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Introduction

Let C be a closed convex subset of a Hilbert space H and P C be the metric projection from H onto C. A mapping Q : C → C is said to be a strict pseudocontraction if there exists a constant 0 ≤ κ < 1 such that :

Qx -Qy 2 ≤ x -y 2 + κ (I -Q)x -(I -Q)y 2 , (1) 
for all x, y ∈ C. A mapping Q for which [START_REF] Acedo | Iterative methods for strict pseudo-contractions in hilbert spaces[END_REF] holds is also called a κ-strict pseudocontraction. As pointed out in [START_REF] Acedo | Iterative methods for strict pseudo-contractions in hilbert spaces[END_REF] iterative methods for finding a common element of the set of fixed points of strict pseudocontractions are far less developed than iterative methods for nonexpansive mappings (κ = 0) [START_REF] Bauschke | The approximation of fixed points of compositions of nonexpansive mappings in hilbert space[END_REF][START_REF] Goebel | Topics in Metric Fixed Point Theory[END_REF][START_REF] Halpern | Fixed points of nonexpanding maps[END_REF][START_REF] Kim | Strong convergence of modified mann iterations for asymptotically nonexpansive mappings and semigroups[END_REF][START_REF] Lions | Approximation de points fixes de contractions[END_REF][START_REF] Nakajo | Strong convergence theorems for nonexpansive mappings and nonexpansive semigroups[END_REF][START_REF] Reich | Weak convergence theorems for nonexpansive mappings in banach spaces[END_REF][START_REF] Shioji | Strong convergence of approximated sequences for nonexpansive mappings in banach spaces[END_REF][START_REF] Wittmann | Approximation of fixed points of nonexpansive mappings[END_REF][START_REF] Xu | Iterative algorithms for nonlinear operators[END_REF][START_REF] Xu | Strong convergence of an iterative method for nonexpansive mappings and accretive operators[END_REF]. We will, in section 2 of this article, consider the algorithm 1 studied in [START_REF] Acedo | Iterative methods for strict pseudo-contractions in hilbert spaces[END_REF] and we will show that this algorithm can be viewed as a T -class algorithm as defined and studied in [START_REF] Bauschke | A weak-to-strong convergence principle for fejér-monotone methods in hilbert spaces[END_REF]. Section 3 is devoted to the case κ = 1 for which previous algorithm cannot be used. A mapping A for which [START_REF] Acedo | Iterative methods for strict pseudo-contractions in hilbert spaces[END_REF] holds with κ = 1 is called pseudocontractive. We will see that pseudocontractive mappings are related to monotone Lipschitz continuous mappings. A mapping A :

C → H is called monotone if Au -Av, u -v ≥ 0 for all (u, v) ∈ C 2 .
A is called k-Lipschitz continuous if there exists a positive real number k such that Au -Av ≤ k uv for all (u, v) ∈ C 2 .

Let the mapping A : C → H be monotone and Lipschitz continuous. The variational inequality problem is to find a u ∈ C such that

Au, v -u ≥ 0 for all v ∈ C .
The set of solutions of the variational inequality problem is denoted by V I(C, A).

Assume that a mapping Q : C → C is pseudocontractive and k-Lipschitzcontinuous then the mapping A = I -Q is monotone and (k + 1)-Lipschitzcontinuous and moreover

F ix(Q) = V I(C, A) [9, Theorem 4.5] where F ix(Q) is the set of fixed points of Q, that is F ix(Q) def = {x ∈ C : Qx = x} (2) 
Thus, to cover the case κ = 1, algorithms which aims at computing P V I(C,A) x for a monotone and k-Lipschitz-continuous mapping A are investigated. We will, in section 3 mainly use results from [START_REF] Nadezhkina | strong convergence theorem by a hybrid method for nonexpansive mappings and lipschitz-continuous monotone mappings[END_REF] to prove that the general algorithm that they use can be rephrased in a slightly extended T -class algorithm framework.

