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We propose an algorithm for nonparametric estimation for finite mixtures of multivariate random vectors that is not, but that strongly resembles, a true EM algorithm. The vectors are assumed to have independent coordinates conditional upon knowing which mixture component from which they come, but otherwise their density functions are completely unspecified. Sometimes, the density functions may be partially specified by Euclidean parameters, a case we call semiparametric. Our algorithm is much more flexible and easily applicable than existing algorithms in the literature; it can be extended to any number of mixture components and any number of vector coordinates of the multivariate observations. Thus it may be applied even in situations where the model is not identifiable, so care is called for when using it in situations for which identifiability is difficult to establish conclusively. Our algorithm yields much smaller mean integrated squared errors than an alternative algorithm in a simulation study. In another example using a real dataset, it provides new insights that extend previous analyses. Finally, we present two different variations of our algorithm, one stochastic and one deterministic, and find anecdotal evidence that there is not a great deal of difference between the performance of these two variants.

Introduction and motivating example

Suppose the vectors X 1 , . . . , X n are a simple random sample from a finite mixture of m > 1 arbitrary distributions. The density of each X i may be written

g ϕ (x i ) = m j=1 λ j φ j (x i ), (1) 
where x i ∈ R r ; ϕ = (λ, φ) = (λ 1 , . . . , λ m , φ 1 , . . . , φ m ) denotes the parameter; and the λ j are positive and sum to unity. We assume that the φ j are drawn from some family F of multivariate density functions (say, absolutely continuous with respect to Lebesgue measure). Model (1) is not identifiable if no restrictions are placed on F, where by "identifiable" we mean that g ϕ has a unique representation of the form (1) and we do not consider that "label-switching" -i.e., reordering the m pairs (λ 1 , φ 1 ), . . . , (λ m , φ m )produces a distinct representation.

A common restriction placed on F, which we adopt throughout this article, is that each joint density φ j (•) is equal to the product of its marginal densities. In other words, the coordinates of the X i vector are independent, conditional on the subpopulation or component (φ 1 through φ m ) from which X i is drawn. Therefore, model (1) becomes

g ϕ (x i ) = m j=1 λ j r k=1 f jk (x ik ), (2) 
where the function f (•), with or without subscripts, will always denote a univariate density function. If the f jk (•) are assumed to come from a particular parametric family of densities, then standard univariate mixture model techniques (cf. MacLachlan andPeel, 2000 or Titterington et al., 1985) may easily be extended to the multivariate case. However, we wish to avoid the parametric assumption; in this article, we introduce an algorithm for estimating the parameter vector ϕ in model ( 2), where we do not assume that f jk (•) comes from a family of densities that may be indexed by a finitedimensional parameter vector. Some authors (e.g., [START_REF] Hall | Nonparametric estimation of component distributions in a multivariate mixture[END_REF] consider model (2) in its full generality. Others (e.g., [START_REF] Hettmansperger | Almost nonparametric inference for repeated measures in mixture models[END_REF] consider the special case in which the density f jk (•) does not depend on k -that is, in which the X i are not only conditionally independent but identically distributed as well:

g ϕ (x i ) = m j=1 λ j r k=1 f j (x ik ), (3) 
What distinguishes model (2) from model ( 3) is the assumption in the latter that f j1 (•) = • • • = f jr (•) for all j. In some situations, however, this assumption may be too restrictive; yet we may not wish to employ the fully general model because there is reason to assume that some of the f j1 (•), . . . , f jr (•) are the same. For instance, in the water-level dataset discussed later in this section, there are r = 8 coordinates per observation, yet because of the experimental methodology used to collect the data, it is reasonable to assume that the eight coordinates may be organized into four blocks of two each, where the densities within each block are identical but we do not assume a priori that the four blocks share a common density function. Thus, in order to encompass both the special case (3) and the more general case (2) simultaneously in this article, we introduce one further bit of notation: We will allow that the coordinates of X i are conditionally independent and there exist blocks of coordinates that are also identically distributed. These blocks may all be of size one so that case (2) is still covered, or there may exist only a single block of size r, which is case (3). If we let b k denote the block to which the kth coordinate belongs, where 1 ≤ b k ≤ B and B is the total number of such blocks, then equation ( 2) is replaced by

g ϕ (x i ) = m j=1 λ j r k=1 f jb k (x ik ). ( 4 
)
With so many different subscripts, the notation itself can become an impediment to understanding. Thus, we will remain consistent in our use of notation and terminology throughout the article. In particular, we use the terms component and coordinate only to refer, respectively, to one of the distributions (subpopulations) making up the mixture and one of the repeated measurements making up an observation. The indices i, j, k, and will always denote a generic individual, component, coordinate, and block, respectively. Therefore, we will always have 1

≤ i ≤ n, 1 ≤ j ≤ m, 1 ≤ k ≤ r, and 1 ≤ ≤ B.
(Also note that m, r, and B stand for mixture components, repeated measurements, and blocks, and of course n has its usual interpretation as the sample size.) To further elucidate model (4), consider as an example an experiment involving 405 children aged 11 to 16 years subjected to a water-level task as described by [START_REF] Thomas | Modeling Growth and Individual Differences in Spatial Tasks[END_REF]. Each child is presented with eight rectangular vessels on a sheet of paper, each tilted to one of r = 8 clock-hour orientations: in order of presentation to the subjects, these orientations are 11, 4, 2, 7, 10, 5, 1, and 8 o'clock. Each vessel was on a separate sheet of paper and appeared much like the small reproductions in the plots of Figure 1: The water-level data are analyzed using our algorithm, assuming model ( 4) with three mixture components (m = 3) and four coordinate blocks (B = 4) in which opposite clock-face orientations are assumed to lead to conditionally independent and identically distributed responses. The means and standard deviations are for interpretation only; they are not part of the model, which is fully nonparametric except for the mixing proportions λ j .

