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The polytypes of birnessite with a periodic stacking along the c* axis of one-, two-, 

and three-layers are derived in terms of an anion close-packing formalism. Birnessite layers 

may be stacked so as to build two types of interlayers: P-type in which basal O atoms from 

adjacent layers coincide in projection along the c* axis, thus forming interlayer prisms; and, 

O-type in which these O atoms form interlayer octahedra. The polytypes can be categorized 

into three groups that depend on the type of interlayers: polytypes consisting of homogeneous 

interlayers of O- or P-type, and polytypes in which both interlayer types alternate. Ideal 

birnessite layers can be described by a hexagonal unit-cell (ah = bh ≈ 2.85 Å and γ = 120°) or 

by an orthogonal C-centered cell (a = √3 b, bh ≈ 2.85 Å and γ = 90°); and, hexagonal 

birnessite polytypes (1H, 2H1, 2H2, 3R1, 3R2, 3H1, and 3H2) have orthogonal analogues (1O, 

2O1, 2O2, 1M1, 1M2, 3O1, and 3O2). 

X-ray diffraction (XRD) patterns from different polytypes having the same layer 

symmetry and the same number of layers per unit cell exhibit hkl reflections at identical 2θ 

positions. XRD patterns corresponding to such polytypes differ only by their hkl intensity 

distributions, thus leading to possible ambiguities in polytype identification. In addition, the 

characteristics of the birnessite XRD patterns depends not only on the layer stacking but also 

on the presence of vacant layer sites, and on the type, location and local environment of 

interlayer cations. 

Several structure models are described for birnessite consisting of orthogonal vacancy-

free or of hexagonal vacancy-bearing layers. These models differ by their stacking modes and 

by their interlayer structures, which contain mono-, di-, or tri-valent cations. Calculated XRD 

patterns for these models show that the hkl intensity distributions are determined by the 

polytype, with limited influence of the interlayer structure. Actual structures of 
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phyllomanganates can thus be approximated by idealized models for polytype identification 

purpose. General rules for this identification are formulated. Finally, the occurrence of the 

different polytypes among natural and synthetic birnessite described in the literature is 

considered with special attention given to poorly understood structural and crystal-chemical 

features. 
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Birnessite is a hydrous layered manganese oxide (phyllomanganate). Its layers consist 

of edge-sharing MnO6 octahedra and these layers are separated from each other by hydrated 

interlayer cations. These cations compensate for a layer charge deficit arising either from the 

presence of vacant layer sites or from the coexistence of heterovalent Mn cations in the 

octahedral layer. Birnessite interlayers incorporate a single sheet of interlayer H2O molecules, 

and exhibit a minimum periodicity along the c* axis of ~7 Å (Giovanoli et al. 1970a, 1970b; 

Burns and Burns 1977; Chukhrov et al. 1978; Post and Veblen 1990). In the following the 

term “birnessite” will be used to describe all natural and synthetic materials with such a layer 

structure, whatever the origin of the layer charge, and the actual configuration and chemical 

composition of the interlayers. 

Over the last few decades, birnessite has attracted a wide interest for several reasons. 

First, it is ubiquitous in geological environments in spite of the low abundance of Mn. It is for 

example a major component of Mn nodules, which cover huge areas of the ocean floor and 

the bottom of some lakes. It is also present in soils, sediments, and Mn-rich ore deposits 

(Burns and Burns 1977, 1978; Chukhrov et al. 1978, 1985; Drits et al. 1985; Golden et al. 

1986; Cornell and Giovanoli 1988; Manceau et al. 2000c). It was recently shown that bacteria 

play a major role in the formation of birnessite in most of these environments (Tebo and He 

1999; Tebo et al. 2004; and references therein). Second, this mineral plays an essential role in 

different ion-exchange and redox processes because of its unique surface charge, and 

adsorption and redox properties (Manceau and Charlet 1992; Manceau et al. 1992a, 1992b; 

Paterson et al. 1994; Stone et al. 1994; Tu et al. 1994; Le Goff et al. 1996; Silvester et al. 

1997). In particular, birnessite plays a pivotal role in the fate of heavy metals and other 

pollutants in contaminated water systems and soils (Chao and Theobald 1976; Manceau et al. 
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1997, 1999, 2000a, 2000b). Despite its low concentration, birnessite controls the distribution 

of some trace elements such as radionuclides, Pt-group elements, and rare earth elements 

(Manceau et al. 1999). In addition, birnessite has also attracted special attention because of its 

potential use as materials for batteries and other industrial applications (Kim et al. 1999). 
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Third, birnessite can be synthesized under a variety of physico-chemical conditions 

and from 0 to 1000°C. Synthetic birnessite is used to mimic naturally occurring redox and 

adsorption processes, being considered as analogous to natural varieties. Birnessite can be 

synthesized by the oxidation of Mn2+ in a highly alkaline medium (Giovanoli et al. 1970a, 

1970b; Cornell and Giovanoli 1988; Kim et al. 2000), leading, for example, to the topotactic 

transformation of Mn(OH)2 when subjected to the action of different oxidizers. Other 

methods using MnO4
- as starting reagent (Herbstein et al. 1971; Ching et al. 1995, 1997a, 

1997b; Chen et al. 1996a, 1996b; Ching and Suib 1997; Kim et al. 1999) include mild 

hydrothermal syntheses (Feng et al. 1995; Chen et al. 1996a, 1996b), sol-gel processes (Bach 

et al. 1990, 1993; Le Goff et al. 1994; Ching et al. 1995, 1997a; Cho et al. 1999), interactions 

of KMnO4 with hydrochloric acid, and ion-exchange of the hydrogen form of birnessite to the 

Na- or K-forms (Tsuji et al. 1992; Leroux et al. 1995), and thermal decomposition of KMnO4 

at high temperature (Kim et al. 1999).  

These different methods lead to the crystallization of birnessite having different layer 

stackings and different interlayer structures, which depend on the chemical nature of 

interlayer cations, their amounts, distribution, and coordination geometry. In addition 

birnessite is, as a rule, fine-grained and contains stacking faults and/or consists of 

interstratified layer types corresponding to different birnessite polytypes (Drits et al. 1997a, 

2002; Silvester et al. 1997; Manceau et al. 2000c, 2002; Lanson et al. 2002a, 2002b). As a 

result, strikingly different X-ray diffraction patterns are obtained from birnessite crystallized 

under different physico-chemical conditions. As a consequence, there has been a lot of 
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confusion, even in the recent literature, as to the structure of these layer manganates (e.g., 

Chen et al. 1996b; Kim et al. 1999; Yang and Wang 2001). One difficulty in the interpretation 

of the birnessite XRD patterns is that until recently even unit-cell parameters reported in the 

literature were not determined unambiguously. Therefore, determination of birnessite 

structure was sometimes limited to a general description of the XRD patterns without any 

indexing or accurate determination of the unit-cell parameters (Feng et al. 1997a, 1997b; 

Aronson et al. 1999; Ma et al. 1999; Yang and Wang 2001). In some cases indexing of hkl 

reflections was carried out without proper justification (e.g., Le Goff et al. 1994, 1996; Ching 

et al. 1995; Aronson et al. 1999). Significant progress was achieved recently in the structural 

characterization of birnessite (Post and Veblen 1990; Kuma et al. 1994; Drits et al. 1997a, 

1998, 2002; Manceau et al. 1997, 2000c, 2002; Silvester et al. 1997; Lanson et al. 2000, 

2002a, 2002b) and specifically in the determination of their unit-cell parameters (Chen et al. 

1996a, 1996b; Kim et al. 1999; Lanson et al. 2000, 2002a, 2002b). However, no systematic 

description of reliable criteria for the identification of birnessite polytypes is available, to our 

knowledge, in existing literature. 
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As for layer silicates (Bailey 1988) the optimal way to establish such criteria is to 

deduce theoretically all birnessite polytypes taking into account the main crystal chemical 

features of their layers and interlayers, to calculate the corresponding XRD patterns and to 

formulate diffraction criteria for their identification. This paper is devoted to such a 

systematic approach and describes how birnessite polytypes having the same unit-cell 

parameters can be identified. 

 

BIRNESSITE POLYTYPE DIVERSITY 
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Polytype diversity in terms of close-packing formalism 122 
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The two-dimensional periodicity of birnessite layers can be described either by a 

hexagonal unit-cell, with ah = bh ≈ 2.85 Å and γ = 120°, or by an equivalent orthogonal C-

centered cell, with a = √3 b, bh ≈ 2.85 Å and γ = 90°. The orthogonal C-centered cell will be 

used systematically throughout the current manuscript. The birnessite layer consists of two 

closely packed anion sheets “sandwiching” Mn cations. The anion close-packing formalism 

can thus be used to describe the mutual arrangement of birnessite layers. As a first step all 

possible periodic stackings of birnessite layers with periodicity along the c axis of 1, 2, and 3 

layers will be considered. Non-equivalent crystallographic sites of the layer oxygen atoms 

(Olayer) will be hereafter described with capital letters A, B, and C, whereas positions of the 

Mn cations will be described with corresponding a, b and c letters (Fig. 1). It is systematically 

assumed that the lower surface of the first birnessite layer is an oxygen sheet in which Olayer 

occupy A sites, that Mn cations fill octahedral b positions, and that the upper surface is 

formed by Olayer in C sites. Such a layer can be symbolically represented as AbC. In the 

simulation of idealized polytypes, it is assumed that the Olayer in the lower sheet of the next 

birnessite layer in a stack can occupy A, B or C positions. If these Olayer are located in C sites, 

Olayer from adjacent layers define interlayer prisms. This type of interlayer will be referred to 

as a P-type interlayer and denoted with an equal sign (=). If they are located in A or B sites, 

Olayer from adjacent layers define interlayer octahedra. These interlayers are referred to as O-

type and denoted with a dash sign (–) to distinguish them from the P-type interlayers. Using 

the above notions, a one-layer polytype having O-type interlayer (Fig. 1a) can be represented 

as: 

AbC – AbC… 1H 

Systematic consideration of possible two-layer polytypes leads to two independent 

hexagonal polytypes having homogeneous interlayers (Figs. 1b-c): 
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AbC = CbA = AbC… 2H1 147 
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AbC – AcB – AbC… 2H2 

With this notation the first digit indicates the number of layers per unit-cell, the letter 

corresponds to the layer symmetry (H, R, and M standing for hexagonal, rhombohedral, and 

monoclinic, respectively), and the final numerical subscript determines the polytype. In 2H1 

and 2H2 polytypes adjacent layers are rotated with respect to each other by 180° around the 

axis parallel to the c axis and passing either through Mn atoms of adjacent layers (2H1) or 

through the “lower” Olayer (A sites – 2H2). In 1H and 2H1 the Mnlayer octahedral sites overlap 

in projection on the ab plane, whereas these sites are distributed more homogeneously in 2H2. 

