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1 CERMICS, Ecole Nationale des Ponts et Chaussées, Université Paris-Est, 77455 Marne la
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Abstract

We propose and study a new approach to residual a posteriori error estimation in the dis-
continuous Galerkin finite element method. The main idea, which consists of constructing an
H(div)-conforming Raviart–Thomas flux on the basis of the conservative discontinuous Galerkin
side fluxes, is first exposed for a pure diffusion second-order elliptic problem. In this case, the
classical elementwise residual can be transformed into a higher-order term (sometimes consid-
ered separately and called “data oscillation term”), thus fully taking advantage of the spectral
degrees of freedom within each element available in the discontinuous Galerkin method. More-
over, the classical estimator based on normal gradient jumps is simultaneously replaced by a
comparison of the original and reconstructed diffusive fluxes. Finally, our error bound consists
of one last estimator which measures the nonconformity of the actual discrete solution by com-
paring it to its so-called Oswald interpolate. In the second part of the paper, we extend our
results to convection–diffusion–reaction problems, where we introduce an additional convective
flux reconstruction. Our estimators are based on an abstract upper bound which is sharp since
it is established for arbitrary conforming reconstructions of the discrete solution itself and of
its diffusive and convective fluxes. They yield a guaranteed upper bound since all constants
are evaluated, are locally efficient, represent local lower bounds of the classical residual esti-
mators, and numerical examples presented at the end of the paper confirm their accuracy and
robustness. Incidentally, the H(div)-conforming Raviart–Thomas diffusive and convective flux
reconstructions are of independent interest.

Keywords: convection–diffusion–reaction equation, inhomogeneous and anisotropic diffusion,
convection dominance, discontinuous Galerkin finite element method, a posteriori error estimates
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1 Introduction

Let us consider a convection–diffusion–reaction problem

−∇·(K∇u) + β·∇u+ µu = f in Ω, (1.1a)

u = 0 on ∂Ω, (1.1b)
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where Ω ⊂ R
d, d = 2, 3, is a polygonal (polyhedral) domain, K is a diffusion tensor, β is a velocity

field, µ is a reaction function, and f is a source term. Our intention is to study a posteriori energy
norm error estimates for the approximation of (1.1a)–(1.1b) by interior-penalty discontinuous
Galerkin methods with the twofold objective to derive estimates without undetermined constants
and to analyze carefully the robustness of the estimates in several practically important situations,
e.g., diffusion inhomogeneities, dominant convection, or dominant reaction.

For the pure diffusion problem ((1.1a)–(1.1b) with β = µ = 0), a posteriori error estimates
have now been presented in the literature for all major numerical methods. In particular, for the
discontinuous Galerkin (DG) one, residual-based energy norm error estimators can be found in
the work of Karakashian and Pascal [16], Becker et al. [6], and Houston et al. [15]. New results,
closer in spirit to the present approach since they avoid undetermined constants, appeared in the
finalization phase of this paper; they include the works of Ainsworth [3], Kim [17, 18], Lazarov et
al. [21], Cochez-Dhondt and Nicaise [9], and Ern and Stephansen [13].

Although the residual-based energy norm error estimates in [16, 6, 15] are proved to be both
reliable (yield an upper bound on the difference between the exact and approximate solution) and
locally efficient (give local lower bounds for the error as well), there is, in our opinion, still room
for improvement. First of all, in all these estimates, various undetermined constants appear. As
such, the derived estimators should rather be called error indicators, since they are fully usable for
the usual practice of identifying the parts of the computational domain with insufficient precision,
but not for the actual control over the error. Hence, the first motivation for our work was to
remedy this inconvenience. Secondly, in all these references, the residual estimator in an element
T is given by cKhT ‖R(uh)‖0,T , where R(uh) := f + ∇·(K∇huh) is the elementwise residue, hT

is the element diameter, and the constant cK depends only on K (the modifications of [15] do
not influence the basic ideas of what follows). In particular, for piecewise constant K and a DG
scheme employing first-order polynomials, this reduces to cKhT ‖f‖0,T . We believe that this is not
an optimal estimator. In contrast to this situation, the a posteriori error estimates for mixed finite
element or finite volume methods recently derived in [30, 31, 32] lead to residual estimators of the
form cKhT ‖f − Πk(f)‖0,T , where Πk is the L2-orthogonal projection onto piecewise polynomials
of degree k (k = 0 for finite volumes and it is the scalar unknown polynomial degree for mixed
finite elements), which is obviously of one order better for k = 0 as soon as f possess an H1(T )
regularity. This result is based on the elementwise conservativity of these methods. Hence, a
second motivation for our work was to extend this result to DG methods as well, since these
methods are likewise locally conservative. A first result in this direction can be found in [13]
where the fact that piecewise constant functions are contained in the DG finite element space
is exploited to improve the classical residual estimator to cKhT ‖R(uh) − Π0(R(uh))‖0,T , which
reduces to cKhT ‖f −Π0(f)‖0,T if first-order polynomials are used. Finally, it is quite usual in the
a posteriori error estimation literature to encounter a residual estimator in each element of the form
cKhT ‖R(uh)‖0,T and a separate “data oscillation term” cKhT ‖f − Πk(f)‖0,T . In our approach,
these two terms are merged into a single residual estimator of the form cKhT ‖f − Πk(f)‖0,T .

One obtains cKhT ‖R(uh)‖0,T as the residual term when the elliptic operator is applied directly
to the discrete solution uh, after an integration by parts has been performed. Since the diffusive
flux −K∇huh of the approximate DG solution uh is not in H(div,Ω), there also appears a so-called

mass balance estimator, typically of the form cKh
1/2
F ‖nt

F [[K∇huh]]‖0,F for each face F , where hF

is the diameter of F and where [[·]] is the jump operator given by equation (2.1) below. By such
a direct approach, one in some sense ignores the local conservativity imbedded in DG schemes.
The basic idea of our approach is to first introduce an H(div,Ω)-conforming reconstruction of the
diffusive flux th. By suitably choosing th in Raviart–Thomas spaces, used extensively in the mixed
finite element method, cf. [7, 27], the mass balance estimator is replaced by a comparison of the
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original and reconstructed diffusive fluxes of the form ‖K1/2∇uh + K−1/2th‖0,T . We next prove
that this new estimator represents a lower bound for the original mass balance estimator plus a
part of the classical nonconformity estimator (see below), which, together with the results of the
previous paragraph, closes the improvement circle. Lastly, this locally computable estimate is only
one possible realization of the general estimator inft∈H(div,Ω) ‖K1/2∇huh + K−1/2t‖0,Ω that we
show to be optimally efficient.

The last typical DG residual estimator measures the nonconformity in the approximate so-

lution uh and usually takes the form cKh
−1/2
F ‖[[uh]]‖0,F for each face F . However, it appears

unnecessary at the estimation stage to go up to this form. The term ‖K1/2∇(uh − IOs(uh))‖0,T ,
with IOs(uh) the Oswald H1

0 (Ω)-conforming interpolate of the original nonconforming uh, is the
usual starting point, it is a lower bound for the above one, and presents the additional advan-
tages that it does not feature any undetermined interpolation constant and that it yields a di-
rect (and correct) dependence on K. Again, the completely general form for this estimator is
infs∈H1

0
(Ω)‖K1/2∇h(uh − s)‖0,Ω.