Figure 1 (see Thomas et al., 1993, p. 40). The children's task was to draw a line representing the surface of still liquid in the closed, tilted vessel in each picture. Each such line describes two points of intersection with the sides of the vessel, and the acute angle, in degrees, formed between the horizontal and the line passing through these two points was measured for each response. The sign of each such measurement was taken to be the sign of the slope of the line. This water-level dataset and our analysis of it will be described in further detail in Section 5.2; for now, we state only that we know of no other algorithm currently capable of producing similar results. Some methods have been proposed that could potentially be extended to this case (Hall et al., 2005;[START_REF] Qin | Semiparametric analysis in conditionally independent multivariate mixture models[END_REF], but they appear to be extremely complicated computationally for m > 2 or r > 3. Some other methods have been proposed that could handle this number of components and repeated mea-surements -indeed, the same dataset has been analyzed by other authors [START_REF] Hettmansperger | Almost nonparametric inference for repeated measures in mixture models[END_REF][START_REF] Elmore | Estimating component cumulative distribution functions in finite mixture models[END_REF]) -yet all these methods rely on the assumption that the r = 8 coordinates are all identically distributed. Our method, by contrast, is simple to program and easily generalizable to any values m and r for which model ( 2) is identifiable.

In Section 2 of this article, we offer a fuller discussion of previous work in this area, including the vexing issue of identifiability. We introduce our algorithm in Section 3 and describe several modifications of the basic algorithm and model in Section 4. Section 5 is devoted to empirical study of the algorithm, both through simulation studies and through analysis of real datasets. Whenever possible in Section 5, we compare our method with results of other known methods.

Identifiability and previous work

An interesting question is how restrictive the assumptions on f jb k (•) must be in order to ensure that the model ( 4) is identifiable. For instance, in the univariate (r = 1) case, [START_REF] Bordes | Semiparametric estimation of a two-component mixture model[END_REF] and [START_REF] Hunter | Inference for mixtures of symmetric distributions[END_REF] found that when f j (x) = f (x -µ j ) for some density f (•) that is symmetric about zero, the mixture density g ϕ (x) admits a unique representation whenever m ≤ 3, except in certain special cases that are easily enumerable.

In the multivariate case, [START_REF] Hall | Nonparametric estimation of component distributions in a multivariate mixture[END_REF] showed that for two components (m = 2), model (2), the most general case of model (4) in which b k = k for all k, is always identifiable as long as r ≥ 3, even though no assumptions are made about the form of the densities. In fact, model (2) is a case in which the conditions necessary for identifiability get less restrictive as the dimension r increases; or, as [START_REF] Hall | Nonparametric inference in multivariate mixtures[END_REF] put it, this is a case in which "from at least one point of view, the 'curse of dimensionality' works in reverse."

We use the term "nonparametric" to describe the case in which no assumptions are made about the form of the f jb k (•) even though the parameter λ is of course Euclidean. We reserve the term "semiparametric" for the case in which f jb k (•) is partly specified by a finite-valued parameter, such as the case discussed above in which f j (x) = f (x -µ j ) for a symmetric but otherwise completely unspecified density f (•). Note that [START_REF] Lindsay | Mixture Models: Theory, Geometry and Applications[END_REF] speaks of "nonparametric mixture modeling" in a different sense: The family F from which the component densities come is fully specified up to a parameter θ, but the mixing distribution from which the θ are drawn, rather than having finite support of known cardinality m as in the present article, is assumed to be completely unspecified a priori.

When b k = k for all k, several authors have recently addressed the problem of estimating the f jb k in model ( 4). Yet the estimation methods they propose appear to apply in only very limited cases. [START_REF] Qin | Semiparametric analysis in conditionally independent multivariate mixture models[END_REF] and [START_REF] Leung | Semi-parametric inference in a bivariate (multivariate) mixture model[END_REF] adapt the exponential tilt model of [START_REF] Anderson | Multivariate logistic compounds[END_REF] and apply their methods to the cases when m = 2 and r = 2 or r = 3. [START_REF] Hall | Nonparametric inference in multivariate mixtures[END_REF] give estimators based on inversion of mixture models that apply only to the case when m = 2 and r = 3. Analytical difficulties appear to hinder the application of either of these methods beyond these cases. Even in the case r = 1, where restrictions as described at the beginning of Section 2 must be placed on f j (•) in order to ensure identifiability, the estimation methods of [START_REF] Bordes | Semiparametric estimation of a two-component mixture model[END_REF] and [START_REF] Hunter | Inference for mixtures of symmetric distributions[END_REF] are difficult if not impossible to apply beyond the case m = 2. We discuss this case in Section 4.3 and use it as the basis for the numerical example of Section 5.3.

