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Abstract

We compare the probability density functions of normal forces in dry and wet granular systems from 3D simulations
by molecular dynamics and contact dynamics methods. While the strong forces are characterized by a decreasing
exponential distribution, we show that in the range of weak forces the force distribution in a dry granular packing is
sensitive to the anisotropy of the packing and the shape of the particles. By means of a model of capillary cohesion,
implemented as a force law expressing the capillary force as a function of water volume and the distance between
particles, we find that distributions are exponential for both compressive and tensile forces. The particle pressures

are shown to form a bi-percolating structure.
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1. Introduction

The complex rheology of dense granular materials
reflects a disordered microstructure with rich statis-
tical properties. Granular disorder and steric exclu-
sions lead to an unexpectedly inhomogeneous dis-
tribution of contact forces under quasistatic load-
ing [1-10]. These force inhomogeneities in granular
assemblies were first observed by means of photoe-
lastic experiments [11,12]. The carbon paper tech-
nique was used later to record the force prints at the
boundaries of a granular packing [3]. It was found
that the forces have a nearly decreasing exponen-
tial distribution. Numerical simulations by the CD
method provided detailed evidence for force chains,
the organization of the force network into strong and
weak networks, and the exponential distribution of
strong forces [13,14]. Moreover, the force probability
density functions (pdf’s) from simulations showed
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that the weak forces (below the average force) in a
sheared granular system have a nearly uniform or
decreasing power law shape in agreement with re-
fined carbon paper experiments [2,5].

Further experiments and numerical simulations
have shown that the exponential falloff of strong
forces is a robust feature of force distribution in
granular media both in two and three dimensions.
In contrast, the weak forces are sensitive to the de-
tails of the preparation method or the internal state
of the packing [15,16,9,10]. A remarkable aspect of
weak forces is the fact that their number does not
vanish as the force falls to zero [13,17]. Several the-
oretical models have been proposed allowing to re-
late the exponential distribution of forces to gran-
ular disorder combined with the condition of force
balance for each particle [1,18]. Recently, the force
pdf’s were derived for an isotropic system of fric-
tionless particles in two dimensions from a statisti-
cal approach assuming a first shell approximation
(one particle with its contact neighbors) [17].

The presence of cohesive bonding between par-
ticles does not alter the inhomogeneous aspect
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of forces as a result of the common granular mi-
crostructure. However, in contrast to cohesionless
media, the distribution of weak compressive forces
is affected by tensile forces [19]. In wet granular me-
dia in the pendular state, the tensile action of cap-
illary bonds bridging the gaps between neighboring
particles gives rise to a network of self-equilibrated
forces [20]. This network is likely to control features
such as particle aggregation and the enhanced shear
strength of wet granular media.

In this paper, we rely on 3D molecular dynamics
and contact dynamics simulations in order to com-
pare the pdf’s of normal forces in different granular
systems. After a brief introduction to the numeri-
cal models, we focus on the influence of anisotropy
and particle shape on force distributions in cohe-
sionless granular assemblies. Then, we analyze force
distributions in assemblies of spherical particles in
which capillary attraction between particles is im-
plemented as a force law expressing the capillary
force as a function of the distance, water volume,
and particle diameters. Finally, we consider the dis-
tribution of particle pressures and we show that they
organize themselves as a bi-percolating structure of
negative and positive pressures.

2. Model description

The discrete element method (DEM) has been ex-
tensively used since the pioneering work of Cundall
for the simulation of granular materials [21]. In this
method, the equations of motion are integrated for
all particles by taking into account contact inter-
actions between them. In its original version, com-
monly used also today, the particles are treated as
rigid elements but the interactions are modeled by
means of visco-elastic force laws expressed in terms
of the relative displacements between particles as in
classical molecular dynamics (MD) simulations. In
these MD-type approaches, the simulation of mutual
exclusions between particles requires a stiff repul-
sive potential and thus high time resolution. In the
same way, the Coulomb law for dry friction needs
to be ‘regularized’ such that the friction force can
be expressed as a mono-valued function of relative
tangential displacement.

