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Abstract: We propose an algorithm that is not, but that strongly
resembles, a true EM algorithm for nonparametric estimation for finite mix-
tures of multivariate random vectors. The vectors are assumed to have in-
dependent coordinates conditional upon knowing which mixture component
from which they come, but otherwise their density functions are completely
unspecified. In certain special cases, the density functions may be partially
specified by Euclidean parameters, a case we call semiparametric. Our algo-
rithm is much more flexible and easily applicable than existing algorithms in
the literature; it can be extended to any number of mixture components and
any number of vector coordinates of the multivariate observations. Thus it
may be applied even in situations where the model is not identifiable, so care
is called for when using it in situations for which identifiability is difficult to
establish conclusively. Our algorithm yields much smaller mean integrated
squared errors than an alternative algorithm in a simulation study. In an-
other example using a real dataset, it provides new insights that extend
previous analyses. Finally, we discuss two different variations of our algo-
rithm, one stochastic and one deterministic, and find anecdotal evidence
that there is not a great deal of difference between the performance of these
two variants.
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1 Introduction

Suppose the vectors Xy,...,X, are a simple random sample from a finite
mixture of m > 1 arbitrary distributions. The density of each X; may be
written

Go(xi) = > Ay (xa), (1)
j=1

where x; € R™; ¢ = (A, ) = (M, ., A, &1, ..., &) denotes the parame-
ter; and the \; are positive and sum to unity. We assume that the ¢; are
drawn from some family F of multivariate density functions (say, absolutely
continuous with respect to Lebesgue measure). Model (1) is not identifiable
if no restrictions are placed on F, where by “identifiable” we mean that g,
has a unique representation of the form (1) and we do not consider that
“label-switching” — 1i.e., reordering the m pairs (A1, ¢1),..., (A, dm) —
produces a distinct representation.

A common restriction placed on F, which we adopt throughout this
article, is that each joint density ¢;(-) is equal to the product of its marginal
densities. In other words, the coordinates of the X; vector are independent,
conditional on the subpopulation or component (¢; through ¢,,) from which
X; is drawn. Therefore, model (1) becomes

go(xi) =Y N [ fielwin), (2)
1

j=1 k=

where the function f(-), with or without subscripts, will always denote a
univariate density function. If the fj;(-) are assumed to come from a partic-
ular parametric family of densities, then standard univariate mixture model
techniques (cf. MacLachlan and Peel, 2000 or Titterington et al., 1985) may
easily be extended to the multivariate case. However, we wish to avoid the
parametric assumption; in this article, we introduce an algorithm for esti-
mating the parameter vector ¢ in model (2), where we do not assume that
fjk(-) comes from a family of densities that may be indexed by a finite-
dimensional parameter vector.

Some authors (e.g., Hettmansperger and Thomas, 2000) have considered
the special case of model (2) in which the density f;i(-) does not depend on
k — that is, in which the X, are conditionally independent and identically
distributed. Others (e.g., Hall and Zhou, 2003) treat equation (2) in its full
generality. In order to encompass both the special case and the more general
case simultaneously in this article, we introduce one further bit of notation:



We will allow that the coordinates of X; are conditionally independent and
there exist blocks of coordinates that are also identically distributed. These
blocks may be of size one so that case (2) is still covered. Therefore, if we
assume that the kth coordinate belongs to the bith block, 1 < b, < B, where
B < r is the total number of such blocks, then equation (2) is replaced by

9o(i) = >N [T Fivn (wan)- (3)
1

j=1 k=

With so many different subscripts, the notation itself can become an im-
pediment to understanding. Thus, we will remain consistent in our use of
notation and terminology throughout the article. In particular, we use the
terms component and coordinate only to refer, respectively, to one of the dis-
tributions (subpopulations) making up the mixture and one of the repeated
measurements making up an observation. The indices i, j, k, and ¢ will
always denote a generic individual, component, coordinate, and block, re-
spectively. Therefore, we will always have 1 <i<n,1<j7<m,1<k<r,
and 1 < ¢ < B. (Also note that m, r, and B stand for mixture compo-
nents, repeated measurements, and blocks, and of course n has its usual
interpretation as the sample size.)