Estimators based on comparisons with reconstructed H(div)-conforming fluxes in the continu-
ous finite element method can be traced back to the ideas of Prager and Synge [24] and include,
e.g., the works of Ladevèze [19], Ladevèze and Leguillon [20], and Destuynder and Métivet [10].
The estimates [3, 17, 18, 21, 9] for DG discretizations of pure diffusion problems develop this way.
In particular, Ainsworth [3] gives a fully computable estimate for the symmetric interior-penalty
DG scheme in the case d = 2, k = 1, and K = Id (actually, the reconstructed flux th is not directly
computed). Kim in [17] uses an H(div)-conforming flux reconstruction and gives an estimate for
the original unknown and this reconstruction for d = 2. Next, in [18], he presents a result similar
to that of Cochez-Dhondt and Nicaise [9] and to the one given here for the pure diffusion case.
Finally, Lazarov et al. [21] present essentially numerical experiments for yet a similar estimator.

The setting of the present paper includes a large class of interior-penalty DG schemes. We treat
the complete convection–diffusion–reaction case and present an abstract framework, established
for arbitrary conforming reconstructions of the discrete solution itself and of its diffusive flux and
convective fluxes, and show that this framework is optimal. Our estimates are given in the natu-
ral energy seminorm for the DG approximate solution uh, which is the energy norm for the flux
−K∇huh. We then prove rigorously the local efficiency of the derived estimators, this time in a
norm including a term with jumps. We also pay a special attention to the case of inhomogeneous
and anisotropic diffusion tensor K; it turns out that some fully robust results with respect to
diffusion inhomogeneities can be obtained for our new diffusive flux estimator for a certain class of
DG schemes such as those introduced by Ern et al. [14]. These schemes use diffusivity-dependent
weighted averages to formulate the consistency terms and the harmonic average of normal diffu-
sivity to penalize jumps at interfaces. Next, our error estimates, as well as the upper and global
lower bounds within the abstract framework, do not require the mesh to be shape-regular and
the data can be as general functions as possible (the usual requirement of shape-regularity and of
polynomial data, or, equivalently, the introduction of higher-order oscillation terms, is only needed
for the local efficiency proofs). Also, no saturation assumption, no convexity of Ω, no additional
regularity of the weak solution of (1.1a)–(1.1b), and no Helmholtz decomposition are needed in
our setting. Finally, we have only considered the homogeneous Dirichlet boundary condition for
the sake of simplicity; extensions to inhomogeneous Dirichlet and Neumann boundary conditions
are possible using the concepts of, e.g., [9, 17, 30]. A similar remark applies also for nonmatching
meshes, cf., e.g., [30], while constructing the Oswald interpolate as well as the conforming diffusive
and convective flux reconstructions on a matching refinement of the given nonmatching grid.

The paper is organized as follows: we first introduce the schemes, notation, assumptions,
and the continuous problems in Section 2. We then present the details for the pure diffusion
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problem. First, in Section 3, we state both the abstract (containing the above-discussed infimum
over continuous spaces) and locally computable (using particular conforming scalar and diffusive
flux reconstructions) forms of our a posteriori error estimates. In Section 4, we then show that our
abstract framework gives a quasi-optimal global efficiency of

√
2 and that the locally computable

estimate is optimal up to inhomogeneities and anisotropies. An abstract a posteriori error estimate
for the reconstructed diffusive flux itself, which allows to improve the global efficiency to the optimal
constant 1, is then given in Section 5. In Sections 6 and 7, we then extend the results of the pure
diffusion case to the full convection–diffusion–reaction one. While the abstract upper bound stays
quasi-optimal with global efficiency of 2, the presented choice of discrete reconstructions leads
only to semi-robust estimates in this case, with local efficiency depending on local variations in the
coefficients and on the local Péclet number. Finally, numerical experiments of Section 8 confirm
the accuracy and robustness of our estimators.

2 Notation, assumptions, and continuous and discrete problems

2.1 Notation

Let {Th}h>0 be a family of triangulations of the domain Ω, consisting of simplices (triangles if
d = 2, tetrahedra if d = 3). A generic element in Th is denoted by T , hT stands for the diameter
of T , and nT for its outward unit normal. We suppose that Th is matching in the sense that it
contains no “hanging nodes”, i.e., such that if T, T ′ ∈ Th, T 6= T ′, then T ∩ T ′ is either an empty
set or their common face, edge, or vertex. For the local efficiency proofs of our estimators, we
will later need the assumption that Th is shape-regular in the sense that there exists a constant
κT > 0 such that minT∈Th

|T |/hd
T ≥ κT for all h > 0. We will be using the “broken Sobolev space”

Hs(Th),
Hs(Th) := {v ∈ L2(Ω); v|T ∈ Hs(T ) ∀T ∈ Th},

along with its DG approximation space

V k
h := {vh ∈ L2(Ω); vh|T ∈ Pk(T ) ∀T ∈ Th},

where Pk(T ) is the set of polynomials of degree less than or equal to k on an element T , k ≥ 1. The
L2-scalar product and its associated norm on a region R ⊂ Ω are indicated by the subscript 0, R;
shall R coincide with Ω, this subscript will be dropped off. For s ≥ 1, a norm (seminorm) with
the subscript s,R designates the usual norm (seminorm) in Hs(R). Finally, we use the symbol
∇hvh in order to denote the piecewise gradient of v ∈ H1(Th), that is, ∇hv ∈ [L2(Ω)]d and for all
T ∈ Th, (∇hv)|T = ∇(v|T ).

We say that F is an interior face of the mesh if there are T−(F ) and T+(F ) in Th such that
F = T−(F ) ∩ T+(F ) and we let nF be the unit normal vector to F pointing from T−(F ) towards
T+(F ). Similarly, we say that F is a boundary face of the mesh if there is T (F ) ∈ Th such that
F = T (F ) ∩ ∂Ω and we let nF coincide with the outward normal to ∂Ω. All the interior (resp.,
boundary) faces of the mesh are collected into the set F int

h (resp., Fext
h ) and we let Fh = F int

h ∪Fext
h ;

FT is then the set of faces of a given T ∈ Th and F̃T is the set of such faces that share at least a
vertex with T . Similarly, TT is the set including the simplex T and its neighbors and T̃T contains
all T ′ ∈ Th that share at least a vertex with T (including T itself). Henceforth, we shall often
deal with functions that are double-valued on F int

h and single-valued on Fext
h . This is the case, for

instance, of functions in V k
h . On interior faces, when the two branches of the function in question,

say v, are associated with restrictions to the neighboring elements T∓(F ), these branches are
denoted by v∓ and the jump of v across F is defined as

[[v]]F := v− − v+. (2.1)
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On an interior face F ∈ F int
h , we define the standard (arithmetic) average as {v}F := 1

2(v−+v+); the
subscript F in the above jumps and averages is omitted if there is no ambiguity. For convenience,
we set [[v]]F := v|F and {v}F := 1

2v|F on boundary faces. Finally, the weighted average of a
two-valued function on an interior face F ∈ F int

h is defined as

{v}ω := ωT−(F ),F v
− + ωT+(F ),F v

+, (2.2)

where the nonnegative weights have to satisfy ωT−(F ),F + ωT+(F ),F = 1. On boundary faces, we
set {v}ω := v and ωT (F ),F := 1. Finally, for all T ∈ Th and F ∈ FT , we let ω̄T,F := 1 − ωT,F .