Analysis of three-layer polytypes leads to two independent modifications with 

rhombohedral symmetry (3R). These two polytypes differ from each other by their interlayer 

structures (Figs. 2a-b): 

AbC = CaB = BcA = AbC … 3R1 

AbC – BcA – CaB – AbC … 3R2 

Two additional three-layer polytypes having O-type interlayers and hexagonal 

symmetry may also be derived (Figs. 2c-d): 

AbC – AcB – AcB – AbC … 3H1 

AbC – AcB – CaB – AbC … 3H2 

In terms of the C-centered orthogonal unit cell successive layers in 3R1 and 3R2 

polytypes are shifted by -a/3 and +a/3, respectively. As in 2H2 polytype successive layers in 

3H1 and 3H2 polytypes are not related by the same interlayer displacement. In addition, layers 

from different layer pairs are related to each other by different elements of symmetry in 3H1 

and 3H2 polytypes. For example, layers in the first layer pair of the 3H1 polytype are related 

by a 180° rotation along the c axis passing through A sites, whereas they are superimposed in 

the second pair (Fig. 2c). In the latter layer pairs, Mn octahedral sites overlap in projection on 
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the ab plane, whereas in 3R1, 3R2 and 3H2 polytypes, layer Mn cations are distributed 

homogeneously among all possible sites (Figs. 2a, b, d). 
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Heterogeneity arising from the coexistence of O- and P-type interlayers in a given 

birnessite polytype is likely not energetically favorable.  Polytypes with alternating O- and P-

type interlayers were thus excluded from the current study. However, transformation from one 

polytype to the other likely often occurs through layer translations. Such displacements occur, 

for example, as a result of cation exchange or during hydration-dehydration processes. 

Therefore, among birnessite polytypes some unusual modifications can be formed from one-

layer polytype by shifting the layers. For example, a two-layer structure AbC – BcA = AbC 

with both interlayer types can be obtained if successive layers are shifted alternately by +a/3 

and -a/3 along the a axis of the C-centered unit cell. 

The above idealized birnessite polytypes are similar to those of oxides with general 

formula AxMO2 (Delmas et al. 1980). These authors deduced four polytypes, T1, P2, P3, and 

O3, which correspond to 1H1, 2H2, 3R1, and 3R2 modifications in the present nomenclature. 

Birnessite polytypes are also similar to those of natural and synthetic layer double hydroxides 

(Drits 1987; Bookin and Drits 1993) and to those of other 

natural and synthetic layered compounds (Bailey 1980). 

x/2432
3
x

2
x1 )SO,(CO)(OH)R(R ++

−

 

Layer symmetry and polytype diversity 

Structural characterization of birnessite shows layers with either hexagonal or pseudo-

hexagonal symmetry. Birnessite has an hexagonal layer symmetry when octahedral vacancies 

represent the major source of layer charge deficit (Giovanoli et al. 1970b; Chukhrov et al. 

1985; Silvester et al. 1997; Lanson et al. 2000; 2002b; Gaillot et al. 2003; 2005). By contrast, 

birnessite has an orthogonal layer symmetry when the main source of negative charge in 

vacancy-free layers is the presence of a high amount of Mn3+ cations (Post and Veblen 1990; 
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Drits et al. 1998; Lanson et al. 2002a; Gaillot et al. 2004). In the latter case the layers have a 

C-centered unit-cell with a > b√3 (Burns and Burns 1977; Chukhrov et al. 1985; Post and 

Veblen 1990; Gorshkov et al. 1992; Drits et al. 1997a, 1998; Lanson et al. 2000, 2002a, 

2002b; Gaillot et al. 2003, 2004, 2005). Orthogonal layer symmetry results from the distortion 

of Mn3+-octahedra because of the Jahn-Teller effect (Drits et al. 1997a). In Mn3+ octahedra, 

two Mn3+-O distances are indeed much longer than the other four. For example, in crednerite 

CuMnO2 Mn3+-octahedra contain two 2.26 Å and four 1.929Å bond lengths with an average 

<Mn-O> distance of 2.04 Å (Töpfer et al. 1995). Similar distortions of Mn3+-octahedra have 

been reported by Shannon et al. (1975) for α-MnOOH (2.041 Å – Glasser and Ingram 1968), 

γ-MnOOH (2.037 Å – Dachs 1963) and α-Mn2O3 (2.039-2.045 Å – Norrestam 1967). The 

random distribution of Mn4+ and Mn3+ cations combined with a random azimutal orientation 

of the long Mn3+-O bonds of the Mn3+ octahedra would lead to unfavorable steric strains, 

because of the distortion of Mn3+-octahedra. An ordered distribution of Mn3+-octahedra all 

having the same azimutal orientation allows minimizing these strains. According to SAED 

results, in vacancy-free birnessite layers Mn3+ are distributed in rows parallel to the b axis and 

have their long Mn3+-O bonds parallel to the a axis (Drits et al. 1997a, 1998; Lanson et al. 

2002a; Gaillot et al. 2004). Because of the systematic elongation of Mn3+-ocathedra along the 

a axis and because the four short Mn3+-O distances (1.92-1.93 Å) are similar to Mn4+-O bond 

lengths (1.912 Å for λ-MnO2), b parameters are similar (2.83-2.85 Å) in most natural and 

synthetic birnessite samples regardless of the average valency of the Mnlayer (Chukhrov et al. 

1985; Post and Veblen 1990; Chen et al. 1996b; Ching et al. 1997a; Drits et al. 1997a, 1998; 

Kim et al. 1999; Lanson et al. 2000, 2002a, 2002b; Gaillot et al. 2003, 2004, 2005). 
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The transition from birnessite having layers with hexagonal symmetry to that having 

pseudo-hexagonal symmetry leads to a modification of symbol notation for the corresponding 

polytypes. Specifically, hexagonal one-, two-, and three-layer polytypes (1H, 2H1, 2H2, 3H1 
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and 3H2) are changed to the corresponding orthogonal ones (1O, 2O1, 2O2, 3O1 and 3O2) 

whereas 3R1 and 3R2 are changed to 1M1 and 1M2 monoclinic modifications having –a/3 and 

+a/3 displacements of adjacent layers along the a axis (Table 1). In 1M1 and 1M2 birnessite 

adjacent layers may be shifted along the a axis by values different from ±0.333a (Post and 

Veblen 1990; Lanson et al. 2002b). 
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Cation composition, interlayer structure, and polytype diversity 

The arrangement of adjacent layers in different polytypes, the presence or absence of 

vacant layer octahedral sites, the nature of interlayer cations, and their local environments are 

interrelated structural characteristics. Therefore, it is reasonable to define possible interlayer 

structures for each particular layer stacking and specifically to propose optimum positions for 

interlayer cations as a function of their ionic radius and valency (Table 2). This approach also 

relies on existing birnessite structure models (Chukhrov et al. 1978, 1985; Post and Veblen 

1990; Drits et al. 1997a, 1998, 2002; Kim et al. 1999; Lanson et al. 2000, 2002a, 2002b; 

Manceau et al. 2002; Gaillot et al. 2003, 2005). To symbolize positions for interlayer water 

molecules (H2Ointerlayer) and cations the capital letters A’, B’, and C’, and corresponding lower 

case a’, b’, and c’ will be used, respectively. 

Polytypes with hexagonal layer symmetry. The presence of layer vacancies allows 

interlayer cations to share one face with vacant octahedra so as to provide local charge 

compensation to undersaturated Olayer. If birnessite interlayers contain relatively small di- or 

tri-valent cations, such as Mn2+,3+, Co2+,3+, Cu2+, Ca2+, and Mg2+, then they are commonly 

octahedrally coordinated by Olayer bound to layer vacancies and H2Ointerlayer. Depending on the 

layer stacking mode the presence of octahedrally coordinated interlayer cations located above 

and/or below layer vacancies can give rise to three types of bonding between H2Ointerlayer and 

the nearest Olayer from the adjacent layer. In the first [model 1a (polytype 1H)] strong H-bonds 
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link these species as they form empty prisms with short H2Ointerlayer-Olayer distances along the 

prism edges (2.70-2.75 Å – Fig. 3a). In the second [model 2a (polytype 3R1), model 3a 

(polytype 3R2), and model 4a (polytype 2H1)] Olayer and H2Ointerlayer are linked by weak H-

bonds as they form empty octahedra with long H2Ointerlayer-Olayer distances (3.0-3.15 Å – Fig. 