To further elucidate model (3), consider as an example an experiment
involving 405 children aged 11 to 16 years subjected to a water-level task as
described by Thomas and Lohaus (1993). Each child is presented with eight
rectangular vessels on a sheet of paper, each tilted to one of r = 8 clock-hour
orientations: in order of presentation to the subjects, these orientations are
11, 4, 2, 7, 10, 5, 1, and 8 o’clock. Each vessel was on a separate sheet
of paper and appeared much like the small reproductions in the plots of
Figure 1 (Thomas and Lohaus, 1993, p. 40). The children’s task was to
draw a line representing the surface of still liquid in the closed, tilted vessel
in each picture. Each such line describes two points of intersection with
the sides of the vessel, and the acute angle, in degrees, formed between the
horizontal and the line passing through these two points was measured for
each response. The sign of each such measurement was taken to be the sign
of the slope of the line.

This water-level dataset and our analysis of it will be described in fur-
ther detail in Section 5; for now, we state only that we know of no other
algorithm currently capable of producing similar results. Some methods
have been proposed that could potentially be extended to this case (Hall et
al., 2005; Qin and Leung, 2006), but they appear to be extremely compli-
cated computationally for m > 2 or r > 3. Some other methods have been
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Figure 1:
ing model (3) with three mixture components (m = 3) and four coordinate
blocks (B = 4) in which opposite clock-face orientations are assumed to
lead to independent and identically distributed responses, conditional on the
component.

The water-level data are analyzed using our algorithm, assum-

proposed that could handle this number of components and repeated mea-
surements — indeed, the same dataset has been analyzed by several authors
(Hettmansperger and Thomas, 2000; Cruz-Medina et al., 2004; Elmore et
al., 2004) — yet all these methods rely on the assumption that the r = 8 co-
ordinates are all identically distributed. Our method, by contrast, is simple
to program and easily generalizable to any values m and r for which model
(2) is identifiable.

In Section 2 of this article, we offer a fuller discussion of previous work
in this area, including the vexing issue of identifiability. We introduce our
algorithm in Section 3 and describe several modifications of the basic al-
gorithm and model in Section 4. Section 5 is devoted to empirical study
of the algorithm, both through simulation studies and through analysis of
real datasets. Whenever possible in Section 5, we compare our method with
results of other known methods.



2 Identifiability and previous work

An interesting question is how restrictive the assumptions on fj, (-) must
be in order to ensure that the model (3) is identifiable. For instance, in the
univariate (r = 1) case, Bordes et al (2006) and Hunter et al (2007) found
that when fj(x) = f(x — p;) for some density f(-) that is symmetric about
zero, the mixture density g,(x) admits a unique representation whenever
m < 3, except in certain special cases that are easily enumerable.

In the multivariate case, Hall and Zhou (2003) showed that for two com-
ponents (m = 2), model (2) is always identifiable as long as r > 3, even
in the most general case in which by = k for all £ and no assumptions are
made about the form of the fjp, (). In fact, model (2) is a case in which the
conditions necessary for identifiability get less restrictive as the dimension
r increases; or, as Hall et al. (2005) put it, this is a case in which “from at
least one point of view, the ‘curse of dimensionality’ works in reverse.”

We use the term “nonparametric” to describe the case in which no as-
sumptions are made about the form of the f;;, (-) even though the parameter
A is of course Euclidean. We reserve the term “semiparametric” for the case
in which fj, () is partly specified by a finite-valued parameter, such as the
case discussed above in which f;(x) = f(z — p;) for a symmetric but other-
wise completely unspecified density f(-). Note that Lindsay (1995) speaks of
“nonparametric mixture modeling” in a different sense: The family F from
which the component densities come is fully specified up to a parameter 6,
but the mixing distribution from which the 8 are drawn, rather than having
finite support of known cardinality m as in the present article, is assumed
to be completely unspecified a priori.

When b, = k for all k, several authors have recently addressed the prob-
lem of estimating the fj;, in model (3). Yet the estimation methods they
propose appear to apply in only very limited cases. Qin and Leung (2006)
and Leung and Qin (2006) adapt the exponential tilt model of Anderson
(1979) and apply their methods to the cases when m = 2 and r = 2 or
r = 3. Hall et al. (2005) give estimators based on inversion of mixture mod-
els that apply only to the case when m = 2 and r = 3. Analytical difficulties
appear to preclude the application of either of these methods beyond these
cases. Even in the case » = 1, where restrictions must be placed on f;(-)
in order to ensure identifiability as described at the beginning of Section 2,
the estimation methods of Bordes et al. (2006) and Hunter et al. (2007) are
difficult if not impossible to apply beyond the case m = 2. We consider a
numerical example for which r = 1 in Section 4.3.