By contrast, in the case of continuous data when b k = 1 for all k -that is, the case of conditionally independent and identically distributed coordinates -several other authors [START_REF] Hettmansperger | Almost nonparametric inference for repeated measures in mixture models[END_REF][START_REF] Cruz-Medina | Semiparametric mixture models and repeated measures: the multinomial cut point model[END_REF][START_REF] Elmore | Estimating component cumulative distribution functions in finite mixture models[END_REF] have developed a different estimation method. This method, the cutpoint approach, discretizes the continuous measurements by replacing each observation (x i1 , . . . , x ir ) by a multinomial vector (n 1 , . . . , n p ), where

n a = r k=1 I{c a-1 < x ik ≤ c a }, 1 ≤ a ≤ p,
and the cutpoints -∞ = c 0 < c 1 < • • • < c p = ∞ are specified by the experimenter. The cutpoint approach is completely general in the sense that it can be applied to any number of components m and any number of repeated measures r, just as long as r ≥ 2m -1, a condition that guarantees identifiability [START_REF] Elmore | Identifiability and estimation in finite mixture models with multinomial coefficients[END_REF]. However, some information is lost in the discretization step and for this reason it becomes difficult to easily obtain density estimates of the component densities. Furthermore, even if the assumption of conditional independence is warranted, the extra assumption of identically distributed coordinates may not be; and the cutpoint method collapses when the coordinates are not identically distributed.

Here, we take a different approach and adapt an algorithm of [START_REF] Bordes | An EM algorithm for a semiparametric mixture model[END_REF]. Originally, this algorithm is presented as a stochastic algorithm for the particular univariate case of model (1) under the assumption that φ j (x) = f (x -µ j ) for some symmetric density f (x). We demonstrate how to extend the algorithm to model (4) and eliminate the stochasticity. Our algorithm combines the best features of all the algorithms discussed previously: It is simple to program, it is applicable to any m and r as well as any set of blocks b k , and it gives kernel-density-like estimates for each of the f jb k .

Yet with such flexibility also comes a bit of danger, since the identifiability question for the general model (4) has not yet been settled. Hall et al. (2005) discuss this question and give a lower bound on r, as a function of m, that is necessary in order to guarantee identifiability: They state that r and m should satisfy 2 r -1 ≥ mr +1. Yet they do not give an explicit bound that is sufficient to guarantee identifiability; however, [START_REF] Elmore | An application of classical invariant theory to identifiability in nonparametric mixtures[END_REF] prove that such a (finite) lower bound exists.

Since extending our estimation method to an arbitrary number of coordinates or mixture components is very easy -unlike any previously published algorithms for this problem -we are in a position in which practice is more advanced than theory. Thus, it is prudent to exercise caution when trying to fit a model for which the identifiability question is not settled. The waterlevel data of Section 1 gives such an example if we take m = 3 or m = 4. We discuss this example in more detail, and give reasons that we are fairly confident about interpreting our results, in Section 5.2.

Estimating the parameters

We propose both a refinement and a generalization of the algorithm of [START_REF] Bordes | An EM algorithm for a semiparametric mixture model[END_REF]. Although we use the term EM in connection with this algorithm, we stress that this algorithm is not an EM algorithm in the usual sense [START_REF] Dempster | Maximum likelihood from incomplete data via the EM algorithm (with discussion)[END_REF] because there is no likelihood that this algorithm may be shown to maximize. However, we retain the name "EM" because the algorithm strongly resembles a true EM algorithm for the parametric mixture case, i.e., the case in which F is a family indexed by some Euclidean parameter. For instance, as in an EM algorithm for mixtures, we define Z ij ∈ {0, 1} to be a Bernoulli random variable indicating that individual i comes from component j. Since each individual comes from exactly one component, this implies m j=1 Z ij = 1. Thus, the complete data is the set of all (x i , Z i ), 1 ≤ i ≤ n.

The nonparametric EM algorithm

The algorithm described here is implemented in an R package (R Development Core Team, 2007) called mixtools [START_REF] Young | mixtools: Tools for mixture models[END_REF], available online from the Comprehensive R Archive Network (CRAN). Suppose we are given initial values ϕ 0 = (λ 0 , f 0 ). Then for t = 1, 2, . . ., we follow these three steps:

1. E-step: Calculate the "posterior" probabilities (conditional on the data and ϕ t ) of component inclusion,

p t ij def = P ϕ t (Z ij = 1|x i ) (5) = λ t j r k=1 f t jb k (x ik ) m j =1 λ t j r k=1 f t j b k (x ik ) (6) 
for all i = 1, . . . , n and j = 1, . . . , m.

M-step:

Set

λ t+1 j = 1 n n i=1 p t ij (7) 
for j = 1, . . . , m.