2.2 Assumptions

We suppose in this paper that K ∈ [L∞(Ω)]d×d is a symmetric, uniformly positive definite, and
piecewise constant tensor and we denote by cK,T and CK,T , respectively, its minimum and maxi-
mum eigenvalue on T ∈ Th. Next, β ∈ H(div,Ω) ∩ [L∞(Ω)]d, µ ∈ L∞(Ω), and µ− 1

2∇·β ≥ 0 are
supposed and we use cβ,µ,T to indicate the (essential) minimum value of µ− 1

2∇·β on T ; we also
suppose that if cβ,µ,T = 0, then ‖µ‖∞,T = ‖1

2∇·β‖∞,T = 0. Finally, f ∈ L2(Ω) is supposed. These
assumptions will be sufficient for the existence and uniqueness of both continuous and discrete
problems and for our a posteriori error estimates, as well as for the global efficiency of the abstract
estimates; for the present proof of the local efficiency of the locally computable estimates, however,
we shall later tighten them.

2.3 The continuous problem

We define the bilinear form B by

B(u, v) :=
∑

T∈Th

{
(K∇u,∇v)0,T + (β·∇u, v)0,T + (µu, v)0,T

}
u, v ∈ H1(Th) (2.3)

and the corresponding energy (semi)norm by

|||v|||2 :=
∑

T∈Th

|||v|||2T , |||v|||2T := ‖K 1

2∇v‖2
0,T +

∥∥(µ− 1
2∇·β

) 1

2 v
∥∥2

0,T
v ∈ H1(Th). (2.4)

We remark that |||·||| is always a norm on H1
0 (Ω), whereas it is a norm on H1(Th) only when

cβ,µ,T > 0 for all T ∈ Th.
The weak formulation of the problem (1.1a)–(1.1b) is then to find u ∈ H1

0 (Ω) such that

B(u, v) = (f, v) ∀v ∈ H1
0 (Ω). (2.5)

The assumptions of the previous section, the Green theorem, and the Cauchy–Schwarz inequality
imply that

B(v, v) = |||v|||2 ∀v ∈ H1
0 (Ω), (2.6)

B(u, v) ≤ max

{
1,max

T∈Th

{‖µ‖∞,T

cβ,µ,T

}}
|||u||||||v|||

+ max
T∈Th





‖β‖∞,T

c
1/2
K,T



 |||u|||‖v‖ ∀u, v ∈ H1(Th). (2.7)

Hence, problem (2.5) admits a unique solution.

Remark 2.1 (Notation). If cβ,µ,T = 0, then the term ‖µ‖∞,T /cβ,µ,T in estimate (2.7) should be
evaluated as zero, since in this case we assume ‖µ‖∞,T = 0. To simplify the notation, we will
systematically use the convention 0/0 = 0 throughout the text.
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2.4 The discontinuous Galerkin method

The interior-penalty DG methods considered in this paper are associated with the bilinear form

Bh(u, v) := (K∇hu,∇hv) + ((µ−∇·β)u, v) − (u,β·∇hv)

−
∑

F∈Fh

{
(nt

F {K∇hu}ω, [[v]])0,F + θ(nt
F {K∇hv}ω, [[u]])0,F

}
(2.8)

+
∑

F∈Fh

{(γF [[u]], [[v]])0,F + (β·nF {u}, [[v]])0,F } .

The discrete problem now consists of finding uh ∈ V k
h such that

Bh(uh, vh) = (f, vh) ∀vh ∈ V k
h . (2.9)

Taking in (2.8) the weights on interior faces equal to 1/2 and letting θ = 0, θ = −1, or θ = 1
leads to the well-known Incomplete, Nonsymmetric, or Symmetric Interior-Penalty discontinuous
Galerkin methods. The stabilization parameter γF takes the general form

γF := αF
γK,F

hF
+ γβ,F ∀F ∈ Fh, (2.10)

where αF is a (user-dependent) positive parameter, γK,F a positive scalar-valued function de-
pending on K, and γβ,F a nonnegative scalar-valued function depending on β and vanishing if
β = 0 (the usual choice is γβ,F = 1

2 |β·nF |, which amounts to so-called upwinding). As usual with
interior-penalty methods, the parameters αF must be taken large enough to ensure the coercivity
of the discrete bilinear form Bh on V k

h whenever θ 6= −1. Some additional assumptions on the
weights and the penalty coefficient γK,F will be introduced later in order to ensure the robustness
of our estimates with respect to diffusion inhomogeneities; see Theorems 4.4 and 7.2 below. The
recently derived weighted interior penalty DG method of [14] satisfies these assumptions.

3 Improved energy norm a posteriori error estimates in the pure

diffusion case

We present in this section our a posteriori estimates on the error between the weak solution u
and the DG approximate solution uh in the pure diffusion case. Note that at this stage, neither
additional assumptions on the data (in particular, f need not be a polynomial) nor the shape-
regularity of the mesh are required.

3.1 Abstract framework

The following lemma gives the basic abstract framework for our a posteriori error estimates in the
pure diffusion case. It follows from [17, Lemma 4.4] and it is analogous to, but simpler than, the
Helmholtz decomposition of, e.g., [3, Theorem 1]; a similar but more general result, applicable also
in the convection–diffusion–reaction case (and used in Section 6 below) is given in [31, Lemma 7.1].

Lemma 3.1 (Abstract framework in the pure diffusion case). Let β = µ = 0 and let u ∈ H1
0 (Ω)

and uh ∈ H1(Th) be arbitrary. Then

|||u − uh|||2 ≤ inf
s∈H1

0
(Ω)

|||uh − s|||2 + sup
ϕ∈H1

0
(Ω), |||ϕ|||=1

B(u− uh, ϕ)2. (3.1)
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Proof. Following [17, Lemma 4.4], let ψ ∈ H1
0 (Ω) be such that

B(ψ, v) = B(uh, v) ∀v ∈ H1
0 (Ω).

Then

|||u − uh|||2 = |||uh − ψ|||2 + B
(
u− uh,

u− ψ

|||u − ψ|||

)2

,

whence the conclusion is straightforward.

3.2 Abstract a posteriori error estimate

We next give here an abstract form of our a posteriori error estimate.

Theorem 3.2 (Abstract a posteriori error estimate in the pure diffusion case). Let β = µ = 0,
let u be the unique solution of (2.5), and let uh ∈ H1(Th) be arbitrary. Then

|||u − uh|||2 ≤ inf
s∈H1

0
(Ω)

|||uh − s|||2 (3.2)

+ inf
t∈H(div,Ω)

sup
ϕ∈H1

0
(Ω), |||ϕ|||=1

((f −∇·t, ϕ) − (K∇huh + t,∇ϕ))2.

Proof. By (2.5), we immediately have B(u, ϕ) = (f, ϕ). Using this we obtain, for an arbitrary
t ∈ H(div,Ω) and employing the Green theorem,

B(u− uh, ϕ) = (f, ϕ) − (K∇huh,∇ϕ) = (f, ϕ) − (K∇huh + t,∇ϕ) + (t,∇ϕ)

= (f −∇·t, ϕ) − (K∇huh + t,∇ϕ).

Remark 3.3 (Form of the abstract estimate of Theorem 3.2). It has been already noted in, e.g.,
[1, 11, 2, 31, 17] that the first term of (3.1) evaluates the “nonconforming error” in the scalar
unknown uh. The second term of (3.1) is called in [2, 17] the “conforming error”. Relation (3.2)
actually shows that this second term is related to the residual and to the nonconformity in the flux
−K∇huh.