By contrast, in the case of continuous data when by = 1 for all K — that



is, the case of conditionally independent and identically distributed coordi-
nates — several other authors (Hettmansperger and Thomas, 2000; Cruz-
Medina and Hettmansperger, 2003; Elmore et al., 2006) have developed a
different estimation method. This method, the cutpoint approach, discretizes
the continuous measurements by replacing each observation (x;1,. .., %) by
a multinomial vector (n1,...,ny), where

T
na=» a1 <zix <ca}, 1<a<p,
k=1

and the cutpoints —0co = ¢p < ¢1 < -+ < ¢, = 00 are specified by the exper-
imenter. The cutpoint approach is completely general in the sense that it
can be applied to any number of components m and any number of repeated
measures r, just as long as r > 2m — 1, a condition that guarantees iden-
tifiability (Elmore and Wang, 2003). However, some information is lost in
the discretization step and for this reason it becomes difficult to easily ob-
tain density estimates of the component densities. Furthermore, even if the
assumption of conditional independence is warranted, the extra assumption
of identically distributed coordinates may not be; and the cutpoint method
collapses when the coordinates are not identically distributed.

Here, we take a different approach and adapt an algorithm of Bordes et
al (2007). Originally, this algorithm is presented as a stochastic algorithm
for the particular univariate case of model (1) under the assumption that
¢j(x) = f(x — py) for some symmetric density f(x). We demonstrate how
to extend the algorithm to model (3) and eliminate the stochasticity. Our
algorithm combines the best features of all the algorithms discussed previ-
ously: It is simple to program, it is applicable to any m and r as well as
any set of blocks by, and it gives kernel-density-like estimates for each of the
fior,-

Yet with such flexibility also comes a bit of danger, since the identifia-
bility question for the general model (3) has not yet been settled. Hall et
al. (2005) discuss this question and give a lower bound on r, as a function
of m, that is necessary in order to guarantee identifiability: They state that
r and m should satisfy 2" — 1 > mr + 1. Yet they do not give an explicit
bound that is sufficient to guarantee identifiability; however, Elmore et al.
(2005) prove that such a (finite) upper bound exists.

Since extending our estimation method to an arbitrary number of coordi-
nates or mixture components is very easy — unlike any previously published
algorithms for the general model (3) — we are in a position in which practice
is more advanced than theory. Thus, it is prudent to exercise caution when



trying to fit a model for which the identifiability question is not settled.
The water-level data of Section 1 gives such an example if we take m = 3
or m = 4. We discuss this example in more detail, and give reasons that we
are fairly confident about interpreting our results, in Section 5.2.

3 Estimating the parameters

We propose both a refinement and a generalization of the algorithm of Bor-
des et al. (2007). Although we use the term EM in connection with this
algorithm, we stress that this algorithm is not an EM algorithm in the usual
sense (Dempster et al., 1977) because there is no likelihood that this al-
gorithm may be shown to maximize. However, we retain the name “EM”
because the algorithm strongly resembles a true EM algorithm for the para-
metric mixture case, i.e., the case in which F is a family indexed by some
Euclidean parameter. For instance, as in an EM algorithm for mixtures, we
define Z;; € {0,1} to be a Bernoulli random variable indicating that indi-
vidual ¢ comes from component j. Since each individual comes from exactly
one component, this implies Z;n:1 Zi; = 1. Thus, the complete data is the
set of all (x;,Z;), 1 <i<n.

3.1 The nonparametric EM algorithm

The algorithm described here is implemented in an R package (R Devel-
opment Core Team, 2007) called mixtools (Young et al., 2005), available
online from the Comprehensive R Archive Network (CRAN). Suppose we
are given initial values ¢ = (A%, f%). Then for t = 1,2, ..., we follow these
three steps:

1. E-step: Calculate the “posterior” probabilities (conditional on the
data and ¢') of component inclusion,

def
Py = Pp(Zij =1|xi) (4)
XD S G 5
> e A e Fg, (wine)
foralli=1,....,nand j=1,...,m.
2. M-step: Set
1 n
A=) (6)
i=1

forj=1,....,m.



