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CARLEMAN ESTIMATE FOR ELLIPTIC OPERATORS WITH COEFFICIENTS WIT H
JUMPS AT AN INTERFACE IN ARBITRARY DIMENSION AND APPLICATION T O THE
NULL CONTROLLABILITY OF LINEAR PARABOLIC EQUATIONS

JEROME LE ROUSSEAU AND LUC ROBBIANO

Asstract. In a bounded domain &"™1, n > 2, we consider a second-order elliptic operatos —6§0 — V-
(c(X)Vx), where the (scalar) céiicientc(x) is piecewise smooth yet discontinuous across a smoothaocest

We prove a local Carleman estimate fom the neighborhood of any point of the interface. The “olsaton”
region can be chosen independently of the sign of the jumpeottticientc at the considered point. The
derivation of this estimate relies on the separation of tieblem into three microlocal regions and the Cadgter
projector technique. Following the method of Lebeau and Rottb[LR95] we then prove the null control-
lability for the linear parabolic initial problem with Dizhlet boundary conditions associated to the operator
At = V- (e(X)Vx).

Keywords: Elliptic equation; Non-smooth cdiécent; Transmission problem; Carleman estimate; Microlocal
analysis; Caldém projectors; Parabolic equation; Control.

AMS 2000 subject classification:35J15; 35S15; 35K05; 93B05; 93B07.

1. INTRODUCTION AND NOTATION

The question of the null controllability of linear parakolpartial diferential equations with smooth
codficients was solved in the 1990's [LR95, FI96]. In the case stdintinuous cdécients in the principal
part of the parabolic operator, the controllability issmel &s dual counterpart, observability, are not fully
solved yet. A result of controllability for a semi-lineardteequation with a cagcient that is discontinuous
at an interface was proven in [DOP02] by means of a globaleGah observability estimate. Roughly
speaking, as in the case of hyperbolic systems (see e.@glLmage 356]), the authors of [DOP02] proved
their controllability result in the case where the cont®Isupported in the region where thetdsion
codficient is the ‘lowest’. In both cases, however, the approkéncantrollability, and its dual counterpart,
uniqueness, are true without any restriction on the monatgrof the cosdficients. It is then natural to
guestion whether or not an observability estimate holdeércase of non-smooth déieients and arbitrary
observation location.

Recently, in the one-dimensional case, the controllghiésult for parabolic equations was proven for
general piecewisﬁéfl codficients in [BDLO7a], and for cd&cients with bounded variationBY) in [Le 07],
which improved the result of [FCZ02]. The proof relies ontlgabCarleman estimatesvhich moreover
allow to treat semilinear equations. Simultaneously, arcdiability result for parabolic equations with
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2 JEROME LE ROUSSEAU AND LUC ROBBIANO

general bounded céiecients in one dimension was proven in [AEQ7]. The method uketk to achieve
null controllability is that of [LR95], which limits the fiel of applications to linear equations.

In the n—dimensional casen > 2, a positive answer to the controllability question wasegivor a
class of discontinuous cficients, with separated variables, that are smooth w.rall fout one variables,
which includes the case of stratified media [BDLO7b]. Theoprelies both on the Carleman estimates of
[BDLO7a, Le 07] in the one-dimensional case and the methgdR®5].

In the present article, in the case> 2, we achieve null controllability for Bnear parabolic equation in
the case of a cdicient that exhibits jumps drbitrary signsat an interface. Le® be a smooth bounded
connected domain iR". We consider the operattr:= V, - (c(X)Vy), with possibly additional lower-order
terms, and where(x) satisfies

0 < Cmin < ¢(X) < Cmax < ©,

to ensure uniform ellipticity fol.. The codficientc is assumed smooth apart from across an inter&ce
where it may jump. The interfac® is the boundary of a smooth open subSgte Q, i.e., Q, lies on
one side ofS. Let T > 0 and sefQr = (0,T) x Q. We setQ, = Q\ Q;. We prove the following null
controllability result.

Theorem 1.1. For an arbitrary time T> 0 and an arbitrary open subset c Q and an initial condition
0o € L3(Q), there exists & L2((0, T) x Q) such that the solution q of

6tq - Lq = la)u In QTs
(1.1) q(t,x) =0 on (0, T) x 09,

d(0,x) = go(¥) inL,

satisfies ¢T) = 0 a.e. inQ.

We follow the method of [LR95], thus proving local Carlemastimates for an elliptic operator associ-
ated to the considered parabolic problem: we introduce Ithpie operatorA := -95 — L. The variable
Xo is an additional variables in (), for someX, > 0. We provide such a local Carleman estimate for
the operatoA in a small neighborhoo¥d of a point /o, y) of (0, Xp) x S with an “observation” on one side
of S, independently of the sign of the jump ofat (yo,y). We hence treat all possible cases including the
case that can be treated more classically as mentioned ,abowehich the “observation” is supported in
the region where the flusion codicient is the ‘lowest’ [DOP02].

We denote by., .) the inner product oh?((0, Xo)x€2) and byj|.||o the induced norm. In the present article,
we shall make use of techniques from the semi-classicaysisabf pseudodierential operatorsfDOs)
[Mar02]. With h as the small parameter, we det= 'i-‘a. Accordingly, we shall use the semi-classical
Sobolev norm|f|[f := ¥ <k 1D fIZ, k € N.

The Carleman estimate we aim at proving is of the form

hie?/™wil> + h3)1e?/MV, wils < CHIeM fIls,  Aw=f, h> 0,
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for h sufficiently small and supp{) c V, whenw is smooth on both sides of the interface, witlandco,w
continuous acrosS (9, is the normal derivative &), which impliesAw e L((0, Xp) x Q).

The sign ofd,y at the interface locates the side of the interface on whielfdbservation” takes place
(see Section 2 for the application of the local Carlemam&gt). To achieve such a Carleman estimate we
follow the method of [LR97], in the spirit of the work of [B&B). In particular, we separate the interface
problem into three microlocal regions for which partial [Earan estimates are obtained. In some of these
regions we make use of the Calderprojector technique.

With this local Carleman estimate at the interface, we can firove an interpolation inequality that first
yields an estimation of the loss of orthogonality for theegifunctionsp;(x), j € N, of the operatot., with
Dirichlet boundary conditions, when these eigenfunctiaresrestricted tew. We denote byj, j € N, the
associated eigenvalues, sorted in an increasing sequence.

Theorem 1.2. For any(a;)jen € C we have:

2
dx, u>0.

> 2t

Hj<p

(1.2) 3 eyl < CeCWf
Hj<H w

Following [LR95], this estimation then yields a constroctiof the control function(t, x) in (1.1), by
sequentially acting on a finite yet increasing number of mégaces, and we hence obtain the result of
Theorem 1.1. We refer the reader to [LR95] or [LZ98, SectipR@position 2] for the details.

The reader will observe that the proof of the Carleman eséiman be adapted to other elliptic operators
with non-smooth coécients across an interface. Beyond the controllabilityltesf interest in this arti-
cle, such Carleman estimates have a wide range of appheatiocluding unique continuation properties
([HOr63, Zui83, Hir85a). See Remark 2.8 for further detalils.

The result of this article opens perspectives for futureaesh towards the null controllability of semi-
linear parabolic equations with non smooth fiméent in space dimensiom > 2 and towards more com-
plicated geometrical situations, for instance in the cds®eficients with singularities that do not lie on a
smoothinterface.

In this article, when the consta@tis used, it refers to a constant that is independent of thé-slassical
parameteh. Its value may however change from one line to another. If watwio keep track of the value
of a constant we shall use another letter. We shall use ofdtagian() := (1+ |r]|2)%. Let us now introduce
semi-classicayDOs. We denote bgM(R™?! x R™1), S™ for short, the space of smooth functica(g, £, h),
defined forh € (0, hy] for someh, > 0, that satisfy the following property: for all, 8 multi-indices, there
existsC,; > 0, such that

&z L, h)| < Cop(O)™P,  ze R™, € R™, he (0, ho).

Then, for all sequencan-j € S™/, j € N, there exists a symbal € S™ such thata ~ 2i hiam.j, in the
sense thad - 3y hiam-j € (NS™N (see for instance [Mar02, Proposition 2.3.2] oof85b, Proposition
18.1.3]), withay, as principal symbol. We definB™ as the space @fDOsA = Op(a), for a € S™, formally
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defined by
AU = (2rh) ™D f f detOMaz £ Ut dtde, U ey (R™),

We shall denote the principal symba}, by o-(A). We shall use techniques of pseudtefiential calculus
in this article, such as construction of parametrices, amsitipn formula, formula for the symbol of the
adjoint operator, etc. We refer the reader to [Tay84r8%b, Mar02]. In the main text the variatdevill be
(X%, X) and{ = (£o, ).

We now introduce tangential symbols and associated opsratde setz = (Z,z.), Z = (Z,...,Z-1)
and’ = (... .,¢{n-1) accordingly. We denote b1 (R™! x R"), SI! for short, the space of smooth
functionsb(z ¢’, h), defined forh € (0, hg] for somehy > 0, that satisfy the following property: for all, 8
multi-indices, there existS, s > 0, such that

BB N < Copd)™ ¥, zeR™, 7 €R", he (0, hol.

