) ∂ x 0 ϕ| x n =0 +        1 c g ∂ x n ϕ g 2 - 1 c d ∂ x n ϕ d 2        x n =0 + , where Q ≥ 1 c d - 1 c g x n =0 +          c d 2 c g x n =0 + ∂ x n ϕ d | x n =0 + 2 + c d r(x, ξ ′ ) x n =0 + -c g r(x, ∂ x ′ ϕ)| x n =0 + -K/2          ≥ 1 c d - 1 c g x n =0 + K/2 + c d r(x, ξ ′ ) x n =0 + ≥ 1 c d - 1 c g x n =0 + K/2 + C 1 (c d | x n =0 + )|ξ ′ | 2 ,
by (2.5) in Assumption 2.1 and where C 1 is the uniform-ellipticity constant appearing in (2.1). As we have

|r(x, ξ ′ , ∂ x ′ ϕ)| x n =0 + | ≤ C 2 |ξ ′ | |∂ x ′ ϕ| x n =0 + |,
with C 2 also appearing in (2.1), we obtain

(µ g -µ d )(x 0 , x, ξ 0 , ξ ′ )| x n =0 + ≥ 1 c d - 1 c g x n =0 + K/2 + ξ 2 0 ∂ x 0 ϕ| x n =0 + 2        1 c g ∂ x n ϕ g 2 - 1 c d ∂ x n ϕ d 2        x n =0 +
(2.18)

+ C 1 c d 1 c d - 1 c g x n =0 + |ξ ′ | 2 -2C 2 |∂ x 0 ϕ| x n =0 + | |∂ x ′ ϕ| x n =0 + | |ξ 0 | |ξ ′ |        1 c g ∂ x n ϕ g 2 - 1 c d ∂ x n ϕ d 2        x n =0 +
, since the third term in the r.h.s. of (2.17) is nonnegative by Assumption 2.5. Next, we consider the last three terms in (2.18) as a quadratic form in |ξ ′ | and ξ 0 . The coefficients associated to ξ 2 0 and |ξ ′ | 2 are nonnegative. The result of the proposition follows if the quadratic form is nonnegative, that is, if its determinant is itself nonnegative. The determinant is given by

∂ x 0 ϕ| x n =0 + 2        C 1 1 - c d c g x n =0 +        1 c g ∂ x n ϕ g 2 - 1 c d ∂ x n ϕ d 2        x n =0 + -C 2 2 (∂ x 0 ϕ| x n =0 + ) 2        1 c g ∂ x n ϕ g 2 - 1 c d ∂ x n ϕ d 2        2 x n =0 +        ,
and is nonnegative by (2.6) in Assumption 2.1-Case 3.

Remark 2.8. Because of the controllability result we aim to prove in this article, we have considered the elliptic operator A := -∂ 2 x 0 -L, with the additional variable x 0 . The Carleman estimate of Theorem 2.2 also holds for the operator L = ∇ x • (c(x)∇ x )). In this case, we simply assume that the weight function satisfies

∀x 0 , x ′ , ∂ x n ϕ(x 0 , x ′ , x n = 0 ± ) > 0, ∂ x n ϕ(x 0 , x ′ , x n = 0 + ) -∂ x n ϕ(x 0 , x ′ , x n = 0 -) ≥ C > 0.
In fact, in this case, after dividing by c(x) on both sides of the interface S as above, the symbols q g / d 2 and q g / d 1 reduce to

q g / d 2 (x, ξ ′ ) = -∂ x n ϕ g / d 2 + r g / d (x, ξ ′ ) -r g / d (x, ∂ x ′ ϕ g / d ), q g / d 1 (x, ξ ′ ) = rg / d (x, ξ ′ , ∂ x ′ ϕ g / d ).
We then have

µ g (x, ξ ′ )| x n =0 + -µ d (x, ξ ′ )| x n =0 + = (∂ x n ϕ d | x n =0 + ) 2 -(∂ x n ϕ g | x n =0 + ) 2 1 + r(x, ξ ′ , ∂ x ′ ϕ) 2 | x n =0 + (∂ x n ϕ d | x n =0 + ) 2 (∂ x n ϕ g | x n =0 + ) 2 ≥ C > 0
with the assumptions on ϕ we just wrote. We can then use the same argument as in the proof of Proposition 2.7 and prove that the result of this proposition also holds in this case. The rest of the proof of Theorem 2.2 below remains unchanged. More generally, for other elliptic operators, the result of Theorem 2.2 holds if we can choose a weight function that yields the result of Proposition 2.7.

In particular, the Carleman estimate in Theorem 2.2 provides a quantitative result for the unique continuation property across the interface S (See for instance [START_REF] Hörmander | Linear Partial Differential Operators[END_REF] or [START_REF] Zuily | Uniqueness and Non Uniqueness in the Cauchy Problem[END_REF]). E d,+ . With a microlocal cut-off, we place ourselves in the region region E d,+ , hence in E g,+ by Proposition 2.7, and finitely away from Z d (and thus Z g ). Making use of the Calderónprojector technique we shall prove the following partial Carleman estimate.

Estimate in the region

Proposition 2.9. Let K be a compact subset of V. Let χ + (x 0 , x, ξ 0 , ξ ′ ) ∈ S 0 T with a compact support w.r.t. (x 0 , x) contained in V, such that in the support of χ + we have µ d (x 0 , x, ξ 0 , ξ ′ ) ≥ C > 0. With the weight function ϕ satisfying Assumption 2.1, there exist C > 0 and h 1 > 0 such that

(2.19) op( χ + )v 1 + h 1 2 | op( χ + )v| x n =0 + | 1 + h 1 2 | op( χ + )D x n v| x n =0 + | 0 ≤ C P ϕ v 0 + h v 1 + h 2 |D x n v| x n =0 + | 0 + h 1 2 |θ ϕ | 1 + h 1 2 |Θ ϕ | 0 , for 0 < h ≤ h 1 , and for v = t (v g , v d ), v g , v d ∈C ∞ c (K d
) and satisfying (TC ϕ ).

The proof we give follows that of Lemma 4 in [START_REF]Stabilisation de l'équation des ondes par le bord[END_REF] and the notation used therein. We reproduce some of the arguments of [START_REF]Stabilisation de l'équation des ondes par le bord[END_REF] to have a self-contained proof of Proposition 2.9. Note that the first term in the partial estimate (2.19) differs from the equivalent term in the Carleman estimate (2.7) by a factor h 1 2 . Here, a "better" estimate is actually obtained because we have restricted ourselves microlocally to an ellipticity region of the symbol p ϕ . The Carleman estimate (2.7), for the second-order operator A 2 , in fact corresponds to a sub-elliptic estimate. T . We set u = op( χ + )v. Then, P ϕ u = g with g = op( χ + )P ϕ v + [P ϕ , op( χ + )] ∈hΨ 1 v. In particular, we have

g 0 ≤ C P ϕ v 0 + h v 1 . (2.20)
The transmission conditions satisfied by u g and u d are

u g | x n =0 + = u d | x n =0 + + θ ϕ,χ + , c g (D x n + i∂ x n ϕ g )u g | x n =0 + + c d (D x n + i∂ x n ϕ d )u d | x n =0 + = G 1 , (TC u ) with θ ϕ,χ + := op( χ + )θ ϕ | x n =0 + and G 1 = [c g (D x n + i∂ x n ϕ g ), op( χ + )] ∈hΨ 0 T v g | x n =0 + + [c d (D x n + i∂ x n ϕ d ), op( χ + )] ∈hΨ 0 T v d | x n =0 + + op( χ + )Θ ϕ | x n =0 + that satisfies |G 1 | 0 ≤ Ch|v| x n =0 + | 0 + C|Θ ϕ | 0 . (2.21)
We denote by φ the zero-extension of a function φ ∈C ∞ (V d ) to R n+1 . We then have