3. Nonparametric density estimation step: For any real u, define
for each component j € {1,...,m} and each block ¢ € {1,..., B}

B ket Doi Pyl {by = O K (")
D k1 2 i 11%][{514—5}

= nhthZZpUI{bk—E}K( “) (7)

k=1 i=1

ftJrl( )

where K (-) is a kernel density function, h is a bandwidth chosen by

the user, and
T
=3 i =
k=1

is the number of coordinates in the ¢th block. Note that in the case
in which by = k for all k, equation (7) becomes

ff;!l( h)\t-H pr < xlk) : (8)

In the original Bordes et al (2007) algorithm, the nonparametric density
estimation step differs in that p;; is replaced by z; in equation (7), where
(28,...,2},) is a simulated multinomial random variable with a single trial
and with probability vector given by (pj1,. .., pim). Thus, the original algo-
rithm has a stochastic element. In various tests, we find consistent empirical
evidence that the deterministic version presented here is slightly, though not
overwhelmingly, more efficient than the stochastic version. An example of
such a comparison is given in section 5.3. Because the deterministic algo-
rithm does not require any additional overhead relative to the stochastic
algorithm, we use it here exclusively.

To initialize the algorithm, it is often easier to start with an initial n x m
matrix PY = (p”) than with an initial parameter vector . Thus, during
the first iteration, we skip directly to the M-step. To obtain this PY matrix,
it is possible to use (say) a k-means clustering algorithm to assign each
observation to one of the components. This procedure forces P? to consist
of just zeros and ones, but we find that it works well in practice.

3.2 Bandwidth and kernel selection

The density estimation step in the algorithm above relies on a kernel density
K(-) and a bandwidth h. Kernel density estimation is a well-studied topic



in statistics, and for our implementation in the mixtools package, we tried
to adopt standard techniques. In particular, because much literature on this
topic suggests that the choice of a kernel function does not have a dramatic
impact on the resulting density estimate, we simply take K(t) to be the
standard normal density function.

Choosing a bandwidth is a more complicated issue, particularly since this
choice affects the density estimates dramatically. Although we do not at-
tempt a thorough exploration of this topic in the current article, we describe
here some of our experience in choosing a bandwidth.

As a default value for the bandwidth h, we simply take the entire n x r
dataset, treat it as a vector of length nr, and use the default bandwidth
selection of the density function in R — namely, a rule of thumb due to
Silverman (1986, page 48) in which

s fen IQR

h = 0.9(nr)~"/® min {SD, 134} , (9)
where SD and IQR are the standard deviation and interquartile range of all
nr data values. This is a very crude method in the nonparametric mixture
setting, and there are several reasons why it might produce an under- or over-
estimate. First, pooling all of the data implicitly treats all of the different
components as though they are from the same distribution. This can lead
to an inflation of the bandwidth, particularly if the mixture components’
centers are well-separated, because in that case, the variability of the pooled
dataset will be larger than that of the individual components. Similarly, if
the vector coordinates are not identically distributed within each component,
the bandwidth could be biased upward for the same reason.

Yet operating in the opposite direction is the fact that the expression
nr in equation (9) is an overestimate of the “true” sample size. This is
especially true when each by equals & — where each of the r coordinates
gets a separate set of density estimates — in which case it may be sensible
to eliminate the r from the equation (9) entirely. But regardless of the values
of by, there is also the fact that the “true” sample size from each component
is actually some fraction of n, namely, about A;jn for the jth component.

The arguments above show first of all that it would be useful to know
something about the mixture structure in order to select a bandwidth. This
suggests an iterative procedure in which the value of h is modified, and
the algorithm reapplied, after the output from the algorithm is obtained.
Secondly, there is no reason that the bandwidth should be the same for
each component or even for each block: It is easy to modify equation (7) by
replacing h by hj or hjy.



It is clear that a thorough exploration of the bandwidth question is
therefore a research topic unto itself, so in the interest of simplicity we opt for
the default value (9) in the simulation studies of Section 5.1. For the water-
level data discussed in Sections 1 and 5, where the visual appearance of the
density estimates is important for a qualitative appreciation of the results,
we found that the default value of h = 1.47 produces a “bumpy-looking”
set of density estimates, so we chose a larger value that gave smoother
results, namely h = 4. We provide the very simple code for this example in
Section 5.2, and we encourage interested readers to test this example using
the default bandwidth. We also found in a couple other datasets that the
default (9) gives somewhat “bumpy-looking” results, suggesting that the
default value tends to be smaller than a more optimal choice would be in
general; yet our evidence for this is only anecdotal at this point.