The contact dynamics (CD) method, intro-
duced later, provides an alternative approach based
on ‘nonsmooth’ formulation of mutual exclusion
and dry friction between particles [22,23]. In this
method, the equations of motion are expressed as

differential inclusions and the accelerations are re-
placed by velocity jumps. At a given time step, all
kinematic constraints implied by enduring contacts
and possible rolling of particles over one another
are simultaneously taken into account in order to
determine all velocities and contact forces. In the
generic CD algorithm, an iterative process is used
to solve this problem. It consists of solving a sin-
gle contact problem with all other contact forces
kept constant, and iteratively updating the forces
until a given convergence criterion is fulfilled. Due
to the implicit time integration scheme inherent
in the CD method, the solution is unconditionally
stable [24,22,15,25]. The particle positions are up-
dated from the calculated particle velocities before
a new detection of the contacts between particles is
performed.

Schematically, it can be said that the MD method
is based on a description of particle interactions in
terms of force laws, i.e. bijective force-displacement
relations, whereas the CD method is based on a for-
mulation of kinematic constraints in terms of con-
tact laws. Independently of particle deformability,
the impenetrability of the particles and the Coulomb
friction at the contact zones can be formulated in
the form of contact laws expressing the contact ac-
tions as set-valued functions of particle positions.
The uniqueness of the solution is not guaranteed
by CD approach for perfectly rigid particles in ab-
solute terms. However, by initializing each step of
calculation with the forces calculated in the preced-
ing step, the set of admissible solutions shrinks to a
small variability basically of the same order of mag-
nitude as the numerical resolution. We note that in
the MD method this ‘force history’ is by definition
encoded in the particle positions.

Since the CD method handles the kinematic con-
straints without resorting to force laws, the particles
are often treated as perfectly rigid although elastic
moduli can be introduced in the same framework.
This is the case of the CD simulations carried out
for the analysis of force distributions in this paper.
Hence, the only material parameter of the simulated
static packings by the CD method is the coefficient
of friction p between the particles. On the other
hand, the MD-generated packings are characterized
by normal and tangential stiffnesses k, and k; as
well as the coefficient of friction p. The mean defor-
mation of the particles is given by the ratio p/k, of
the average stress p to k.

For our simulations of wet granular materials, we
used the MD method with spherical particles and
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Fig. 1. Scaled plot of the capillary force as a function of the
gap between two particles for different values of the local
liquid volume V, and size ratio r according to the model
proposed in this paper. Inset: Geometry of a capillary bridge.

a capillary force law. The total normal force f, at
each contact is the sum of a repulsive force f;, and an
attractive capillary force f;. The latter is a function
of the liquid bond parameters, namely the gap d,,
the liquid bond volume V, the liquid surface tension
vs, and the particle-liquid-gas contact angle 6; see
inset in Fig. 1. The capillary force can be calculated
by integrating the Laplace-Young equation [26—29].
However, for efficient MD simulations, we need an
explicit expression of f¢ as a function of the liquid
bond parameters.

We used an analytical form for the capillary force
which is well fitted by the data from direct integra-
tion of the Laplace-Young equation both for polydis-
perse particles [30]. At leading order, the capillary
force fy at contact, i.e. for d,, <0, is

Jfo=—r R, (1)

where R is a length depending on the particle radii
R; and R; and & is given by [31-33]

K = 27y, cosf. (2)

A negative value of §, corresponds to an overlap
between the particles. The assumption is that the
overlap is small compared to the particle diameters.
The data obtained from direct integration of the
Laplace-Young equation show that the geometric
mean R = /R;R; is more suited than the harmonic
mean 2R;R;/(R; + R;) proposed by Derjaguin for
polydisperse particles in the limit of small gaps (see
below) [34]. We also note that fy in Eq. (1) is inde-
pendent of the bond liquid volume V.

The adhesion force fy at contact is the highest
level of the capillary force. The latter declines as
the gap d,, increases. The capillary bridge is stable
as long as 6, < 6;"**, where §,"** is the debonding
distance given by [35]

gmer — (1 - g) v, (3)

Between these two limits, the capillary force falls off
exponentially with d,,:

fvcz = foeién/)\v (4)
where A is a length scale which should be a function
of V4, and the particle radii. The asymmetry due to
unequal particle sizes is taken into account through
a function of the ratio between particle radii. We set

r = maX(RZ/RJ,RJ/Rl) (5)

Dimensionally, a plausible expression of \ is

A =ch(r) <%>U2, (6)

where c is a constant and A is a function only of r.
When introduced in Equations (6) and (4), this form
yields a nice fit for the capillary force obtained from
direct integration of the Laplace-Young equation by
setting R’ = 2R;R;/(R; + R;), h(r) = r~'/? and
c~0.9.