3b). In the third interlayer type [model 5a (polytype 2H2), model 6a [polytype 3H1], and 

model 7a (polytype 3H2)] empty prisms and empty octahedra formed by Olayer and H2Ointerlayer 

coexist within a given interlayer, with prisms located on one side of the interlayer and 

octahedra on the opposite one (Fig. 3c). 
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The presence of tetrahedrally coordinated interlayer cations located above and/or 

below the vacant layer octahedra in model 3b (polytype 3R2) is associated with the formation 

of strong H-bonds between H2Ointerlayer coordinating the interlayer cations and nearest Olayer 

from the adjacent layer. Both species are superimposed in projection on the ab plane and thus 

located close to each other (Fig. 3d). The coexistence of both octahedrally and tetrahedrally 

coordinated interlayer cations in model 5c (polytype 2H2) leads to the formation of empty 

prisms between the H2Ointerlayer and Olayer (strong H-bonds) on one side of the interlayer and to 

short H2Ointerlayer-Olayer distances on the other side (not shown). 

On the other hand, if birnessite interlayers contain large mono- or di-valent cations, 

such as K+, Ba2+, Sr2+, Cs+, then they will be located in the interlayer mid-plane either in 

octahedra defined by Olayer from adjacent layers [model 5b (polytype 2H2), and model 6b 

(polytype 3H1)] or in interlayer prisms [model 2b (polytype 3R1)]. In the latter case, interlayer 

prisms share one face with a layer octahedron and three edges with occupied octahedra of the 

adjacent layer. Local charge compensation is achieved when interlayer cations are distributed 

so that prisms share a face with vacant layer octahedra. Random distribution of interlayer 

cations leads to electrostatic repulsion with Mnlayer despite the presence of layer vacancies. 

Table 2 lists birnessite polytypes consisting of hexagonal vacancy-bearing layers that differ 
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from each other by stacking modes and interlayer structures, which are reasonable from a 

crystal chemical point of view. 
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Polytypes with orthogonal layer symmetry. The interlayer cations for vacancy-free 

layers should have six-fold coordination by Olayer and H2Ointerlayer, and distributed so as to 

avoid direct interaction with Mnlayer. The 1O, 2O2, 3O1, and 3O2 polytypes are thus not 

suitable to host large mono- or divalent cations as they cannot avoid such interactions. In 

contrast, the 1M2 and 2O1 polytypes can host these cations in the interlayer mid-plane, with 

octahedral [model 3e (polytype 1M2)], or prismatic [model 4c (polytype 2O1), and model 4e 

(polytype 2O1)] coordinations. 

Model 2c (polytype 1M1) represents a special case as interlayer cations cannot be 

located in a’ or b’ sites because of the interaction with Mnlayer. However, smaller interlayer 

cations, such as Na+, can be located, together with H2Ointerlayer, in the interlayer mid-plane 

above and/or below Olayer of adjacent layers as was described for Na-rich synthetic birnessite, 

hereafter referred to as NaBi (Lanson et al. 2002b). Similarly, in Na+-saturated 2O1 polytype 

the interlayer cations are likely located above and/or below Olayer from adjacent layers (model 

4e). 

Relatively small di- and tri-valent interlayer cations may be located above and/or 

below empty layer tetrahedra (tridentate cavities) sharing three edges with layer Mn octahedra 

(VITE sites). The H2Ointerlayer provides octahedral coordination to these cations and may form 

either empty prisms [model 3d (polytype 1M2) – Fig. 4a] or empty octahedra [model 1b, 

(polytype 1O), and model 4d (polytype 2O1) – Fig. 4b], with Olayer from the adjacent layer. 

Empty prisms and empty octahedra coexist within a given interlayer [model 5d (polytype 

2O2)] if interlayer cations are octahedrally coordinated. If interlayer cations have both 

octahedral and tetrahedral coordination then H2Ointerlayer and Olayer in model 5e (polytype 2O2) 

form empty prisms and strong H-bonds on either side of a given interlayer. 
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Vacancy-free birnessite layers can have hexagonal symmetry if the long Mn3+-O 

bonds of the layer Mn3+-octahedra are randomly oriented with respect to the a axis by n60° 

(Gaillot et al. 2005, 2006a). Interlayer cations in such birnessite layers should be distributed 

so as to avoid direct interaction with the nearest Mnlayer. In this case, suitable interlayer 

structures are those described for vacancy-free orthogonal layers (Table 2). 
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CALCULATION OF XRD PATTERNS 

 

The XRD patterns calculated for polytypes with the same layer symmetry and 

periodicity along the c* axis have the same d-spacings, but differ by their hkl intensity 

distributions. Characterization of layer silicates has shown that structures can be 

approximated by models for polytype identification purpose. The influence of the actual layer 

structure on the hkl intensity distributions is indeed a second-order effect compared to the 

differences between polytypes (Bailey 1980). Structure models were thus proposed for each 

birnessite variety and corresponding powder XRD patterns were calculated. All calculations 

were performed using the program developed by Plançon (2002) on the basis of the formalism 

described by Drits and Tchoubar (1990). No orientation function was considered, and no 

random stacking faults were introduced for the calculations.  

 

Initial structure models 

In all structure models, Mnlayer and Olayer occupy special sites in the orthogonal C-

centered unit-cell: (0, 0, 0), (0.333, 0, z) and (-0.333, 0, -z), respectively, where z-coordinates 

(in projection on the c* axis) were equal to 1.00Å (Post and Veblen 1990; Drits et al. 1998; 

Lanson et al. 2000, 2002a, 2002b; Gaillot et al. 2003, 2005). According to the close-packing 

notation interlayer cations and H2Ointerlayer also occupy special sites. In the initial structure 
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models, the z-coordinates of the interlayer cations (Me) and H2Ointerlayer are the sole variable 

parameters. The initial z-coordinates of Me and H2O molecules can be estimated from typical 

Me-O and Me-H2O bond lengths for four- and six-fold coordinated Me and from elementary 

geometrical relationships between these bond lengths and corresponding z-coordinates. For 

example, if an interlayer cation is octahedrally coordinated above and/or below a vacant layer 

octahedron, then the following equations are deduced from the hexagonal symmetry of the 

layer (Lanson et al. 2002b): 
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In the present work, Me-O and Me-H2O interatomic distances were determined from 

the effective ionic radii given by Shannon (1976). Where applicable the interlayer atomic 

positions were adapted from published structural determination of synthetic Na-birnessite 

(Lanson et al. 2002a), Ca-birnessite (Drits et al. 1998), H-birnessite (Lanson et al. 2000), and 

K-birnessites (Gaillot et al. 2003, 2005). In the various structure models K, Ca, Mn, Na, 

and/or Mg were used as interlayer cations. For the different structure models presented in 

Table 2, corresponding atomic positions and their occupancies are listed in Table 3. 

 

Calculated XRD patterns 

Powder XRD patterns calculated for the different polytypes are shown in Figures 5-8, 

whereas d-values and hkl indices of reflections observed on the various patterns are listed in 

Table 4. Indexing is performed assuming an orthogonal C-centered cell for both hexagonal 

and orthogonal birnessite. Reflections in the 36-64° 2θ CuKα range have 20l,11l indices (10l 

and 01l when using a hexagonal unit-cell), whereas they have 31l,02l indices (11l when 

using a hexagonal unit-cell) over the 64-75° 2θ CuKα range. The XRD patterns shown in 
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Figure 5 correspond to structure models in which interlayer Mn cations are located above 

and/or below layer sites and are octahedrally coordinated by Olayer and H2Ointerlayer (VITC sites 

– Table 3). The calculated XRD patterns (Figure 5) can be used to identify vacancy-bearing 

birnessite having one-, two- and three-layer periodicity along the c axis and different layer 

stacking. However, analysis of the XRD patterns calculated for a given birnessite polytype 

having different interlayer structures shows that for a given birnessite polytype the intensity 

of hkl reflections also depends on the chemical nature of interlayer cations, their distribution 

and local environment. For example, interlayer spaces of 3R2 polytype (models 4a and 4b) 

may be occupied by Zn cations having octahedral and/or tetrahedral coordination (Manceau et 

al. 2000c; Lanson et al. 2000, 2002a) and located in TC sites or TE sites. The replacement of 

tetrahedrally for octahedrally coordinated Zn cations leads to a significant decrease of 

204/114, 208/118 and 20.10/11.10 peak intensity (104, 018 and 10.10 assuming a hexagonal 

cell), with respect to the strongest 20l/11l reflections (Figs. 6a-b). Location of Zn cations in 

IVTE sites [model 3c (polytype 3R2) – Fig. 6c] strongly increases the 204/114 and 207/117 

reflection intensities, with respect to 201/111. Important redistribution of intensities is 

observed also for the 2O1 and 1M2 polytypes when interlayers are occupied either by large K+ 

(models 4c and 3e) or by smaller Ca2+ (models 4d and 3d). The transition from model 3e to 

model 3d significantly increases 201, 110, 112, 203 and 11-2 and decreases the 111 and 113 

intensities (Figs. 7a-b). Similarly, the transition from model 4c to 4d is accompanied by 

redistribution of the 112 and 114 maxima: strong 112 and moderate 114 peaks for model 4c 

are replaced by strong 114 and moderate 112 ones for model 4d (Figs. 7c-d). 
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In contrast, the relative intensity of strong, moderate and weak reflections change very 

little for the 3R1 polytype when interlayers are occupied by either K+, Ca2+, or Mn3+. The only 

significant change in the MnBi XRD pattern compared to KBi is a strong increase of 201/111 

intensity (Figs. 8a-b). For the 2H1 polytype, a strong increase of 200 and 203 intensities and a 
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limited increase of the 206 one is visible on the XRD pattern calculated for MnBi model 

compared to KBi (models 4and 4b – Figs. 8c-d) 

371 

372 

373 

374 

375 

376 

377 

378 

379 

380 

381 

382 

383 

384 

385 

386 

387 

388 

389 

390 

391 

392 

393 

394 

The calculated XRD patterns show the limited influence of the interlayer structure on 

the hkl intensity distribution for a given birnessite polytype. The intensity distribution is 

primarily determined by the polytype (Figs. 6-8). As a consequence, identification of 

birnessite polytypes having either hexagonal or C-centered orthogonal (a >b√3) unit cells may 

be performed without a priori details of their layer and interlayer structures. 