T -class iterative algorithm for a sequence of κ-strict pseudocontractions

Let (Q n ) n≥0 be a sequence of κ-strict pseudocontractions, κ ∈ [0, 1) and (α n ) n≥0 a sequence of real numbers chosen so that α n ∈ (κ, 1). We consider as in [START_REF] Acedo | Iterative methods for strict pseudo-contractions in hilbert spaces[END_REF] the following algorithm : Algorithm 1 Given x 0 ∈ C, we consider the sequence (x n ) n≥0 generated by the following algorithm :

y n = α n x n + (1 -α n )Q n x n , C n def = z ∈ C | y n -z 2 ≤ x n -z 2 -(1 -α n )(α n -κ) x n -Q n x n 2 , D n def = {z ∈ C | x n -z, x 0 -x n ≥ 0} , x n+1 = P (Cn∩Dn) x 0 .
We will show that this algorithm belong to the T -class algorithms as defined in [START_REF] Bauschke | A weak-to-strong convergence principle for fejér-monotone methods in hilbert spaces[END_REF] and deduce its strong convergence to P F x 0 when F = ∅ and where

F def = ∩ n≥0 F ix(Q n ).
For (x, y) ∈ H 2 define the mappings H as follows :

H(x, y) def = {z ∈ H | z -y, x -y ≤ 0} (3) 
and denote by Q(x, y, z) the projection of x onto H(x, y) ∩ H(y, z). Note that H(x, x) = H and for x = y, H(x, y) is a closed affine half space onto which y is the projection of x.

Lemma 1 The sequence generated by Algorithm 1 coincide with the sequence given by x n+1 = Q(x 0 , x n , T n x n ) with :

T n (x) def = x + R n y 2 + 1 2 κ -α n 1 -α n (x-R n y), and R n (x) def = α n x+(1-α n )Q n (x) .
(4) Moreover, we have :

2T n -I = κI + (1 -κ)Q n x . (5) 
Proof :Let κ ∈ [0, 1), α ∈ (κ, 1),

y def = αx + (1 -α)
Qx for a κ-strict pseudocontractions Q and define Γ(x, y) as follows :

Γ(x, y) def = z ∈ H | y -z 2 ≤ x -z 2 -(1 -α)(α -κ) x -Qx 2 .
(6) We first prove that Γ(x, y) = H(x, T x) where T is defined by equation [START_REF] Combettes | Equilibrium programming in hilbert spaces[END_REF].

y -z 2 -x -z 2 ≤ -(1 -α)(α -κ) x -Qx 2 ⇔ y -z, y -z -x -z 2 ≤ -(1 -α)(α -κ) x -Qx 2 ⇔ y -x, y -z + x -z, y -z -x -z 2 ≤ -(1 -α)(α -κ) x -Qx 2 ⇔ y -x, y -z + x -z, y -x ≤ -(1 -α)(α -κ) x -Qx 2 ⇔ y -x, y -z + x -z, y -x ≤ (α -κ) y -x, x -Qx ⇔ y -x, y + x -2z + (κ -α)(x -Qx) ≤ 0 ⇔ y -x, y + x -2z + κ -α 1 -α (x -y) ≤ 0 which gives : z - x + y 2 - 1 2 κ -α 1 -α (x -y), x -y ≤ 0 and since we have x -T x = (1/2)(1 -κ-α 1-α )(x -y) with (1 -κ-α 1-α ) > 0 this is equivalent to z -T x, x -T x ≤ 0. For y n = α n x n + (1 -α n )Q n x n , we thus obtain that C n = Γ(x n , y n ) = H(x n , T n x n )
and since by definition of H we have D n = H(x 0 , x n ) the result follows. The last statement of the lemma ( 5) is obtained by simple rewrite from equation ( 4)

We prove now that T n for all n ∈ N belongs to the T class of mappings.

Definition 2 T def = {T : H → H | domT = H and (∀x ∈ H) F ix(T ) ⊂ H(x, T x)}
Lemma 3 for all n ∈ N and T n defined by equation (4) we have T n ∈ T .