3. Nonparametric density estimation step: For any real u, define for each component j ∈ {1, . . . , m} and each block ∈ {1, . . . , B}

f t+1 j (u) = 1 h r k=1 n i=1 p t ij I{b k = }K u-x ik h r k=1 n i=1 p t ij I{b k = } = 1 nhC λ t+1 j r k=1 n i=1 p t ij I{b k = }K u -x ik h , (8) 
where K(•) is a kernel density function, h is a bandwidth chosen by the user, and

C = r k=1 I{b k = }
is the number of coordinates in the th block. Note that in the case in which b k = k for all k, equation ( 8) becomes

f t+1 jk (u) = 1 nhλ t+1 j n i=1 p t ij K u -x ik h . (9) 
In the original [START_REF] Bordes | An EM algorithm for a semiparametric mixture model[END_REF] algorithm, the nonparametric density estimation step differs in that p ij is replaced by z * ij in equation ( 8), where (z * i1 , . . . , z * im ) is a simulated multinomial random variable with a single trial and with probability vector given by (p i1 , . . . , p im ). Thus, the original algorithm has a stochastic element. In various tests, we find consistent empirical evidence that the deterministic version presented here is slightly, though not overwhelmingly, more efficient than the stochastic version. An example of such a comparison is given in section 5.3. Because the deterministic algorithm does not require any additional overhead relative to the stochastic algorithm, we use it here exclusively.

To initialize the algorithm, it is often easier to start with an initial n × m matrix P 0 = (p 0 ij ) than with an initial parameter vector ϕ 0 . Thus, during the first iteration, we skip directly to the M-step. To obtain this P 0 matrix, it is possible to use (say) a k-means clustering algorithm to assign each observation to one of the components. This procedure forces P 0 to consist of just zeros and ones, but we find that it works well in practice.

Bandwidth and kernel selection

The density estimation step in the algorithm above relies on a kernel density K(•) and a bandwidth h. Kernel density estimation is a well-studied topic in statistics, and for our implementation in the mixtools package, we tried to adopt standard techniques. In particular, because much literature on this topic suggests that the choice of a kernel function does not have a dramatic impact on the resulting density estimate, we simply take K(t) to be the standard normal density function.

Choosing a bandwidth is a more complicated issue, particularly since this choice affects the density estimates dramatically. Although we do not attempt a thorough exploration of this topic in the current article, we describe here some of our experience in choosing a bandwidth.

As a default value for the bandwidth h, we simply take the entire n × r dataset, treat it as a vector of length nr, and use the default bandwidth selection of the density function in R -namely, a rule of thumb due to Silverman (1986, page 48) in which

h = 0.9(nr) -1/5 min SD, IQR 1.34 , ( 10 
)
where SD and IQR are the standard deviation and interquartile range of all nr data values. This is a very crude method in the nonparametric mixture setting, and there are several reasons why it might produce an under-or overestimate. First, pooling all of the data implicitly treats all of the different components as though they are from the same distribution. This can lead to an inflation of the bandwidth, particularly if the mixture components' centers are well-separated, because in that case, the variability of the pooled dataset will be larger than that of the individual components. Similarly, if the vector coordinates are not identically distributed within each component, the bandwidth could be biased upward for the same reason. Yet operating in the opposite direction is the fact that the expression nr in equation ( 10) is an overestimate of the "true" sample size. This is especially true when each b k equals k -where each of the r coordinates gets a separate set of density estimates -in which case it may be sensible to eliminate the r from the equation ( 10) entirely. But regardless of the values of b k , there is also the fact that the "true" sample size from each component is actually some fraction of n, namely, about λ j n for the jth component.

The arguments above show first of all that it would be useful to know something about the mixture structure in order to select a bandwidth. This suggests an iterative procedure in which the value of h is modified, and the algorithm reapplied, after the output from the algorithm is obtained. Secondly, there is no reason that the bandwidth should be the same for each component or even for each block: It is easy to modify equation ( 8) by replacing h by h j or h j .

A thorough exploration of the bandwidth question is therefore a research topic unto itself, so in the interest of simplicity we opt for the default value (10) in the simulation studies of Section 5.1. For the water-level data discussed in Sections 1 and 5.2, where the visual appearance of the density estimates is important for a qualitative appreciation of the results, we find that the default value of h = 1.47 produces a "bumpy-looking" set of density estimates, so we use a larger value that gives smoother results, namely h = 4. We provide the very simple code for this example in Section 5.2, and we encourage interested readers to test this example using the default bandwidth. We also find in a couple other datasets that the default (10) gives somewhat "bumpy-looking" results, suggesting that the default value tends to be smaller than a more optimal choice would be in general; yet our evidence for this is only anecdotal at this point.

Modifications to the model and algorithm

The general model of equation ( 4) and the algorithm of Section 3.1 may be modified in various ways. For example, the density-estimation bandwidth may be allowed to change for each component, each coordinate, or both, as mentioned in Section 3.2. We discuss some of these modifications here.