As above, for all sequends,; € Sf}”, j € N, there exists a symbble SI" such thab ~ 3 hiby, j, in the
sense thab— 3. hibm.j € thq”fN, with br, as principal symbol. We defing? as the space of tangential
wDOs B = op(b) (observe the notation we adopt idfdrent from above to avoid confusion), fore ST,
formally defined by

Bu@) = (2xh) ™ ff 7Oy 7 Ry ut.z) dY 7. ue S (R™Y).

We shall also denote the principal symiy| by o(B). In the case where the symbol is polynomiakin
andh, we shall denote the space of associated tangetiffatential operators by%. We shall denote by
AS the tangentialyDO whose symbol ig/’)S. The composition formula for tangential symbdbse S™,
b’ e ST, is given by

(1.3) (b#- 1)z ) = (27h)™ f f eIz 2 4 W (Z + V.20, D) At de

||
= > E bz b )

lal<M

Ih)M+1
(27rh)n

f(M + D= 9" [[e e mazb@s + 7 a0 @ + stz ¢ W dtdrds

lof= M+1
and yields a tangential symbol Bfr“””. In the main text the variablewill be (xo, X', Xn) andZ’” = (&, &').

Following [LR95, LR97], we shall denote Ky, .), the inner product for functions defined ¢x, = 0},
i.e., (f,9) = JI f(X0,X)T(%, X)dx% dX. The induced norm is denoted ki, i.e., |f|§ = (f, ). For
se R we introducd f|g := [ASf],.

The outline of the article is as follows. In section 2, we @rakie announced local Carleman estimate
at the interface for the elliptic operatér In Section 3, we prove the interpolation inequality thapli@s
(1.2). The controllability result then follows from [LR95]
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2. LocaL CARLEMAN ESTIMATE AT THE INTERFACE

In the neighborhood of a pointd,y) of (0, Xp) x S, we denote byx, the variable that is normal to
the interfaceS and byx’ the remaining spacial variables, i.&.= (X, Xy). In particulary = (y’,0). The
transmission conditions at the interface we shall consider

(TC) VX0, X', Wlx,=0- = Wx,=0+ + 6,  CIx,Wix,=0- = COx,Wlx,=0+ + O,

i.e., the continuity ofv at the interface as well as the continuity of the normal flugdoio some error terms
0 and®. Such error terms will be usefull in Section 3 where the Gade estimate proven in this section is
used to achieve the null controllabiltity result of Theor#r.

In a suficiently small neighborhood c R" of (yo, ), we place ourselves in normal geodesic coordinates
(w.r.t. to the spacial variableg). For convenience, we shall take the neighborh®odf the form {/o —
£,Yo0 + €) X Vy X (—¢, &), whereVy, is a suficiently small neighborhood of. In such coordinate system,
the principal part of the diferential operatoA takes the following form [8r85b, Appendix C.5] on both
sides of the interface:

Ag = —0%, — c(¥) (0%, — (% dx /i),
with r(x, &) a x,-family of second-order polynomials #i that satisfy
(2.1) r(x¢)eR, and Cil¢'P <r(x¢&) <Cle'l’, xeVy x(-s¢), & eR",

for some O< C; < C, < o0. Note that the transmission conditions (TC) remain unckdrig this change
of variables.
We set

RM™ = (0.0 % < 0. R. = (0.9 % <Ol RT™=((x0.%.% >0, R, = {(x0.%).% =0},
VI=VnR™, Vvi=vnRM, KI=VI KI=Vd and K=V.

We denote byrs’(K9) (resp.s°(KY)) the space of functions that &¢&° in R (resp.ﬁTl) with support
in K9 (resp.K9Y).

We lety be a (weight) function in all variables. We shall “observeé solution of the elliptic equation
Aw = f on the sidex, > 0 and thus choos&, ¢(xo, X', Xn = 0%) > 0. We shall consider three cases in order
to treat the general case:

Case 1: c(y,yn = 07) < c(Y,yn = 0%),
Case 2:c(Y,Yn = 07) = c(Y, Yy = 0%),
Case 3:c(Y,¥n=07) > c(Y,¥n = 07).

Recall that Case 3 is the case for which controllability atabgl Carleman estimates were obtained in
[DOPO2].
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On both sides o6 we defineA, = h?e?/"A,e#/". Considered as a semi-classicafeliential operator

we denote by, its principal symbol, which is given by
a, = (€0 +i0x,9)? + C(X) ((n + 105,0)* + T(X & +10x¥)).
We make the following assumption.

Assumption 2.1. The weight functiop(xo, ) is in #(V) and Pl € ¢~ (K% and satisfiesV(x, ¢l > 0
inV. We assume

X0, X, Ox,0(X0, X, Xq = 07) > 0, Oy, 0(X0, X, Xn = 07) — Oy 0(X0, X, %, =07) > C > 0,

(2.2) (©0x,9) (%0, X', Xn = 07) = (COx,0) (X0, X', Xn = 07) > 0.
The functionp satisfies the sub-ellipticity condition
(2.3) V(X0 % £0,&) € K¥ x R™ @, (x0, %, £0,€) =0 = {Rea,,Ima,}(x,£) > 0.
Case 1: The neighborhood V is choseryftiently small such that
X, X =0") —c(X, X =07) >C >0, X €Vy.

Moreover we assume

(2.4) VX0, X,  (9x,0(X0, X, Xn = 01))% = (B, (X0, X', X = 07))°

—@wﬂmﬁ&=®f( L !

c(X, % =07)  c(X, X% = 0%)

)2C>Q

Case 2: The neighborhood V is chosenfgtiently small such thgt(x’, x, = 07) — (X, X, = 0%)| is
itself syficiently small.
Case 3: The neighborhood V is choserygtiently small such that

(X, % =0") —c(X, % =07) < -C <0, X € V.

Moreover we assume

(©(X, % = 0))?

A S A ’ — 0O 2
C(X’, Xn = 0_) (axn(,O(XO, X', Xn 0 ))

(2.5) ¥xo, X,
— (X', % = 07) 1(X', X0 = 0,0x¢(X0, X', Xa = 0)) = K,
where K is some positive constant and

c(X, Xy = O*))( 1 1 )
(

o, X0 = 07) ) (G 0) (X0 X' Yo = 0°) (G 0) (X0, X' X = 0))?

(2.6) ¥xo, X, Cg (1 -

1 1 2
(C(05%,9)?) (X0, X, X0 = 07)  (C(Bx,0)?) (X0, X', Xn = 0*))

where G and G are the constants i{2.1).

>0,

X\=0*

—C%%@%m%»m=®(
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Note thaty is chosen continuous across the interface. In particukahave

axo‘P|xn:0’ = a><0‘P|><n:0+a 6x"P|xn:0* = a><’90|><r.:0+,

which we shall simply writey,¢|x,-o- anddx ¢lx,-o- respectively in the sequel.

The conditions we impose on the weight functiowill make sense in the course of the proof of Propo-
sition 2.7 below. In Section 3 we shall construct a weightcfion that statisfies the properties listed in
Assumption 2.1.

From the assumption made on the weight functiome shall obtain the following local Carleman esti-
mate.

Theorem 2.2. Let the cogicient dx) satisfy Cases 1, 2 or 3. With the weight functjosatisfying Assump-
tion 2.1, there exist G 0 and iy > 0 such that

2.7)  hile?/MW> + h31e?/MV Wl + hle? Wiy, —o: |2 + N30, o Wiy o+ | + N30, Wiy, —o- |-
< c(h“uewhfné + he?MgIE + W1/, O + h3|ewh®|§), 0<h<ho,
for w satisfying(TC), Wi € ¢ (K%) and Aw = f.

Remark 2.3. This Carleman estimate yields the same estimate for thextgréx making use of the insen-
sitivity of such estimates to changes of variables and tdtiadal lower-order terms.

The remainder of this section is devoted to the proof of Téeo2.2.

2.1. Preliminaries. We assume that the functiom satisfies (TC) andy,w = f. Following [Bel03], we
shall consider the transmission problem as a system of twatims orV¢ coupled at the boundary, = 0*.
We thus make the change of variabiggo —x, in V9. This yields the following system ovi‘:

2.8) (~ 05 = (0%, = 190 /1)) W = F = 9,
(~ g 02 — (@2, — r9(x, B /) W = F9 = 19,
with
(TC*) \/\Igl)(n:o+ = Wdl)(n:o+ +0, CgaanVg|Xn:o+ + CdaXn\Nd|xn:o+ =0,

where for a functiony defined inV, we sety? := ylye andy9(X, X)) = ¥(X, —X,) for x, > 0. In particular,
we haver9(x, dy /i) = r(X,—Xn, dx /i), andrd(x,dy /i) = r(x,dy /i) for x, > 0. If there is no possible
confusion, we shall now writg = t(wg, ¥9). From Assumption 2.1 we have

(2.9) Oy 0%(X0, X, X0 = 0) < 0, 8y,¢%(X0, X, Xy = 0) > 0,
and
(2.10) 0995, ¢%(X0, X, X = 0) + ¢80 (X0, X', X, = 0) > 0.

Observe also that condition (2.3) is preserved siftes,, Im a,} is invariant under a change of variables
[Hor63, Section 8.1, page 186].



8 JEROME LE ROUSSEAU AND LUC ROBBIANO

We denote byp* the symbols of the operators acting aft in (2.8). We setP(xo, X, Dy,, Dx) =
Op(diag@?, p%)) and @ := diag@?, o). We setv = '(v9,\d). Forv = e®Mw, the entries ofv satisfy
the following boundary condition

(TC,) Wm0+ = Vllxco- + 6, €Dy, + i0%,0)Vx,0+ + CH(Dx, + iy, ¢ )W x=0- = O,
where

h
(2.11) 0, = &My -00 and O, = i—e“f/hlxn:o@.