4 Modifications to the model and algorithm

The general model of Equation (3) and the algorithm of Section 3.1 may be
modified in various ways. For example, the density-estimation bandwidth
may be allowed to change for each component, each coordinate, or both, as
mentioned in Section 3.2. We discuss some of these modifications here.

4.1 Location-scale model

There are some plausible models that are more restrictive than (3) but not
as restrictive as the case in which all coordinates are identically distributed.
For instance, if in Equation (3) we suppose that

1 1)
five(2) = —f ( ’ k) 10
) = gy (2 (10)
for unknown parameters (u;, 05, f;), j = 1,...,m, then the totally nonpara-

metric specification of f;, becomes a semiparametric specification (note
that p; and o are both B-vectors). To implement the semiparametric EM
algorithm in this case, equations (4) and (6) remain unchanged but it is
necessary to modify equation (7) to account for the fact that all of the co-
ordinates provide information about the form of each f;. Thus, in the case
(10), equation (7) is replaced by

1 LR U — Tik + [ >
t+1 ¢ ik T Hjby,
T ) = —m——— g E K| ———m———= ). 11
i) m“h/\;Jrl P k:1pw < ho ji, (1)

10



Furthermore, the M-step also includes updates of the ;¢ and o, parameters
foreachl <j<mand1</<B:

41 =1 k=1 =1 k=1
Hjpw =~ + = S\aale) (12)
> v =1} ’
i=1 k=1
1 n T 1/2
t+1 4112
0= nCoNETT DO pliI{be = (i — ") (13)
J =1 k=1

Naturally, it is possible to place constraints on the p; or o; vectors when
this is sensible. For instance, if the mixture is purely a location mixture,
then we might stipulate that o; = o for each j and for some B-vector o.
Similarly, we might stipulate that p; = p if the mixture is purely a scale
mixture. In these latter two cases, note that we still allow the different
blocks to have different scale and location parameters, though of course
this may be restricted as well. Also note that because f; is completely
unconstrained (except in special cases like Section 4.3), each element of the
p; may only be identified up to a constant shift and each element of o; may
only be identified up to a constant multiple. Stated differently, there is no
loss of generality in assuming that ), uj, =0 and >, 0j, = 1 for each j;
however, when implementing the algorithm, it is generally not necessary to
enforce these constraints.

4.2 Location-scale model, revisited

Note that we may obtain yet a different model by writing

1 T — Kk
fir(z) = afk (%) (14)
instead of equation (10). These two equations, which differ only in the re-
placement of a single 7 by k, in fact involve assumptions that are quite
distinct. In one case, we are assuming that the measurements within an
individual have the same shape (depending on the individual’s mixture com-
ponent) but may differ by a location and scale factor; in the other, we are
assuming that individual differences, i.e., the mixture components, only ac-
count for differences up to a location and scale parameter, but otherwise the
repeated measurements’ distributions do not relate to one another in any

11



way. Note also that the corresponding form of Equation (7) looks somewhat
different than its earlier counterpart in Equation (11):

U — Tk + [
Jio ZZPU (M) : (15)
T jby,

zljl

As a special case of both (10) and (14), we may assume that all measure-
ments in all components have the same shape, summarized by the density

£(), and
fiule) = L f (““ﬂ’“) . (16)

Ujk Ujk

In case (16), equation (7) becomes

P = S (SRR )
J

i=1 j=1 k=1

4.3 Symmetric components

If we consider case (16) without repeated measures (r = 1) and for purely a
location mixture (o; =1, j = 1,...,m), then the model becomes

o(Ti) = Z i f (@i — py). (18)
=1

When m = 2, Equation (18) is exactly the location-shifted semiparametric
mixture model that is proved identifiable by Bordes et al (2006) and Hunter
et al (2007) under the additional assumptions that A\; # 1/2 and that the
density f is symmetric about zero. This special case is also the model for
which the original (semiparametric) stochastic EM algorithm is proposed in
Bordes et al (2007). In the non-stochastic version, Equation (17) may be
combined with a symmetrization step to give

FH (u ZZ;&[ <x;+“j)+K<_“_fL"+“j>]. (19)

i=1 j=1

A comparison of the stochastic and non-stochastic versions of this algorithm
is given in section 5.3.