P ϕ u = g -h 2 γ 0 (u) δ ′ + h i γ 1 (u) -op(q ρ ) γ 0 (u) δ, γ 0 (u) := u| x n =0 + , γ 1 (u) := D x n u| x n =0 + ,
where δ ( j) = d dx n j δ x n =0 , and q ρ = diag(ρ g,-+ ρ g,+ , ρ d,-+ ρ d,+ ) since

ρ g / d ,+ + ρ g / d ,-= -2i ∂ x n ϕ g / d .
Setting w 1 := γ 0 (u), and w 0 = γ 1 (u) -op(q ρ ) γ 0 (u), (2.22) we write

P ϕ u = g -h 2 w 1 δ ′ + h i w 0 δ. (2.23)
We now choose χ(x 0 , x, ξ 0 , ξ) ∈ S 0 equal to one for sufficiently large |(ξ 0 , ξ)| as well as in a neighborhood of supp( χ + ) with moreover supp( χ) ∩ det(p ϕ ) -1 ({0}) = ∅. These conditions are compatible from the choice made for supp( χ + ) and Proposition 2.7. From the ellipticity of p ϕ on supp( χ), for large M, there exists a ψDO E M = Op(e), with e ∈ S -2 , of the form e = M j=0 h j e j , with e j ∈ S -2-j and e g

/ d 0 = χ/p g / d
ϕ , that satisfies

E M • P ϕ = Op( χ) + h M+1 R M , R M ∈ Ψ -1-M .
Note that the parametrix construction yields the symbols e g / d j , j = 0, . . . , M, in the form of rational functions for large |ξ n |, with ρ g / d ,+ and ρ g / d ,-for only poles.

With such a parametrix E M we obtain

u = E M g + E M -h 2 w 1 δ ′ + h i w 0 δ + g 1 , g 1 = (Id -Op( χ))u -h M+1 R M u. (2.24)
We have the following lemma. Proof. We use the idea of the proof of Theorem 18.1.35 in [START_REF]The Analysis of Linear Partial Differential Operators[END_REF]. From the remark preceding Theorem 18.1.17 in [START_REF]The Analysis of Linear Partial Differential Operators[END_REF], adapted to semi-classical operators, we observe that

op(σ) • Op(Σ)e i z,ζ /h = op(σ) e iz n ζ n /h Σ(z, D z ′ , ζ n , h)e i z ′ ,ζ ′ /h = e iz n ζ n /h op(σ) • Σ(z, D z ′ , ζ n , h) e i z ′ ,ζ ′ /h , where Σ(z, D z ′ , ζ n , h) denotes the tangential operator op(Σ(z, ζ, ζ n , h)) with ζ n as a parameter. Since ζ ′ ≤ ζ , we indeed observe that, for all N ∈ N, Σ(z, ζ, ζ n , h) is bounded in S -N T uniformly w.r.t. ζ n ∈ R n . We set λ(z, ζ ′ , ζ n , h) := σ # T Σ
as given in the composition formula (1.3), with ζ n as a parameter. We hence have

op(σ) • Op(Σ)e i z,ζ /h = e i z,ζ /h λ(z, ζ, h). With supp(σ) ∩ supp(Σ) = ∅, for all M ∈ N, we find λ(z, ζ, h) = (-ih) M+1 (2πh) n |α|=M+1 1 0 (M + 1)(1 -s) M α! e -i t ′ ,τ ′ )/h × ∂ α ζ ′ σ(z, ζ ′ + τ ′ , h) ∂ α z ′ Σ(z ′ + st ′ , z n , ζ ′ , ζ n , h) dt ′ dτ ′ ds.
Note that for all j ∈ N,

∂ j z n ∂ α ζ ′ σ(z, ζ ′ , h) is in S m-|α| T , and that, for all M ′ , M ′′ , j, k ∈ N, ζ n M ′ ∂ j z n ∂ k ζ n ∂ α z ′ Σ(z, ζ, h) is bounded in S -M ′′ T uniformly w.r.t. ζ n in R. It follows that ζ n M ′ ∂ j z n ∂ k ζ n λ(z, ζ, h) ∈ h N S -N T , for all M ′ , N, j, k ∈ N. Since ζ ≤ ζ ′ ζ n , we see that λ(z, ζ, h
) is a symbol in all variables and is in ∩ N∈N h N S -N . We thus have e i z,ζ /h λ(z, ζ, h) = Op(λ)e i z,ζ /h and therefore find op(σ) • Op(Σ)e i z,ζ /h = Op(λ)e i z,ζ /h , for all ζ ∈ R n+1 .

Since both sides are continuous inS ′ (R n+1 ) and linear combinations of exponential functions are dense in S ′ , we obtain op(σ) • Op(Σ) = Op(λ).

To treat the other case, i.e., Op(Σ) • op(σ), we prove that op(σ) * • Op(Σ) * ∈ ∩ N∈N h N Ψ -N . We denote by σ * and Σ * the symbols of op(σ) * and Op(Σ) * . They are of the form

σ * = σ + σ ∞ , σ ∈ S m T , σ ∞ ∈ ∩ N∈N h N S -N T , and 
Σ * = Σ + Σ ∞ , Σ ∈ S -∞ , Σ ∞ ∈ ∩ N∈N h N S -N ,
where σ and Σ can be chosen such that supp( σ) ∩ supp( Σ) = ∅ from the ψDO calculus. This yields

op(σ) * • Op(Σ) * = op( σ) • Op( Σ) + op( σ) • Op(Σ ∞ ) + op(σ ∞ ) • Op(Σ ∞ ) + op(σ ∞ ) • Op( Σ).
The first term is treated as above. The other terms can be treated similarly with formula (1.3) for M = 0:

for the second and third terms we use that for all

M ′ , M ′′ , j, k ∈ N, ζ n M ′ ∂ j z n ∂ k ζ n Σ ∞ (z, ζ, h) is bounded in h M ′′ S -M ′′ T uniformly w.r.t. ζ n in R; for the fourth term we use that for all j, N ∈ N, ∂ j z n σ ∞ (z, ζ ′ , h) is in h N S -N T and ζ n M ′ ∂ j z n ∂ k ζ n Σ(z, ζ, h) is bounded in S -N T uniformly w.r.t. ζ n in R, for all M ′ , N, j, k ∈ N.
Continuation of the proof of Proposition 2.9. With Lemma 2.10, we have (Id -Op( χ))

• op(χ + ) ∈ ∩ N∈N h N Ψ -N . Noting that u = op( χ + ) v, we obtain g 1 2 ≤ Ch 2 v 0 . (2.25)
Next, we compute the action in the region x n > 0 of the parametrix E M on the terms defined on the interface in (2.24). We find