Remark 3.4 (A first computable a posteriori error estimate). We remark that using the Cauchy–
Schwarz inequality, the Friedrichs inequality ‖ϕ‖2 ≤ CF,Ωh

2
Ω‖∇ϕ‖2, the definition (2.4) of the

energy seminorm, and the fact that |||ϕ||| = 1, it follows readily from (3.2) that

|||u − uh|||2 ≤ |||uh − s|||2 +


 C

1/2
F,ΩhΩ

minT∈Th
c
1/2
K,T

‖f −∇·t‖ + ‖K 1

2∇huh + K− 1

2 th‖




2

for any s ∈ H1
0 (Ω) and any t ∈ H(div,Ω). This is an estimate similar to that proposed by

Lazarov et al. [21]. As promoted in [21], this estimate is scheme-independent. On the other hand,
being scheme-independent means that we are not using all the information that we have once the
computation has been finished. As we will see later, this information can be used to improve
the residual. Another disadvantage of the above estimate is that the dependence on the diffusion
tensor K is very unfavorable in the presence of strong inhomogeneities; this point was however not
addressed in [21].

Although Theorem 3.2 gives a framework for a quasi-optimal a posteriori error estimate (see
Section 4.1 below), such an estimate is not practically computable. To this purpose, we have to
choose a particular s ∈ H1

0 (Ω) and t ∈ H(div,Ω). We devote the two following sections to this
point.
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3.3 Oswald interpolation operator

The Oswald interpolate of uh was already used as a suitable s ∈ H1
0 (Ω) in a posteriori error

estimation in nonconforming or DG methods, cf. [1, 16, 11]. It has been analyzed in detail in [16, 8].
The Oswald interpolation operator IOs : V k

h → V k
h ∩H1

0 (Ω) is defined as follows: given a function
vh ∈ V k

h , the value of IOs(vh) is prescribed at suitable (e.g., Lagrangian) vertices of the simplices
of Th. At the vertices located inside Ω, the average of the values of vh is specified by

IOs(vh)(V ) =
1

|TV |
∑

T∈TV

vh|T (V ),

where TV is the set of T ∈ Th that contain the vertex V , while at boundary vertices, the value of
IOs(vh) is set to zero. The following results have been proved in [8, Lemma 3.2 and Remark 3.2]
and [16, Theorem 2.2]:

Lemma 3.5 (Oswald interpolation operator). Let Th be shape-regular, let vh ∈ V k
h , and let IOs(vh)

be constructed as above. Then,

‖vh − IOs(vh)‖2
0,T ≤ C

∑

F∈F̃T

hF ‖[[vh]]‖2
0,F ,

‖∇(vh − IOs(vh))‖2
0,T ≤ C

∑

F∈F̃T

h−1
F ‖[[vh]]‖2

0,F ,

where the constants C only depend on the space dimension d, the maximal polynomial degree k,
and the shape regularity parameter κT .

3.4 Diffusive flux reconstruction

A choice of suitable t ∈ H(div,Ω) in Theorem 3.2 is a more delicate question. Remark in particular
that t ∈ H(div,Ω) is a necessary condition but some result on the divergence of t will also be
necessary in view of the abstract a posteriori error estimate. A previous work on H(div,Ω) flux
postprocessing in DG methods includes the paper of Bastian and Rivière [4], but we shall choose
here the postprocessing recently derived in [12] or in [18].

To this purpose, we will need the Raviart–Thomas–Nédélec spaces of vector functions (cf. [25,
22, 7, 27])

RTNl
T = P

d
l (T ) + xPl(T ),

RTNl
h =

{
vh ∈ H(div,Ω) ;vh|T ∈ RTNl

T ∀T ∈ Th

}
.

In particular, vh ∈ RTNl
h is such that ∇·vh ∈ Pl(T ) for all T ∈ Th, vh·nF ∈ Pl(F ) for all F ∈ FT

and all T ∈ Th, and such that its normal trace is continuous.
Using the specification of the degrees of freedom of functions in RTNl

T given in the above
citations, our H(div,Ω)-conforming diffusive flux reconstruction th will belong to RTNl

h with
l = k or l = k − 1 and we prescribe it locally on all T ∈ Th as follows:

(th·nF , qh)0,F =

(
−nt

F{K∇huh}ω + αF
γK,F

hF
[[uh]], qh

)

0,F

∀qh ∈ Pl(F ), ∀F ∈ FT , (3.3)

(th, rh)0,T = −(K∇uh, rh)0,T + θ
∑

F∈FT

ωT,F (nt
F Krh, [[uh]])0,F ∀rh ∈ P

d
l−1(T ). (3.4)

Note in particular that the quantities prescribing the moments of th·nF are uniquely defined for
each face F ∈ Fh, whence the continuity of the normal trace of th. By this construction, we have
the following crucial lemma:
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Lemma 3.6 (Reconstructed diffusion residual). There holds

(∇·th, ξh)0,T = (f, ξh)0,T ∀T ∈ Th, ∀ξh ∈ Pl(T ), (3.5)

which yields, using that ∇·th|T ∈ Pl(T ),

∇·th|T = Πl(f)|T ∀T ∈ Th.

Proof. Let ξh ∈ Pl(T ) be arbitrary. We then have, using the Green theorem, the fact that ξh|F ∈
Pl(F ) for all F ∈ FT , ∇ξh ∈ P

d
l−1(T ), the definition (3.3)–(3.4) of th, and putting vh = ξh on T

and vh = 0 otherwise,

(∇·th, ξh)0,T = −(th,∇ξh)0,T +
∑

F∈FT

(th·nT , ξh)0,F = (K∇huh,∇hvh)0,T

−
∑

F∈FT

{
θ(nt

F{K∇hvh}ω, [[uh]])0,F +
(
nt

F {K∇huh}ω − αF
γK,F

hF
[[uh]], [[vh]]

)
0,F

}

= Bh(uh, vh) = (f, vh) = (f, ξh)0,T ,

employing finally the definition of the DG bilinear form (2.8) and that of the DG approximate
solution (2.9).

3.5 Locally computable a posteriori error estimate

With the results of the three previous sections, we are now ready to state our practical locally
computable a posteriori error estimate for DG methods.