12



4.4 Changing block structure

In Figure 1 summarizing the water-level results for three components (a
dataset that is discussed further in Section 5.2), we see that the largest
component, into which roughly half of the subjects fall, appears to have
roughly the same density for all four blocks. We might therefore guess that
for individuals in this component, observations x; consist of 8 independent
and identically distributed (i.i.d.) coordinates. Yet the remaining two com-
ponents’ observations do not appear to be identically distributed; the block
structure exhibited in the plots, in which the eight coordinates fall into
4 blocks of two i.i.d. oservations each, seems appropriate. It is therefore
reasonable to allow the model to encompass the possibility that the block
structure could be different in each component. In other words, Equation 3
would be modified slightly to produce

ge(xi) = DX [ Fioye (in),
1

j=1 k=

in which the only difference is that b, has been replaced by b;, — thus, the
block in which the kth observation falls depends on j as well.

Though this generalization of the model is not currently implemented in
the mixtools package, it would be conceptually easy to do so. However,
there is a theoretical issue that must be addressed in this case: Label-
switching becomes a problem. By “label-switching”, we mean the result
of permuting the labels of the m components. When each component is
assumed to follow the same model, it is not important which is labeled
component 1, which is labeled component 2, etc. But if we now assume that
component 1 (say) has i.i.d. coordinates whereas components 2 and 3 have
a different block structure, then it is necessary to ensure that “component
1”7 always refers to a particular one of the three components. This might
be easiest to achieve in practice using a two-step approach: First, obtain
results for a model in which the block structure is assumed the same for all
three components (as depicted in Figure 1). Then, use the final posterior
probabilities of component inclusion as starting values for a second algorithm
for fitting the more general model.

13



5 Examples for real and simulated datasets

5.1 A simulation study

We applied the nonparametric EM algorithm (npEM) to the same synthetic
examples for which Hall et al. (2005) tested their estimation technique, a
method based on inverting the mixture model. The three simulated models
are trivariate mixtures with independent repeated measures and a shift of
location between the two components in each coordinate, i.e., m = 2, r = 3,
and b, =k, k=1,...,r. Weran S = 300 replications of n = 500 observations
each and computed the errors in terms of the square root of the Mean
Integrated Squared Error (MISE) for the densities as in Hall et al. (2005),
where

S
1 0) ? : ,
MISE = - ;:1 / (fjk (u) — fjk(u)) du, j=1,2and k=1,2,3;

and the integral is computed numerically. Each density fj(z) is computed
using equation (8) together with the posterior probabilities after convergence
of the algorithm, i.e., the final values of the pgj’s.

As suggested in section 3.1, we started each algorithm with an initial
nxm matrix PO = (p?j), and this matrix was determined by a k-means algo-
rithm applied to each trivariate dataset, with initial cluster centers (0,0, 0)
and (4,4,4). This testing protocol is adapted to this particular location-
shifted model in order to prevent label-switching among replications. In
comparison, Hall et al. (2005) dealt with label-switching by enforcing the
constraint A, < Ag. After finishing our simulation, we verified that our re-
sults would not have changed if we had used the Hall et al. approach because
in every trial, we observed that 5\1 < 5\2.

To set up tuning parameters (including bandwidh, though their inversion
method has several other tuning parameters), Hall et al. (2005) used near-
optimal values derived by fitting a Gaussian model. With our method, we
used the default bandwidth described in Section 3.2.

The first example is a normal model, for which the individual densities
fjr are the pdf’s of N (uji,1), with component means p; = (0,0,0) and
w2 = (3,4,5). The second example is the same as the first except that the
individual densities are double exponential instead of normal. The third
example is similar, but the individual densities are central or noncentral
t densities on ten degrees of freedom: The first component has a central
t(10) distribution and thus g = (0,0,0), whereas the second component’s
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Figure 2: Square roots of Mean Integrated Squared Errors (MISE) are shown
on a logarithmic scale as a function of A1, the proportion of component 1,
for three different simulated distributions for all fj, j = 1,2 and k =1,2,3.
The results for the inversion algorithm of Hall et al. (2005) are approzimated
from their plots on page 675, Fig. 2, with a small bit of noise added to
separate coincident points.

coordinates are noncentral £(10) distributions with noncentrality parameters
3, 4, and 5. Thus, the mean of the third component is po = (3,4, 5) x 1.0837.
Recall that in all three examples — and indeed throughout this article — the
coordinates are independently distributed conditional on their component
membership.