We define the following conjugated operafy = h?e®"Pe /" which we shall, in the sequel, treat as a
second-order semi-classicaftérential operator, with as the small parameter. The principal symbadPgf
is given by

Po(Xo0, X, €0, €', ) = diag (Pl (Xo. X, €0, €, &n), P2(X0. X, €0, €', &n)).
with
1 . . .
PE (X0, % €0,&', &n) = 5 (Eo + 10, pP)? + (6n + 105, 6")* + THOCE + D).

For the sake of concision, we shall often omit the time andispaariables in the functions® ande*,
as we have just done, when there is no possible confusiorar&apy the real and imaginary parts of the
principal symbol, we writeij1 = qu + iqgf, and following [LR95] we set

G =&h+ab. af =200+ 207,
with
, 2 1 2 ,
qua (XO’ X7 fO’é: ) = - (axn‘p%) + Cf’d (fé - (6)(0(}7%) ) + r%(xs§ ) - rgfd(x’ 0)(’(10%)’
4 1 3 !
q?fj (XOa X7 fo,f ) = gaﬁ)(ﬂp%go + r% (X’é: s ax"P%),
wherer®(x, &, ') are the symmetric bilinear forms i, 7’ associated to the real quadratic forrigx, &’).
2.2. Signs of the imaginary part of the two roots opr". At x, = 0%, the polynomials (i) p?,?(xo, X, &0,&,&n)
have two complex roots. Depending on the signs of the imagiparts of the two roots of the two poly-
nomials, we shall adopt filerent strategies for the proof of partial Carleman estimagy “partial” we
actually mean that the resulting estimate will only holdame microlocal region. Once collected together,

the partial estimates will yield the result of Theorem 2.2.
Following [LR97], we set

(¥ 00 % 0.8))°

2.12 H(x0, %, 0, €") 1= ¥ (X0, X, €0, &
(2.12) 1 (%o, X, &0, €7) 1= 0y (X0, X, €0, €7) + )
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and define

BT = (%0, %, £0,€) € VIX R, 1M (%0, X, £0,€") > O},
B = (%0, %, €0, €) € VIX R, 18 (%0, X, £0,¢) < O},
5H = {(x0, %, £0.€") € VI X R, 1 (X0, X, 0,&") = O},

Remark 2.4. The regions¢*~ and 3% are bounded. Hence, f(f¢o, £")| suficiently large, say(¢o, &')| >
R, then (o, X, £0.£') € €% N €9+, with dist((x, X £0.£'), 7%) = C > 0,

The following lemma is proven in [LR97, proof of Lemma 3].

Lemma 2.5. In the region ¢ %*, the polynomials ﬁ have two distinct rootp®* and p*~ that satisfy
Imp¥%* > 0andImp®~ < 0. In the region& *~, the imaginary parts of the two roots have the same sign
as that of-d,,¢™®. In 5%, one of the roots is real.

Hence, for the polynomiah?, for |(&, &) > R, there are two rootg®* andp®~ with Imp%* > 0 and
Imp%~ < 0. As the value of® decreases, the ropt* moves towards the real axis, and crosses it in the
region 5" In the regioné %~ the two roots both haveegativeimaginary parts.

For the polynomiap?, for |(&, &)l > R, there are two rootg%* andp®~ with Im p%* > 0 and Imp%~ <
0. As the value off decreases, the rop#~ moves towards the real axis, and crosses it in the regién
In the regiond ¥~ the two roots both havgositiveimaginary parts. The “motion” of the roots pﬁ and pg
is illustrated in Figure 1.

Remark 2.6. From the proof of Lemma 3 in [LR97], we see thdt > C > 0 is equivalent to having
Imp*+ > C’ > 0and Imp*~ < -C’.

With the choice of weight functiop made in Assumption 2.1 we have the following proposition.

Proposition 2.7. The properties of the weight functignmply €%+ c €9+, anddist(¢%*, 39) > C > 0,
if the neighborhood y/of y is chosen gficiently small.

The result of the proposition implies that the rp8t crosses the real axis before the rpdt does, ag
decreases from positive to negative values. This is iliistt in Figure 1. We enforce this root configuration
because of the techniques we shall use to prove partialf@an@stimates.

In the case where the roots of the polynomial are separateédebseal axis, or in the case where they
are both in the lower open half plane, we can apply the Caiderojector technique to the associated
differential operator. The first case occurs P&rin regions ¢ **. The second case can only occur Rﬁr
in the region€%~. In such regions, the Caldm-projector technique in fact yields an additional bougda
condition atx, = O*.

In fact, the choice of weight functiop we have made excludes the situation in whichoffi > 0 and
the rootp®* may cross the real axis. In such a case, the Cafdprojector technique cannot be used for
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d pd pd
Pe  Imény . as ¢ Imé ¢ Imé&
);'0 ‘:pd,+
Reé, 4 Reé&, ’X'pd,+ Re&,
xpd,, xpd,— xpd,—
P Py P
¢ Imé&, Ot Imé&, ot Im &, o
p P 7
p Reén pg,_)f Reg, p¥7% Re&y
o
(a) Root configuration inf %+, 4 > 0; (b) Root configuration in; 9, u¢ = 0; (c) Root configuration inf%~, x% < 0.

Figure 1: The roop®* crosses the real axis before the rpdt does, ag® decreases.

Pg or Pg. The classical Carleman technique then yields a quadiatic for the traces of and its normal
derivativeDy v which is of unknown or negative sign, which prevents thewdgion of a proper Carleman
type estimate.

Proof of Proposition 2.7. The result is clear in the caf@&o, ¢’)| > R by Remark 2.4. We shall thus only
consider the casi, &) < R We setW = {(Xo, X, &0,&') € [S—&,5+ €] X Vy/ x R" |(é0,€) < RL A
suficient condition to prove the result is then

(213) ﬂg(xo’ X, 50’ g,)|>(n:0* _:ud(xo’ X, §07 f/)|xn:0+ > C> 03 (XO’ X” é:O’ f’) eW

In fact, sinceW is compact, by choosiny suficiently small in thex,-direction, this inequality remains
valid in V9 x R" N {|(¢0,¢")| < R} and the result follows.
We first treat Case 1. Observing that

rd(X, ax";0d)|xn:0+ = rg(X, ax’¢g)|xn:0+,

F(Xv §,9 ax"P)Ixn:O* = Fd(xv §,9 ax"Pd)|Xn=O+ = Fg(xr 5,9 (?X'(iljg)'Xn:OJr 5

we obtain

1 1
(10 = 1) (%0, %, €0, & )xy=0 = (I, ¢ Ix,=0+)” = (B #%p=0)? + (5(2) - (6XO‘P|xn=O*)2) (@ - @)
Xo=0*

are 2 o 2
+ (é‘anXo‘Pan:O* +F(x ¢ sax’¢))|xn:0+ 3 (éfoaxo‘ﬂxn:w + (X ¢ ,6x/‘;9))|xn:0+
0%, ¢9x,=0" 8xn‘Pd|xn=O+ ’
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which, after expansion, we write

1 1

(2.14) (4= 1) 00, % €0, € Ve = (O o0r)” = (O lre=01)’ = (Drolre0)” (@ ) E)
1 1
+%H&‘@)

~ 4 2 1 - 1
+ (T(X, &, 0x9))*Ix,=0 [(axn‘pg)z (axn()od)z]

X,=0*

2 1 - =
+ (Ox#lx,=0) ((Cgaxn90g)2 (Cdaxn‘Pd)z)

xn=0+]

Xn=0*

Xn,=0*

Xn=0*

1 1
£ 260 T(X €, By @) Byl - -

The first line in (2.14) is larger than some positive constgn{2.4) in Assumption 2.1-Case 1. The last
three lines in (2.14) can be viewed as a quadratic forg @ndr{x, &, dx ¢)|x,=0-- The determinant of the
associated symmetric matrix is given by
1 1 1 1 1
e = 8y oD% = (8 09 = (B0 = - =
5-=) P g \ 0 T O 0 G "
and is thus positive by (2.4). Since the ffit@ent in front ofr{x, &, dx ¢)lx,=0- in (2.14) is itself positive

by Assumption 2.1, we find that the quadratic form is nonriegafThe sifficient condition (2.13) hence
follows.

s

Xy,=0*

We now treat Case 2. We write

(215) (/'lg - :ud)(xo’ X, 60’ é‘:/)lxn=0+ = (axn‘pdlxn=0+)2 - (6Xn¢glxn=0+)2

1 2 1 1
+ | =& o + (X, &, 0y - -
(Cdfo oFhocor + T6E Fe el o+) ((M%m)z (awdm_m)Z)
1 1 2 2 o , axo‘10|><n:0+ éo
N (Cg C")w (fo (Orehocor 2+ 260 phcor (r(x,f,ax«omxn:m » Do
2
E-2)]._

0
+ m(foam¢|xn:o+§o)z~

With |(&0, ¢')] < R, we see that the last two terms in the previous expressiobeamde as small as desired
by choosing the neighborhoad, suficiently small, which impliegc(x’, X, = 07) — ¢(X', Xn = 0%)| small.
The sum of the first two terms in (2.14) is larger than sometpesconstant by the properties gfin
Assumption 2.1, which yields the conclusion.