Let us define the nonconformity estimator ηNC,T by

ηNC,T := |||uh − IOs(uh)|||T , (3.6)

and the diffusive flux estimator ηDF,T by

ηDF,T := ‖K 1

2∇uh + K− 1

2 th‖0,T , (3.7)

where th ∈ RTNl
h is given by (3.3)–(3.4). Finally, let us put

m2
T,K := CP

h2
T

cK,T

for all T ∈ Th, where CP is the constant from the Poincaré inequality

‖ϕ− Π0(ϕ)‖2
0,T ≤ CPh

2
T ‖∇ϕ‖2

0,T ∀ϕ ∈ H1(T ), (3.8)

which can be evaluated as 1/π2 owing to the convexity of T ∈ Th, cf. [23, 5]. We define the residual
estimator ηR,T by

ηR,T := mT,K‖f − Πl(f)‖0,T . (3.9)

We then have the following a posteriori error estimate:

Theorem 3.7 (Locally computable a posteriori error estimate in the pure diffusion case). Let β =
µ = 0, let u be the unique solution of (2.5), and let uh be its discontinuous Galerkin approximation
given by (2.9). Then

|||u − uh||| ≤
{
∑

T∈Th

{
η2
NC,T + (ηR,T + ηDF,T )2

}
}1/2

.
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Proof. Put s = IOs(uh) and t = th in Theorem 3.2. Note that, for each T ∈ Th,

|(f −∇·th, ϕ)0,T | = |(f −∇·th, ϕ− Π0(ϕ))0,T | (3.10)

= |(f − Πl(f), ϕ− Π0(ϕ))0,T | ≤ ηR,T |||ϕ|||T ,

using Lemma 3.6, the Poincaré inequality 3.8, and the definition (2.4) of the energy norm (note
that this step holds true for both l = k or l = k − 1). Next, |(K∇huh + t,∇ϕ)0,T | ≤ ηDF,T |||ϕ|||T
is immediate. Hence it now suffices to use the Cauchy–Schwarz inequality and to notice that
|||ϕ||| = 1 in order to conclude the proof.

Remark 3.8 (Properties of the estimate of Theorem 3.7). The following properties of the estimate
of Theorem 3.7 can be mentioned:

• It gives a guaranteed upper bound, i.e., features no undetermined constant.

• The residual estimator ηR,T coincides with the classical (properly weighted) “data oscillation
term”, whence it represents a major improvement of the classical residual estimator, which
is of the form cKhT ‖f + ∇·(K∇huh)‖0,T . Also, although it represents a higher-order term
for piecewise smooth f , it shall not be neglected as it can be important on coarse grids or for
highly varying K.

• The Poincaré constant CP does not depend on the shape-regularity of the mesh, whence the
present estimate is valid also on anisotropic meshes.

• The Poincaré constant CP does not depend on the polynomial degree of uh, so that, in contrast
to the estimates of [16, 6], the present estimate is valid uniformly with respect to k.

• No assumption on the polynomial form of f is needed at this stage.

• Letting ηR,T = mT,K‖f − ∇·th‖0,T , the estimate is valid for any th ∈ H(div,Ω) such that
(∇·th, 1)0,T = (f, 1)0,T for all T ∈ Th, which is a local (conservativity) property, in contrast
to the global Galerkin orthogonality used traditionally for conforming finite element methods.

4 Efficiency of the estimates in the pure diffusion case

In this section, we first rapidly check the (global) efficiency of the abstract framework of Theo-
rem 3.2. We then investigate in detail the (local) efficiency of the a posteriori error estimate of
Theorem 3.7.

4.1 Global efficiency of the abstract estimate

Theorem 4.1 (Global efficiency of the abstract estimate in the pure diffusion case). Let β = µ = 0,
let u be the unique solution of (2.5), and let uh ∈ H1(Th) be arbitrary. Let the a posteriori error
estimate be given by Theorem 3.2. Then

inf
s∈H1

0
(Ω)

|||uh − s|||2 + inf
t∈H(div,Ω)

sup
ϕ∈H1

0
(Ω), |||ϕ|||=1

((f −∇·t, ϕ) − (K∇huh + t,∇ϕ))2

≤ 2|||u − uh|||2.

Proof. It suffices to put s = u, t = −K∇u, and to use the Cauchy–Schwarz inequality and the
fact that |||ϕ||| = 1.
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Remark 4.2 (Global effectivity index). It follows from Theorem 4.1 that the abstract a posteriori
error estimate of Theorem 3.2 is quasi-exact in the sense that the effectivity index, i.e., the ratio of
the estimated to the actual error, is equal to

√
2. The effectivity index can be improved to 1 when

either uh ∈ H1
0 (Ω) or −K∇huh ∈ H(div,Ω), but this is not to be expected apart from particular

cases. A possible remedy is presented in Section 5 below.

Remark 4.3 (Robustness with respect to data, polynomial degree, and meshes). It follows from
Theorem 4.1 that the abstract a posteriori error estimate of Theorem 3.2 is fully robust with
respect to K without any assumption on its distribution, with respect to f (no polynomial form
needed), with respect to the polynomial degree k, and finally with respect to the mesh (which can
be anisotropic), in the sense that the effectivity index does not depend on these quantities.

4.2 Local efficiency of the locally computable estimate

We now investigate how the quasi-optimal abstract global efficiency of the previous section persists
for our particular choices of the conforming reconstructions of the discrete solution and of its
diffusive flux. To this purpose, we restrict the class of interior-penalty DG schemes by the following
assumptions: there exist constants C1, C2, and C3, independent of K, such that

C1 min(cK,T+(F ), cK,T−(F )) ≤ γK,F ≤ C2 min(CK,T+(F ), CK,T−(F )) ∀F ∈ F int
h , (4.1)

C1 cK,T (F ) ≤ γK,F ≤ C2 CK,T (F ) ∀F ∈ Fext
h , (4.2)

cK,T∓(F )ωT∓(F ),F ≤ C3γK,F ∀F ∈ F int
h . (4.3)

An example of a DG scheme satisfying (4.1)–(4.3) with C1 = 1/2, C2 = 1, and C3 = 1 is that
recently derived by Ern et al. [14]. It consists of setting

γK,F :=
δK,F+δK,F−

δK,F+ + δK,F−
∀F ∈ F int

h , (4.4)

γK,F := δK,F ∀F ∈ Fext
h , (4.5)

where δK,F∓ = nt
FK|T∓(F )nF if F ∈ F int

h and δK,F = nt
F K|T (F )nF if F ∈ Fext

h , while the weights
are chosen so that

ωT−(F ),F :=
δK,F+

δK,F+ + δK,F−
, ωT+(F ),F :=

δK,F−

δK,F+ + δK,F−
∀F ∈ F int

h . (4.6)

Theorem 4.4 (Local efficiency of the locally computable estimate in the pure diffusion case).
Let β = µ = 0, let Th be shape-regular, let f be a piecewise polynomial of degree m, let u be the
unique solution of (2.5), and let uh be its discontinuous Galerkin approximation given by (2.9)
with the weights ωT,F and penalty parameters γK,F (for the simplicity supposed facewise constant)
satisfying (4.1)–(4.3). Let next the a posteriori error estimate be given by Theorem 3.7, with in
particular ηNC,T given by (3.6) and ηDF,T given by (3.7). Let us put

c
K,T̃T

:= min
T ′∈T̃T

cK,T ′ , (4.7)

and
|||v|||2∗,F :=

∑

F∈F

‖γ1/2
F [[v]]‖2

0,F v ∈ H1(Th), (4.8)
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where we will either take F = Fh, F = FT , or F = F̃T . Then, for each T ∈ Th, there holds

ηNC,T ≤ C
C

1/2
K,T

c
1/2

K,T̃T

|||u− uh|||∗,F̃T
, (4.9)

ηDF,T ≤ C̃ max
T ′∈TT

{
CK,T ′

cK,T ′

}
(|||u − uh|||TT

+ |||u− uh|||∗,FT
) , (4.10)

where the constant C depends only on the space dimension d, on the maximal polynomial degree
k, on the DG parameters αF , on the shape regularity parameter κT , and on the constant C1

from (4.1)–(4.2) and C̃ in addition depends on the polynomial degree m of f , on the DG parameter
θ, and on the constants C2–C3 from (4.1)–(4.3).