Results given in Figure 2 show that our algorithm dramatically outper-
forms the inversion method for the three models. Note that the smallest
value of MISE for the inversion method for any example is greater than the
greatest value of MISE for our npEM algorithm; thus, the horizontal dotted
line at vMISE = 0.16 in Figure 2 separates the two sets of results entirely.
Because the three coordinates within each component and value of A1 are so
similar relative to the scale of the plots, we do not distinguish among them
in Figure 2. Predictably, we can see that the MISE is much smaller for the
second component than the first when A; is small (which means a larger
proportion of the sample gives information about the second component),
but the values appear to converge as A\; nears 1/2.
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5.2 The Water-level data

The water-level dataset described in Section 1 is available in the mixtools
package (Young et al., 2005) in R (R core development team, 2007) by
typing data(Waterdata). These data, with n = 405 and r = 8, have been
analyzed by several authors using nonparametric mixture models based on
converting the continuous angle measurements into binomial or multinomial
data (Hettmansperger and Thomas, 2000; Cruz-Medina et al., 2004; Elmore
et al., 2004). The last of these references, Elmore et al. (2004), gives the
most sophisticated analysis of this dataset; we use it as a basis of comparison
for our method.

By converting the water-level data into multinomial vectors, Elmore et
al. (2004) are assuming that the eight coordinates of an observation vector
are i.i.d. conditional on the mixture component from which the vector is
drawn. Yet a more careful analysis, not possible using any published method
we know of until now, reveals that there are subtle differences among the
coordinate distributions. Grouping the coordinates into four blocks of two
i.i.d. coordinates each uses knowledge of the task (described in Section 1)
and appears more appropriate here.

Figure 1 of Section 1 summarizes our three-component solution, which
may be obtained using mixtools via

blockid <- c(4,3,2,1,3,4,1,2) # blocks 1-4 refer to fig. 1
a <- npEMindrep(Waterdata, 3, blockid=blockid, h=4)
plot(a, hist=T, breaks=5%(0:37)-92.5)

(type 7npEMindrep and 7plot.npEM for more details on these functions).
Note that “h=4” specifies the bandwidth, overriding the default value of
Equation (9). Also note that because the default starting values are random,
the commands above may not result in ezactly the same solution.

For the three-component solution, our figure 1 clearly shows that one
component, comprising almost 50% of the subjects, consists of individuals
who know how to complete this task; these individuals’ responses are highly
peaked around the correct answer of zero degrees. The cutpoint method also
finds a similarly shaped component and estimates its proportion at 0.440.
However, the second and third components are qualitatively different than
those found by the cutpoint method, particularly the smallest component.
Using our method, we find that almost 8% of the subjects seem to draw the
line parallel to the bottom of the vessel — yet the cutpoint approach misses
this group because “parallel to the bottom” means one of —60, —30, 30, or 60
degrees depending on the orientation the vessel. In fact, the assumption that
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all eight coordinates are identically distributed leads the cutpoint approach
to conclude that the smallest component (with an estimated 17.7% of all
subjects) is roughly uniformly distributed over the interval from —90 to 90.
The more realistic model that is possible to estimate with our algorithm
reveals details that the cutpoint approach simply cannot find easily.

In fact, the cutpoint approach can find the group of subjects who draw
the water level parallel to the bottom of the vessel, but it needs a four-
component model to do so. Elmore et al. (2004, Fig. 2) give a cutpoint
solution for the four-component case, and we include the analagous four-
component solution using our method here as Figure 3. (To obtain this
result using mixtools, simply change the 3 to a 4 in the second line of the
code given earlier in this section.)

Block 1: 1:00 and 7:00 orientations Block 2: 2:00 and 8:00 orientations
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Figure 3: Results of a four-component analysis of the water-level data using
our algorithm.

The cutpoint result finds one component with 3.3% of the subjects in
which the density has four sharp peaks at —60, —30, 30, and 60 degrees.
But this result masks the fact that those peaks occur in completely different
coordinates, so the implicit assumption of conditionally i.i.d. coordinates
using the cutpoint approach is probably not quite appropriate here.

As stated in Section 2, a word of caution is necessary here: it has never
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been proven that the general model (3) is identifiable when r = 8 and m = 3
or 4. By contrast, under the more restrictive assumptions of the cutpoint
method, we know that identifiability holds in these cases because r > 2m —1
(Elmore and Wang, 2003). The necessary (but not sufficient) lower bounds
on r given by Hall et al. (2005) are > 4, when m = 3, and r > 5, when
m = 4; so with r = 8 there is at least the hope of identifiability. We are
encouraged in the present example by several facts: First, the solutions we
obtain, for both m = 3 and m = 4, are stable in the sense that we obtain
the same solutions repeatedly for different randomly selected starting values
for the algorithm. Furthermore, our results may be explained qualitatively
via an understanding of how the data arose, and these results confirm and
sharpen those found using a different method, the cutpoint method, in which
identifiability has been proven to hold.