E M h i w 0 δ (x 0 , x) = (2πh) -n e i((x 0 -z 0 )ξ 0 + x ′ -z ′ ,ξ ′ )/h t0 (x 0 , x, ξ 0 , ξ ′ )w 0 (z 0 , z ′ )d(z 0 , z ′ ) d(ξ 0 , ξ ′ ), E M (-h 2 w 1 δ ′ ) = (2πh) -n e i((x 0 -z 0 )ξ 0 + x ′ -z ′ ,ξ ′ )/h t1 (x 0 , x, ξ 0 , ξ ′ )w 1 (z 0 , z ′ )d(z 0 , z ′ ) d(ξ 0 , ξ ′ ), where t0 (x 0 , x, ξ 0 , ξ ′ ) = 1 2iπ R e ix n ξ n /h e(x 0 , x, ξ 0 , ξ) dξ n , t1 (x 0 , x, ξ 0 , ξ ′ ) = 1 2iπ R e ix n ξ n /h e(x 0 , x, ξ 0 , ξ)ξ n dξ n .
Note that the integral defining t0 is absolutely converging. The integral defining t1 is however to be understood in the sense of oscillatory integrals [Hör90, Section 7.8]. Note that we have

t1 (x 0 , x, ξ 0 , ξ ′ ) = 1 2iπ D z n R e iz n ξ n /h e(x 0 , x, ξ 0 , ξ) dξ n z n =x n . (2.26)
The choice we have made for the cut-off function χ makes the symbol e(x 0 , x, ξ 0 , ξ) holomorphic for large

|ξ n |, ξ n ∈ C. In x n > 0, we thus obtain t0 (x 0 , x, ξ 0 , ξ ′ ) = 1 2iπ γ e ix n ξ n /h e(x 0 , x, ξ 0 , ξ) dξ n , (2.27)
where γ is the union of the segment {ξ n ∈ R;

|ξ n | ≤ C 0 |(ξ 0 , ξ ′ )|} and the half circle {ξ n ∈ C; |ξ n | = C 0 |(ξ 0 , ξ ′ )|, Im ξ n > 0}
, where the constant C 0 is chosen sufficiently large so as to have the roots ρ g / d ,+ inside the domain with boundary γ (recall that χ + ρ g / d ,+ is in S 1 ). From (2.26), we obtain similarly t1 (x 0 , x, ξ 0 , ξ ′ ) = 1 2iπ γ e ix n ξ n /h e(x 0 , x, ξ 0 , ξ)ξ n dξ n ,

x n > 0.

(2.28)

The expression (2.27) and (2.28) above are valid in x n > 0 but admit a trace at x n = 0 + . In particular, we note that we have

|D l x n ∂ α (x 0 ,x ′ ) ∂ β (ξ 0 ,ξ ′ ) t j | ≤ C α,β,l (ξ 0 , ξ ′ ) -1+ j+l-|β| , x n ≥ 0, j = 0, 1, l ∈ N. (2.29) We now choose χ 1 (x 0 , x, ξ 0 , ξ ′ ) ∈ S 0
T , satisfying the same requirement as χ + , equal to one in a neighborhood of supp( χ + ) and such that the symbol χ be equal to one in a neighborhood of supp( χ 1 ). We set t j = χ 1 t j , j = 0, 1 and g 2 = op((1χ 1 ) t0 )w 0 + op((1χ 1 ) t1 )w 1 . This yields

u = E M g + op(t 0 )w 0 + op(t 1 )w 1 + g 1 + g 2 . (2.30)
From the composition formula of tangential operators (1.3), noting that it does not involve derivations w.r.t. the variable x n , and estimate (2.29), we obtain 

g 2 2 ≤ Ch 2 ( v 1 + |D x n v| x n =0 + | 0 ), (2.
|ψ| x n =0 + | j ≤ Ch -1 2 ψ j+1 , j ∈ N. (2.32)
We now observe that the symbols e(x 0 , x, ξ 0 , ξ) is holomorphic w.r.t. ξ n in the support of χ 1 . We can then write

t j = diag(t g j , t d j ), t g / d j (x 0 , x, ξ 0 , ξ ′ ) = χ 1 (x 0 , x, ξ 0 , ξ ′ ) 1 2iπ γ g / d 0 e ix n ξ n /h e g / d (x 0 , x, ξ 0 , ξ)ξ j n dξ n , j = 0, 1, (2.33) where γ g / d 0 is a direct contour surrounding the roots ρ g / d ,+ in the region Im ξ n ≥ c 0 |(ξ 0 , ξ ′ )|, for c 0 > 0.
We note that in supp( χ 1 ) we have

e g / d 0 = 1 p g / d ϕ = 1 ρ g / d ,+ -ρ g / d ,- 1 ξ n -ρ g / d ,+ - 1 ξ n -ρ g / d ,-.
The residue formula then yields

e -ix n ρ g / d ,+ /h t g / d j = χ 1 (ρ g / d ,+ ) j ρ g / d ,+ -ρ g / d ,-+ hλ g / d , j = 0, 1, λ g / d ∈ S -2+ j T . (2.34)
It should be noted that it is crucial to have Im ρ g / d ,+ ≥ C > 0 and Im ρ g / d ,-≤ -C < 0 here. From (2.33) we obtain the estimate

|(D x n ) l ∂ α x 0 ,x ′ ∂ β ξ 0 ,ξ ′ t j | ≤ C α,β,l e -c 0 (x n /h) (ξ 0 ,ξ ′ ) (ξ 0 , ξ ′ ) -1+ j-|β|+l , x n ≥ 0,
again by the residue formula, which yields e c 0 x n /h (D x n ) l t j bounded in S j-1+l T uniformly w.r.t. x n ≥ 0. It follows that

Λ 1 • op(t j )w j 2 0 =
x n >0 e -2c 0 x n /h op(e c 0 x n /h t j )w j

2 1 (x n ) dx n ≤ Ch|w j | 2 j , (2.35) and D x n op(t j )w j 2 0 = x n >0 e -2c 0 x n /h op(e c 0 x n /h D x n t j )w j 2 0 (x n ) dx n ≤ Ch|w j | 2 j . (2.36)
From (2.30), and estimates (2.20), (2.25), (2.31), (2.35), (2.36) we obtain

u 1 ≤ C P ϕ v 0 + h v 1 + h 1 2 (|w 0 | 0 + |w 1 | 1 ) + h 2 |D x n v| x n =0 + | 0 .
(2.37)

We shall now address the boundary terms w 0 and w 1 . We take the trace at x n = 0 + of (2.30) which gives

γ 0 (u) = op(a)γ 0 (u) + op(b)γ 1 (u) + G 2 , (2.38)
where a ∈ S 0

T and b ∈ S -1 T , with principal symbols

a 0 = diag(a g 0 , a d 0 ), with a g / d 0 = -χ 1 ρ g / d ,- ρ g / d ,+ -ρ g / d ,- x n =0 + , b -1 = diag(b g -1 , b d -1 ), with b g / d -1 = χ 1 1 ρ g / d ,+ -ρ g / d ,- x n =0 +
, by (2.34) and (2.22). Note that the symbols a and b are diagonal. The function G 2 is given by G 2 = (E M g + g 1 + g 2 )| x n =0 + . From the trace formula (2.32), we write

|G 2 | 1 ≤ Ch -1 2 E M g + g 1 + g 2 2 ≤ Ch -1 2 P ϕ v 0 + h v 1 + h 2 |D x n v| x n =0 + | 0 , (2.39)
since E M ∈ Ψ -2 and making use of estimates (2.20), (2.25) and (2.31).