 

DISCUSSION 

 

Criteria for determination of birnessite polytypes 

Birnessite polytypes having the same periodicity along the c axis, but with different 

layer symmetry, differ from each other by the number of hkl reflections. For example, the 

hexagonal birnessite exhibits a single series of 20l/11l reflections, whereas 20l and 11l series 

of reflections are individualized for birnessite with an orthogonal layer symmetry. In addition, 

XRD patterns of hexagonal birnessite usually contains a diagnostic 310/020 reflection (110 

when using the hexagonal cell) with d = (1.42 ± 0.01) Å whereas for the orthogonal birnessite 

this reflection is split with d(310) > d(020) = (1.42 ± 0.01) Å. 

Birnessites with similar periodicity and layer symmetry can be differentiated by the 

intensity distribution of hkl reflections. Figures 9a-b show that hkl reflections with l = 2n are 

more intense for 2H1 polytype compared to those of 2H2 polytype. In contrast, 20l/11l 

reflections (10l and 01l when using the hexagonal cell) with l = 2n + 1 are significantly 

stronger for 2H2 polytype. Similarly, 11l and 20l reflections with l = 2n are stronger than 

those with l = 2n +1 for the 2O1 polytype (Fig. 9c). XRD patterns from 3R1 and 3R2 polytypes 
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also differ from each other by their intensity distributions among hkl reflections. The 20l/11l 

reflections with l = 3n – 1 (01l with l = 3n – 1 ones if using the hexagonal cell) are intense 

for 3R1 polytype but not for 3R2, whereas 20l/11l reflections with l = 3n + 1 (10l with l = 

3n + 1 ones if using the hexagonal cell) are intense for 3R2 polytype and weak for 3R1 (Figs. 

10a-b). 3H1 and 3H2 polytypes differ from 3R1 and 3R2 by the presence of 20l/11l reflections 

with l = 3n (Figs 10c-d). Similarly, intensity of 20l/11l reflections with l = 3n (10l with 

l = 3n if using the hexagonal cell) is significantly lower for 3H2 than for 3H1 (Figs. 10c-d). 

The intensity distribution among hkl reflections described above for 3R1, 3R2, 3H1 and 3H2 

polytypes remain valid for the equivalent birnessite polytypes with orthogonal layer 

symmetry (1M1, 1M2, 3O1, 3O2). 
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Special attention should be paid to identify one- (1H and 1O) and two-layer (2H1 

and 2O1) polytypes having the same layer symmetry. The presence of a weak 203/113 

reflection is the sole distinguishing feature allowing identification of the two-layer polytypes 

(Figs. 5a-b). Note that the difference between XRD patterns corresponding to these two 

polytypes is further reduced when 1H layer pairs are present in the 2H1 polytype (that is when 

AbC – AbC pairs are present in crystals dominated by AbC = CbA = AbC… sequences) as 

the intensity of the 203/113 reflection is significantly decreased by the presence of such 1H 

layer pairs in a mixed-layered structure (not shown). 

 

Stacking faults 

The above described method can be used not only for the identification of birnessite 

polytypes and also to determine the nature of stacking faults which are typically present in 

natural and synthetic birnessites. Well-defined and random stacking faults significantly alter 

XRD patterns from defective layer structures (for definition of well-defined and random 
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stacking faults see Drits and Tchoubar, 1990). Well-defined stacking faults correspond to the 

interstratification of layer pairs having the same thickness but different internal structure and 

interlayer displacements within a periodic polytype. As the result of such interstratification, 

hkl reflections are shifted, and their positions become irrational. 
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Drits and McCarty (1996) have shown that Méring’s rules, initially proposed for basal 

reflections (Méring 1949), can be generalized to account for the behavior of hkl reflections 

from defective layer structures. According to these generalized rules, hkl reflections observed 

from a defective layer structure are located between neighboring hkl reflections of periodic 

phases whose fragments (layer pairs in the present case) are interstratified. The actual position 

of hkl reflections corresponding to the defective layer structure depends on the relative 

proportion of the structure fragments and on relative intensities of the “involved” hkl 

reflections of the periodic phases. 

For example, Lanson et al. (2002b – Fig. 3) showed that reflections of Zn-sorbed 

birnessite are located between hkl reflections calculated for 3R2 and 1H polytypes and 

hypothesized that the main 3R2 polytype contained some 1H layer pairs (i.e. AbC – AbC pairs 

are present in crystals dominated by AbC – BcA – CaB – AbC … sequences). As a result, 

positions of hkl reflections of the main 3R2 polytype should indeed be shifted from their ideal 

position towards those of the defect-free 1H polytype. Accordingly, the best agreement 

between experimental and calculated XRD patterns was obtained for a defective 3R2 polytype 

containing 12% of 1H layer pairs (Lanson et al. 2002b). A similar approach may be applied to 

mixtures containing periodic and defective birnessites. For example, Figure 11 shows the best 

possible agreement between an experimental XRD pattern and that calculated for a mixture of 

four birnessites: a periodic 2H1 polytype and three defective ones (2O1/2H1, 2H1/3R1,and 

3R1/2H1). In the three mixed-layered structures, layer pairs of the 2H1 polytype are randomly 
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interstratified with those of the 2O1 and 3R1 polytypes in proportions 1:1, 7:3, and 1:9, 

respectively. Note on Figure 11 that each of these mixed-layered structures gives a diagnostic 

contribution to the calculated XRD pattern (Gaillot et al. 2004). 
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In our experience, one of the most effective way to study defective birnessite is to 

combine the above rules for polytype identification and interstratification to build up starting 

models for XRD pattern calculation (Manceau et al. 1997; Drits et al. 1998; Lanson et al. 

2000, 2002a, 2002b; Gaillot et al. 2003, 2004, 2005). Defective birnessite may contain layer 

pairs which were not reported so far for natural and synthetic periodic birnessite. Therefore, 

all theoretically possible birnessite polytypes should be considered to determine the nature of 

stacking faults XRD by comparing experimental and calculated XRD patterns. 

 

Birnessite polytypes reported for natural and synthetic birnessites 

1H Polytype. The first detailed structural study of natural birnessite was performed by 

Chuckhrov et al. (1985) on monomineralic birnessite micronodules dredged from the oceanic 

floor. The sample has a one-layer hexagonal unit-cell and its structure corresponds to the 1H 

ploytype (model 1a) in which interlayer Mn3+ and Mg2+ cations are octahedrally coordinated 

above and/or below vacant layer octahedra. Ca2+ and Na+ cations were also present in the 

interlayer. This structure model was further supported by X-ray absorption spectroscopy data 

(Manceau et al. 1992a, 1992b). Analysis of published experimental XRD patterns shows that 

1H birnessite dominates in Mn-nodules from ocean and lake floors (Burns and Burns 1977; 

Drits et al. 1985). This 1H polytype occurs also in soil birnessite (Glover 1977). 

Birnessite resulting from the equilibration at low pH of NaBi (obtained according to 

the Giovanoli protocol – Giovanoli et al. 1970b) was studied by Silvester et al. (1997), Drits 

et al. (1997a) and in more details by Lanson et al. (2000). This proton-rich birnessite, 

hereafter referred to as HBi, has a one-layer hexagonal unit cell and a structure similar to 
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model 1a. HBi can thus be considered a synthetic analogue of natural 1H birnessite. As 

natural 1H birnessite, HBi layers contain a significant amount of vacant layer octahedra 

capped by Mn2+ and Mn3+. The negative layer charge of HBi is compensated for by protons 

and interlayer Mn cations, and the distribution of layer vacancies is inherited from the ordered 

Mn3+ distribution in NaBi. The H2Ointerlayer provides octahedral coordination to Mninterlayer and 

forms empty prisms, and strong H-bonds, with Olayer of the adjacent layer. Manceau et al. 

(1997) and Lanson et al. (2002b) showed that equilibration of NaBi in the presence of 

aqueous heavy metals (Co, Cd and Pb) leads also to the formation of the 1H polytype (model 

1a). When Zn2+ is present, the resulting Zn-sorbed synthetic birnessite (ZnBi) has a 3R2 

polytype, in which models 3a and 3b coexist. Interlayer Zn2+ cations are systematically 

located above and/or below vacant layer sites but can have both octahedral and tetrahedral 

coordinations. As a result, H2Ointerlayer providing octahedral (model 3a) and tetrahedral (model 

3b) coordination of Zn form weak and strong H-bonds, respectively, with Olayer of the 

adjacent layer. 
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1M1 Polytype. Na-rich birnessite synthesized at high pH (Giovanoli et al. 1970a) was 

first described by Post and Veblen (1990) as a one-layer monoclinic polytype (1M1 polytype, 

model 2c). To refine the structure they used C2/m space group and the Rietveld technique. 