Location-scale model

There are some plausible models that are more restrictive than (4) but not as restrictive as the case in which all coordinates are identically distributed. For instance, if in equation ( 4) we write = b k and suppose that

f j (x) = 1 σ j f j x -µ j σ j (11) 
for unknown parameters (µ j , σ j , f j ), j = 1, . . . , m, then the totally nonparametric specification of f j becomes a semiparametric specification (note that µ j and σ j are both B-vectors). To implement the semiparametric EM algorithm in this case, equations ( 5) and ( 7) remain unchanged but it is necessary to modify equation ( 8) to account for the fact that all of the coordinates provide information about the form of each f j . Thus, in the case (11), equation ( 8) is replaced by

f t+1 j (u) = 1 nrhλ t+1 j n i=1 r k=1 p t ij K u -x ik + µ jb k hσ jb k . (12) 
Furthermore, the M-step also includes updates of the µ j and σ j parameters for each 1 ≤ j ≤ m and 1 ≤ ≤ B:

µ t+1 j = n i=1 r k=1 p t ij I{b k = }x ik n i=1 r k=1 p t ij I{b k = } = n i=1 r k=1 p t ij I{b k = }x ik nλ t+1 j C (13) 
σ t+1 j = 1 nC λ t+1 j n i=1 r k=1 p t ij I{b k = }(x ik -µ t+1 j ) 2 1/2 (14)
Naturally, it is possible to place constraints on the µ j or σ j vectors when this is sensible. For instance, if the mixture is purely a location mixture, then we might stipulate that σ j = σ for each j and for some B-vector σ.

Similarly, we might stipulate that µ j = µ if the mixture is purely a scale mixture. In these latter two cases, note that we still allow the different blocks to have different scale and location parameters, though of course this may be restricted as well. Also note that because f j is completely unconstrained (except in special cases like Section 4.3), each element of the µ j may only be identified up to a constant shift and each element of σ j may only be identified up to a constant multiple. Stated differently, there is no loss of generality in assuming that µ j = 0 and σ j = 1 for each j; however, when implementing the algorithm, it is generally not necessary to enforce these constraints.

Location-scale model, revisited

Note that we may obtain yet a different model by writing

f j (x) = 1 σ j f x -µ j σ j (15) 
instead of equation ( 11). These two equations, which differ only in the replacement of a single j by , in fact involve assumptions that are quite distinct. In equation ( 11), we are assuming that the coordinates within an individual have the same shape of distribution (depending on the individual's mixture component) but may differ by a location and scale factor; in equation ( 15), we are assuming that individual differences, i.e., the mixture components, only account for differences up to a location and scale parameter, but otherwise the distributions of different blocks of coordinates do not relate to one another in any way. Note also that the corresponding form of equation ( 8) looks quite different than its earlier counterpart in equation ( 12):

f t+1 (u) = 1 nhC n i=1 m j=1 r k=1 I{b k = }p t ij K u -x ik + µ j hσ j . ( 16 
)
As a special case of both ( 11) and ( 15), we may assume that all coordinates in all components have the same distributional shape, summarized by the density f (•), and

f j (x) = 1 σ j f x -µ j σ j . (17) 
In case (17), equation ( 8) becomes

f t+1 (u) = 1 nrh n i=1 m j=1 r k=1 p t ij K u -x ik + µ jb k hσ jb k . ( 18 
)

Symmetric components

If we consider case (17) without repeated measures (r = 1) and for purely a location mixture (σ j = 1, j = 1, ..., m), then the model becomes

g ϕ (x i ) = m j=1 λ j f (x i -µ j ). ( 19 
)
When m = 2, equation ( 19) is exactly the location-shifted semiparametric mixture model that is proved identifiable by [START_REF] Bordes | Semiparametric estimation of a two-component mixture model[END_REF] and [START_REF] Hunter | Inference for mixtures of symmetric distributions[END_REF] under the additional assumptions that λ 1 = 1/2 and that the density f is symmetric about zero. This special case is also the model for which the original (semiparametric) stochastic EM algorithm is proposed in [START_REF] Bordes | An EM algorithm for a semiparametric mixture model[END_REF]. In the non-stochastic version, equation ( 18) may be combined with a symmetrization step to give

f t+1 (u) = n i=1 m j=1 p t ij 2nh K u -x i + µ j h + K -u -x i + µ j h . (20) 
A comparison of the stochastic and non-stochastic versions of this algorithm is given in section 5.3.

Changing block structure

In Figure 1 summarizing the water-level results for three components (a dataset that is discussed further in Section 5.2), we see that the largest component, into which roughly half of the subjects fall, appears to have roughly the same density for all four blocks. We might therefore guess that for individuals in this component, observations x i consist of 8 independent and identically distributed (i.i.d.) coordinates. Yet the remaining two components' observations do not appear to be identically distributed; the block structure exhibited in the plots, in which the eight coordinates fall into 4 blocks of two i.i.d. observations each, seems appropriate. It is therefore reasonable to allow the model to encompass the possibility that the block structure could be different in each component. In other words, equation 4 would be modified slightly to produce

g ϕ (x i ) = m j=1 λ j r k=1 f jb jk (x ik ),
in which the only difference is that b k has been replaced by b jk -thus, the block in which the kth observation falls depends on j as well.