The transmission conditions (TC

u ) give γ 0 (u g ) = γ 0 (u d ) + θ ϕ,χ + , γ 1 (u g ) = -β γ 1 (u d ) + kγ 0 (u d ) + G1 (2.40) where β = (c d /c g )| x n =0 + , k = -i(∂ x n ϕ g | x n =0 + + β ∂ x n ϕ d | x n =0 + ) and G1 = -i∂ x n ϕ g θ ϕ,χ + + 1 c g | xn=0 + G 1 with | G1 | 0 ≤ Ch|v| x n =0 + | 0 + C(|θ ϕ | 0 + |Θ ϕ | 0 ), (2.41) by (2.21). From (2.38) we thus obtain (Id -op(a)) γ 0 (u d ) + θ ϕ,χ + γ 0 (u d ) = op(b) -β γ 1 (u d ) + kγ 0 (u d ) + G1 γ 1 (u d ) + G 2 .
We thus have

Id -op(a g ) -op(b g ) • k op(b g ) • β Id -op(a d ) -op(b d ) γ 0 (u d ) γ 1 (u d ) = G 2 + op(a g ) -Id 0 θ ϕ,χ + + op(b g ) 0 G1
where β and k stand here for the associated multiplication operators. We thus obtain a system of the form op(κ)

γ 0 (u d ) Λ -1 γ 1 (u d ) = G 2 + op(π)θ ϕ,χ + + op(Π) G1 , (2.42)
where κ is a 2 × 2 matrix with entries in S 0 T , with principal symbol

κ 0 = 1 -a g 0 -kb g -1 β (ξ 0 , ξ ′ ) b g -1 1 -a d 0 -(ξ 0 , ξ ′ ) b d -1
, and π and Π are 2 × 1 matrices with entries in S 0 T and S -1 T respectively, with principal symbols

π 0 = a g 0 -1 0 and Π -1 = b g -1 0 .
We now choose χ 2 (x 0 , x, ξ 0 , ξ ′ ) ∈ S 0 T , satisfying the same requirement as χ + , equal to one in a neighborhood of supp( χ + ) and such that the symbol χ 1 be equal to one in a neighborhood of supp( χ 2 ). In supp( χ 2 ), we obtain

κ 0 | supp( χ 2 ) =                 ρ g,+ -k ρ g,+ -ρ g,-β (ξ 0 , ξ ′ ) 1 ρ g,+ -ρ g,- ρ d,+ ρ d,+ -ρ d,--(ξ 0 , ξ ′ ) 1 ρ d,+ -ρ d,-                 x n =0 + . This yields det(κ 0 )| supp( χ 2 ) = - (ξ 0 , ξ ′ ) (ρ g,+ + β ρ d,+ -k) (ρ g,+ -ρ g,-)(ρ d,+ -ρ d,-) x n =0 + .
Since we have Im(ρ g,+ + β ρ d,+ ) ≥ C (ξ 0 , ξ ′ ) > 0 in supp( χ 2 ), and since

Im(-k) = 1 c g | x n =0 + (c g ∂ x n ϕ g + c d ∂ x n ϕ d )| x n =0 + ≥ 0, by (2.10), we find that | det(κ 0 )| supp( χ 2 ) | ≥ C > 0.
It follows that κ is elliptic in supp( χ 2 ). Then, there exists

l M ∈ S 0 T , such that op(l M ) • op(κ) = op( χ 2 ) + h M+1 RM , with RM ∈ Ψ -1-M T , for M ∈ N large. This yields γ 0 (u d ) Λ -1 γ 1 (u d ) = op(l M )G 2 + op(l M ) • op(π)θ ϕ,χ + + op(l M ) • op(Π) G1 + op(1 -χ 2 ) -h M RM γ 0 (u d ) Λ -1 γ 1 (u d )
.

From the ψDO calculus, since supp(1χ 2 ) ∩ supp( χ + ) = ∅, and making use of the trace formula (2.32) we obtain

|γ 0 (u d )| 1 + |γ 1 (u d )| 0 ≤ C |G 2 | 1 + |θ ϕ,χ + | 1 + | G1 | 0 + h 2 v 1 + h 2 |D x n v| x n =0 + | 0 (2.43) ≤ C ′ h -1 2 P ϕ v 0 + h 1 2 v 1 + h 3 2 |D x n v| x n =0 + | 0 + |θ ϕ | 1 + |Θ ϕ | 0 ,
by (2.41) and (2.39). From (2.40), the same estimate holds for |γ 0 (u g )| 1 + |γ 1 (u g )| 0 , and also for

|w 0 | 0 + |w 1 | 1 by (2.22): h 1 2 (|w 0 | 0 + |w 1 | 1 ) ≤ C P ϕ v 0 + h v 1 + h 2 |D x n v| x n =0 + | 0 + h 1 2 |θ ϕ | 1 + h 1 2 |Θ ϕ | 0 . (2.44) Observing that D x n op( χ + v) = op( χ + )D x n v + [D x n , op( χ + )] ∈hΨ 0 T v, we have h 1 2 | op( χ + )v| x n =0 + | 1 + | op( χ + )D x n v| x n =0 + | 0 ≤ Ch 1 2 |u| x n =0 + | 1 + |D x n u| x n =0 + | 0 + h|v| x n =0 + | 0 (2.45) ≤ C P ϕ v 0 + h v 1 + h 2 |D x n v| x n =0 + | 0 + h 1 2 |θ ϕ | 1 + h 1 2 |Θ ϕ | 0 ,
from the previous inequalities and the trace formula (2.32). We conclude the proof by combining estimates (2.37), (2.44) and (2.45).

2.4. Estimate in the region E d,-. With a microlocal cut-off, we place ourselves in the region E d,-, finitely away from Z d . Making use of the standard techniques to prove Carleman estimates for both P g ϕ and P d ϕ , we obtain the following partial Carleman estimate.

Proposition 2.11. Let K be a compact subset of V. Let χ -(x 0 , x, ξ 0 , ξ ′ ) ∈ S 0
T with a compact support w.r.t. (x 0 , x) contained in V, be such that in the support of χ -we have µ d (x 0 , x, ξ 0 , ξ ′ ) ≤ -C < 0. With the weight function ϕ satisfying Assumption 2.1, there exist C > 0 and h 1 > 0 such that

h op( χ -)v 2 1 + h| op( χ -)v| x n =0 + | 2 1 + h| op( χ -)D x n v| x n =0 + | 2 0 ≤ C P ϕ v 2 0 + h 2 v 2 1 + h|θ ϕ | 2 1 + h|Θ ϕ | 2 0 , (2.46) for 0 < h ≤ h 1 , and for v = t (v g , v d ), v d , v g ∈C ∞ c (K d ) and satisfying (TC ϕ ).
Proof. We set u = op( χ -)v. Then,

P ϕ u = g with g = op( χ -)P ϕ v + [P ϕ , op( χ -)]v.
In particular, we have

g 0 ≤ C P ϕ v 0 + h v 1 . (2.47)
The transmission conditions satisfied by u d and u g are (TC u ) -see the proof of Proposition 2.9-with θ ϕ,χ -:= op( χ -)θ ϕ | x n =0 + in place of θ ϕ,χ + and with G 1 here given by

G 1 = [c g (D x n + i∂ x n ϕ g ), op( χ -)]v g | x n =0 + + [c d (D x n + i∂ x n ϕ d ), op( χ -)]v d | x n =0 + + op( χ -)Θ ϕ | x n =0 + ,
and satisfying

|G 1 | 0 ≤ Ch|v| x n =0 + | 0 + C|Θ ϕ | 0 . (2.48)
We apply the Carleman method to the operators P g ϕ and P d ϕ . By Assumption 2.1, and in particular by (2.3), and by Lemma 2 in [START_REF] Lebeau | Contrôle exact de l'équation de la chaleur[END_REF], we then have

h u g / d 2 1 + Re hB g / d (u g / d ) + h 2 (D n u g / d + L g / d 1 u g / d )| x n =0 + , L g / d 0 u g / d | x n =0 + 0 ≤ C g g / d 2 0 , (2.49)
for h sufficiently small, where