Proof :Using Lemma 1 we have 2T n -I = κI + (1 -κ)Q n . If we can prove that when Q is a κ-strict pseudocontraction the mapping κI + (1 -κ)Q is quasi-nonexpansive then the result will follow from [3, Proposition 2.3 (v)]. For (x, y) ∈ H 2 we have : κx + (1 -κ)Qx -y -(1 -κ)y 2 = κ(x -y) + (1 -κ)(Qx -Qy) 2 = κ x -y 2 + (1 -κ) Qx -Qy 2 -κ(1 -κ) x -y -(Qx -Qy) 2 = κ x -y 2 + (1 -κ) Qx -Qy 2 -κ(1 -κ) x -y -(Qx -Qy) 2 ≤ κ x -y 2 + (1 -κ) Qx -Qy 2 -κ (I -Q)x -(I -Q)y 2 ≤ κ x -y 2 + (1 -κ) x -y 2 = x -y 2
Thus the mapping κI+(1-κ)Q is nonexpansive and thus also quasi-nonexpansive.

Definition 4 [3] A sequence (T n ) n≥0 such that T n ∈ T is coherent if for every bounded sequence {z n } n≥0 ∈ H there holds : n≥0 z n+1 -z n 2 < ∞ n≥0 z n -T n z n 2 < ∞ ⇒ M(z n ) n≥0 ⊂ ∩ n≥0 F ix(T n ) (7) 
where M(z n ) n≥0 is the set of weak cluster points of the sequence (z n ) n≥0 .

Lemma 5 Let (Q n ) n≥0 be a sequence of κ-strict pseudocontraction such that F ix(Q n ) = F which does not depends on n and for each subsequence σ(n) we can find a sub-sequence µ(n

) such that Q µ(n) → Q with F ix(Q) = F and Q is a κ-strict pseudocontraction.
Then, the sequence (T n ) n≥0 given by (4) is coherent.

Proof : Suppose that (z n ) n≥0 is a bounded sequence such that the left hand side of ( 7) is satisfied. Using [START_REF] Goebel | Topics in Metric Fixed Point Theory[END_REF] we have

z n -T n z n = (1 -κ)/2 z n -Q n z n and F ix(T n ) = F ix(Q n ). Thus, verifying the coherence of (T n ) n≥0 or the coherence of (Q n ) n≥0 is equivalent. Consider now u ∈ M(z n ) n≥0 , by hypothesis z n -Q n z n → 0. Let σ(n) a subsequence such that z σ(n) ⇀ u, we extract a subsequence µ(n) such that Q µ(n) → Q and we thus obtain that z µ(n) ⇀ u and z µ(n) -Qz µ(n) → 0. Now, if Q is a κ-strict pseudocontraction, using [1, Proposition 2.6] we have that I -Q is demi-closed and thus u ∈ F ix(Q) = F . Remark 6 Given an integer N ≥ 1, let, for each 1 ≤ i ≤ N , S i : C → C be a κ i -strict pseudocontraction for some 0 ≤ κ i < 1. Let κ def = max{κ i : 1 ≤ i ≤ N }. Assume the common fixed point set F def = ∩ N i=1 F ix(S i ) of {S i } is nonempty.
Assume also for each n, {λ n,i } i=1,...,N is a finite sequence of positive numbers such that N i=1 λ n,i = 1 and inf n λ n,i > 0 for all 1 ≤ i ≤ N . Let the mapping Q n : C → C be defined by :

Q n x def = N i=1 λ n,i S i x . (8) 
Then using [START_REF] Acedo | Iterative methods for strict pseudo-contractions in hilbert spaces[END_REF], for all n ∈ N, Q n is a κ-strict pseudocontraction and F ix(Q n ) = F . Moreover for each subsequence λ i,(σn) we can extract a subsequence λ i,µ(n) and (λ i ) 1≤i≤N ∈ (0, 1) N such that λ i,µ(n) → λ i for all 1 ≤ i ≤ N . We thus have Q µ(n) → i λ i S i and using previous lemma the sequence (T n ) n≥0 is coherent.