Though this generalization of the model is not currently implemented in the mixtools package, it would be conceptually easy to do so. However, there is a theoretical issue that must be addressed in this case: Labelswitching becomes a problem. By "label-switching", we mean the result of permuting the labels of the m components. When each component is assumed to follow the same model, it is not important which is labeled component 1, which is labeled component 2, etc. But if we now assume that component 1 (say) has i.i.d. coordinates whereas components 2 and 3 have a different block structure, then it is necessary to ensure that "component 1" always refers to a particular one of the three components. This might be easiest to achieve in practice using a two-step approach: First, obtain results for a model in which the block structure is assumed the same for all three components (as depicted in Figure 1). Then, use the final posterior probabilities of component inclusion as starting values for a second algorithm for fitting the more general model.

Examples for real and simulated datasets 5.1 A simulation study

We applied the nonparametric EM algorithm (npEM) to the same synthetic examples for which [START_REF] Hall | Nonparametric inference in multivariate mixtures[END_REF] tested their estimation technique, a method based on inverting the mixture model. The three simulated models, described below, are trivariate two-component mixtures (m = 2, r = 3) with independent repeated measures, i.e., b k = k for 1 ≤ k ≤ 3. We ran S = 300 replications of n = 500 observations each and computed the errors in terms of the square root of the Mean Integrated Squared Error (MISE) for the densities as in [START_REF] Hall | Nonparametric inference in multivariate mixtures[END_REF], where

MISE = 1 S S s=1 f (s) jk (u) -f jk (u) 2 du, j = 1, 2 and k = 1, 2, 3;
and the integral is computed numerically. Each density f (s) jk is computed using equation ( 9) together with the posterior probabilities after convergence of the algorithm, i.e., the final values of the p t ij 's. As suggested in section 3.1, we started each algorithm with an initial n×m matrix P 0 = (p 0 ij ), and this matrix was determined by a k-means algorithm applied to each trivariate dataset, with initial cluster centers (0, 0, 0) and (4,4,4). This testing protocol is adapted to this particular locationshifted model in order to prevent label-switching among replications. In comparison, [START_REF] Hall | Nonparametric inference in multivariate mixtures[END_REF] dealt with label-switching by enforcing the constraint λ1 < λ2 . After finishing our simulation, we verified that our results would not have changed if we had used the Hall et al. approach because in every trial, we observed that λ1 < λ2 .

To set up tuning parameters (including bandwidth, though their inversion method has several other tuning parameters), [START_REF] Hall | Nonparametric inference in multivariate mixtures[END_REF] used near-optimal values derived by fitting a Gaussian model. With our method, we used the default bandwidth described in Section 3.2. 0.2 0.3 0.4 q q q q q q q q q q q q q q q q q q q q q q q q 0.05 0.10 0.20 0.50
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The results for the inversion algorithm of [START_REF] Hall | Nonparametric inference in multivariate mixtures[END_REF] are approximated from their plots on page 675, Fig. 2, with a small bit of noise added to separate coincident points.

The first example is a normal model, for which the individual densities f j are the pdf's of N (µ j , 1), with component means µ 1 = (0, 0, 0) and µ 2 = (3, 4, 5). The second example uses double exponential distributions with densities f j (t) = exp{-|t -µ j |}/2 where µ 1 = (0, 0, 0) and µ 2 = (3, 3, 3). In the third example, the individual distributions have central or noncentral t densities on ten degrees of freedom: The first component has a central t(10) distribution and thus µ 1 = (0, 0, 0), whereas the second component's coordinates are noncentral t(10) distributions with noncentrality parameters 3, 4, and 5. Thus, the mean of the third component is µ 2 = (3, 4, 5) × 1.0837. Recall that in all three examples -and indeed throughout this article -the coordinates are independently distributed conditional on their component membership. We stress that even though the true models in the normal and double exponential examples are special cases of equation ( 17), the algorithm used for the simulation assumes only the general model ( 4) with b k = k for all k.

Results given in Figure 2 show that our algorithm dramatically outperforms the inversion method for the three models. Note that the smallest value of MISE for the inversion method for any example is greater than the greatest value of MISE for our npEM algorithm; thus, the horizontal dotted line at √ MISE = 0.16 in Figure 2 separates the two sets of results entirely. Because the three coordinates within each component and value of λ 1 are so similar relative to the scale of the plots, we do not distinguish among them in Figure 2. Predictably, we can see that the MISE is much smaller for the second component than the first when λ 1 is small (which means a larger proportion of the sample gives information about the second component), but the values appear to converge as λ 1 nears 1/2.

The Water-level data

The water-level dataset described in Section 1 is available in the mixtools package [START_REF] Young | mixtools: Tools for mixture models[END_REF] in R (R core development team, 2007) by typing data(Waterdata). These data, with n = 405 and r = 8, have been analyzed by other authors using nonparametric mixture models based on converting the continuous angle measurements into binomial or multinomial data [START_REF] Hettmansperger | Almost nonparametric inference for repeated measures in mixture models[END_REF][START_REF] Elmore | Estimating component cumulative distribution functions in finite mixture models[END_REF]. The latter of these two references gives quite a lengthy analysis of this dataset, which we use as a basis of comparison for our method.