However, their results were not precise enough to draw definitive conclusions on the origin of 

the layer charge. Lanson et al. (2002a) showed that NaBi has a one-layer triclinic unit-cell 

( 1C  space group) and consists of vacancy-free layers, the layer negative charge arising from 

the Mn3+-for-Mn4+ substitution within octahedral layers. The orthogonal layer symmetry 

results from the Jahn-Teller distortion of Mn3+-octahedra which all have their long Mn3+-Olayer 

bond oriented along the a axis. Structural sites of interlayer Na and H2O, and their 

occupancies, have also been determined. The triclinic character of NaBi originates from a 

small layer displacement along the b axis. 
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NaBi varieties with different monovalent and divalent cations that were exchanged for 

Na+ were studied by Post and Veblen (1990), Kuma et al. (1994) and Bartoli (1997). XRD 

patterns of these different birnessites can be indexed with a one-layer monoclinic unit-cell 

whose parameters depend on the interlayer cation. However, essential details of these 

birnessites remain poorly understood. For example, Mg2+ cations in Mg-exchanged birnessite 

(MgBi) are supposedly located almost above or below octahedral sites (Post and Veblen 

1990). Such a location is possible for interlayer Mg2+ cations only if the underlying octahedral 

sites are vacant, NaBi layers being vacancy-free. 
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Similarly, Bartoli (1997) reported in K-exchanged birnessite the location of K+ cations 

in either a’ or b’ sites, whereas the presence of K+ cations in these sites would lead to their 

direct interaction with Mnlayer from adjacent layers, as can be seen from symbolic notations 

(Model 2c – Table 2). Post and Veblen (1990) reported K+ positions in KBi that are shifted 

from the center of the interlayer prism toward its edges. 

Ca2+-for-Na+ exchange in NaBi dramatically modifies the initial one-layer triclinic 

structure of NaBi (model 2c) leading to a four-layer polytype in which layer pairs having 

orthogonal stacking are shifted alternately by ± b/2 along the b axis (Drits et al. 1998). 

Gorshkov et al. (1992) described an occurrence of natural Ca-bearing birnessite, which was 

analogous to the synthetic Ca-exchanged variety of NaBi. 

3R1 Polytype. Chen et al. (1996b) synthesized K-rich birnessite (KBi) with a 3R1 unit-

cell (model 2b). The KBi layers contain only Mn4+ and vacancies. From the refinement of 

integrated intensities they concluded that both K+ and H2Ointerlayer were not located in the 

prism’s centers (a’ and b’ sites) as in the idealized model 2b but rather in the center of the 

prism’s faces. Gaillot et al. (2005) further refined this structure and showed that interlayer 

prisms contain three possible K sites, each shifted from the faces of the prism toward its 

center. Similar positions of interlayer cations were found for Cs+, Ba2+ and Sr2+-exchanged 
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KBi (Gaillot et al. 2006b). The Ca2+-for-K+ exchange in KBi modifies the initial layer 

stacking from the 3R1 polytype (model 2b) to the 1H one (model 1a). The driving force for the 

KBi-to-CaBi transformation is likely the possibility of forming strong H-bonds between 

H2Ointerlayer providing octahedral coordination of Ca cations and Olayer of the adjacent layer 

(model 1a). Using mild hydrothermal conditions, Chen et al. (1996a) and Gaillot et al. (2005) 

synthesized directly Na-rich birnessite (NaBih) having a 3R1 unit-cell. According to these 

authors, these NaBih layers consist of Mn4+ cations and vacant octahedra but positions of 

interlayer Na+ were not determined. 
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2H1 Polytype. Kim et al. (1999) synthesized K-rich birnessite (KBi) from the 

decomposition of KMnO4 at temperatures ranging from 200-1000°C. Using the Rietveld 

technique, these authors showed that KBi obtained at 800°C has two-layer hexagonal 

symmetry because of the regular alternation of octahedral layers rotated with respect to each 

other by 180° around the axis passing through layer Mn cations (polytype 2H1, model 4b). 

Gaillot et al. (2003) has shown that the actual structure of KBi obtained at 800°C differs from 

the model of Kim et al. (1999) by several important details. First, KBi interlayers have 

heterogeneous cation composition with the coexistence of both K+ and Mn3+ cations; second, 

because of the layer-to-interlayer migration of Mn3+ cations KBi layers contain only Mn4+ 

cations and vacant octahedra. Finally, interlayer K+ is not located in the prism’s center. Rather 

K+ is distributed over three possible sites, each of which being shifted from the center of the 

prism towards it faces. Thus, the idealized KBi structure corresponds to the coexistence of 

models 4a and 4b (2H1 polytype). 

2O1 Polytype. KBi synthesized from the thermal decomposition of KMnO4 at 1000°C 

has vacancy-free layers and orthogonal layer symmetry (polytype 2O1, model 5c – Gaillot et 

al. 2005, 2006a). 
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Ambiguously determined polytypes. Kim et al. (2000) used the Rietveld technique 

to determine structures of synthetic K-Li-rich birnessites (Li-K-Bi) obtained from the thermal 

decomposition of a Mn-KNO3-LiOH mixture at 800°C and 1050°C. They concluded that the 

800°C Li-K-Bi has a three layer periodicity and hexagonal symmetry of layers whereas the 

1050°C Li-K-Bi has an orthogonal layer symmetry and two-layer periodicity due to an 

ordered rotation of layers by 180°. However, the description of these structures was rather 

confusing because of technical errors. In particular, symbolic notations for the structures do 

not correspond to the proposed structure models. For example, the 1050°C Li-K-Bi is 

described as AaB a’ BbA b’ instead of the actual notation given for model 4b (AcB a’ BcA). 

In addition, unit-cell parameters given for the 1000°C Li-K-Bi are not consistent with the 

proposed space group. Similarly, interatomic Mn-O distances differ significantly from those 

expected when heterovalent Mnlayer cations coexist within the octahedral layers. These authors 

also describe the structure of the Li-K-Bi sample synthesized at 800°C as AcB a’ CbA c’ BaC 

b’ (model 3d, polytype 3R2), with octahedrally coordinated interlayer K+ cations. However, 

atomic coordinates reported for this sample (Table 1 – Kim et al. 2000) correspond to 

polytype 3R1 (model 2b) with interlayer K+ having prismatic coordination. This latter 

structure model is consistent with the experimental XRD pattern reported for this sample 

(Figure 4 – Kim et al. 2000) which is similar to those obtained by Chen et al. (1996a) and 

Gaillot et al. (2005) from 3R1 polytypes (model 2b) synthesized under mild hydrothermal 

conditions. All these experimental patterns are similar to the one displayed on Figure 8a. 
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Turbostratic samples. Finally, one has to note that among different natural 

environments, and especially in soils, turbostratic birnessite is extremely common. For 

example, turbostratic birnessite has been reported as resulting from the bacterial oxidation of 

Mn2+ by different strains (Mandernack et al. 1995; Villalobos et al. 2003; Jurgensen et al. 

2004; Bargar et al. 2005; Webb et al. 2005) and from abiotic processes (Mandernack et al. 
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1995). However, so far there is little unambiguous information derived from XRD data on the 

structural and crystal chemical of these varieties. Most often the structural characterization of 

disordered birnessite is limited to the description of 00l peak positions as a function of 

relative humidity to assess the lamellar character of these “poorly crystalline birnessites”. The 

position of hkl reflections has also been used to hypothesize the actual layer symmetry (and 

thus the origin of the layer charge of these varieties) however without much experimental 

support (Villalobos et al. 2003; Jurgensen et al. 2004; Webb et al. 2005). 
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However, as described, birnessite having different layer symmetry may be 

unambiguously distinguished from each other from the shape of their hk bands (Fig. 12). A 

shoulder, resulting from the individualization of 20 and 11 reflections, is indeed visible on the 

low-angle side of main maximum of the 20,11 band for orthogonal modifications (at ~2.55 Å 

and 2.45 Å, respectively – Fig. 12b), whereas this shoulder is logically absent for hexagonal 

modifications (Fig. 12a). Similarly, the 31,02 band of the orthogonal modifications contains 

two distinct maxima (~1.474 Å and 1.422 Å – Fig. 12b) which are merged for the hexagonal 

modifications (peak at ~1.422 Å – Fig. 12a). The features described for the orthogonal 

modifications are like those reported for the Mn oxides resulting from the oxidation of Mn2+ 

by Bacillus sp. strain SG-1 (Fig. 3 in Webb et al. 2005) indicating the presence of a high 

proportion of Mn3+ within the octahedral layers of this birnessite. The presence of Mn3+-rich 

rows in vacancy-free layers, as in NaBi, is also supported by the splitting of the 8 Å-1 feature 

in the EXAFS spectra (Fig. 5 in Webb et al. 2005) which has been described as characteristic 

of the presence of Mn3+-rich rows in the octahedral Mn layer leading to its orthogonal 

symmetry (Fig. 9 in Gaillot et al. 2003; Fig. 6 in Marcus et al. 2004; Fig. 5 in Manceau et al. 