Figure 1 shows the plots of Eq. 4 for three differ-
ent values of the liquid volume V}, and size ratio r
together with the corresponding data from direct in-
tegration. The forces are normalized by xR and the
lengths by A. The data collapse on the same plot, in-
dicating again that the force kR and the expression
of X in Eq. (6) characterize correctly the behavior of
the capillary bridge.

Finally, the capillary force can be expressed in the
following form:

—k R for 6, <0
fi={ —wRe ™/ for 0<6,<omer, (7)
0 for &, > o,

with

o 1/R; + 1/R; s
)\_ﬁ{max(Ri/Rj;Rj/Ri)%} ' ®

In the simulations, the total liquid volume is dis-
tributed among all eligible particle pairs (the pairs
with a gap below the debonding distance, including
the contact points) in proportion to the reduced di-
ameter of each pair. We also assume that the par-
ticles are perfectly wettable, i.e. & = 0. The choice



Sample Method Number Shape Wet Loading

S1 CD 20,000  spheres no iso, 100 Pa
Sa2 CD 20,000  spheres no aniso, 100 Pa
S3 CD 20,000 polyhedra no iso, 100 Pa
S4 MD 8,000 spheres no iso, 0 Pa

Ss MD 8,000 spheres no iso, 100 Pa
Se MD 8,000 spheres yes iso, 0 Pa

S7 MD 8,000 spheres yes  iso, 100 Pa
Table 1

Characteristics of various numerical samples.

of the water volume has no influence on the value of
the largest capillary force in the pendular state [36].
For our simulations, we chose a gravimetric water
content of 0.007 so that the material is in the pen-
dular state. The coefficient of friction is u = 0.4 for
all simulations.

3. Dry granular media

We study the shapes of normal force distributions
from numerical simulations by CD and MD methods
in three dimensions with focus on the effect of the
numerical method, anisotropy and particle shape for
dry packings in this section and the capillary cohe-
sion for wet packings in the next section. Different
samples were prepared by isotropic compaction and
then deformed under triaxial loading in order to ob-
tain anisotropic packings. The numbers of particles
and particle shapes are given in table 1 for differ-
ent samples labeled from S; to S7. The particle size
distributions are not the same in all samples but
they all represent rather weakly polydisperse distri-
butions with a ratio of 2 between the largest and
smallest particles.

Figure 2 shows the pdf’s of normal forces for two
isotropic samples simulated by MD and CD methods
(samples Sy and S4). The forces have been normal-
ized by the average force in each sample. Although
the two samples are not exactly identical, the two
pdf’s have the same shape characterized by an ex-
ponential falloff for large forces, a small peak for a
force slightly below the average force and a finite
value at zero force. The position of the peak is not
the same in the two distributions but the exponents
of the exponential falloff are the same within statis-
tical precision of the data:

P(fn) oc ™A1/ U, (9)
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Fig. 2. Probability density functions of normal forces in two
isotropic samples of spherical particles simulated by MD and
CD methods.

with 0 ~ 1.4. This similarity between the distribu-
tions indicates that the statics of a granular system
is statistically robust with respect to the numerical
approach and, in particular, the small elastic defor-
mation at contact points in MD simulations has neg-
ligible effect on the inhomogeneity of the system. In
other words, the physics of a static granular packing
can be approximated by considering undeformable
particles as in the CD method as far as the the ra-
tio p/ky, of the confining pressure p to the normal
stiffness k,, of the particles is small.

The observed shape of force pdf’s is unique in
two respects: (1) the exponential part reflects the
presence of very large forces in the system often ap-
pearing in a correlated manner in the form of force
chains; (2) the nonvanishing category of weak forces,
with a fraction of more than 60% of contact forces
below the average force, means that the stability of
force chains is ensured by a large number of vanish-
ingly small forces [14,15]. The large number of con-
tacts transmitting very weak forces is a signature of
the arching effect. These features imply that the av-
erage force is not physically rich enough to represent
the whole spectrum of forces in a granular system.

Figure 3 shows the normal force pdf’s in CD sim-
ulations for the same system of spherical particles at
the isotropic state (sample S7) and at an anisotropic
state (sample S2). The effect of anisotropy is to re-
inforce the force inhomogeneity by increasing the
relative densities of both strong and weak forces
[16,37,38]. However, the exponent § remains nearly
unchanged whereas the small peak near the average
force disappears and the distribution of weak forces
tends to become nearly uniform [15].