5.3 Stochastic vs. non-stochastic semiparametric EM

For Model (18) with m = 2 components, we compared the semiparametric
stochastic EM (spSEM) algorithm of Bordes et al. (2007), which is discussed
immediately following equation (8), with the deterministic semiparametric
EM (spEM) algorithm that uses equation (19).

A K1 2 A p1 2
True 0.25 -1 2 0.25 -1 2
MSE bias

spSEM | 0.0044 0.1880 0.0459 | -0.0246 0.0413 -0.1003
spEM | 0.0042 0.1154 0.0373 | -0.0229 0.0056 -0.0898

Table 1: Empirical mean squared error (MSE) and bias for (X, p1, p2), based
on 10,000 Monte-Carlo replications of Model (18) with f(-) taken to be stan-
dard normal and n = 100. The spSEM and spEM algorithms are run for
100 and 20 iterations each, respectively, starting from the true parameter
values.

The comparison is based on 10,000 Monte Carlo replications in which
we selected the bandwidth h according to the formula used by Bordes et
al. (2007), namely, h = (4/3n)Y/°, or h = 0.422 when n = 100. The spEM
was allowed only 20 iterations, relative to the 100 iterations allowed the
stochastic version, since its non-stochastic sequence of estimates requires
fewer iterations to stabilize. Results are given in Table 1 and give empirical
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evidence that the deterministic version is slightly more efficient than the
stochastic version.

6 Discussion

The algorithm we propose in this article is the first algorithm we have seen in
the literature for dealing with model (3) in its full generality. Furthermore,
it is quite a bit easier to code than many if not all competing algorithms in
the particular cases to which the latter are suited. Finally, we have given
empirical evidence that our algorithm produces dramatically lower error
rates than the inversion method of Hall et al. (2005) for the test cases used
in that paper, and we have explained how our algorithm gives insight into
the multivariate mixture structure of a particular dataset (the water-level
dataset) that is not possible under the more restrictive assumption that each
multivariate observation has conditionally i.i.d. coordinates.

As we point out in Section 2, the great flexibility of our method requires
some caution, since it is very easy to apply the algorithm for arbitrary m
(number of mixture components) and r (number of vector coordinates per
observation) even when model (3) is not known to be identifiable. We know
that model (3) is not identifiable for an arbitrary m and r; yet it is not yet
known where the “identifiability boundary” might lie — i.e., for which values
p(m) it is true that » > p(m) implies identifiability but » > p(m) — 1 does
not. Hall and Zhou (2003) proved that p(2) = 3, and Hall et al. (2005) and
Elmore et al. (2005) have made some progress towards a general solution,
but so far such a solution remains elusive.

There are several questions about our algorithm that could be further
investigated in addition to the identifiability question. For instance, Hall
et al. (2005) introduce a further generalization of model (3). Namely, they
allow some of the fjp, () to be multivariate densities whose coordinates are
not independent. There is no difficulty in extending our algorithm to this
case in principle, though to do so requires the use of multidimensional kernel
density estimates. We have not explored this possibility yet.

Selection of an appropriate bandwidth is another area in which further
work could shed some light. We have discussed this problem at length in
Section 3.2. Indeed, selecting a bandwidth in a mixture setting like this one
appears to be a fundamentally more complicated problem than the corre-
sponding non-mixture case due to the fact that we do not have a sample
from any of the individual mixture components per se, and we do not ob-
tain information on the individual components until after the algorithm has
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already been run. This suggests an iterative scheme as mentioned in Sec-
tion 3.2, but we have not yet implemented such a scheme. Related to the
bandwidth selection question is the question of whether our algorithm can
be shown to be consistent for a fixed » and m; and if so, at what rate it
converges. Preliminary empirical evidence suggests that this rate of conver-
gence is slower than n~'/2, but its comparison with the rate of convergence
of standard kernel density estimation is not yet clear.

Finally, we reiterate that the analyses in this article may be reproduced
using the publicly-available R package called mixtools (R Development
Core Team, 2007; Young et al., 2007). Future revisions of this package may
extend its capabilities to include some of the discussion items here.
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