2004; Manceau et al. 2005). To our knowledge, XRD patterns of all other turbostratic 

varieties reported so far in the literature correspond to hexagonal modifications. 
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In addition Villalobos et al. (2006) demonstrated the high sensitivity of XRD profiles 

to the layer and interlayer structure of turbostratic phyllomanganates. In their study, 

Villalobos et al. (2006) observed contrasting experimental modulations of the 20,11 and 31,02 

bands, and successfully reproduced them assuming a turbostratic stacking. In this case, the 

position and profile of the bands depend essentially on the amount and atomic coordinates of 

both layer and interlayer species, and these authors were able to determine the amount of 

vacant layer sites, as well as the amount and coordinates of both “heavy” (Mn3+,2+) and “light” 

(Na+, K+, H2Ointerlayer) interlayer species. Such calculations also provided them with an 

estimate of the lateral extension of the octahedral layers (Drits and Tchoubar 1990; Jurgensen 

et al. 2004; Villalobos et al. 2006). The influence of the layer and interlayer structure on 

calculated profiles for 20,11 and 31,02 bands is illustrated in Figure 13. As compared to the 

structure model shown in Figure 12a (Model 1a), decreasing both the proportion of interlayer 

Mn and layer vacancies from 0.167 to 0.075 broadens the lineshape of the 20,11 and 

smoothes out the scattering dip at ~ 45° 2θ CuKα, thus rendering the calculated hump at ~50-

55° 2θ CuKα less pronounced (Fig. 12b). Moving interlayer Mn from the VITC position 

dramatically modifies the 20,11 lineshape, as observed when the 0.167 interlayer Mn atoms 

are located above and/or below the tridentate cavities (VITE sites – Fig. 13c). The sensitivity 

of the 20,11 profile to the position of “light” interlayer species is illustrated next by assuming 

either the presence of Na+ above and/or below Olayer [(0.333, 0.0, 0.5) – Fig. 13d] or that of K+ 

above/below the tridentate cavities [Position (-0.222, 0, 05) and equivalent positions – Fig. 

13e], H2O molecules sitting in both cases above and/or below Olayer. In the second case, the 

20,11 band is broadened and the “hump” observed at ~50° 2θ CuKα in Figure 13d is both 

shifted towards higher angles and smoothened out. Similar modulations can however result 

from the partial ordering of the layer stacking (e.g., Ben Brahim et al. 1983, 1984; Drits and 

Tchoubar 1990; Viani et al. 2002). Special attention should thus be paid to the structural 

591 

592 

593 

594 

595 

596 

597 

598 

599 

600 

601 

602 

603 

604 

605 

606 

607 

608 

609 

610 

611 

612 

613 

614 

615 

Identification of birnessite polytypes 25



Drits, Lanson, Gaillot 

interpretation of these modulations, and, in this respect, verifying the structural XRD model 

with independent data from another structural technique, such as EXAFS spectroscopy, is 

always warranted. 
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FIGURE 1. Idealized structure model of birnessite polytypes. a) 1H polytype. Top: projection 

along the b axis. Open and solid symbols indicate atoms at y = 0 and y = ±½, 

respectively. Large circles represent Olayer atoms and small circles represent Mnlayer, 

atoms. Dashed lines outline specific positions of the close-packing formalism. 

Irregular dashed lines outline the interlayer octahedra defined by Olayer from adjacent 

layers. Bottom: projection on the ab plane. The upper surface of the lower layer is 

shown as light shaded triangles whereas the lower surface of the upper layer is 

shown as dark shaded triangles. Mnlayer of the upper layer are shown as small open 

circles. b) 2H1 polytype. Top: projection along the b axis. Irregular dashed lines 

outline the interlayer prisms defined by Olayer from adjacent layers. Bottom: 

projection on the ab plane. Mnlayer of the lower layer are shown as small solid circles. 

Other symbols as in Figure 1a. c) 2H2 polytype. Top: projection along the b axis. 

Irregular dashed lines outline the interlayer octahedra defined by Olayer from adjacent 

layers. Bottom: projection on the ab plane. Symbols and notations as in Figure 1a. 

FIGURE 2. Idealized structure model of birnessite polytypes in projection along the b axis. a) 

3R1 polytype. Symbols and notations as in Figure 1. Irregular dashed lines outline the 

interlayer prisms defined by Olayer from adjacent layers. b) 3R2 polytype. Symbols 

and notations as in Figure 1. Irregular dashed lines outline the interlayer octahedra 

defined by Olayer from adjacent layers. c) 3H1 polytype. Symbols and notations as in 

Figure 1. Irregular dashed lines as in Figure 2b. d) 3H2 polytype. Symbols and 

notations as in Figure 1. Irregular dashed lines as in Figure 2b. 

FIGURE 3. Idealized interlayer structure model in projection along the b axis for birnessite 

polytypes with layer vacancies (hexagonal layer symmetry). a) 1H polytype with 
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octahedrally coordinated cations above/below vacant layer sites (VITC position – 

Model 1a). Symbols and notations as in Figure 1. Irregular dashed lines outline the 

interlayer prisms defined by H2Ointerlayer coordinating the interlayer cations and Olayer 

from adjacent layers (H-bonds). b) 3R1, 3R2 and 2H1 polytypes with octahedrally 

coordinated cations above/below vacant layer sites (VITC position – Models 2a, 3a 

and 4a, respectively). Symbols and notations as in Figure 1. Irregular dashed lines 

outline the interlayer octahedra defined by H2Ointerlayer coordinating the interlayer 

cations and Olayer from adjacent layers (weak H-bonds). c) 2H2, 3H1 and 3H2 

polytypes with octahedrally coordinated cations above/below vacant layer sites (VITC 

position – Models 5a, 6a and 7a, respectively). Irregular dashed lines outline the 

interlayer prisms (left) and octahedra defined by H2Ointerlayer coordinating the 

interlayer cations and Olayer from adjacent layers (strong and weak H-bonds, 

respectively). d) 3R2 polytype with tetrahedrally coordinated cations above/below 

vacant layer sites (IVTC position – Model 3b). Irregular dashed line outlines the 

strong H-bond between H2Ointerlayer coordinating the interlayer cation and Olayer from 

adjacent layers. 
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FIGURE 4. Idealized interlayer structure model in projection along the b axis for birnessite 

polytypes with vacancy-free layers (orthogonal layer symmetry). a) 1M2 polytype 

with octahedrally coordinated cations above/below empty layer tetrahedra (tridentate 

cavities) sharing three edges with layer Mn octahedra (VITE position – Model 3d). 

Symbols and notations as in Figure 1. Irregular dashed lines outline the interlayer 

prisms defined by H2Ointerlayer coordinating the interlayer cations and Olayer from 

adjacent layers (H-bonds). b) 1O and 2O1 polytypes with octahedrally coordinated 

cations above/below empty layer tetrahedra (tridentate cavities) sharing three edges 

with layer Mn octahedra (VITE position – Models 1b and 4d, respectively). Symbols 
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and notations as in Figure 1. Irregular dashed lines outline the interlayer octahedra 

defined by H2Ointerlayer coordinating the interlayer cations and Olayer from adjacent 

layers (weak H-bonds). 
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FIGURE 5. XRD patterns calculated for idealized structure models of birnessite polytypes. a) 

1H polytype with Mn3+,2+ in VITC position (Model 1a). b) 3R1 polytype with Mn3+,2+ 

in VITC position (Model 2a). c) 3R2 polytype with Zn2+ in VITC position (Model 3a). 

d) 2H1 polytype with Mn3+,2+ in VITC position (Model 4a). e) 2H2 polytype with 

Mn3+,2+ in VITC position (Model 5a). f) 3H1 polytype with Mn3+,2+ in VITC position 

(Model 6a). g) 3H2 polytype with Mn3+,2+ in VITC position (Model 7a). 

XRD patterns were calculated using the idealized structure models described in 

Table 3. a and b unit-cell parameters for the polytypes having a hexagonal layer 

symmetry are 4.936 and 2.850 Å, respectively, whereas they are 5.180 and 2.850 Å, 

respectively, for the polytypes having a orthogonal layer symmetry. In all cases the 

minimum periodicity along the c* axis is 7.10 Å. All calculations were performed 

assuming a periodic stacking mode devoid of random stacking faults. The radius of 

the coherent scattering domains in the ab plane was set to 150 Å for all calculations, 

whereas the mean extent of the coherent scattering domains perpendicular to the 

layer plane is 7 layers (maximum extent: 35 layers). The distribution of coherent 

scattering domain size along the c* axis was assumed to be lognormal (Drits et al. 

1997b). The values of Debye-Waller thermal factor (B) were 0.5, 1.0 and 1.5 for 

Mnlayer, Olayer and H2Ointerlayer, respectively. B factors for Meinterlayer were either 1.0 

(metal cations Zn2+, Mn3+,2+, …) or 2.0 (alkali and alkali-earth cations: K+, Ca2+, …). 

FIGURE 6. XRD patterns calculated for idealized structure models of birnessite 3R2 polytype. 

a) With Zn2+ in IVTC position (Model 3b). b) With Zn2+ in VITC position (Model 3a). 

c) With Zn2+ in IVTE position (Model 3c). 
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FIGURE 7. XRD patterns calculated for idealized structure models of birnessite polytypes. a) 

1M2 polytype with K+ in the interlayer mid-plane (Model 3e). b) 1M2 polytype with 

Ca2+ in VITE sites (Model 3d). c) 2O1 polytype with K+ in the interlayer mid-plane 

(Model 4c). d) 2O1 polytype with Ca2+ in VITE sites (Model 4d). 
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FIGURE 8. XRD patterns calculated for idealized structure models of birnessite polytypes. a) 

3R1 polytype with K+ in the interlayer mid-plane (Model 2b). b) 3R1 polytype with 

Mn3+,2+ in VITC position (Model 2a). c) 2H1 polytype with K+ in the interlayer mid-

plane (Model 4b). d) 2H1 polytype with Mn3+,2+ in VITC position (Model 4a). 