By converting the water-level data into multinomial vectors, [START_REF] Elmore | Estimating component cumulative distribution functions in finite mixture models[END_REF] are assuming that the eight coordinates of an observation vector are i.i.d. conditional on the mixture component from which the vector is drawn. Yet a more careful analysis, not possible using any previously published method we know of, reveals that there are subtle differences among the coordinate distributions. Grouping the coordinates into four blocks of two i.i.d. coordinates each uses knowledge of the task (described in Section 1) and appears more appropriate here.

Figure 1 of Section 1 summarizes our three-component solution, which may be obtained using mixtools via blockid <-c(4,3,2,1,3,4,1,2) # blocks 1-4 refer to fig. 1 a <-npEMindrep(Waterdata, 3, blockid=blockid, h=4) plot(a, hist=T, breaks=5*(0:37)-92.5) (type ?npEMindrep and ?plot.npEM for more details on these functions). Note that "h=4" specifies the bandwidth, overriding the default value of equation ( 10). Also note that because the default starting values are random, the commands above may not result in exactly the same solution.

For the three-component solution, Figure 1 clearly shows that one component, comprising almost 50% of the subjects, consists of individuals who know how to complete this task; these individuals' responses are highly peaked around the correct answer of zero degrees. The cutpoint method also finds a similarly shaped component and estimates its proportion at 0.440. However, the second and third components are qualitatively different than those found by the cutpoint method, particularly the smallest component. Using our method, we find that almost 8% of the subjects seem to draw the line parallel to the bottom of the vessel -yet the cutpoint approach misses this group because "parallel to the bottom" means one of -60, -30, 30, or 60 degrees depending on the orientation the vessel. In fact, the assumption that all eight coordinates are identically distributed leads the cutpoint approach to conclude that the smallest component (with an estimated 17.7% of all subjects) is roughly uniformly distributed over the interval from -90 to 90. The more realistic model that is possible to estimate with our algorithm reveals details that the cutpoint approach simply cannot find easily.

In fact, the cutpoint approach can find the group of subjects who draw the water level parallel to the bottom of the vessel, but it needs a fourcomponent model to do so. Elmore et al. (2004, Fig. 2) give a cutpoint solution for the four-component case, and we include the analogous fourcomponent solution using our method here as Figure 3. (To obtain this result using mixtools, simply change the 3 to a 4 in the second line of the code given earlier in this section.) We stress that the means and standard deviations reported in Figures 1 and3 are only for aiding the interpretation of the density estimates; they are not part of the model and depend only on the final values of p ij and the original data. Formulas for them are identical computationally to those given for µ t+1 jl and σ t+1 jl in equations ( 13) and ( 14), each of which also relies on the formula for λ t+1 j in equation ( 7). The cutpoint result finds one component with 3.3% of the subjects in which the density has four sharp peaks at -60, -30, 30, and 60 degrees. But this result masks the fact that those peaks occur in completely different coordinates, so the implicit assumption of conditionally i.i.d. coordinates using the cutpoint approach is probably not quite appropriate here.

As stated in Section 2, a word of caution is necessary here: it has never been proven that the general model ( 4) is identifiable when r = 8 and m = 3 or 4. By contrast, under the more restrictive assumptions of the cutpoint method, we know that identifiability holds in these cases because r ≥ 2m-1 [START_REF] Elmore | Identifiability and estimation in finite mixture models with multinomial coefficients[END_REF]. The necessary (but not sufficient) lower bounds on r given by [START_REF] Hall | Nonparametric inference in multivariate mixtures[END_REF] are r ≥ 4 when m = 3, and r ≥ 5 when m = 4; so with r = 8 there is at least the hope of identifiability in each case. We are encouraged in the present example by several facts: First, the solutions we obtain, for both m = 3 and m = 4, are stable in the sense that we obtain the same solutions repeatedly for different randomly selected starting values for the algorithm. Furthermore, our results may be explained qualitatively via an understanding of how the data arose, and these results confirm and sharpen those found using a different method, the cutpoint method, in which identifiability has been proven to hold.

Stochastic vs. non-stochastic semiparametric EM

For Model ( 19) with m = 2 components, we compare the semiparametric stochastic EM (spSEM) algorithm of [START_REF] Bordes | An EM algorithm for a semiparametric mixture model[END_REF], which is discussed immediately following equation ( 9), with the deterministic semiparametric EM (spEM) algorithm that uses equation ( 20 19) with f (•) taken to be standard normal and n = 100. The spSEM and spEM algorithms are run for 100 and 20 iterations each, respectively, starting from the true parameter values.

The comparison is based on 10,000 Monte Carlo replications in which we selected the bandwidth h according to the formula used by [START_REF] Bordes | An EM algorithm for a semiparametric mixture model[END_REF], namely, h = (4/3n) 1/5 , or h = 0.422 when n = 100. The spEM was allowed only 20 iterations, relative to the 100 iterations allowed the stochastic version, since its non-stochastic sequence of estimates requires fewer iterations to stabilize. Results are given in Table 1 and give empirical evidence that the deterministic version is slightly more efficient than the stochastic version.

Empirical convergence rates

Finally, we include here a simulation study whose purpose is to explore the possible rate of convergence for the algorithm, for fixed m and r, as the sample size n tends to infinity. Note that the plots here do not constitute a proof of the asymptotic rate of convergence, nor even of consistency, yet they are interesting nonetheless because they suggest that such a theoretical result is possible.