L g / d 1 ∈ D 1 T , L g / d 0 ∈ Ψ 0 T . The quadratic forms B g / d are given by B g / d (ψ) = 2∂ x n ϕ g / d B g / d 1 Λ -1 Λ -1 B g / d ′ 1 Λ -1 B g / d 2 Λ -1 B g / d ∈Ψ 0 T γ 1 (ψ) Λ 1 γ 0 (ψ) , γ 1 (ψ) Λ 1 γ 0 (ψ) 0 , γ 0 (ψ) = ψ| x n =0 + , γ 1 (ψ) = D x n ψ| x n =0 + , (2.50) where B g / d 1 , B g / d ′ 1 ∈ D 1 T , with σ(B g / d 1 ) = σ(B g / d ′ 1 ) = 2q g / d 1 and B g / d 2 ∈ D 2 T , with σ(B g / d 2 ) = -2∂ x n ϕ g / d q g / d
2 . Observe that we have

h 2 (D n u g / d + L g / d 1 u g / d )| x n =0 + , L g / d 0 u g / d | x n =0 + 0 ≤ Ch 2 |γ 1 (u g / d )| 2 0 + |γ 0 (u g / d )| 2 1 .
(2.51)

The tangential ψDOs B g / d defined in (2.50) are of order 0 and their principal symbols are

σ(B g / d ) = 2∂ x n ϕ g / d 2q g / d 1 (ξ 0 , ξ ′ ) -1 2q g / d 1 (ξ 0 , ξ ′ ) -1 -2∂ x n ϕ g / d q g / d 2 (ξ 0 , ξ ′ ) -2 . We find det(σ(B g / d )) = -4(∂ x n ϕ g / d ) 2 (ξ 0 , ξ ′ ) -2 µ g / d , with µ g / d
as defined in Section 2.2; it follows that in supp( χ -) we have det(σ(B d )) ≥ C > 0. Since ∂ x n ϕ d > 0 it follows that σ(B d ) is positive definite.

We now make use of transmission conditions (TC u ) and write

γ 1 (u g ) Λ 1 γ 0 (u g ) = -β kΛ -1 0 1 C g γ 1 (u d ) Λ 1 γ 0 (u d ) + G1 Λ 1 θ ϕ,χ - , (2.52) where β = (c d /c g )| x n =0 + , k = -i(∂ x n ϕ g | x n =0 + + β ∂ x n ϕ d | x n =0 + ) and G1 = -i∂ x n ϕ g θ ϕ,χ -+ 1 c g | xn=0 + G 1 that satisfies | G1 | 0 ≤ Ch 1 2 v 1 + C(|θ ϕ | 0 + |Θ ϕ | 0 ), (2.53)
by (2.48) and trace formula (2.32). We obtain

B g (u g ) = Bg γ 1 (u d ) Λ 1 γ 0 (u d ) , γ 1 (u d ) Λ 1 γ 0 (u d ) 0 + U(γ 1 (u d ), γ 0 (u d ), θ ϕ,χ -, G1 ), where σ( Bg ) = t σ(C g )σ(B g )σ(C g ) ∈ S 1 T , which gives Bg γ 1 (u d ) Λ 1 γ 0 (u d ) , γ 1 (u d ) Λ 1 γ 0 (u d ) 0 ≤ C |γ 0 (u d )| 2 1 + |γ 1 (u d )| 2 0 , (2.54)
and where we have

U(γ 1 (u d ), γ 0 (u d ), θ ϕ,χ -, G1 ) = B g C g γ 1 (u d ) Λ 1 γ 0 (u d ) , G1 Λ 1 θ ϕ,χ -0 + B g G1 Λ 1 θ ϕ,χ - , C g γ 1 (u d ) Λ 1 γ 0 (u d ) 0 + B g G1 Λ 1 θ ϕ,χ - , G1 Λ 1 θ ϕ,χ -0 ,
which from (2.53) satisfies

|U(γ 1 (u d ), γ 0 (u d ), θ ϕ,χ -, G1 )| ≤ C |γ 0 (u d )| 2 1 + |γ 1 (u d )| 2 0 + h v 2 1 + |θ ϕ | 2 1 + |Θ ϕ | 2 0 . (2.55)
For any K > 0, with α > 0 sufficiently large, we can enforce ασ(B d ) + σ( Bg ) ≥ K > 0. Hence, with (2.54), (2.55) and Gårding's inequality [START_REF] Taylor | Pseudodifferential Operators[END_REF][START_REF] Martinez | An Introduction to Semiclassical and Microlocal Analysis[END_REF] we obtain

α Re B d (u d ) + Re B g (u g ) ≥ K 2 |γ 0 (u d )| 2 1 + |γ 1 (u d )| 2 0 -h v 2 1 + |θ ϕ | 2 1 + |Θ ϕ | 2 0 , (2.56)
for K sufficiently large and for h sufficiently small. The transmission conditions (2.52) give

|γ 0 (u g )| 2 1 + |γ 1 (u g )| 2 0 ≤ C |γ 0 (u d )| 2 1 + |γ 1 (u d )| 2 0 + |θ ϕ | 2 1 + |Θ ϕ | 2 0 + h v 2 1 . (2.57) Recalling that D x n op( χ -v) = op( χ -)D x n v + [D x n , op( χ -)] ∈hΨ 0 T v,
with the linear combination α(2.49) d + (2.49) g and estimates (2.47), (2.51), (2.56) and (2.57) we obtain the sought partial Carleman estimate, by choosing ε and h sufficiently small. Remark 2.12. As an alternative proof of Proposition 2.11, we could also use the Calderón projector technique for P d ϕ . In supp( χ -) the two roots ρ d,± of p d ϕ have negative imaginary part. With the notation and the argumentation of the proof of Proposition 2.9 above, the operators t d 0 and t d 1 vanish in x n > 0. The counterpart of (2.30) is then

u d = E M g d + g d 1 + g d 2 ,
for x n > 0. (2.58)

We then obtain (see (2.37))

u d 1 ≤ C P d ϕ v d 0 + h v d 1 + h 2 |D x n v d | x n =0 + | 0 . (2.59)
We take the trace at x n = 0 + of (2.58),

γ 0 (u d ) = G d 2 = (E M g d + g d 1 + g d 2 )| x n =0 + ,
which, by the counterpart of (2.39), gives

h 1 2 |γ 0 (u d )| 1 ≤ C P ϕ v 0 + h v 1 + h 2 |D x n v| x n =0 + | 0 . (2.60)
From (2.58) we also have

D x n u d = D x n E M g d + D x n g d 1 + D x n g d 2 ,
for x n > 0.

We take the trace at x n = 0 + and obtain

γ 1 (u d ) = (D x n (E M g d + g d 1 + g d 2 ))| x n =0 + .
From the trace formula (2.32) we then have

|γ 1 (u d )| 0 ≤ Ch -1 2 D x n (E M g d + g d 1 + g d 2 ) 1 ≤ Ch -1 2 E M g d + g d 1 + g d 2 2
and, by the counterpart of (2.39), this yields

h 1 2 |γ 1 (u d )| 0 ≤ C P ϕ v 0 + h v 1 + h 2 |D x n v| x n =0 + | 0 . (2.61)
From (2.60) and (2.61) and transmission condition (TC u ), we obtain

h 1 2 |γ 0 (u g )| 1 + h 1 2 |γ 1 (u g )| 0 ≤ C P ϕ v 0 + h v 1 + h 2 |D x n v| x n =0 + | 0 + h 1 2 |θ ϕ,χ -| 1 + h 1 2 |Θ ϕ | 0 . (2.62)
Finally with (2.59), (2.62), (2.51) g , and (2.49) g we can also achieve the result of Proposition 2.11. 2.5. Estimate around the region Z d . With a microlocal cut-off, we place ourselves in a neighborhood of the region Z d , i.e., where |µ d | is small, while staying in the region E g,+ away from the region Z g . Making use of the techniques of Calderón projectors for P g ϕ and standard techniques to prove Carleman estimates for P d ϕ , we obtain the following partial Carleman estimate.