FIGURE 9. XRD patterns calculated for idealized structure models of birnessite polytypes. a) 

2H2 polytype with Mn3+,2+ in VITC position (Model 5a). b) 2H1 polytype with Mn3+,2+ 

in VITC position (Model 4a). c) 2O1 polytype with K+ in the interlayer mid-plane 

(Model 4c). 

FIGURE 10. XRD patterns calculated for idealized structure models of birnessite polytypes. a) 

3R1 polytype with K+ in the interlayer mid-plane (Model 2b). b) 3R2 polytype with 

Zn2+ in VITC position (Model 3a). c) 3H1 polytype with Mn3+,2+ in VITC position 

(Model 6a). d) 3H2 polytype with Mn3+,2+ in VITC position (Model 7a). 

FIGURE 11. Comparison between experimental and calculated XRD patterns for a K-rich 

birnessite sample synthesized at 700°C from the thermal decomposition of KMnO4 

(Gaillot et al. 2004). Experimental data are shown as crosses, whereas calculated 

profiles are shown as solid lines. Arrows outline the misfits between experimental 

and calculated patterns. Only 20l and 11l reflections are calculated. Atomic 

coordinates and other structural parameters used for the calculations as described by 

(Gaillot et al. 2004). (a) Optimum model and difference plot. The optimum model 

includes contributions from a defect-free 2H polytype and from 2O/2H, 2H/3R, and 

3R/2H mixed-layered structures (relative proportions 7:29:41:23). (b) Calculation 
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made replacing the optimum 2O/2H contribution (2O:2H ratio 50:50) by a defect-

free 2H contribution. (c) Calculation made by subtracting the 2H/3R contribution 

(2H:3R ratio 70:30) from the optimum model. (d) Calculation made by subtracting 

the 3R/2H contribution (3R:2H ratio 90:10) from the optimum model. Adapted from 

(Gaillot et al. 2004). 
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FIGURE 12. XRD patterns calculated for idealized structure models of turbostratic birnessite. 

a) Birnessite with Mn3+,2+ in VITC position (Model 1a). b) Birnessite with 0.67 Na+ 

and H2Ointerlayer in the interlayer mid-plane above below Olayer (Model 2c).  

Calculations were performed assuming a turbostratic stacking (100% random 

stacking faults). The radius of the coherent scattering domains in the ab plane was 

set to 75 Å. All other parameters for XRD pattern calculations as described for 

Figure 5. 

FIGURE 13. XRD patterns calculated for idealized structure models of turbostratic birnessite 

having hexagonal layer symmetry. a) Birnessite with 0.833 vacant layer sites capped 

by Mn3+,2+ in VITC position (Model 1a). b) Birnessite with 0.925 vacant layer sites 

capped by Mn3+,2+ in VITC position. c) Birnessite with 0.833 vacant layer sites 

capped by Mn3+,2+ in VITE position (similar to Model 3d with interlayer Mn3+,2+ 

cations). d) Birnessite with 0.925 vacant layer sites and interlayer Na+ (0.30 per 

octahedron) and H2O molecules (0.90 per octahedron) in c’ position (+1/3, 0, 1/2). e) 

Birnessite with 0.925 vacant layer sites and interlayer K+ (0.30 per octahedron) in 

and H2O molecules (0.90 per octahedron) in a’ (-0.222, 0, 1/2) and c’ (+1/3, 0, 1/2) 

positions, respectively. 

Calculations were performed as described for Figure 12. 
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Table 1. List of possible periodic layer stacking modes in birnessite consisting of hexagonal 

(vacancy-bearing) or orthogonal (vacancy-free) layers 

 

Layer stacking Hexagonal layers Orthogonal layers 

AbC – AbC … 1H 1O 

AbC = CbA = AbC … 2H1 2O1 

AbC – AcB – AbC … 2H2 2O2 

AbC = CaB = BcA = AbC … 3R1 1M1 

AbC – BcA – CaB – AbC … 3R2 1M2 

AbC – AcB – AcB – AbC … 3H1 3O1 

AbC – AcB – CaB – AbC … 3H2 3O2 

 

 

Identification of birnessite polytypes 43



Drits, Lanson, Gaillot 

Table 2. Symbolic notations of birnessite consisting of hexagonal (vacancy-bearing) and orthogonal (vacancy-free) layers and differing from 

each other by stacking modes and interlayer structures. 

 

Hexagonal layer symmetry Layers with orthogonal symmetry 

Polyt.   Model
XRD 

(fig.) 
Notation Polyt. Model 

XRD 

(fig.) 
Notation 

1H       1a 5a AbCb’A’ C’b’AbC… 1O 1b AbCa’B’ B’c’AbC… 

3R1 2a  

  

     

    

        

 

  

  

     

5b, 8b AbCb’A’ B’a’CaBa’C’ A’c’BcAc’B’ C’b’AbC… 1M1 2c  AbC c’ CaB b’ BcA a’ AbC… 

3R1 2b 8a, 10a AbC b’/a’ CaB a’/c’ BcA c’/b’ AbC…  2d AbCa’A’ B’b’CaBc’C’ A’a’BcAb’B’ C’c’AbC… 

3R2 3a 6b, 10b AbCb’A’ A’c’BcAc’B’ B’a’CaBa’C’ C’b’AbC… 1M2 3d 7b AbCa’B’ C’a’BcAb’C’ A’b’CaBc’A’ B’c’AbC… 

3R2 3b 5c, 6a AbCb’B’ C’c’BcAc’C’ A’a’CaBa’A’ B’b’AbC… 1M2 3e 7a AbC a’ BcA b’ CaB c’ AbC… 

3R2 3c 6c AbCa’A’ A’a’BcAb’B’ B’b’CaBc’C’ C’c’AbC…

2H1 4a 5d, 8d, 9b AbCb’A’ A’b’CbAb’C’ C’b’AbC… 2O1 4c 7c, 9c AbC a’ CbA c’ AbC… 

2H1 4b 8c AbC a’/C’ CbA c’/A’ AbC… 2O1 4d 7d AbCa’B’ B’a’CbAc’B’ B’c’AbC… 

 5e, 9a 2O1 4e  AbC c’ CbA a’ AbC… 

2H2 5a AbCb’A’ B’c’AcBc’A’ C’b’AbC… 2O2 5d AbCa’B’ C’b’AcBa’C’ B’c’AbC… 
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2H2 5b  AbC b’ AcB c’ AbC… 2O2 5e  

    

      

  

    

AbCa’A’ C’b’AcBa’A’ B’c’AbC… 

2H2 5c AbCb’A’ C’c’AcBc’A’ B’b’AbC…   

3H1 6a 5f, 10c AbCb’A’ B’c’AcBc’A’ B’c’AcBc’A’ C’b’AbC…  

3H1 6b 5g, 10d AbC b’ AcB c’ AcB c’ AbC…   

3H2 7a  AbCb’A’ B’c’AcBc’A’ B’a’CaBa’C’ C’b’AbC…  
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Table 3. Atomic positions and site occupancies for the idealized structure models described in 

Table 2. 

 

Model  1a 2a 2b 
Polytype  1H 3R1 3R1 

XRD 
pattern 

Fig. 5a 5b, 8b 8a 

Mnlayer xa 0 0 0 
 ya 0 0 0 
 ζb 0 0 0 
 occ 0.833 0.833 0.925 

Olayer xa +/-0.333 +/-0.333 +/-0.333 
 ya 0 0 0 
 ζb +/-1.00 +/-1.00 +/-1.00 
 Occ 1 x 2 1 x 2 1 x 2 

Cat. Inter. Type Mn Mn K 
 xa 0.000 0.000 0 
 ya 0 0 0 
 ζb +/-2.15 +/-2.15 +/-3.55 
 Occ 0.0833 x2 0.0833 x2 0.15 x2 

H2O xa -/+0.333 -/+0.333 +/-0.333 
 ya 0 0 0 
 ζb +/-3.35 +/-3.35 +/-3.55 
 Occ 0.250 x2 0.250 x2 0.300 x2 

Interlayer 
shift  0.0 -0.333a -0.333a 

Notes: ax and y atomic positions are expressed in fraction of ideal C-centered 
unit-cell a and b parameters, respectively. x positions are given in projection 
normal to the ab plane. bPosition ζ along c is expressed in Å to emphasize 
the thickness of layer and interlayer polyhedra. Occupancy (occ) is given as 
the sum of all equivalent sites. 
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Table 3. (continued). 

 

Model  3a 3b 3c 3d 3e 
Polytype  3R2 3R2 3R2 1M2 1M2 

XRD 
pattern 

Fig. 8b, 10b 5c, 6a 6c 7b 7a 

Mnlayer xa 0 0 0 0 0 
 ya 0 0 0 0 0 
 ζb 0 0 0 0 0 
 Occ 0.833 0.833 0.833 0.833 1.000 

Olayer xa +/-0.333 +/-0.333 +/-0.333 +/-0.333 +/-0.333 
 ya 0 0 0 0 0 
 ζb +/-1.00 +/-1.00 +/-1.00 +/-1.00 +/-1.00 
 Occ 2 2 2 2 2 

Cat. Inter. Type Zn Zn Zn Ca K 
 xa 0.000 0.000 -/+0.333 -/+0.333 -/+0.333 
 ya 0 0 0 0 0 
 ζb +/-2.20 +/-1.77 +/-1.77 +/-2.30 +/-3.55 
 Occ 0.0833 x2 0.0833 x2 0.0833 x2 0.0833 x2 0.150 x2 

H2Oc xa -/+0.333 0 -/+0.333 0 -/+0.333 
 ya 0 0 0 0 0 
 ζb +/-3.55 +/-3.70 +/-3.70 +/-3.70 +/-3.55 
 Occ 0.250 x2 0.0833 x2 0.0833 x2 0.250 x2 0.300 x2 

Int. shift  +0.333a +0.333a +0.333a +0.333a +0.333a 
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Table 3. (continued). 