Proof. Combine Lemmas 4.10 and 4.12 given below.

Remark 4.5 (Local efficiency norm and global efficiency with respect to the energy seminorm).
The local efficiency stated in Theorem 4.4 is given for the energy seminorm augmented by the
natural DG discrete energy norm |||·|||∗,Fh

. Owing to the result of Ainsworth [3, Theorem 3], global
efficiency of our nonconformity and diffusive flux estimators in the energy seminorm |||·||| follows
from (4.9)–(4.10) for sufficiently large stabilization parameters αF in the case d = 2, k = 1,
K = Id, and θ = 1.

Remark 4.6 (Efficiency of the residual estimator). We recall that the residual estimator ηR,T

coincides with the usual “data oscillation term” and is in general of higher order, whence no
efficiency is to be shown.

Remark 4.7 (Robustness with respect to inhomogeneities and anisotropies). Owing to (4.10),
our diffusive flux estimator ηDF,T is fully robust with respect to diffusion inhomogeneities. This
is an important property in practical applications, e.g., when dealing with underground flows. The
design conditions (4.1)–(4.3) play a crucial role in this respect, cf. the proof of Lemma 4.12
below. A similar result was proved recently in [13] in the context of residual-based a posteriori
error estimates for DG methods with diffusivity-dependent weights and penalty parameter based
on the harmonic average of the normal diffusivity, see (4.4)–(4.6). We next point out that under
the assumption of “monotonicity around vertices” distribution of the inhomogeneities and using
the concepts of, e.g., Ainsworth [2], also the nonconformity estimator ηNC,T may be shown robust
with respect to inhomogeneities. Finally, no robustness with respect to anisotropies is achieved by
our estimators ηDF,T and ηNC,T , but, at least, the local efficiency estimates only depend on local,
elementwise, anisotropies.

Remark 4.8 (Generalization to other DG schemes). Making appropriate changes in the proof of
Theorem 4.4 below, all the presented results (up to the robustness with respect to inhomogeneities)
extend appropriately to all the DG schemes included in the setting (2.8)–(2.9), even if the design
conditions (4.1)–(4.3) are not satisfied.

Remark 4.9 (Lower bound for the classical estimator). The proof of Lemma 4.10 below shows
that the nonconformity estimator ηNC,T represents a lower bound for the classical nonconformity

estimator
{∑

F∈F̃T
h−1

F ‖[[uh]]‖2
0,F

}1/2
. Similarly, the proof of Lemma 4.12 below shows that the

diffusive flux estimator ηDF,T represents a lower bound for the classical gradient jump estimator{∑
F∈FT

‖nt
F [[K∇huh]]‖2

0,F

}1/2
plus again the classical nonconformity estimator.

As already indicated, the proof of Theorem 4.4 is decomposed into several parts:
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Lemma 4.10 (Local efficiency of the nonconformity estimator). Let the assumptions of Theo-
rem 4.4 be verified. Then (4.9) holds true.

Proof. We have

η2
NC,T = |||uh − IOs(uh)|||2T ≤ CK,T‖∇(uh − IOs(uh))‖2

0,T

≤ CCK,T

∑

F∈F̃T

h−1
F ‖[[uh]]‖2

0,F = C
∑

F∈F̃T

CK,T

αF γK,F
αF

γK,F

hF
‖[[uh]]‖2

0,F (4.11)

≤ C

C1

(
min

F∈F̃T

αF

)−1
CK,T

c
K,T̃T

∑

F∈F̃T

αF
γK,F

hF
‖[[u− uh]]‖2

0,F ,

using Lemma 3.5, the lower bound in (4.1)–(4.2), and the fact that [[uh − u]] = [[uh]]. Recall from
Lemma 3.5 that C depends only on d, k, and κT .

Lemma 4.11 (Norm estimate for the RTNl
T space). Let Th be shape-regular. Then there exists

a constant C, depending only on d, k, and κT such that for all vh ∈ RTNl
T , there holds

‖vh‖2
0,T ≤ C



hT

∑

F∈FT

‖vh·nF ‖2
0,F +


 sup

rh∈P
d
l−1

(T )

(vh, rh)0,T

‖rh‖0,T




2
 .

Proof. Use norm equivalence on finite-dimensional spaces, the Piola transformation, and scaling
arguments.

Lemma 4.12 (Local efficiency of the diffusive flux estimator). Let the assumptions of Theorem 4.4
be verified. Then (4.10) holds true.

Proof. Throughout this proof, let C denote a general constant not necessarily the same at each
occurrence, depending only on d, k, and κT . We put vh := (K∇uh + th)|T ∈ RTNl

T and notice
that, for rh ∈ P

d
l−1(T ),

(vh, rh)0,T = θ
∑

F∈FT

ωT,F (nt
F Krh, [[uh]])0,F ≤ |θ|Ch−

1

2

T CK,T ‖rh‖0,T

∑

F∈FT

ωT,F‖[[uh]]‖0,F ,

owing to the definition (3.4), the Cauchy–Schwarz inequality, and the inverse inequality ‖rh‖0,F ≤
Ch

−1/2
T ‖rh‖0,T . Hence, using the definition (3.7) of ηDF,T , the previous lemma, the definition of

th by (3.3)–(3.4), and the above inequality leads to

η2
DF,T ≤ 1

cK,T
‖vh‖2

0,T ≤ C

cK,T



hT

∑

F∈FT

‖vh·nF ‖2
0,F +


 sup

rh∈P
d
l−1

(T )

(vh, rh)0,T

‖rh‖0,T




2


≤ C

cK,T



hT

∑

F∈FT

∥∥∥∥ω̄T,Fnt
T [[K∇huh]] + αF

γK,F

hF
Πl([[uh]])

∥∥∥∥
2

0,F

+θ2h−1
T C2

K,T

∑

F∈FT

ω2
T,F‖[[uh]]‖2

0,F



 .
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We next study the three resulting terms separately. First of all,

hT

cK,T

∑

F∈FT

∥∥∥∥αF
γK,F

hF
Πl([[uh]])

∥∥∥∥
2

0,F

≤ C
∑

F∈FT

αF
γK,F

cK,T
αF

γK,F

hF
‖Πl([[uh]])‖2

0,F

≤ CC2 max
F∈FT

αF

∑

F∈FT

min{CK,T− , CK,T+}
cK,T

αF
γK,F

hF
‖[[uh]]‖2

0,F

≤ CC2 max
F∈FT

αF max
T ′∈TT

{
CK,T ′

cK,T ′

} ∑

F∈FT

αF
γK,F

hF
‖[[u− uh]]‖2

0,F ,

where we have used (4.1) (the modification at the boundary has been skipped for simplicity).
Similarly, employing 0 ≤ ωT,F ≤ 1 and (4.3) yields

θ2
C2

K,T

hT cK,T

∑

F∈FT

ω2
T,F‖[[uh]]‖2

0,F ≤ θ2
C2

K,T

hT c
2
K,T

∑

F∈FT

cK,TωT,F‖[[uh]]‖2
0,F

≤ CC3θ
2
C2

K,T

c2K,T

(
min

F∈F̃T

αF

)−1 ∑

F∈FT

αF
γK,F

hF
‖[[u− uh]]‖2

0,F .

Finally,
hT

cK,T

∑

F∈FT

ω̄2
T,F

∥∥nt
F [[K∇huh]]

∥∥2

0,F
≤ CC2C3 max

T ′∈TT

{
CK,T ′

cK,T ′

}2

|||u − uh|||2TT
,

which has been shown in [13, Proposition 3.2].