Given T n ∈ T we can also consider [START_REF] Bauschke | A weak-to-strong convergence principle for fejér-monotone methods in hilbert spaces[END_REF] the following algorithm :

Algorithm 2 Given ǫ ∈ (0, 1] and x 0 ∈ C we consider the sequence given by the iterations

x n+1 = x n + (2 -ǫ)(T n x n -x n ).
Gathering previous result the strong convergence of Algorithm 1 to P F x 0 and the weak convergence of Algorithm 2 is obtained by [3, Theorem 4.2] that we recall now : 

Theorem 7 [3, Theorem 4.2] Suppose that (T n ) n≥0 is coherent. Then (i) if F = ∅,

T -class iterative algorithm for a sequence of pseudo contractions

Let F be a closed convex of H we define U F as follows :

U F def = {T : H → H | domT = H and (∀x ∈ H)F ⊂ H(x, T x)} . (9) 
Of course we have

T ∈ T ⇔ T ∈ U F ix(T ) . A mapping Q : H → H is said F -quasi-nonexpansive if ∀(x, y) ∈ H × F Qx -y ≤ x -y (10) 
and we can characterize elements of U F using the following easy lemma :

Lemma 9 2T -I is F -quasi-nonexpansive is equivalent to T ∈ U F .
Proof :The proof follows from the equality [3, (2.6)] :

(∀(x, y) ∈ H 2 ) 4 y -T x, x -T x = (2T -I)x -y 2 -x -y 2 . ( 11 
)
Definition 10 A sequence {T n } n≥0 ⊂ U F is F -coherent if for every bounded sequence {z n } n≥0 ∈ H there holds :

n≥0 z n+1 -z n 2 < ∞ n≥0 z n -T n z n 2 < ∞ ⇒ M(z n ) n≥0 ⊂ F (12) 
We propose now the following extension of [3, Theorem 4.2] for the two algorithms 2 and 3.

Algorithm 3 Given x 0 ∈ C we consider the sequence given by the iterations Proof :The result is very similar to [3, Theorem 2.9] and a careful reading of the proof and remarks in [START_REF] Bauschke | A weak-to-strong convergence principle for fejér-monotone methods in hilbert spaces[END_REF][START_REF] Combettes | Equilibrium programming in hilbert spaces[END_REF] leads to the conclusion that it remains true as stated here.

x n+1 = Q(x 0 , x n , T n x n ) Theorem 11 Suppose that (T n ) n≥0 is F -coherent for a closed convex F Then (i) if F = ∅,
We give now a typical application of this theorem. Definition 12 For A : C → C a monotone and k-Lipschitz mapping, let T λ : H × H → H the mapping defined by T λ (x, y) def = P C (x -λAy). We also define T (1)

λ x def = T λ (x, x) and T (2) λ x def = T λ (x, T λ (x, x)) = T λ (x, T (1) λ x).
We assume that λk ∈ [a, b] ⊂ (0, 1) and consider (λ n ) n≥0 a sequence of real numbers such that λ n k ∈ [a, b]. To simplify the notations we will use T 

n (resp. T (2) n ) for denoting T (1) λn (resp. T (2) λn ). Let F def = V I(C, A), It is known that F is closed convex and that we have F ix T (1) λ = F . It is easy to see that F ⊂ F ix(T (2)
λ ) but the inclusion may be strict and thus we do not expect the mapping T

(2) λ to be quasi-nonexpansive. Following inequalities contained in the proof of [START_REF] Nadezhkina | strong convergence theorem by a hybrid method for nonexpansive mappings and lipschitz-continuous monotone mappings[END_REF]Theorem 3.1] we obtain Fquasi-nonexpansive property as exposed now.

Lemma 13 T

(2)

λ is F -quasi-nonexpansive where F def = V I(C, A) or using Lemma 9 (T (2) λ + I)/2 ∈ U F . Proof : Let y = T (1)
λ (x) and u ∈ V I(C, A). We use the fact that for all x ∈ H and y ∈ C P C x can be characterized as follows :

x -y 2 ≥ x -P C x 2 + y -P C x 2 (13) 
and since A is a monotone mapping following the steps of the proof of [9, Theorem 3.1] that we reproduce here we obtain :