Model  4a 4b 4c 4d 5a 
Polytype  2H1 2H1 2O1 2O1 2H2 

XRD 
pattern 

Fig. 5d, 8d, 9b, 10d 8c 7c 7d 5e, 9a 

Mnlayer xa 0 0 0 0 0 
 ya 0 0 0 0 0 
 ζb 0 0 0 0 0 
 Occ 0.833 0.925 1.000 1.000 0.833 

Olayer xa +/-0.333 +/-0.333 +/-0.333 +/-0.333 +/-0.333 
 ya 0 0 0 0 0 
 ζb +/-1.00 +/-1.00 +/-1.00 +/-1.00 +/-1.00 
 Occ 2 2 2 2 2 

Cat. Inter. Type Mn K K Ca Mn 

 xa 0.000 -0.222 
0.111/0.111 

-0.222 
0.111/0.111 -/+0.333 0 

 ya 0 0 
+/-0.333 

0 
+/-0.333 0 0 

 ζb +/-2.15 3.55 3.55 +/-2.30 +/-2.15 
 Occ 0.0833 x2 0.100 x3 0.100 x3 0.0833 x2 0.0833 x2 

H2Oc xa -/+0.333 0.333 0.333 0 -/+0.333 
 ya 0 0 0 0 0 
 ζb +/-3.35 +3.55 +3.55 +/-3.70 +/-3.35 
 Occ 0.250 x2 0.600 0.600 0.250 x2 0.250 x2 

Mnlayer xa 0 0 0 0 0.333 
 ya 0 0 0 0 0 
 ζb 7.10 7.10 7.10 7.10 7.10 
 Occ 0.833 0.925 1.000 1.000 0.833 

Olayer xa +/-0.333 +/-0.333 +/-0.333 +/-0.333 -0.333/0.000 
 ya 0 0 0 0 0 
 ζb 6.10/8.10 6.10/8.10 6.10/8.10 6.10/8.10 6.10/8.10 
 Occ 2 2 2 2 2 

Cat. Inter. Type Mn K K Ca Mn 

 xa 0.000 0.222 
-0.111/-0.111 

0.222 
-0.111/-0.111 -/+0.333 0.333 

 ya 0 0 
+/-0.333 

0 
+/-0.333 0 0 

 ζb 4.95/9.25 10.65 10.65 4.80/9.40 4.95/9.25 
 Occ 0.0833 x2 0.100 x3 0.100 x3 0.0833 x2 0.0833 x2 

H2Oc xa -/+0.333 -0.333 -0.333 0 0.000/-0.333 
 ya 0 0 0 0 0 
 ζb 3.75/10.45 10.65 10.65 3.40/10.80 3.75/10.45 
 Occ 0.250 x2 0.600 0.600 0.250 x2 0.250 x2 

Int. shift  0 0 0 0 0 
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Table 3. (continued). 

Model  6a 7a 
Polytype  3H1 3H2 

XRD 
pattern 

Fig. 5f, 10c 5g 

Mnlayer xa 0 0 
 ya 0 0 
 ζb 0 0 
 occ 0.833 0.833 

Olayer xa +/-0.333 +/-0.333 
 ya 0 0 
 ζb +/-1.00 +/-1.00 
 occ 2 2 

Cat. Inter. Type Mn Mn 
 xa 0 0 
 ya 0 0 
 ζb +/-2.15 +/-2.15 
 occ 0.0833 x2 0.0833 x2 
    

H2Oc xa -/+0.333 -/+0.333 
 ya 0 0 
 ζb +/-3.35 +/-3.35 
 occ 0.250 x2 0.250 x2 

Mnlayer xa 0.333 0.333 
 ya 0 0 
 ζb 7.10 7.10 
 occ 0.833 0.833 

Olayer xa -0.333/0.000 -0.333/0.000 
 ya 0 0 
 ζb 6.10/8.10 6.10/8.10 
 occ 2 2 

Cat. Inter. Type Mn Mn 
 xa 0.333 0.333 
 ya 0 0 
 ζb 4.95/9.25 4.95/9.25 
 occ 0.0833 x2 0.0833 x2 

H2Oc xa 0.000/-0.333 0.000/-0.333 
 ya 0 0 
 ζb 3.75/10.45 3.75/10.45 
 occ 0.250 x2 0.250 x2 

Mnlayer xa 0.333 -0.333 
 ya 0 0 
 ζb 14.20 14.20 
 occ 0.833 0.833 

Olayer xa -0.333/0.000 0.333/0.000 
 ya 0 0 
 ζb 13.20/15.20 13.20/15.20 
 occ 2 2 

Cat. Inter. Type Mn Mn 
 xa 0.333 -0.333 
 ya 0 0 
 ζb 12.05/16.35 12.05/16.35 
 occ 0.0833 x2 0.0833 x2 
    

H2Oc xa 0.000/-0.333 0.000/0.333 
 ya 0 0 
 ζb 10.85/17.55 10.85/17.55 
 occ 0.250 x2 0.250 x2 

Int. shift  0 0 
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Table 4A. Calculated d(hkl) values for birnessite polytypes consisting of vacancy-bearing 

layers having a hexagonal layer symmetry (See Table 1). 

 

Polytype 1H 2H 3R/3H 
d(hkl) hkl hkl hkl 
2.468 200,110 200,110 200,110 
2.452 - - 201,111 
2.432 - 201,111 - 
2.404 - - 202,112 
2.331 201,111 202,112 203,113 
2.239 - - 204,114 
2.188 - 203,113 - 
2.136 - - 205,115 
2.026 202,112 204,114 206,116 
1.917 - - 207,117 
1.863  205,115 - 
1.810 - - 208,118 
1.708 203,113 206,116 209,119 
1.613 - - 20.10,11.10 
1.567  207,117 - 
1.523 - - 20.11,11.11 
1.441 204,114 208,118 20.12,11.12 
1.425 020,310 020,310 020,310 
1.422 - - 021,311 
1.418 - 021,311 - 
1.412 - - 022,312 
1.397 021,311 022,312 023,313 
1.376 - - 024,314 
1.365 - - 20.13,11.13 
1.364 - 023,313 - 
1.351 - - 025,315 
1.329 - 209,119 - 
1.322 022,312 024,314 026,316 
1.295 - - 20.14, 11.14 
1.290 - - 027,317 
1.274 - 025,315 - 
1.256 - - 028,318 
1.231 - 20.10,11.10 20.15,11.15 
1.221 023,313 026,316 029,319 

Notes: a and b unit-cell parameters are 4.936, and 2.850 Å, 
respectively. The minimum periodicity along the c* axis is 
7.10 Å for all polytypes. 
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Table 4B. Calculated d(hkl) values for birnessite polytypes consisting of vacancy-free layers 

having an orthogonal layer symmetry (See Table 1) 

Polytype 1O 1M1 1M2 2O1/2O2 
d(hkl) Hkl hkl Hkl hkl 
2.590 200   200 
2.571  20-1 201  
2.548    201/20-1 
2.517  200 200  
2.497 110   110 
2.480  110 110  
2.459    111/11-1 
2.433 201/20-1   202/20-2 
2.431  11-1 111  
2.356 111/11-1   112/11-2 
2.329  20-2 202  
2.272    203/20-3 
2.261  111 11-1  
2.214  201 20-1  
2.209    113/11-3 
2.154  11-2 112  
2.092 202/20-2   204/20-4 
2.042 112/11-2   114/11-4 
1.972  20-3 203  
1.930  112 11-2  
1.914    205/20-5 
1.875    115/11-5 
1.857  202 20-2  
1.821  11-3 113  
1.747 203/20-3   206/20-6 
1.718 113/11-3   116/11-6 
1.645  20-4 204  
1.621  113 11-3  
1.597    207/20-7 
1.574    117/11-7 
1.551  203 20-3  
1.530  11-4 114  
1.477 310 31-1 311 310 
1.469    311/31-1 
1.464 204/20-4   208/20-8 
1.447 114/11-4   118/11-8 
1.446 311/31-1 310/31-2 310/312 312/31-2 
1.425 020 020 020 020 
1.418    021/02-1 
1.410    313/31-3 
1.397 021/02-1 021/02-1 021/02-1 022/02-2 
1.384  20-5 205  
1.370  114 11-4  
1.365    023/02-3 
1.364 312/31-2 311 31-1 314/31-4 
1.363  31-3 313  
1.347    209/20-9 
1.334    119/11-9 
1.322 022/02-2 022/02-2 022/02-2 024/02-4 
1.312  204 20-4  
1.310    315/31-5 
1.299  11-5 115  
1.274    025/02-5 
1.253 313/31-3 312/31-4 314/31-2 316/31-6 
1.245 205/20-5   20.10/20.-10 
1.234 115/11-5   11.10/11.-10 
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Drits, Lanson, Gaillot 

1.221 023/02-3 023/02-3 023/02-3 026/02-6 
Notes: a and b unit-cell parameters are 5.180 and 2.850 Å, respectively. The 
minimum periodicity along the c* axis is 7.10 Å for all polytypes. The β angle is 
103.65 and 76.35° for 1M1 and 1M2 polytypes, respectively. 
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