The distribution of weak forces is also dependent
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in a sample of spherical particles after isotropic com-
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Fig. 4. Probability density functions of normal forces in an
isotropic sample of polyhedral particles on log-linear and
log-log scales.

on particle shapes and sizes. Fig. 4 shows the dis-
tribution of normal forces in a sample of polyhe-
dral particles (sample S3) in an isotropic state. We
again observe the exponential tail of strong forces
together with a decreasing power law distribution
for weak forces. It seems thus that the angular parti-
cle shape increases considerably the number of very
weak forces by enhancing the arching effect. The lat-
ter is also reflected in the value of the exponent 0
reduced to 0.97 compared to 1.4 for spherical par-
ticles. In this way, the force chains are stronger but
less in number [39].

4. Wet granular media

In this section, we consider force pdf’s in a wet
packing of spheres for two samples simulated by the
MD method for p,, = 0 Pa and for p,, = 100 Pa
(samples Sg and S7 in Table 1). The confined sample
S7 was obtained from isotropic compaction of a wet
packing initially prepared with p,, = 0. The pack-
ing was then allowed to relax to equilibrium under
the action of the applied pressure. This level of con-
finement is high compared to the reference pressure
po = fo/{d) (bm/po =~ 0.5), yet not too high to mask
fully the manifestations of capillary cohesion.

Figure 5 shows the force networks in a narrow
slice nearly three particle diameters thick in both
samples. The tensile and compressive forces are rep-
resented by segments of different colors joining par-
ticle centers. The line thickness is proportional to
the force. As in dry granular media, we observe a
highly inhomogeneous distribution both for tensile
and compressive forces. The effect of external com-
pressive pressure is to reduce the fraction of ten-
sile bonds. In the unconfined sample, the bond co-
ordination number z (average number of bonds per
particle) is ~ 6.1 including nearly 2.97 compressive
bonds and 3.13 tensile bonds. As we shall see be-
low, these wet samples involve also a large number
of weak forces (f, =~ 0) corresponding to the con-
tacts where capillary attraction is balanced by elas-
tic repulsion, i.e. k.6, + fo ~ 0.

Fig. 6 displays the pdf of normal forces in ten-
sile (negative) and compressive (positive) ranges for
sample Sg (p, = 0 Pa). We observe two nearly sym-
metrical parts decaying exponentially from the cen-
ter:

P(fn) oc =/, (10)

with «,, ~ 4 for both negative and positive forces,
and fy = KRmaz, where R4 is the largest particle
radius. In contrast to dry granular media, where the
distribution deviates from a purely exponential be-
havior for weak forces [15], here the exponential be-
havior extends to the center of the distribution. The
tensile range is cut off at f, = —fy corresponding
to the largest capillary force. Although the confin-
ing stress is zero, positive forces as large as 2 fy can
be found in the system. We also observe in Fig. 6 a
distinct peak centered on f, = 0 which is the aver-
age force for zero confining pressure. The presence of
this peak, resulting from the balance between capil-
lary attraction and elastic repulsion, suggests that a
large number of weak forces play a special role with



Fig. 5. Maps of tensile (green) and compressive (red) forces in
a thin layer in samples Sg (prm = 0 Pa) (a) and S7 (pm = 100
Pa) (b). Line thickness is proportional to the magnitude of
the force.

respect to the statics and stability of wet granular
materials.

Figure 7 shows the pdf of normal forces in sam-
ple S7. The symmetry of the distribution around
fn = 0 is now broken compared to the unconfined
case in Fig. 6. The distribution is roughly exponen-
tial for both tensile and compressive forces but the
exponents are different. In the same figure, the pdf
of normal forces in a sample without capillary co-
hesion is shown (sample S5). We see that the expo-
nent for compressive forces is nearly the same as for
the dry packing. Remark that all forces have been
normalized by fo in both cases. Another feature of
force distribution observed in Fig. 7 is the presence
of a distinct peak centered on zero force which was
observed also for the case of unconfined packing in

Fig. 6. Probability density function of normal forces nor-
malized by the largest capillary force fo at zero confining
pressure.
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Fig. 7. Probability density functions of normal forces normal-
ized by the largest capillary force fo in the confined packings
S7 (wet) and S5 (dry).

Fig. 6. Hence, this peak reflects a feature of force
transmission in wet granular materials that will be
analyzed below.