T (2) λ (x) -u 2 ≤ x -λAy -u 2 -x -λAy -T (2) 
λ (x) 2 = x -u 2 -x -T (2) 
λ (x) 2 + 2λ Ay, u -T (2) 
λ (x) = x -u 2 -x -T (2) 
λ (x) 2 +2λ( Ay -Au, u -y + Au, u -y + Ay, y -T (2) 
λ (x) ) ≤ x -u 2 -x -T (2) 
λ (x) 2 + 2λ Ay, y -T (2) 
λ (x) = x -u 2 -x -y 2 -2 x -y, y -T (2) λ (x) -y -T (2) λ (x) 2 +2λ Ay, y -T (2) λ (x) 
= x -u 2 -x -y 2 -y -T (2) λ (x) 2 +2 
x -λAyy, T

Further, since y = P C (x -λAx) and A is k-Lipschitz-continuous, we have

x -λAyy , T

λ (x) -y = x -λAx -y, T (2) 
λ (x)y

+ λAx -λAy, T (2) 
λ (x) -y ≤ λAx -λAy, T (2) 
λ (x) -y ≤ λk x -y T (2) 
λ (x)y .

So, we have ;

T (2) λ (x) -u 2 ≤ x -u 2 -x -y 2 -y -T (2) 
λ (x) 2 + 2λk x -y T (2) λ (x) -y ≤ x -u 2 + (λ 2 k 2 -1) max x -y 2 , T (2) 
λ (x) -y 2 (14) 
≤ x -u 2 .
Corollary 14 If we consider

R def = αI + (1 -α)S
where S is a non-expansive mapping and define F = F ix(S) ∩ V I(C, A) then we obtain immediately that R • T Proof :Let (y n ) n≥0 a bounded sequence satisfying the left hand side of equation [START_REF] Shioji | Strong convergence of approximated sequences for nonexpansive mappings in banach spaces[END_REF] and ϕ ∈ M(y n ) n≥0 . We can find a subsequence y σ(n) which converges weakly to ϕ. For simplicity, we use the notation y n for the subsequence and since it satisfies the left hand side of equation [START_REF] Shioji | Strong convergence of approximated sequences for nonexpansive mappings in banach spaces[END_REF] we have y n -Q n y n → 0. By definition of Q n we also have y n -T

(2) n y n → 0 and thus T

(2) n y n ⇀ u From equation ( 14) we obtain :

T (2) λ x -u 2 ≤ x -u 2 + (λ 2 k 2 -1) max x -T (1) λ x 2 , T (2) 
λ x -T (1) 
λ x 2 Thus : max x -T (1) λ x 2 , T (2) 
λ x -T

(1)

λ x 2 ≤ 1 1 -λ 2 k 2 x -u 2 -T (2) λ x -u 2 ≤ K x -u + T (2) λ x -u x -T (2) 
λ x (15) 
Using Lemma 13, the sequence T

n y n is bounded and we thus have from the previous inequality y n -T vϕ, w = lim n→∞ v -T (2) n y n , w ≥ 0 .

Thus we obtain that vϕ, w ≥ 0 which gives ϕ ∈ T -1 (0) since T is maximal monotone and then ϕ ∈ F = V I(C, A). Thus Q n is F -coherent.

Corollary 16 Let (R n ) n≥0 a sequence of nonexpansive mappings such that for each subsequence σ(n) it is possible to extract a subsequence µ(n) and find R µ such that R µ(n) y n → n→∞ R µ y n for every bounded sequence (y n ) n≥0 with F ix R µ = S a fixed set such that S ∩ S = ∅. Then, we also have that

Q n = 1/2((R n • T (2) n ) + I) is F ∩ S-coherent. Proof :Let u ∈ S ∩ S, since R n is nonexpansive we have : R n • T (2) λ -u ≤ T (2)
λu , Thus equation ( 15) can be replaced by :

R n • T (2) λ x -u 2 ≤ x -u 2 + (λ 2 k 2 -1) max x -T (1) λ x 2 , T (2) 
λ x -T

λ x 2 proceeding as in previous lemma we obtain that for (y n ) n≥0 a bounded sequence satisfying the left hand side of equation [START_REF] Shioji | Strong convergence of approximated sequences for nonexpansive mappings in banach spaces[END_REF] for the sequence of mapping R n • T

(2) n we also have up to subsequences that y n -T

n y n → 0 and

T (2) n y n -T (1) 
n y n → 0 and thus also y n -T

n y n → 0. Thus, as before, if ϕ is a weak limit of (y n ) n≥0 we have ϕ ∈ F . Moreover, we have :

T (2) n y n -R µ ν ≤ T (2) n y n -y n + y n -R n • T (2) n y n + R n • T (2) n y n -R µ • T (2) n y n + T (2) n y n -ν (16) Thus lim inf n →∞ T (2) n y n -R µ ν ≤ lim inf n →∞ T (2) n y n -ν
which by Opial's condition is only possible if R µ ν = ν. We conclude that ν ∈ F ∩ S which ends the proof.