We finally treat Case 3. Thed|y —o- > cd|xn:0+. In particular, note that

(2.16) @) im0+ = (B %) 0
from Assumption 2.1. Observe that in this case we have

cI3(X0, X, €0, € )lxy0r = A(X0, X, €0.&7),  C09(X0, X, é0, € 0+ = A(X0, X', €0, &),
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where

A0, X, £0,€") = &5 = (0x9)” = 0, 0Y, Lo + CTCE, o = (X Dx@)ly, o -
Let K be the constant appearing in (2.5). In the cabe, X, &, &) > K/2, then locally, forx, > 0, |Xp|
small, this remains valid withkK/2 changed intd/4. Locally, we thus have?® > K/(4cnax) > 0 and
ud > K/(4cmad) > 0, from the definitions of® in (2.12). In the regionm(xo, X, £0,&’) > K/2 the result is
hence clear.

We now treat the regioi(xo, X', é,¢’) < K/2. By choosing the neighborhood suficiently small,
arguing as above, it is now icient to prove that

19(X0, %, €0, € )lxm0r — 19(X0, %, €0, lx0r = C > 0, (X0, X, é0,€") € W,

whereW = Wn{(Xo, X, &0,&"); A(Xo, X, &0, &) < K/2} which is compact. From Assumption 2.1, we observe
that we have

(axn90d|xn:0+)2 .

(axn‘pd|xn=0*)2 - (axn¢g|xn:0+)2 2 (Cd)2 (é + é) (é a é)

Xn=0*
With A(xo, X', £0,¢”) < K/2 in W, we then obtain
217) (O 10 % €0, Yxyeor = Q+ &5 (BrPlipeor)? ( yo ]
s Ny 5 Xn= 0 X0 1 Xn= (Cgaxntpg)z (Cdaxngod)z o
1 1
+ (F(. &, 0 9)) o0 [ _ ]
O R0 o
+2&0T(X &, Dy p) Dy gl ( 1 1 ]
0 9 ’ ’SO 90 =0+ —
' e Cg(axn‘ypg)2 cd(axn¢d)2 N
where
2
1 1 cd ) ’
Q> (@ B @) . {_( Cg) . (3xn90d|xn=0+) + cdr(x,f ) - " CgI’(X, ax"p)|xn:0+ _ K/Z}
Xn=0* Xn=0F

(K/2 + cr(x, &)
Xn=0*

(K/2+ Ca(Pl=0)IEP),
Xp=0%

)2 (5 5)

by (2.5) in Assumption 2.1 and whe@ is the uniform-ellipticity constant appearing in (2.1). ve have

[F(x.&, Ox @) lx=0+] < Colé'| [0 @lx,=0+1,
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with C, also appearing in (2.1), we obtain

(2.18)
11 ) 1 1
W9 = 100, X 00 Vo > (———) K/2+ & (Brorhoo’) [ - ]
080 =\ d T a)|, OO (k9 (o)), o
1 1
+Cy (— - —) €2
¢ eIl o
— 2ol ehcor |10kl ||§||§'|( t ! ]
AT R0 a0 0 Cg(axn‘pg)z Cd(am‘ﬁd)z Xp=0*

since the third term in the r.h.s. of (2.17) is nonnegativéd\bgumption 2.5. Next, we consider the last three
terms in (2.18) as a quadratic form|ii| and&y. The codicients associated g@ and|¢’|? are nonnegative.
The result of the proposition follows if the quadratic forsmionnegative, that is, if its determinant is itself
nonnegative. The determinant is given by

(OxoPlx=0+)? {cl (1 - g)

s @
30 (C90x,09)*  (cUdy, 09

X,=0*

2
1 1
—C5(0x¢l =0+)2( - ] }
S TN e T A .

and is nonnegative by (2.6) in Assumption 2.1-Case 3. ]

Remark 2.8. Because of the controllability result we aim at proving iistarticle, we have considered the
elliptic operatorA := —6§0 — L, with the additional variable&y. The Carleman estimate of Theorem 2.2 also
holds for the operatdr = V- (c(X)Vy)). In this case, we simply assume that the weight functicisfezs

VX0, X, Ox,0(X0, X, Xn = 0F) > 0, 0y, 0(X0, X', X0 = 07) = Oy (X0, X, % =07) > C > 0.

In fact, in this case, after dividing by(x) on both sides of the interfaceas above, the symbotg' andq’”
reduce to

! 2 4 / & 4
B (X&) == (Do) +180 &) —r¥(xdee®),  dqf(x&) =TH(x &, 0w,
We then have

10X, lxy=0r = 1K E =0+ = (O 2xy=0+) = (O %ls=0+)?) (1 +
>C>0

F(X, &, 0xp)?Ix=0+ )
(axn90d|xn:0+ )2(5xn90g|xn:0+ )2

with the assumptions og we just wrote. We can then use the same argument as in the @ir&wbpo-
sition 2.7 and prove that the result of this proposition distds in this case. The rest of the proof of
Theorem 2.2 below remains unchanged. More generally, fogratlliptic operators, the result of Theo-
rem 2.2 holds if we can choose a weight function that yielésésult of Proposition 2.7.

In particular, the Carleman estimate in Theorem 2.2 pravalgquantitative result for the unique contin-
uation property across the interfadSee for instance [Br63] or [Zui83]).
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2.3. Estimate in the region ¢ %*. With a microlocal cut-, we place ourselves in the region regiéfi+,
hence in€9%* by Proposition 2.7, and finitely away frmj}fd (and thus59). Making use of the Caldén-
projector technique we shall prove the following partiatl€man estimate.

Proposition 2.9. Lety*(Xo, X, &0, &’) € SOT with a compact support w.r.fxg, X) contained in V, such that in
the support of* we haveud(xo, x, &, &) = C > 0. With the weight functiop satisfying Assumption 2.1,
there exist C> 0 and hy > 0 such that

(2:29) lop(x Iz + h?|0p(x " Wh=o+l; + h?10p(x ") Dy, Vix=olo
< C(IIPMly + hiMly + WDy, Vlx=orlo + 16,1, + [0, ).

for 0 < h < hg, and for v={(v3,\9), V8, V@ € ¢°(K) and satisfyingTC,)).

The proof we give follows that of Lemma 4 in [LR97] and the rimta used therein. We reproduce some
of the arguments of [LR97] to have a self-contained proofrof@sition 2.9. Note that the first term in the
partial estimate (2.19) ffers from the equivalent term in the Carleman estimate (3/8) factorhz. Here,

a “better” estimate is actually obtained because we havdatesl ourselves microlocally to an ellipticity
region of the symbop,. The Carleman estimate (2.7), for the second-order opefatin fact corresponds
to a sub-elliptic estimate.

Proof. In supp(y*), we have
Imp®*>C>0, Imph <-C<0,

by Lemma 2.5 and remark 2.6. Moreovgfp®* andy*p%~ are inSL.
We setu = op(y*)v. Then,P,u = gwith g = op(x*)P,V + [P,, op(x )] v. In particular, we have
—_————

ehyt
(2.20) liglly < C(IIP,Mlg + hilvily)
The transmission conditions satisfied ifyandu® are
(TCw) W)y =0 = UWlx—0r + Oyt C(Dx, + 0%, 09Uy =0+ + €YDy, + iy, o)W x =0+ = G1,

with 6+ 1= 0p(x*)bylx,—0+ and

G1 = [¢¥(Dx, +10x,¢%), 0p(x )] Vix,0+ + [€*(Dy, +i0x,¢%), 0p(x )] Vix,-0- +0P(x*)®;lx,-0-

ehvd. chwd.

that satisfies
(2.21) IGilo < ChiVx—0+lp + Cl®Ogl,.

We denote by the zero-extension of a functigne (K9 to R™?, We then have

h
Py u=g-hy(u) &' + 7 (Yl(U) —0p(,) YO(U)) 0, Yo(U) := Ulg=0r,  ¥1(U) := Dy Ulx,=0,
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wheres®) = (&)j Sx,-0, andq, = diagp® + p%*, p~ + po*) sincept + ph— = —2i G, . Setting
(2.22) Wy :=yo(u), and wo = y1(u) — op(,) yo(u),

we write

(2.23) Pou=g-h?w; & + ?Woé.

We now choosg(Xo, X, o, &) € S° equal to one for siliciently largel(£o, £)| as well as in a neighborhood
of supp(y™) with moreover suppg) N p;l({O}) = (). These conditions are compatible from the choice made
for supp(y*) and Proposition 2.7. From the ellipticity @f, on supp(y), for largeM, there exists &DO
Em = Op(e), with e € S72, of the forme = ¥} hie;, with e; € S?J ande = x/p,, that satisfies

Em o P, = Op(x) + MRy, Ry e¥ ™M
Note that the parametrix construction yields the symbgfﬂlsj =0,..., M, in the form of rational functions

for large|&,|, with p®* andp®~ for only poles.
With such a parametriiy, we obtain

(2.24) u=Ewg+Ewm (—h2W1 &+ ThWo5) +01. G = (Id—Op(x)u-h"*'Ryu.
We have the following lemma.