In Figure 4, we see results for a simulation using the normal example with m = 2 and r = 3 independent (but not identically distributed) coordinates from Section 5.1, for which the individual densities f j are the pdf's of MSE for λ λ2 with 90% empirical CI n absolute error q q q q q q q q q q q q qq qqq q qq q q q q q q q q q q q q q q q 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 ) q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 N (µ j , 1) with component means µ 1 = (0, 0, 0) and µ 2 = (3, 4, 5). We ran 100 replications for each of the sample sizes n = 100, 200, . . . , 3500. Bandwidths are chosen using the default method of Section 3.2. Only one of the six f j densities is shown, but the other five plots are nearly identical in appearance and empirical rate. The empirical rate of -0.488 for the Euclidean parameter λ 2 is close to the optimal rate of n -1/2 for the usual parametric case. The rate of -0.365 for the density estimate (the other five rates range from -0.361 to -0.370) is somewhat below the optimal rate of n -2/5 for a standard kernel density estimate. Yet as we explain in Section 3.2, the bandwidth is probably not optimal in any sense, and indeed the density estimation problem in the mixture setting may well be a more difficult problem than in the non-mixture setting.

Discussion

The algorithm we propose in this article is the first algorithm we have seen in the literature for dealing with model (4) in its full generality. Furthermore, it is quite a bit easier to code than many if not all competing algorithms in the particular cases to which the latter are suited. Finally, we have given empirical evidence that our algorithm produces dramatically lower error rates than the inversion method of [START_REF] Hall | Nonparametric inference in multivariate mixtures[END_REF] for the test cases used in that paper, and we have explained how our algorithm gives insight into the multivariate mixture structure of a particular dataset (the water-level dataset) that is not possible under the more restrictive assumption that each multivariate observation has conditionally i.i.d. coordinates.

As we point out in Section 2, the great flexibility of our method requires some caution, since it is very easy to apply the algorithm for arbitrary m (number of mixture components) and r (number of vector coordinates per observation) even when model ( 4) is not known to be identifiable. We know that model (4) is not identifiable for an arbitrary m and r; yet it is not yet known where the "identifiability boundary" might lie -i.e., for which values ρ(m) it is true that r ≥ ρ(m) implies identifiability but r ≥ ρ(m) -1 does not. [START_REF] Hall | Nonparametric estimation of component distributions in a multivariate mixture[END_REF] proved that ρ(2) = 3, and [START_REF] Hall | Nonparametric inference in multivariate mixtures[END_REF] and [START_REF] Elmore | An application of classical invariant theory to identifiability in nonparametric mixtures[END_REF] have made some progress towards a general solution, but so far such a solution remains elusive.

There are several questions about our algorithm that could be further investigated in addition to the identifiability question. For instance, [START_REF] Hall | Nonparametric inference in multivariate mixtures[END_REF] introduce a further generalization of model (4). Namely, they allow some of the f j (•) to be multivariate densities whose coordinates are not independent. There is no difficulty in extending our algorithm to this case in principle, though to do so requires the use of multidimensional kernel density estimates. We have not explored this possibility yet.

Selection of an appropriate bandwidth is another area in which further work could shed some light. We have discussed this problem at length in Section 3.2. Indeed, selecting a bandwidth in a mixture setting like this one appears to be a fundamentally more complicated problem than the corresponding non-mixture case due to the fact that we do not have a sample from any of the individual mixture components per se, and we do not obtain information on the individual components until after the algorithm has already been run. This suggests an iterative scheme as mentioned in Section 3.2, but we have not yet implemented such a scheme. Related to the bandwidth selection question is the question of whether our algorithm can be shown to be consistent for a fixed r and m; and if so, at what rate it con-verges. Preliminary empirical evidence, discussed in Section 5.4, suggests that this rate of convergence is comparable to usual rates for the Euclidean parameters and perhaps slightly slower than usual rates for the kernel density estimates.

Finally, we reiterate that the analyses in this article may be reproduced using the publicly-available R package called mixtools (R Development Core Team, 2007;[START_REF] Young | mixtools: Tools for mixture models[END_REF]. Future revisions of this package may extend its capabilities to include some of the discussion items here.
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 3 Figure 3: Results of a four-component analysis of the water-level data using our algorithm. The means and standard deviations are not part of the nonparametric model and are included for interpretation only.

Figure 4 :

 4 Figure4: Errors as a function of sample size for one of the six densities, f 21 , and its corresponding proportion λ 2 . On the left are the root-mean errors along with 90% empirical confidence intervals; on the right are log-log plots of the root-mean errors along with least-squares fits.

Table 1 :

 1 ). Empirical mean squared error (MSE) and bias for (λ, µ 1 , µ 2 ), based on 10, 000 Monte-Carlo replications of Model (

		λ	µ 1	µ 2	λ	µ 1	µ 2
	True	0.25	-1	2	0.25	-1	2
			MSE			bias	
	spSEM 0.0044 0.1880 0.0459 -0.0246 0.0413 -0.1003
	spEM 0.0042 0.1154 0.0373 -0.0229 0.0056 -0.0898
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