Lemma 17 [START_REF] Nadezhkina | strong convergence theorem by a hybrid method for nonexpansive mappings and lipschitz-continuous monotone mappings[END_REF] Let T : H → H the mapping defined by T v def = Av + N C v when v ∈ C and T v = 0 when v ∈ C where N C is the normal cone to C at v ∈ C. Let G(T ) be the graph of T and (v, w) ∈ G(T ). Then for x ∈ C we have the following inequality :

v -T (2) λ x, w ≥ v -T (2) λ x, AT (2) 
λ x -AT (1) λ x -v -T (2) λ x, T (2) 
λ xx λ

Proof :The proof of this inequality is given in [START_REF] Nadezhkina | strong convergence theorem by a hybrid method for nonexpansive mappings and lipschitz-continuous monotone mappings[END_REF], we reproduce it for the sake of completeness. The mapping T is maximal monotone, and 0 ∈ T v if and only if v ∈ V I(C, A). Let (v, w) ∈ G(T ). Then, we have w ∈ T v = Av + N C v and hence w -Av ∈ N C v. So, we have vt, w -Av ≥ 0 for all t ∈ C . On the other hand, from T 

λ x, Av ≥ v -T (2) 
λ x, Avv -T

λ x, T

λ x -x λ + AT (2) 
λ x = v -T (1) 
λ x, Av -AT

(2)

λ x + v -T (2) λ x, AT (2) 
λ x -AT (1) 
λ x -v -T (2) λ x, T (2) 
λ x -x λ ≥ v -T (2) λ x, AT (2) 
λ x -AT

(1)

λ x -v -T (2) λ x, T (2) 
λ xx λ

Remark 8

 8 then every orbit of Algorithm 2 converges weakly to a point in F (ii) For an arbitrary orbit of Algorithm 1, exactly one of the following alternatives holds :(a) F = ∅ and x n → n P F x 0 . (b) F = ∅ and x n → n +∞.(c) F = ∅ and the algorithm terminates. Note that using previous theorem and Remark 6 we obtain an other proof of[START_REF] Acedo | Iterative methods for strict pseudo-contractions in hilbert spaces[END_REF] Theorem 5.1]. In fact the proofs are very similar but we just hilite here the role played by T -class sequences.

  then every orbit of Algorithm 2 converges weakly to a point in F (ii) For an arbitrary orbit of Algorithm 3, exactly one of the following alternatives holds : (a) F = ∅ and x n → n P F x 0 . (b) F = ∅ and x n → n +∞. (c) F = ∅ and the algorithm terminates.

  is a F -quasi-nonexpansive mapping.Proof :Let u ∈ F then u = Ru and we have R • T (2) λu ≤ T (2)λu and the previous lemma ends the proof.Lemma 15 The sequence Q n = 1/2(T (2) n + I) is F -coherent.

  n y n → 0. Using next lemma (Lemma 17) we therefore obtain that for (v, w) ∈ G(T ) :

( 2 )

 2 λ (x) = P C (x -λAT (1) λ (x)) and v ∈ C we have x -λAy -T (2) λ (x), T (2) λ (x)v ≥ 0 and hence v -T (2) λ (x), T (2) λ (x)xλ + AT (1) λ x ≥ 0. From vt, w -Av ≥ 0 for all t ∈ C and T (2) λ (x) ∈ C, we have v -T (2) λ x, w ≥ v -T

We end this section by gathering previous results in a main theorem. The proof is immediate by applying Theorem 11. The first statement is a new result. The second statement when applied to the sequence