Lemma 2.10. Leto(z ', h) € ST andZ(z ¢, h) € S™ such thatsupp¢) N suppg) = 0. Then

op() o OpE) € ﬂ WNyN  and  OpE)oopl) e ﬂ ANy N,

NeN NeN

Proof. We use the idea of the proof of Theorem 18.1.35 idf8bb]. From the remark preceding Theorem
18.1.17 in [Hbr85b], adapted to semi-classical operators, we obseate th

op() o OpE)e“"" = op(r) (€#/"%(2, Dz, £y, N)E® ") = €4/ (0p(er) © £(2, Dy, &n, ) €701,

whereX(z D2, ¢y, h) denotes the tangential operator B(x £, £, h)) with £, as a parameter. Singg’) <
(¢), we indeed observe that, for &l € N, X(z ¢, ¢y, h) is bounded irS,;N uniformly w.r.t. £, € R". We set
Nz ', h) = o #- X as given in the composition formula (1.3), witgh as a parameter. We hence have
op() o Op(g)ei@{)/h = ei<L§>/h/1(L Z,h.

With supp¢) N suppg) = 0, for all M € N, we find

|h)M+1 (|v|+1)(1 M ([ it
nen -G 3 [ e

X 302 + 7,0 OYE(Z + St, 20, ', {ne D) Y A’ dis

Note that for allj € N, 3,0 o-(z. /. h) is in ST/, and that, for alM’, M, j.k € N, ()W 9,0% 323(z.Z. h)
is bounded ir§.™" uniformly w.r.t.Z, in R. It follows that(g@“"'@%ﬂ@';&(z, £,h) e NSN forall M/, N, j.k e
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N. Since(?) < ({'){n), we see thatl(z £, h) is a symbol in all variables and is inyeyhNS™N. We thus
haved@9/M(z ¢, h) = Op(1)€@/" and therefore find

op(e) o OpE)eZ/M = Op)e@M,  forall 7 € R™.

Since both sides are continuous4ti(R™!) and linear combinations of exponential functions are déns
&', we obtain opf) o OpE) = Op(1).

To treat the other case, i.e., QP op(c), we prove that opf)* o OpE)* € NnenhNP~N. We denote by
o* andX* the symbols of opf)* and OpE)*. They are of the form

*

=5+ 0w, ST onennhNSN, and T =S+3,, eSS X, enuanhVS™,
wheres andS can be chosen such that supp(Tsuppg) = 0 from theyDO calculus. This yields
0p(E)” 2 OpE)* = 0p(&) © OPE) + 0P(F) © OPEs) + OP(Ews) © OP(Es) + OP(Tc) © OPE).

The first term is treated as above. The other terms can bedrsanilarly with formula (1.3) foM = O:
for the second and third terms we use that forMil M”, j,k € N, <§n>M'6£6'2an(Z, Z,h) is bounded in
hM”S_M” uniformly w.r.t. £, in R; for the fourth term we use that for ajlN € N, o) ros(z.2,h) s in
hNS N and<§n>""'(’)§n62i(z £.h) is bounded ir8N uniformly w.r.t.Z, in R, for all M, N, j,k € N. E

Continuation of the proof of Proposition 2.9. With Lemma 2.10, we have (lOp(yx)) o op(x™) €
NnenhNP~N. Noting thatu = op(y*) v, we obtain
(2.25) llgall, < CHIIvilo-

Next, we compute the action in the regign > 0 of the parametrixey on the terms defined on the
interface in (2.24). We find

h ' ) e
Eur (Wi0d) (. ) = (2™ [[ @202 00y, . o, (20, )0, Z) o),

Em(-hPw;&) = (2rh) ™ f [ g Co Bt ZENINE (x5 20 &V (20, )20, Z) (o ),

where

~ 1 . N 1 )
tO(XO’ X, 60’ ‘f,) = ﬂ f éxnfn/he(xo’ X, 507 f) dfn, tl(X09 X, gO» é:,) = ﬂ f eIann/he(Xo’ X, §0’ f)fn dfn

R R
Note that the integral defininiy is absolutely converging. The integral definitags however to be under-
stood in the sense of oscillatory integralid0, Section 7.8]. Note that we have

(2.26) fi(x0, X, £0,¢') = Dy, f ein/Ne(xo, X, €0, &) dén
R

Zn=Xn
The choice we have made for the cuf-function y makes the symbad(Xo, X, &, £) holomorphic for large
|énl, én € C. In X > 0, we thus obtain

~ 1 i
@27) o000, X 60.8) = 5 [ € el X £0.6) i

Y
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wherevy is the union of the segmené, € R; & < Col(fo,&)|} and the half circlelé, € C; & =
Col(¢0, &), Imé&, > O}, where the constaliy is chosen sfliciently large so as to have the ropts* inside
the domain with boundary (recall thaty*p%* is in S). From (2.26), we obtain similarly

N 1 :
(2.28) 1000, % 60.8) = 5 f &ENe(x0, X, E0. E)én Uene Yo > O,
Y

The expression (2.27) and (2.28) above are valighis 0 but admit a trace at, = 0*. In particular, we
note that we have

(2.29) 1D} 0Ty Kil < Capi (€0, ENHIHP, x>0, j=0,1

We now choosg1(xo, X, &0, &”) € S2, satisfying the same requirementyés equal to one in a neighborhood
of supp(y*) and such that the symbglbe equal to one in a neighborhood of supp(. We sett; = yafj,
j =0,1andg, = op((1— y1)fo)wo + op((1— x1)t)wy. This yields

(2.30) u= Eug+ op(to)wo + op(t1)ws + g1 + Q2.

From the composition formula of tangential operators (In8jing that it does not involve derivations w.r.t.
the variablex,, and estimate (2.29), we obtain

(2.31) gzl < CH(IIVIl2 + 1Dy, Vlx=0+lo):
since supp(t x1) Nsupp(y*) = 0, by making use of the following trace formula [LR97, page 486
(2.32) Wlx-o'l; < CHZllj00. ] €N

We now observe that the symb@s, X, &, £) is holomorphic w.r.t&, in the support of;. We can then
write

(2.33) t; =diagt). 1), th(x0, X.£0.€) = x1(X0. X, fo,f’)% f Mgl (xo, X, 0, E)Eh dén, = 0,1,
7
Wherey%’ is a direct contour surrounding the ropfs* in the region In&, > col(&o, &)l
We note that in supp{;) we have

g 1 1 ( 1 1 )
eO = — = —
S S L

The residue formula then yields

g %+ _
(2.34) oo S _ XlL +hat, =01 A% es?
J p%ﬁ' —p%:*

It should be noted that it is crucial to have #fh* > C > 0 and Imp*~ < —~C < 0 here. From (2.33) we
obtain the estimate

(D)5, 05, o tjl < Capre @0/ EED (g £)y 11701 x>,
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again by the residue formula, which yielefs*/"(Dy, )'t; bounded ir§1-2*!(R"xR") uniformly w.r.t. x, > O.
It follows that

2 _ _ 2
(2.35) IAY o op(tj)willy < C f e 20%/Mop(e /My, (%) dx, < Chw; [,
Xn>0
and
_ _ 2
(2.36) [IDx, Op@j)Wjll2 < f e 20" lop(e” /"Dy t)wif; (%a) dx, < Chiw;?.
Xn>0

From (2.30), and estimates (2.20), (2.25), (2.31), (2.G536) we obtain
(2.37) lully < C(IIPMlo + hiivily + h? (Wolo + Waly) + WDy Vix,0 o) .
We shall now address the boundary temmsandw;. We take the trace a¢, = 0" of (2.30) which gives

(2.38) o(U) = op@)yo(u) + op[)y1(u) + G,

wherea € SJ andb € S2*, with principal symbols

iafad ad i o —p%,—
a = diagl@y, ay), with af =—(x1 B —

b
Xn=0%

>

b_y = diag®®,.b?,), with b%lz( ;)
Xn=0*

X1 =
p%,+ _p%,

by (2.34) and (2.22). Note that the symbal@ndb arediagonal The functionG, is given byG, =
(Emg + 91 + Bo)lx,=0+- From the trace formula (2.32), we write

(2.39) Goly < Ch2[IEmg + 01 + Gall, < CH72 (1Pl + hilvlly + WD Vix=0r)

sinceEy € W2 and making use of estimates (2.20), (2.25) and (2.31). Emsinission conditions (TE
give

(2.40) Yo(U®) = 0(U%) + Oy e, y2(U9) = =Bya(U%) + kyo(u) + Gy

whereg = (¢%/9)lx,=0+» K = —i(0x,@9lxs=0+ + B %9 x=0+) aNdGy = —idx, %0, - + ﬁ G with

(2.41) IGilo < ChVx,=0-lo + C(1ly + 1O, 1),

by (2.21). From (2.38) we thus obtain

d . - ) + kyo(ud) + G
1d— op(@ VO(U)+9¢,X):O (,371(U)+ Y0 1) G,
(- op@) ) | = opy [#74)+ +G,
We thus have
1-op(@) - op@?) ok op®?) o B\ (yo(’)\ _ o (0P@) -1\,  (0p(9)) s
1-op(@?) —op@©?) ) \y1(u?) ? 0 o o )7t
wherep andk stand here for the associated multiplication operatorstii¥e obtain a system of the form

yo(u?) _ <
(2-42) Op(K) A‘lyl(ud) =Gy + Op(ﬂ)‘gsa,)(* + Op(H)Gl,
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wherex is a 2x 2 matrix with entries irS9r, with principal symbol
o (1 —a - kb, B((60.£) b?l)
1-8)  ~(G.énby)
andz andIT are 2x 1 matrices with entries iﬁ;g andS;.1 respectively, with principal symbols

g _ dJ
o = (aOO 1) and I, = (b_l).