5 A posteriori error estimates for the reconstructed flux

The a posteriori error estimates of Section 3 are given for the DG approximate solution uh, or,
equivalently, taking into account the definition of the energy norm (2.4), for its flux −K∇huh.
In order to obtain them, we have used its H(div,Ω)-conforming diffusive flux reconstruction th.
There arises a natural question whether are we also able to give an a posteriori error estimate for
this (supposedly) improved flux, instead of the original estimate. Moreover, Theorem 4.1 indicates
that the a posteriori error estimates of Section 3 will only lead to quasi-exactness with effectivity
index

√
2. This is quite obvious because both uh and −K∇huh are nonconforming (in the sense

that uh 6∈ H1
0 (Ω) and −K∇huh 6∈ H(div,Ω)) and consequently two estimators appear. We present

here a possible remedy to this situation: since th ∈ H(div,Ω) is such that ∇·th = Πl(f), it suffices
to use the results of [32] in order to obtain the same estimates as for mixed finite elements:

Theorem 5.1 (Abstract a posteriori error estimate for the reconstructed flux). Let u be the unique
solution of (2.5), let uh be its discontinuous Galerkin approximation given by (2.9), and let th be
its diffusive flux reconstruction given by (3.3)–(3.4). Then

‖K− 1

2 th + K
1

2∇u‖2 ≤ inf
s∈H1

0
(Ω)

‖K− 1

2 th + K
1

2∇s‖2 +
∑

T∈Th

m2
T,K‖f − Πl(f)‖2

0,T .

For practical purposes, a first choice for s in the above theorem is s = IOs(uh). However, more
precise reconstructions are suggested and studied in [32] for mixed finite elements.

Concerning the efficiency of this framework, we have the following result, which in contrast to
Section 4.1 gives full asymptotic exactness (i.e., effectivity index equal to 1, up to the residual (or
data oscillation) term).
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Theorem 5.2 (Global efficiency of the abstract estimate for the reconstructed flux). Let u be the
unique solution of (2.5), let uh be its discontinuous Galerkin approximation given by (2.9), and
let th be its diffusive flux reconstruction given by (3.3)–(3.4). Let the a posteriori error estimate
for th be given by Theorem 5.1. Then

inf
s∈H1

0
(Ω)

‖K− 1

2 th + K
1

2∇s‖2 +
∑

T∈Th

m2
T,K‖f − Πl(f)‖2

0,T

≤ ‖K− 1

2 th + K
1

2∇u‖2 +
∑

T∈Th

m2
T,K‖f − Πl(f)‖2

0,T .

6 Improved energy norm a posteriori error estimates in the gen-

eral case

We present in this section an extension of our analysis of Section 3 to the general case (1.1a)–(1.1b).
Again at this stage, neither assumptions on the data other than those stated in Section 2.2, nor
the mesh shape-regularity, are needed.

6.1 Abstract framework

The following general abstract framework has been proved in [31, Lemma 7.1].

Lemma 6.1 (Abstract framework in the general case). Let u ∈ H1
0 (Ω) and uh ∈ H1(Th) be

arbitrary. Then

|||u− uh||| ≤ inf
s∈H1

0
(Ω)

{
|||uh − s||| + sup

ϕ∈H1
0
(Ω), |||ϕ|||=1

(
B(u− uh, ϕ)

+
(
β·∇h(uh − s) + 1

2(∇·β)(uh − s), ϕ
))}

.

Remark 6.2 (Comparison with the abstract framework of Lemma 3.1). In comparison with the
abstract framework of Lemma 3.1, Lemma 6.1 is applicable to the general convection–diffusion–
reaction case. In particular, there is an additional contribution from the nonsymmetric part of
the bilinear form B(·, ·), which can be evaluated using an arbitrary s ∈ H1

0 (Ω). The price for
this generality is that Lemma 6.1 yields a triangular-like inequality instead of a Pythagorean-like
inequality.

6.2 Abstract a posteriori error estimate

An abstract form of our a posteriori error estimate now takes the following form (compare with
Theorem 3.2).

Theorem 6.3 (Abstract a posteriori error estimate in the general case). Let u be the unique
solution of (2.5) and let uh ∈ H1(Th) be arbitrary. Then

|||u − uh||| ≤ inf
s∈H1

0
(Ω)

{
|||uh − s|||

+ inf
t∈H(div,Ω)

sup
ϕ∈H1

0
(Ω), |||ϕ|||=1

(
(f −∇·t − β·∇s− µs, ϕ) (6.1)

−(K∇huh + t,∇ϕ) +
((
µ− 1

2∇·β
)
(s− uh), ϕ

))}
.
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Proof. We use (2.5) in Lemma 6.1, keep s ∈ H1
0 (Ω) arbitrary, introduce an arbitrary t ∈ H(div,Ω),

and employ the Green theorem to infer

B(u− uh, ϕ) + (β·∇h(uh − s) + 1
2(∇·β)(uh − s), ϕ) = (f −∇·t − β·∇huh − µuh, ϕ)

−(K∇huh + t,∇ϕ) +
(
β·∇h(uh − s) + 1

2(∇·β)(uh − s), ϕ
)
,

whence the assertion of the theorem follows easily.

Remark 6.4 (A computable a posteriori error estimate). Similarly as in the pure diffusion case (cf.
Remark 3.4), it follows readily from (6.1), using the Friedrichs inequality ‖ϕ‖2 ≤ CF,Ωh

2
Ω‖∇ϕ‖2

or the inequality ‖ϕ‖ ≤ minT∈Th
{c1/2

β,µ,T }−1
∥∥(µ− 1

2∇·β
)1/2

ϕ
∥∥, the Cauchy–Schwarz inequality, the

definition (2.4) of the energy seminorm, and the fact that |||ϕ||| = 1,

|||u − uh||| ≤ |||uh − s||| + min





C
1/2
F,ΩhΩ

minT∈Th
c
1/2
K,T

,
1

minT∈Th
c
1/2
β,µ,T



 ‖f −∇·t − β·∇s− µs‖

+
(∥∥K 1

2∇huh + K− 1

2 th

∥∥2
+
∥∥(µ− 1

2∇·β
) 1

2 (uh − s)
∥∥2
)1/2

for any s ∈ H1
0 (Ω) and any t ∈ H(div,Ω). Again, this is a fully computable and scheme-

independent estimate, but all the points from Remark 3.4 apply here as well.

Remark 6.5 (Another form of Theorem 6.3). The estimate of Theorem 6.3 can be changed into

|||u − uh||| ≤ inf
s∈H1

0
(Ω)

{
|||uh − s|||

+ inf
q∈H(div,Ω)

inf
t∈H(div,Ω)

sup
ϕ∈H1

0
(Ω), |||ϕ|||=1

∣∣(f −∇·t −∇·q − (µ−∇·β)uh, ϕ)

−(K∇huh + t,∇ϕ) + (∇·q−∇·(βs), ϕ) −
(

1
2(∇·β)(uh − s), ϕ

)∣∣
}
.