5. Bi-percolating structure of self-stresses

In an unconfined assembly of dry rigid particles,
no self-stresses occur and the forces vanish at all con-
tacts. However, we have seen that the presence of lig-
uid bonds in a wet granular material induces tensile
and compressive forces although the average force is
zero. In other words, the grains keep together to form
a self-sustained structure in the absence of confining
stresses. In general, various loading histories such as
consolidation or differential particle swelling can in-
duce self-stresses in a cohesive packing [19,40]. In our
system, the self-stresses appear during relaxation.
This is obviously a consequence of the tensile action



of capillary bonds bridging the gaps between neigh-
boring particles within the debonding distance. We
focus here on the structure of self-stresses induced
by capillary bonds.

For a local description of self-stresses we need to
characterize the stress transmission at the particle
scale as the smallest scale at which the force balance
condition is defined for rigid particles. Although the
stress tensor is by definition a macroscopic quan-
tity, it can be shown that an equivalent quantity o,
called ‘particle stress’; can be defined for each par-
ticle ¢ of a granular packing in static equilibrium
[41,42,20]:

(0i)ap = %ngrg, (11)
J#i
where 7;; is the position of the contact-point of the
force f;; of particle j on particle ¢, and a and 3 de-
sign the Cartesian components. Vj is the free volume
of particle i, the sum of the particle volume and a
fraction of the pore space:
nd?

Vi= o (12)
where d; is the particle diameter, and v is the solid
fraction of the packing. The sum of particle stresses
o; weighted by the corresponding relative free vol-
umes V;/V tends to the Cauchy stress tensor as the
number of particles in a control volume V increases.

From the particle stresses we get particle pres-
sures:

3

pi= 3> (o (13)
a=1

Each particle can take on positive or negative pres-
sures according to the forces exerted by neighbor-
ing particles. The pdf of particle pressures is dis-
played in Fig. 8 for the unconfined sample. The pres-
sures have been normalized by a reference pressure
po = fo/(d)?. The distribution is symmetric around
and peaked on zero pressure, and each part is well
fit by an exponential form. This symmetry in the
structure of self-stresses must be contrasted with the
asymmetric distribution of forces (Fig. 6) due to the
cutoff on tensile forces. Obviously, the exponential
shape of particle pressure distributions reflects sta-
tistically that of bond forces. This distribution ex-

tends to the center p; = 0.

Zero particle pressure corresponds to a state
where a particle is balanced under the combined
action of tensile and compressive forces. Such par-
ticle states are not marginal here and they reflect a
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Fig. 8. Probability density function of particle pressures nor-
malized by reference pressure pg (see text) in the unconfined
wet packing.

particular stress transmission in a wet packing. The
positive and negative particle pressures may form
separate phases mixing together at large scales or
mix together at the particle scale. Fig. 9, displaying
the packing where the positive and negative pres-
sures are represented in black and white, credits
rather the first scenario. We observe that the par-
ticles of either positive or negative pressure appear
as two separate phases each percolating through-
out the system. The morphology of each phase is
approximately filamentary with variable thickness
and a large interface between them. A detailed anal-
ysis of this structure shows that the particles at the
interface between the two phases have a weak pres-
sure and the largest negative or positive pressures
are located at the heart of each phase [20].

6. Conclusion

In this paper, the pdf’s of contact forces in granu-
lar media were investigated by means of 3D discrete
element simulations. Our data from MD and CD
methods for dry granular media were shown to be
consistent. The exponential shape of the pdf’s is
a robust feature of strong forces. This was shown
for spherical and polyhedral particles, isotropic and
anisotropic states, and for tensile and compressive
forces in wet granular assemblies. In contrast, the
force pdf’s in the range of weak forces were found
to depend on system parameters (taking different
shapes from a peaked distribution to a decreasing
power law distribution), but their common property
is the nonzero pdf at zero force. From this point of
view, the force pdf at zero force can be considered
as a signature of force inhomogeneity. Isotropic



Fig. 9. The unconfined wet packing with negative (white)
and positive (black) particle pressures.

packings have the lowest degree of inhomogeneity.
It increases with the anisotropy of the packing both
in structural (contact orientations) and static (force
magnitudes as a function of contact directions)
terms. The polyhedral particles present a high de-
gree of force anisotropy and thus a high degree of
inhomogeneity reflected in the practically divergent
pdf of weak forces at zero force. For wet granular
media with a homogeneous distribution of liquid,
we showed the nontrivial organization of particle
pressures in two separate percolating phases of
tensile and compressive particle pressures with an
interphase at zero pressure.
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