We now choosgx(Xo, X, &0, &7) € S2, satisfying the same requirementyés equal to one in a neighborhood
of supp(y™) and such that the symbg} be equal to one in a neighborhood of supp). In supp(y2), we

obtain
pg,+ - / 1
507 Zpo- B{(£0.€) e
Kolsupp(rz) = e ot 1
(&) —————
pd,+ _ pd,— pd,+ _pd,— % =0*
This yields

{0 ENW® + B —K)
(0% = %)% = p%7) |y o

Since we have Im@* + gp%*+) > C((¢,£")) > 0 in supp(y2), and since

detko)lsupp(r) =

Im(-k) = (99, ¢° + 0, ¢M)lxz0+ = O,

CIly,=0*
by (2.10), we find that detf)lsuppw,) = C > 0. It follows that« is elliptic in supp(y2). Then, there exists
Im € S2, such that

op(m) o k = op(x2) + h"* 1Ry,

with Ry € 2™, for M large. This yields

d N N d
(Ayf}(,l;(ad)) = 0p( )Gz + 0p(lm) © OP(E)8y,y+ + 0p(u) 0 OPNCy + (0p(1- x2) — hVR) (Ayf)(,l;(ad))

From theyDO calculus, since supp@y,) N supp(y*) = 0, and making use of the trace formula (2.32) we
obtain

(243) ol + Ul < C(IGaly + 001y + Gilo + WVl + hPIDyVix=0: o)
< C' (W2 [IPpvily + h2 [y + 2Dy Vi=o+lo + 6,1, + 1©,1o).

by (2.41) and (2.39). From (2.40), the same estimate holdgd@9)|; + ly1(u%)lp, and also fotwg|g + [wa;
by (2.22):

(2.44) h (Wolo + Wal1) < C (IP@Mlo + hilvlly + h2IDy Vix,—or Iy + W21l + 1@, o).
Observing that

Dy, 0p(x"V) = op(x")Dx,V + [Dx,, 0p(x )] V,
R

ehyd.
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we have

(2.45)  h (J0p(x*Wixy=0rly + 10P(x ) DsyVhy=orl) < CH? (JUly=0+ Iy + [Dsy g0+ g + Mivl=olo)
< C(lIPgvily + hiivily + WDy, Vlx-o+lo + 16,1, + (@, ).

from the previous inequalities and the trace formula (2.8%) conclude the proof by combining estimates
(2.37), (2.44) and (2.45). [

2.4. Estimate in the region ¢ %~. With a microlocal cut-&, we place ourselves in the regid@ff'-, finitely
away from}"d. Making use of the standard techniques to prove Carlemanagsts for botrPg and Pg, we
obtain the following partial Carleman estimate.

Proposition 2.11. Let y~(Xo, X, &0, &) € S,Or with a compact support w.r.{xo, X) contained in V, be such
that in the support of~ we haveud(xo, X, &,¢’) < —C < 0. With the weight functiop satisfying Assump-
tion 2.1, there exist G 0 and hy > 0 such that

(2.46) hllop(x "I + hl OP(x Wix,-o+[7 + hlOP(x ") Dy, Vix, -0+ g

< C(IP I3 + M2IVIZ + WDy Vix,-0 3 + NI6, 12 + IO,[3).
for 0 < h < hy, and for v={(v3,v9), Vi, V8 € ¢°(K) and satisfyingTC,)).
Proof. We setu = op(x~)v. Then,P,u = gwith g = op(x™)P,Vv + [P, op(x7)]v. In particular, we have
(2.47) ligllo < C (IPVlly + hitvily) .

The transmission conditions satisfieduSyandu? are (TG,) —see the proof of Proposition 2.9— wah,- =
op(x)b,lx.=o in place off, - and withG; here given by

G1 = [¥(Dx, +i0x,¢%), 0p(x )Vl + [€*(Dx, +10x,¢), 0p(x )Vl + OP(x )Oyly=0+»
and satisfying
(2.48) IG1lo < ChiVix,=0+lo + ClO,l,.

We apply the Carleman method to the operaRﬁfsmd Pfj. By Assumption 2.1, and in particular by (2.3),
and by Lemma 2 in [LR95], we then have

2 . 2
(2.49) hilu¥|l; + Re(h8%(u¥) + h? (Dot + LEUb)lx 0, L§ uMl0+) ) < Clig* o,

for h suficiently small, where.® € @1, L¥ e ¥9. The quadratic formss% are given by

% Ji A -1
@50) 4= (it AT s) (W0 () ) - 7o) = o 7a) = D

Bhey?
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whereB¥, BY ¢ 9L, with o(BY) = o(BY) = 29" andB} € 92, with o(BY) = —20, ¢%q¥. Observe
that for anye > 0, by Young’s inequality, we have

2 2
@51 P|(@a + Lo, Lm0 )| < eh (ol + au) + Cohior

< ool + Iya(u?)p) + CoREIMIE

by the trace formula (2.32).

The tangentiayDOs B* defined in (2.50) are of order 0 and their principal symbots ar

20x,¢" 208 (&0, €7
o(B") = (ZQZ”<(§o§’)>‘1 —263;%512”((63,6’))‘2)'

We find det(B*)) = —4(x,¢%)%((é0.£)) 2 u¥, with u% as defined in Section 2.2; it follows that in
supp(y~) we have detf(BY)) > C > 0. Sincedy,¢® > 0 it follows thato(B?) is positive definite.

We now make use of transmission conditions (Yé@nd write

72(W0) \ _ (=B kAT ya(u) Gy
(2.52) ( Alyo(ug)) = ( 0 1 (At T \AY,, )
S———
Cco
whereg = (Cd/cg)|xn=0+, K = —i(0x,¢%x,=0 +,35xn90d|xn:0+) andG; = —10x,¢%0,,~ + cG\xl:m G, that satisfies
(2.53) Glo < ChVix,-0+lo + C(1lo + [©lo).

by (2.48). We obtain
~ d d ~
o) = (89 200 ) (Vi) U0 ro .o
whereo(B9) = 'o(C9)(BY)(CY), and where we have
<\ y1(u) G G y1(u?)
u (yl(ud)’ yo(ud)’ Hsﬂs)(” Gl) = (BQCQ (Al:;/o(ud)) > (Aleis/\/))o + (Bg (AlH:X) P Cg (Al;O(ud)))o

G G
(ol o))
( A6y \N0,- ),
which from (2.53) satisfies

~ 2 2
(254) U@, yo(u?), O, Go)ly < £ (|m(u“)|l + m(ud)|o) + Cy (MPIVix,=0 § + 16,12 + 1©,13)

2 2 ,
< & (IyolW); + Ia(u)g) + Ci (IMIE + 16,12 +10,15),
by Young’s inequality and the trace formula (2.32).

Fora > O suficiently large, we can enforces(B?) + o(B% > C > 0. Hence, G&rding’s inequality
yields [Tay81, Mar02]

pdrdy (&g vaud) y1(u?) C dy 2 d 2)
(2.55) oty + (89( T2 (Va0 ). = 5 (e + )
for h sufficiently small. The transmission conditions ({)@ive

2 2 , 2 2
C (1ol + balulg = 10, = 1,13) < ol + s < € (1yo(W); + Iya(W) +16,Z + 10
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Recalling that

Dx, 0p(x"V) = 0p(x")Dx,V + [Dx,. op(x )] Vs

0
ehv.

with the linear combination(2.49Y + (2.49¥ and estimates (2.47), (2.51), (2.54), and (2.55) we obkein t
sought partial Carleman estimate, by choosirsgfficiently small. ]

Remark 2.12. As an alternative proof of Proposition 2.11, we could alse the Caldesn projector tech-
nique forPg. In supp(~) the two rootsp®* of pg have negative imaginary part. With the notation and
the argumentation of the proof of Proposition 2.9 above,d;heratorstg| andt‘lj vanish inx, > 0. The
counterpart of (2.30) is then

(2.56) u' = Emg” +gf +0.  forx, > 0.
We then obtain (see (2.37))
(2.57) iy < C(IPAVAIl, + hivlly + WD Vo lo) -
We take the trace a, = 0* of (2.56),

yo(u?) = G = (Emg’ + 0 + 8)lx,=0+
which, by the counterpart of (2.39), gives
(2.58) h2lyo(uh)ly < C(IIPVily + hilvily + hIDx,Vix-otlo) -

From (2.56) we also have
D U! = Dy Emg’ + D 0f + Dy 85, for x, > 0.

We take the trace a4, = 0" and obtain

71(U") = (Dy, (Emg” + 0 + 63))lx-0--
From the trace formula (2.32) we then have

ra(Ulo < Ch 211D, (Emg’ + 6 + g9)I, < Ch2[Eng’ + o + g,

and, by the counterpart of (2.39), this yields
(2.59) h (Ul < C (IPMly + iVl + WDy V=0l -
From (2.58) and (2.59) and transmission condition ()T @e obtain
(260)  hlyo(U®)l; + h2lys(U®)lg < C(IPMlg + hiMily + WDy Vix,—0t o + h216, |y + (O, ).