Proposition 2.13. Let K be a compact subset of V. Let ϕ satisfy Assumption 2.1. Let χ 0 (x 0 , x, ξ 0 , ξ ′ ) ∈ S 0 T with a compact support w.r.t. (x 0 , x) contained in V and be such that in the support of χ 0 we have µ g (x 0 , x, ξ 0 , ξ ′ ) ≥ C > 0 and

(c g ∂ x n ϕ g + c d ∂ x n ϕ d ) 2 | x n =0 + -(c d ) 2 µ d | x n =0 + ≥ C ′ > 0, in supp( χ 0 ). (2.63)
Then, there exist C > 0 and h 1 > 0 such that

(2.64) h op( χ 0 )v 2 1 + h| op( χ 0 )v| x n =0 + | 2 1 + h| op( χ 0 )D x n v| x n =0 + | 2 0 ≤ C P ϕ v 2 0 + h 2 v 2 1 + h 4 |D x n v| x n =0 + | 2 0 + h|θ ϕ | 2 1 + h|Θ ϕ | 2 0 , for 0 < h ≤ h 1 , and for v = t (v g , v d ), v d , v g ∈C ∞ c (K d
) and satisfying (TC ϕ ).

Proof. Condition (2.63) can be obtained from the properties of the weight function ϕ listed in Assumption 2.1. In supp( χ 0 ), we have

Im ρ g,+ ≥ C > 0, Im ρ g,-≤ -C < 0.
We set u = op( χ 0 )v. Then, P ϕ u = g with g = op( χ 0 )P ϕ v + [P ϕ , op( χ 0 )]v. In particular, we have

g g / d 0 ≤ C P g / d ϕ v g / d 0 + h v g / d 1 . (2.65)
The transmission conditions satisfied by u d and u g are (TC u ) -see the proof of Proposition 2.9-with θ ϕ,χ 0 := op( χ 0 )θ ϕ | x n =0 + in place of θ ϕ,χ + with G 1 given here by

G 1 = [c g (D x n + i∂ x n ϕ g ), op( χ 0 )]v g | x n =0 + + [c d (D x n + i∂ x n ϕ d ), op( χ 0 )]v d | x n =0 + + op( χ 0 )Θ ϕ | x n =0 + ,
and satisfying

|G 1 | 0 ≤ Ch|v| x n =0 + | 0 + C|Θ ϕ | 0 . (2.66)
We start by applying the method of Calderón projectors to the operator P g ϕ and to u g . We follow the same notation as in the proof of Proposition 2.9. We thus obtain an estimate of the form of (2.37), namely,

u g 1 ≤ C P g ϕ v g 0 + h v g 1 + h 1 2 (|γ 1 (u g )| 0 + |γ 0 (u g )| 1 ) + h 2 |D x n v g | x n =0 + | 0 . (2.67)
where γ 0 (u g ) = u g | x n =0 + and γ 1 (u g ) = D x n u g | x n =0 + . We also have the following trace equation, of the same form as (2.38),

γ 0 (u g ) = op(a g )γ 0 (u g ) + op(b g )γ 1 (u g ) + G g 2 , (2.68) with a g ∈ S 0
T and b g ∈ S -1 T , with principal symbols

a g 0 = -χ 1 ρ g,- ρ g,+ -ρ g,- x n =0 + , b g -1 = χ 1 1 ρ g,+ -ρ g,- x n =0 + , where χ 1 (x 0 , x, ξ 0 , ξ ′ ) ∈ S 0
T , satisfies the same requirement as χ 0 , and is equal to one in a neighborhood of supp( χ 0 ). The function G g 2 satisfies

|G g 2 | 1 ≤ Ch -1 2 P g ϕ v g 0 + h v g 1 + h 2 |D x n v g | x n =0 + | 0 . (2.69)
We now use relation (2.68) in connection the transmission conditions (TC u ). With (TC u ), we write

op(b g )γ 1 (u g ) = -op(b g )(β γ 1 (u d )) + op(b g )(kγ 0 (u d )) + op(b g ) G1 , γ 0 (u g ) = γ 0 (u d ) + θ ϕ,χ 0 , where β = (c d /c g )| x n =0 + , k = -i(∂ x n ϕ g | x n =0 + + β ∂ x n ϕ d | x n =0 + ) and G1 = -i∂ x n ϕ g θ ϕ,χ 0 + 1 c g | xn =0 + G 1 that satisfies | G1 | 0 ≤ Ch|v| x n =0 + | 0 + C(|θ ϕ | 0 + |Θ ϕ | 0 ), ( 2 
.70) by (2.66). From (2.68), we obtain

(Id -op(a g ) -op(b g ) • k :=op(κ) ) γ 0 (u d ) = -op(b g )(β γ 1 (u d )) + op(b g ) G1 + (op(a g ) -Id)θ ϕ,χ 0 + G g 2 ,
where k stands here for the associated multiplication operator.

Let χ 2 (x 0 , x, ξ 0 , ξ ′ ) ∈ S 0 T satisfy the same requirement as χ 0 , and be equal to one in a neighborhood of supp( χ 0 ) and be such that the symbol χ 1 is equal to one in a neighborhood of supp( χ 2 ). In supp( χ 2 ), the principal symbol of κ is given by

κ 0 | supp( χ 2 ) = ρ g,+ -k ρ g,+ -ρ g,-∈ S 0 T .
In supp( χ 2 ) we have Im ρ g,+ ≥ C > 0 and Im(-k) ≥ 0 by Assumption 2.1, we see that κ is elliptic in supp( χ 2 ). Hence, there exists l ∈ S 0 T , with l = M j=0 h j l j , with l j ∈ S -j T and l 0 = χ 2 /κ 0 , such that

op(l M ) • op(κ) = op( χ 2 ) + h M+1 R M , with R M ∈ Ψ -1-M T
, for M large. We thus obtain

γ 0 (u d ) = -op(l) • op(b g )(β γ 1 (u d )) + G 3 , (2.71) with G 3 = op(l) • op(b g ) G1 + op(l) • (op(a g ) -Id) θ ϕ,χ 0 + op(l) G g 2 + (Id -op( χ 2 ))γ 0 (u d ) -h M+1 R M γ 0 (u d ).
From the ψDO calculus, since supp(1χ 2 ) ∩ supp( χ 0 ) = ∅, we obtain

|G 3 | 1 ≤ C h -1 2 P g ϕ v g 0 + h 1 2 v 1 + h 3 2 |D x n v g | x n =0 + | 0 + |θ ϕ,χ 0 | 1 + |Θ ϕ | 0 , (2.72)
by (2.70) and (2.69) and making use of the trace formula (2.32). We thus have

|γ 0 (u d )| 1 ≤ C |γ 1 (u d )| 0 + h -1 2 P g ϕ v g 0 + h 1 2 v 1 + h 3 2 |D x n v g | x n =0 + | 0 + |θ ϕ,χ 0 | 1 + |Θ ϕ | 0 . (2.73)
We now apply the Carleman method to the operator P d ϕ and to u d . By Assumption 2.1, and in particular by (2.3), and by Lemma 2 in [START_REF] Lebeau | Contrôle exact de l'équation de la chaleur[END_REF] we have

h u d 2 1 + Re hB d (u d ) + h 2 (D n u d + L d 1 u d )| x n =0 + , L d 0 u d | x n =0 + 0 ≤ C P d ϕ u d 2 0 , (2.74)
for h sufficiently small, where L d 1 , L d 0 , and B d are as given in the proof of Proposition 2.11. For any ε > 0 we have

h 2 D n u d + L d 1 u d , L d 0 u d 0 ≤ h 2 |γ 0 (u d )| 2 1 + |γ 1 (u d )| 2 0 . (2.75) With (2.71) we obtain B d (u d ) = M * • B d • M γ 1 (u d ), γ 1 (u d ) 0 + U(γ 1 (u d ), G 3 ), with M = 1 -Λ 1 • op(l) • op(b g ) • β ∈ Ψ 0 T ,
with β standing here for the associated multiplication operator, and where