Finally with (2.57), (2.60), (2.52) and (2.49) we can also achieve the result of Proposition 2.11.
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2.5. Estimate around the region /}”d With a microlocal cut-&, we place ourselves in a neighborhood of
the regiongc"d, i.e., wherdud| is small, while staying in the regioti %+ away from the region,;’9. Making

use of the techniques of Calder projectors forPg and standard techniques to prove Carleman estimates
for Pff,, we obtain the following partial Carleman estimate.

Proposition 2.13. Let ¢ satisfy Assumption 2.1. LgP(xo, X, &0,&) € SOT with a compact support w.r.t.
(%o, X) contained in V, be equal to one 97id, and be such that in the supportydfwe have:9(xo, X, &, &) >
C>0and

(2.61) (9,09 + €0y, 0" lx0r — (€10 > C' > 0.
Then, there exist G 0 and hy > 0 such that
2 2 2
(2.62) hilop(x°)VII; + hl op(x°)Vlx,=o+I; + hl op(x®)Dx,Vlx.-0 Iy
< C(||P¢v||(2) + M2Vl + h?[Dy VIx=0+ 13 + N6, + h|®¢|§),

for 0 < h < hy, and for v={(v3,v9), Vi, V0 € ¢°(K) and satisfyingTC,)).

Proof. Condition (2.61) can be obtained from the properties of tleggtt functione listed in Assump-
tion 2.1. In suppf?), we have
Imp%*>C >0, Imp% <-C<0O.
We setu = op(x°)v. Then,P,u = g with g = op(x°)P,V + [P,, op(x°)]v. In particular, we have
(2.63) Ig*llo < C (IIPEVE Il + hin¥)

The transmission conditions satisfieduyandu? are (TG,) —see the proof of Proposition 2.9— wah,o =
op(x°)8,x.=o- in place ofd,, - with G; given here by

Gy = [€%(Dy, +i05,¢%). 0p(X°)]V¥lx0+ + [C(Dy, + i0x,2%). 0p(x )V Ix,=0- + OP(x*)Oplx,=0:
and satisfying
(2.64) [Gilo < ChiVlx,=0+ |y + ClO,.

We start by applying the method of Cal@erprojectors to the operatﬁ’ﬁ and tou?. We follow the same
notation as in the proof of Proposition 2.9. We thus obtaiestimate of the form of (2.37), namely,

(2.65) ludlp <C (IIPEVQIIO +hiVAlly + h%(IWgIO +wWil,) + hZIDanglxn:mIo)-
wherewj andwj are given by

(2.66) Wi = yo(Ww9), and wg = ya(W) - op®” + p%*) yo(d).
We also have the following trace equation, of the same for(2 a8),

(2.67) yo(u?) = 0p@”)yo(u) + op%)y1 (W) + G5,
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with a% e S). andb? e S7*, with principal symbols
9 1
9_ _ P 9 _
%= (Xl po —pg") P (Xl po —Pg")
wherey1(Xo, X, &, &) € S(Or, satisfies the same requirementydsand is equal to one in a neighborhood of
supp(x®). The functionGj satisfies

>

Xa=0*

*n=0*

(2.68) Gy, <Ch: (I1P2VA1l, + hiIVAlly + WDVl —or o) -

The operator (£ a9) is elliptic in supp(y2), wherey2(Xo, X, &, &) € Sg satisfies the same requirement
asy?, equal to one in a neighborhood of supj and is such that the symbg} be equal to one in a
neighborhood of suppf,). Introducing a parametrix for 4 a9, we obtain the following estimate

o(U)ly < C (Iya(U®)lo + hZ IVl + W2 [PV, + hZ Dy Vol -
by arguing as for estimate (2.43) in the proof of Proposifich Hence we have
Wl + WL, < C (Iya(U9)lo + h2 VAl + h2[IPAVA]l, + h2 Dy, Vl-0r o)
and estimate (2.65) becomes
(2.69) W91y < C(IIPgBllg + hINAIly + PPID5 Vly—orl + N2 lya (UO))
We now use relation (2.67) in connection the transmissionlitons (TG,). With (TC,), we write

op®?)y1 (L) = - opE°)(By1(u)) + 0p®?)(kyo(u)) + 0p®?)Gs
whereg = (¢/¢9)lx,0+, K = =i(0x,¢%lx=0+ + B Ix,¢ lxz0+) @NAG1 = —idy 0%, 0 + lem G; that satisfies
(2.70) IGilo < ChVx=0-ly + C(1flg + O4 ),
by (2.64). We obtain

(Id - 0p(a%) — op(?) o k) yo(u?) = — op®?)(By2(u™)) + 0p(%)Gy1 + (0p(E?) — Id)6,,0 + G3,
=0p()
wherek stands here for the associated multiplication operatosufp(y2), the principal symbol of is

given by

9t _k

0
Kolsupplea) = Zoo— 5= € S

Since in suppf2) we have Inp%* > C > 0 and Im{Ek) > 0 by Assumption 2.1, we see thais elliptic in
supp(y2). Hence, there existse SO, with | = Z}‘io hjlj, with | € S,}j andlg = y2/ko, such that

op(m) © 0p(k) = op(x2) + "Ry,
with Ry € ¥2™M, for M large. We thus obtain
(2.71) o(u?) = —op(l) o op®?)(By1(u)) + Gs,
with

Gs = op() o op(t?) G1 + op() o (0p(@?) — 1d) 6,0 + 0p() GJ + (Id - op(x2))yo(u”) — h"**Ruyo(u).
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From theyDO calculus, since suppLyz) N supp(y®) = 0, we obtain
(2.72) 1Galy < C (h2IP2A, + h2 [Vl + h2IDyVloorlg + 16,40l + 14l
by (2.70) and (2.68) and making use of the trace formula |2\32 thus have
(2.73) ol < C (fya(lo + h2lIPIVEN, + h My + h3 Dy VBl 0t g + 0], + 1O,1,)-

We now apply the Carleman method to the operﬁ’fpand toud. By Assumption 2.1, and in particular
by (2.3), and by Lemma 2 in [LR95] we have

(2.74) hijul; + Re(h8%(u) + W% (Dou® + L9U, L3 ) < CIIPSW,
for h sufficiently small, wherd. 9, Lg, and 9 are as given in the proof of Proposition 2.11. For any 0
we have
2 2
(2.75) R (Dnu? + LY, L) | < e (ol + bya(w?)g) + CoPIME

asin (2.51). With (2.71) we obtain
AU = (M* 0 BT o Mys(u), ya(U%)) + U (), Ga),
with
M = 1 eV
~\-Atoop()oop®?) o
with 8 standing here for the associated multiplication operatod, where
d _ d d 0 d 0 d d 0 0
U('Yl(u ),Gg) - (B o M'Yl(u )’(Ales o +(B A1G3 > M71(u ) o +(B A1G3 > Ang 0

With Young's inequality we obtain

(2.76)  U(a(u"), Ga)l < C(Iya(uM)lolGsly + IGsl?)
2 _
< elya (U)o + Ce (NHIPVAIIG + NIME + 3Dy Wl 0+ I3 + 16,012 + 10,15)

by (2.72).
In supp(x?), the principal symbol oM* o BY o M is in Sg and given by

¥ =o(M* 0B o M)
- 20,9 20((é0. €N 1
B ( (b€ )>1'ob91ﬁ) (2q1<(fo,f N —205 690K (0. £))2 )(—«fo, f’)>1'ob?1ﬂ) -~
= (205" — 4clp Relob?y) — 262 0B, 0 e -
In supp(x°) we have
(2.77) 0%, 0 = [0 hmo = K* = ((Rep™)? + (I p®" + By, ° +ﬁ6xnsod)2)’Xn:O+ ,

Re(ob?,) [10b®,; [0+ = Rep®*|x,—o-.
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We then obtain

% = 287 [10b?, Py, (B2 lob?, 12 - 208 (3, 6%) " Rep* — )|

Xn=0*
= 28 l0b®, oy, (52 (lob, 12 - (Rep)?) = + (c(0y ) 2 - 7 Repg*)z)]
> 287 |lob?,; 0,0 (B 2(9x,¢° + B, #")? = 1), o 2 C >0,

by (2.61) and since

Xn=0%

llob? Plx=0r 2 C >0, llob?;|Plx-0- = (RepF*)Ix,z0 = (B, 0? + B O™l
as|p%*| remains bounded in suppf) and by (2.77). Hence, Garding’s inequality yields [TayBthr02]
(2.78) (M* 0 BY o Mya(u), ya(u)), > Clya (U5,
for h sufficiently small andC > 0.