U(γ 1 (u d ), G 3 ) = B d • M γ 1 (u d ), 0 Λ 1 G 3 0 + B d 0 Λ 1 G 3 , M γ 1 (u d ) 0 + B d 0 Λ 1 G 3 , 0 Λ 1 G 3 0 .
With Young's inequality we obtain

|U(γ 1 (u d ), G 3 )| ≤ C |γ 1 (u d )| 0 |G 3 | 1 + |G 3 | 2 1 (2.76) ≤ ε|γ 1 (u d )| 2 0 + C ε h -1 P g ϕ v g 2 0 + h v 2 1 + h 3 |D x n v g | x n =0 + | 2 0 + |θ ϕ,χ 0 | 2 1 + |Θ ϕ | 2 0 ,
by (2.72).

In supp( χ 0 ), the principal symbol of M * • B d • M is in S 0 T and given by

Σ = σ(M * • B d • M) = t 1 -(ξ 0 , ξ ′ ) 1 l 0 b g -1 β 2∂ x n ϕ d 2q d 1 (ξ 0 , ξ ′ ) -1 2q d 1 (ξ 0 , ξ ′ ) -1 -2∂ x n ϕ d q d 2 (ξ 0 , ξ ′ ) -2 1 -(ξ 0 , ξ ′ ) 1 l 0 b g -1 β x n =0 + = 2∂ x n ϕ d -4q d 1 β Re(l 0 b g -1 ) -2β 2 |l 0 b g -1 | 2 ∂ x n ϕ d q d 2 x n =0 + .
In supp( χ 0 ) we have Recalling that

|l 0 b g -1 | -2 | x n =0 + = ρ g,+ | x n =0 + -k 2 = (Re ρ g,+ ) 2 + (Im ρ g,+ + ∂ x n ϕ g + β ∂ x n ϕ d ) 2 x n =0 + , (2.
D x n op( χ 0 v) = op( χ 0 )D x n v + [D x n , op( χ 0 )] ∈hΨ 0 T v,
we see that an appropriate linear combination of (2.67) and (2.79) then yields the sought partial Carleman estimate for h sufficiently small.

2.6. Proof of Theorem 2.2. We choose χ + , χ -and χ 0 with values in [0, 1] that satisfy the properties listed in Propositions 2.9, 2.11 and 2.13 respectively and furthermore χ + + χ -+ χ 0 = 1 in a neighborhood of K × R n , which can be achieved by Proposition 2.7.

We recall that v = e Φ/h w. Since 1χ + + χ -+ χ 0 = 0 in a neighborhood of supp(w), we have for h sufficiently small. Observing now that we have e Φ/h D x j w 0 ≤ D x j e Φ/h w 0 + ∂ x j Φ e Φ/h w 0 , and similar inequalities for the norms at the interface {x n = 0 + }, and recalling the forms of θ ϕ and Θ ϕ in (2.11), we can conclude the proof of Theorem 2.2.
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In this section, we prove an interpolation inequality from the Carleman estimate proven in the previous section. This will then yield the controllability result of Theorem 1.1.

With α ∈ (0, X 0 /2), we set X = (0, X 0 ) × Ω, Y = (α, X 0α) × Ω.

Theorem 3.1. There exist C ≥ 0 and δ ∈ (0, 1) such that for u ∈ H 1 (X) that satisfies (TC) and u| (0,X 0 )×Ω 1 ∈ H 2 ((0, X 0 ), H 2 (Ω 1 )) and u| (0,X 0 )×Ω 2 ∈ H 2 ((0, X 0 ), H 2 (Ω 2 )), u(x 0 , x)| x∈∂Ω = 0, x 0 ∈ (0, X 0 ), and u(0, x) = 0, x ∈ Ω, we have u H 1 (Y) ≤ C u δ H 1 (X) Au L 2 (X) + ∂ x 0 u(0, x) L 2 (ω) Corollary 3.2. There exists a constant C obs ≥ 0 such that the solution y to              -∂ t y -Ly = 0 in Q, q = 0 on (0, T ) × ∂Ω, q(T ) = q T in Ω, with q T ∈ L 2 (Ω) satisfies q(0) 2 L 2 (Ω) ≤ C obs q 2 L 2 ((0,T )×ω) .

Remark 3.3. With the technique used in [START_REF] Fursikov | Controllability of evolution equations[END_REF], i.e., enlarging Ω in the neighborhood of part of ∂Ω, we obtain a similar controllability (resp. observability) result for a localized boundary control (resp. observation).

3.1. Proof of the interpolation inequality. We first prove a local version of the interpolation inequality in a small neighborhood of a point (y 0 , y ′ , 0) of the interface (0, X 0 ) × S .

  Lemma 2.5. In the region E g / d ,+ , the polynomials p g / d ϕ have two distinct roots ρ g / d ,+ and ρ g / d ,-that satisfy Im ρ g / d ,+ > 0 and Im ρ g / d ,-< 0. In the region E g / d ,-, the imaginary parts of the two roots have the same sign as that of -∂ x n ϕ g / d . In Z g / d , one of the roots is real. Hence, for the polynomial p d ϕ , for |(ξ 0 , ξ ′ )| > R, there are two roots, ρ d,+ and ρ d,-with Im ρ d,+ > 0 and Im ρ d,-< 0. As the value of µ d decreases, the root ρ d,+ moves towards the real axis, and crosses it in the region Z d . In the region E d,-the two roots both have negative imaginary parts.

  are both in the lower open half plane, we can apply the Calderón-projector technique to the associated differential operator. The first case occurs for P g / d ϕ in regions E g / d ,+ . The second case can only occur for P d ϕ in the region E d,-. In such regions, the Calderón-projector technique in fact yields an additional boundary condition at x n = 0 + .

Proof.

  In supp( χ + ), we have Im ρ g / d ,+ ≥ C > 0, Im ρ g / d ,-≤ -C < 0, by Lemma 2.5 and remark 2.6. Moreover, χ + ρ g / d ,+ and χ + ρ g / d ,-are in S 1

Lemma 2. 10 .

 10 Let σ(z, ζ ′ , h) ∈ S m T and Σ(z, ζ, h) ∈ S -∞ such that supp(σ) ∩ supp(Σ) = ∅. Then op(σ) • Op(Σ) ∈ N∈N h N Ψ -N ,andOp(Σ) • op(σ) ∈ N∈N h N Ψ -N .