Combining (2.74), with (2.63), (2.73), (2.75), (2.76) ad/@), fore suficiently small we obtain
(2.79)  hIUI + iy (U)o + hiyo(Ul; < C (IPVIZ + RIME + h Dy Vo 12 + N6, 2 + IO, I2).
Note that the transmission conditions ()@ive

C (ol + balulg = 10,8 = 1,13) < bro(E + ya(E < € (1yo(W); + Iya(W) + 16,12 + 10
Recalling that
Dy, 0p(x°V) = 0p(x®)Dy,V + [Dy,. op(x )] V.
_th,’g_,

we see that an appropriate linear combination of (2.69) ar®] then yields the sought partial Carleman
estimate. -

2.6. Proof of Theorem 2.2. We choose a partition of unity,” + y~ + x° = 1, of V x R" such thay*, y~
andy? satisfy the properties listed in Propositions 2.9, 2.11 21@ respectively, which can be achieved
by Proposition 2.7.
We recall thav = €*/"w. We have
|Dan|xn:0+|0 < |0p(X+)Dan|xn:O+|o + |0p(X7)Dan|xn:0+|o + |0p(XO)Dan|xn:O+|o-
=011 < 10P(x Wixy=0ly +10P(x WVixy=o+ly + 1 0P(x°)Vlx,=0- 1y
and
IVx,=0rlly < 110PCx*WWixy=or lly + 110POx Wh=0 lly + 11 0P W=+ -
These three inequalities together with (2.19), (2.46),(@2t3) then yield
hIMIZ + hiVix,=0+ 5 + hIDx, Vix,=o+[5 < CIIP,VIG + hi6,[3 + hiOy 3,
for h sufficiently small. Observing now that we have

®/h @/h @/h
16”/"Dy Wil < 1Dy, (6”/"W) -+ l16 © €™/ "wil,,
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and similar inequalities for the norms at the interfége = 0*}, and recalling the forms af, and®, in
(2.11), we can conclude the proof of Theorem 2.2.

3. APPLICATION TO NULL CONTROLLABILITY

In this section, we prove an interpolation inequality frdme Carleman estimate proven in the previous
section. This will then yield the controllability result @heorem 1.1.
With a € (0, Xo/2), we setX = (0, Xg) X Q, Y = (a, Xg — @) X Q.

Theorem 3.1. There exist C> 0 ands € (0, 1) such that for ue H}(X) that satisfies (TC) and
Uloxgxa, € HA((0. X0). H3(Q1))  and  Upxoxe, € H((0. Xo), H*(Q2)).
U(X0, X)lxean = 0, X0 € (0, %), and U0,x) =0, xeQ,
we have
5 1-6
(3.1) Uy < CIUEys oy (AUILzGx) + 18560, Xl 2(,,)

Before we sketch the proof of Theorem 3.1 we first indicate ttmwesult of Theorem 1.1 follows.
Let ¢j, j € N, be the eigenfunctions of the operatoon Q, with Dirichlet boundary conditions, and
let the associated eigenvalues /e j € N, such that O< g < pup < --- < e < ... We lety > 0 and

we apply the interpolation inequality (3.1) to the functist, X) = 3, , & Sin'l%"»jt)gbj(x), for (a;)jen C R.
This yields Theorem 1.2, following for instance the proofagi in [LZ98, Proof of Theorem 3]. This in
turn yields Theorem 1.1 by the control construction methmcbduced in [LR95] (see also [LZ98, Section
5, Proposition 2] or [Mil06, Proof of Theorem 2.4 in Sectio2P. As a consequence of Theorem 1.1, we

have the following observability result.

Corollary 3.2. There exists a constant,gz > 0 such that the solution y to
-oy—-Ly=0 in Q,

q=0 on(0,T) x 9Q,
a(T) =ar inQ,
Wlth qT € LZ(Q) Sat|3f|es|Q(0)||fz(Q) S CObSHq”fZ((O,T)xw)'

Remark 3.3. With the technique used in [FI96], i.e., enlargifigin the neighborhood of part @iQ2, we
obtain a similar controllability (resp. observability)stét for a localized boundary control (resp. observa-
tion).

3.1. Proof of the interpolation inequality. We first prove a local version of the interpolation inequailit
a small neighborhood of a poing y’, 0) of the interface (0Xp) x S.

We place ourselves in normal geodesic coordinates, as tio8&; in a neighborhoo@ of (yo, y, 0) and
first construct a weight functiop in W. We start by defining the following anisotropic distancdriti:

dist, (2o, ). (b0, 1) = (al(@0. &) = (0. D)2 + a0 ~ buf?) ", @ > 0.
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Xo, X'

Figure 2: Level sets for the weight functiogsand¢ = e in local normal geodesic coordinates. The
Carleman estimate of Theorem 2.2 can be applied in a régiaiose to {o,Y’,0) (represented with a
dashed line).

Let (z0.2) = (Yo.Y»Z,) be a point inW away from the interface. We supposg, @ € WY, i.e.,z, > 0 (for
consistency with Section 2). Fer> 0, we set
—dist,((Xo, X', ¥%n), (20,2)  if X; <O.

We note thaty is continuous across the interfajog = 0} and that

W(Xo0, X) = {

O (X0. X) = (X0 — Z0)(Y(X0, X)) 1 if X0 >0, and 9y, ¥(Xo. X) = ¥(¥%n — Z0)(Y (X0, X)) * if Xy < O,

which yieldsdy ¥lx,=o- = y0x¥lx,=0+. We also have
By ¥(X0, X, 0) = a(Xj — ) (%, X,0)", j=0,....n-1.

Note that|x; — z| is bounded inW and that we can choose the parametesuficiently small to have
[0x;¥lx,=0l, ] = 0,...,n—1 small as compared 10y ¥|x,-o:|. We thus choose andy suficiently small to
havey satisfying the propertiédisted in Assumption 2.1 in a $ficiently small neighborhool of (yo, y),
V c W, apart from the sub-ellipticity condition (2.3). Cleari,2) ¢ V. Level sets for the function are
represented in Figure 2.

We now note that the weight functign = e, 1 > 0, also satisfies those conditions, possibly with
different constants, from the homogeneity of the formulae iruAggion 2.1 w.r.t. to the weight function.
The proof of Lemma 3 in [LR95, Section 3.B] then yields tiafurthermore satisfies the sub-ellipticity
condition (2.3) forl suficiently large (see also Theorem 8.6.3 irdjid3, Chapter 8] and Proposition 28.3.3

ldepending on the case (1,2, or 3) satisfied by the consideiati (g, y).
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Figure 3: Neighborhoods around the point of interest forttuof of the interpolation inequality.

in [Hor85a, Chapter 28]). The local Carleman estimate of Thedetrthen follows, with the weight
functione, for a possibly reduced neighborhood that we still denot¥ lfgee Proposition 2.7).
We choose & s; < s and 0< o < ¢ such that
U’ = {(X, %0); lI(X0, X) = (Yo, Y)Il < S}, [Xal <0’} C V.
We also set
U = {(X. X0); I(X0, X') = (Yo Yl < s1, [Xnl < o}
We now choose; < r} <rz <¢(yo,y) <rj <rs<rj, such that
C1={(x0,¥) € R™; (X0, ) =11} and C§ = {(X.X) € R™; y(x0,X) = rj)
satisfyC; NR™! c U, C1 nRT™ N U # 0, which is equivalent to having
~(@+2)? <1y,
and finallyC; N U” c {x, < o}. We illustrate these choices in Figure 3. We Bet= el R/J = e,
i=123.
Following [LR95], we introduce
Vii={(x,x) €U 1y <y(x0,¥) <rf}, j=123
and we further set
Viog i ={(X, X) € U; 1] <y(Xo,X) <r3}, Vi, gz ={(X,X) €U’; ri <y(Xo,X) <rz}
W3 =V3U (V1_>3, \ U).
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The regionW; is represented shaded and stripped in Figure 3. With theeboie have made above, the
region Ws is contained inR7*! and is finitely away from the interfac® = {x, = 0}. We also choose
W, c V, such thatW, € U. The regionW, contains Yo, y’, 0) and is represented shaded in Figure 3.

We choose € ¢;°(R™?) such that is equal to one oy,_,3 and vanishes outsidé_ .. ThenVy,
vanishes outsid¥]_, \ Vi3 which is the stripped region in Figure 3. Fok H(W) that satisfies (TC),
we setw = Zu. Thenw satisfies the following transmission conditions

VX0, X', Wix,=0- = Wlx,=0+  COx,Wlx,=0- = Cx,Wlx,=0+ + ®,
where® = (Clx,—o+ — Clx,=0-)(Udx,{)lx,=0. Note that® is supported irix, = 0} N V.
From the Carleman estimate of Theorem 2.2, after division®hyve have
h2)le?™ Wi + €97V, ,wie < C (h1||e¢/hAu||§ + hYle?/M A, ulf + |e*’/“®|§), 0<h<ho
Note that A, /] of order one and supportedf{_, \ V3. We thus have
1" IA, QJullo < CESMullisqwyy + CEY MUl < CES lullaqwsy + CEY Uiz
We also have
l&7"®lo < CEY MUl ),
by the trace formula. We thus obtain
(3.2) &M Ullng) < CE Ul + CES (IlUllinusy + AUl wy), O <h<ho,
Optimizing w.r.t. toh as in [Rob95] we obtaipg € (0, 1) such that the local interpolation inequality
(3.3) UllHz ) < CIIUIIiﬁ’ZW) (||u||H1(W3) + ||AU||L2(W)>ﬂ

holds for 0 < u < . This inequality can be read as the “observation” of Hienorm of u in the
neighborhood of any point of the interface by tH& norm ofu in a neighborhood away from the interface
and theL.2 norm of Au

Remark 3.4. As pointed above the regioV; is contained irR7*1. The casaV; ¢ R™! can naturally be
obtained by changing, into —x, in W.

Now that we have obtained such a local interpolation ingtyuat the interface, we can apply the pro-
cedure described in [LR95, pages 353—-356] and prove thehsglapal interpolation inequality (3.1). See
[LZ98, Proof of Theorem 3] to obtain the terjiy,u(O0, x)||L2(w) in the r.h.s. of (3.1). This concludes the
proof of Theorem 3.1.
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