  31)since supp(1χ 1 ) ∩ supp( χ + ) = ∅, by making use of the following trace formula[START_REF]Stabilisation de l'équation des ondes par le bord[END_REF] page 486] 

≥

  77) Re(l 0 b g -1 ) |l 0 b g -1 | -2 | x n =0 + = Re ρ g,+ | x n =0 + .We then obtainΣ = 2β 2 |l 0 b g -1 | 2 ∂ x n ϕ d β -2 |l 0 b g -1 | -2 -2q d 1 β -1 (∂ x n ϕ d ) -1 Re ρ g,+q d 2 x n =0 + = 2β 2 |l 0 b g -1 | 2 ∂ x n ϕ d β -2 |l 0 b g -1 | -2 -(Re ρ g,+ ) 2µ d + q d 1 (∂ x n ϕ d ) -1β -1 Re ρ g,+ 2 x n =0 + ≥ 2β 2 |l 0 b g -1 | 2 ∂ x n ϕ d β -2 (∂ x n ϕ g + β ∂ x n ϕ d ) 2µ d x n =0 + ≥ C > 0, by (2.63) and since |l 0 b g -1 | 2 | x n =0 + ≥ C > 0, |l 0 b g -1 | -2 | x n =0 + -(Re ρ g,+ ) 2 | x n =0 + ≥ (∂ x n ϕ g + β ∂ x n ϕ d ) 2 | x n =0 + ,as |ρ g,+ | remains bounded in supp( χ 0 ) and by (2.77). Hence, Gårding's inequality yields[START_REF] Taylor | Pseudodifferential Operators[END_REF][START_REF] Martinez | An Introduction to Semiclassical and Microlocal Analysis[END_REF] ReM * • B d • M γ 1 (u d ), γ 1 (u d ) 0 C|γ 1 (u d )h sufficiently small and C > 0.Combining (2.74), with (2.65), (2.73), (2.75), (2.76) and (2.78), for and f and ε sufficiently small we obtainh u d 2 1 + h|γ 1 (u d )| 2 0 + h|γ 0 (u d )| 2 1 ≤ C P ϕ v 2 0 + h 2 v 2 1 + h 4 |D x n v g | x n =0 + | 2 0 + h|θ ϕ | 2 1 + h|Θ ϕ | 2 0 . (2.79)Note that the transmission conditions (TC u ) give|γ 0 (u g )| 2 1 + |γ 1 (u g )| 2 0 ≤ C |γ 0 (u d )| 2 1 + |γ 1 (u d )| 2 0 + |θ ϕ | 2 1 + |Θ ϕ | 2 0 + h v 2 1 .

  Figure 2: Level sets for the weight functions ψ and ϕ = e λψ in local normal geodesic coordinates. The Carleman estimate of Theorem 2.2 can be applied in a region V close to (y 0 , y ′ , 0) (represented with a dashed line).

  x n v| x n =0 + | 0 ≤ | op( χ + )D x n v| x n =0 + | 0 + | op( χ -)D x n v| x n =0 + | 0 + | op( χ 0 )D x n v| x n =0 + | 0 + Ch|D x n v| x n =0 + | 0 , |v| x n =0 + | 1 ≤ | op( χ + )v| x n =0 + | 1 + | op( χ -)v| x n =0 + | 1 + | op( χ 0 )v| x n =0 + | 1 + Ch|v| x n =0 + | 1 ,andv 1 ≤ op( χ + )v 1 + op( χ -)v 1 + op( χ 0 )v 1 + Ch v 1 .These three inequalities together with (2.19), (2.46), and (2.64) then yieldh v 2 1 + h|v| x n =0 + | 2 1 + h|D x n v| x n =0 + | 2 0 ≤ C P ϕ v 2 0 + h|θ ϕ | 2 1 + h|Θ ϕ | 2 0 ,

depending on the case (1,2, or 3) satisfied by the considered point (y 0 , y).
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We place ourselves in normal geodesic coordinates, as in Section 2, in a neighborhood W of (y 0 , y, 0) and first construct a weight function ψ in W. We start by defining the following anisotropic distance in R n+1 : dist α ((a 0 , a),

Let (z 0 , z) = (y 0 , y ′ , z n ) be a point in W away from the interface. We suppose (z 0 , z) ∈ W d , i.e., z n > 0 (for consistency with Section 2). For γ > 0, we set

We note that ψ is continuous across the interface {x n = 0} and that

Note that |x jz j | is bounded in W and that we can choose the parameter α sufficiently small to have |∂ x j ψ| x n =0 |, j = 0, . . . , n -1 small as compared to |∂ x n ψ| x n =0 + |. We thus choose α and γ sufficiently small to have ψ satisfying the properties 1 listed in Assumption 2.1 in a sufficiently small neighborhood V of (y 0 , y), V ⊂ W, apart from the sub-ellipticity condition (2.3). Clearly (z 0 , z) V. Level sets for the function ψ are represented in Figure 2.

We now note that the weight function ϕ = e λψ , λ > 0, also satisfies those conditions, possibly with different constants, from the homogeneity of the formulae in Assumption 2.1 w.r.t. to the weight function.

The proof of Lemma 3 in [LR95, Section 3.B] then yields that ϕ furthermore satisfies the sub-ellipticity condition (2.3) for λ sufficiently large (see also Theorem 8.6.3 in [Hör63, Chapter 8] and Proposition 28.3.3 in [Hör85a, Chapter 28]). The local Carleman estimate of Theorem 2.2 then follows, with the weight function ϕ, for a possibly reduced neighborhood that we still denote by V (see Proposition 2.7).

We choose 0 < s 1 < s ′ 1 and 0 < σ < σ ′ such that

We also set

and finally C ′ 3 ∩ U ′ ⊂ {x n ≤ σ}. We illustrate these choices in Figure 3. We set R j = e λr j , R ′ j = e λr ′ j , j = 1, 2, 3. 0 0 0 1 1 1 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 

Figure 3: Neighborhoods around the point of interest for the proof of the interpolation inequality.

Following [START_REF] Lebeau | Contrôle exact de l'équation de la chaleur[END_REF], we introduce

and we further set

The region W 3 is represented shaded and stripped in Figure 3. With the choices we have made above, the

and is finitely away from the interface S = {x n = 0}. We also choose

The region W 2 contains (y 0 , y ′ , 0) and is represented shaded in Figure 3.

which is the stripped region in Figure 3. For u ∈ H 1 (W) that satisfies (TC), we set w = ζu. Then w satisfies the following transmission conditions

From the Carleman estimate of Theorem 2.2, after division by h 3 , we have

Note that [A, ζ] of order one and supported in

We also have

by the trace formula. We thus obtain

Optimizing w.r.t. to h as in [START_REF] Robbiano | Fonction de coût et contrôle des solutions des équations hyperboliques[END_REF] we obtain µ 0 ∈ (0, 1) such that the local interpolation inequality

holds for 0 < µ ≤ µ 0 . This inequality can be read as the "observation" of the H 1 norm of u in the neighborhood of any point of the interface by the H 1 norm of u in a neighborhood away from the interface and the L 2 norm of Au Remark 3.4. As pointed above the region W 3 is contained in R n+1 + . The case W 3 ⊂ R n+1 -can naturally be obtained by changing x n into -x n in W. Now that we have obtained such a local interpolation inequality at the interface, we can apply the procedure described in [LR95, pages 353-356] and prove the sought global interpolation inequality (3.1). See [LZ98, Proof of Theorem 3] to obtain the term ∂ x 0 u(0, x) L 2 (ω) in the r.h.s. of (3.1). This concludes the proof of Theorem 3.1.