Again, Theorem 6.3 gives a framework for a quasi-optimal a posteriori error estimate (see
Section 7.1 below), which is however not practically computable. In the next sections, we present
its locally computable version. To this purpose, we would like to keep the choice of the H1

0 (Ω)-
conforming scalar function s and of the H(div,Ω)-conforming diffusive flux t the same as in
Sections 3.3 and 3.4, respectively. With this choice, however, the residual f−∇·t−β·∇s−µs does
not satisfy an orthogonality property as (3.5). It is not even of zero mean necessarily, which would
be necessary to obtain a computable estimate as in (3.10). In order to recover (at least partially)
these properties, we will employ the form of Theorem 6.3 given in Remark 6.5, where q will be a
H(div,Ω)-conforming convective flux reconstruction.

6.3 Convective flux reconstruction

Our H(div,Ω)-conforming convective flux reconstruction qh will belong to RTNl
h with l = k or

l = k − 1 and we prescribe it locally on all T ∈ Th, as follows:

(qh·nF , qh)0,F = (β·nF{uh} + γβ,F [[uh]], qh)0,F ∀qh ∈ Pl(F ), ∀F ∈ FT , (6.2)

(qh, rh)0,T = (uh,β·rh)0,T ∀rh ∈ P
d
l−1(T ). (6.3)

Note in particular that the quantities prescribing the moments of qh·nF are uniquely defined for
each face F ∈ Fh, whence the continuity of the normal trace of qh. By this construction, we have
the following generalization of Lemma 3.6:
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Lemma 6.6 (Reconstructed convection–diffusion–reaction residual). There holds

(∇·th + ∇·qh + (µ−∇·β)uh, ξh)0,T = (f, ξh)0,T ∀T ∈ Th, ∀ξh ∈ Pl(T ).

Moreover, using that ∇·th|T ∈ Pl(T ) and ∇·qh|T ∈ Pl(T ) for all T ∈ Th,

(∇·th + ∇·qh + Πl((µ−∇·β)uh))|T = Πl(f)|T ∀T ∈ Th,

and, when in particular µ and ∇·β are elementwise constant and when l = k in the diffusive and
convective flux reconstructions,

(∇·th + ∇·qh + (µ−∇·β)uh)|T = Πk(f)|T ∀T ∈ Th.

Proof. Let ξh ∈ Pl(T ) be arbitrary. Owing to the Green theorem, the fact that ξh|F ∈ Pl(F ) for
all F ∈ FT , ∇ξh ∈ P

d
l−1(T ), the definitions (3.3)–(3.4) of th and the definitions (6.2)–(6.3) of qh,

respectively, and putting vh = ξh on T and vh = 0 otherwise, we infer

(∇·th + ∇·qh + (µ−∇·β)uh, ξh)0,T = −(th,∇ξh)0,T +
∑

F∈FT

(th·nT , ξh)0,F − (qh,∇ξh)0,T

+
∑

F∈FT

(qh·nT , ξh)0,F + ((µ−∇·β)uh, ξh)0,T = (K∇huh,∇hvh)0,T − (uh,β·∇hvh)0,T

−
∑

F∈FT

{
θ(nt

F {K∇hvh}ω, [[uh]])0,F +
(
nt

F{K∇huh}ω − αF
γK,F

hF
[[uh]], [[vh]]

)
0,F

}

+
∑

F∈FT

(β·nF{uh} + γβ,F [[uh]], [[vh]])0,F + ((µ−∇·β)uh, vh)0,T

= Bh(uh, vh) = (f, vh) = (f, ξh)0,T ,

employing finally the definition of the DG bilinear form (2.8) and that of the DG approximate
solution (2.9).

6.4 Locally computable a posteriori error estimate

We are now ready to state our practical locally computable a posteriori error estimate for DG
methods and the problem (1.1a)–(1.1b).

While we keep the definitions of the nonconformity estimator ηNC,T (3.6) and that of the
diffusive flux estimator ηDF,T (3.7) as in Section 3.5, the residual estimator ηR,T will now be
defined by

ηR,T := mT,K,β,µ‖f −∇·th −∇·qh − (µ−∇·β)uh‖0,T , (6.4)

where

m2
T,K,β,µ := min

{
CP

h2
T

cK,T
,

1

cβ,µ,T

}

for all T ∈ Th; recall that CP is the constant from the Poincaré inequality (3.8). We next define
two convection estimators ηC,1,T and ηC,2,T respectively by

ηC,1,T := mT,K,β,µ‖∇·(qh − βsh) − Π0(∇·(qh − βsh))‖0,T (6.5)

and

ηC,2,T :=
1

c
1/2
β,µ,T

∥∥1
2 (∇·β)(uh − sh)

∥∥
0,T
, (6.6)
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with sh = IOs(uh). Finally, let

m2
F,K,β,µ := min

{
max

T ;F∈FT

{
CF,T,F

|F |h2
T

|T |cK,T

}
, max
T ; F∈FT

{ |F |
|T |cβ,µ,T

}}
(6.7)

for a side F ∈ Fh. Here CF,T,F is the constant from the generalized Friedrichs inequality, which
states that

‖ϕ− Π0,F (ϕ)‖2
0,T ≤ CF,T,Fh

2
T ‖∇ϕ‖2

0,T , (6.8)

where Πl,F is the L2-orthogonal projection onto piecewise polynomials of degree l on the face F .
It follows from [29, Lemma 4.1] that CF,T,F = 3d for a simplex T and its side F . The upwinding
estimator ηU,T is defined by

ηU,T :=
∑

F∈FT

mF,K,β,µ‖Π0,F ((qh − βsh)·nF )‖0,F . (6.9)

We then have the following a posteriori error estimate:

Theorem 6.7 (Locally computable a posteriori error estimate in the general case). Let u be the
unique solution of (2.5) and let uh be its discontinuous Galerkin approximation given by (2.9).
Then

|||u− uh||| ≤
{
∑

T∈Th

η2
NC,T

}1/2

+

{
∑

T∈Th

(
ηR,T + (η2

DF,T + η2
C,2,T )1/2 + ηC,1,T + ηU,T

)2
}1/2

.

Proof. We start by putting s = sh = IOs(uh), t = th, and q = qh in the abstract estimate of
Remark 6.5. We next write

(f −∇·th −∇·qh − (µ−∇·β)uh, ϕ) − (K∇huh + th,∇ϕ) + (∇·qh −∇·(βsh), ϕ)

−
(

1
2(∇·β)(uh − sh), ϕ

)
=
∑

T∈Th

{
(f −∇·th −∇·qh − (µ−∇·β)uh, ϕ− Π0(ϕ))0,T

−(K∇uh + th,∇ϕ)0,T −
(

1
2 (∇·β)(uh − sh), ϕ

)
0,T

+ (∇·(qh − βsh), ϕ − Π0(ϕ))0,T

+
∑

F∈FT

((qh − βsh)·nT ,Π0(ϕ))0,F

}
,

using Lemma 6.6 in the first term and subtracting (∇·(qh − βsh),Π0(ϕ))0,T and adding the same
quantity rewritten using the Green theorem in the last but one term. Next note that in this last
term, we may replace ∇·(qh − βsh) by ∇·(qh − βsh) − Π0(∇·(qh − βsh)), and similarly in the
last term, we may replace (qh − βsh)·nT by Π0,F ((qh − βsh)·nT ). The above expression is thus
bounded, using the Cauchy–Schwarz inequality, the inequality

‖ϕ − Π0(ϕ)‖0,T ≤ mT,K,β,µ|||ϕ|||T ,

which follows from the Poincaré inequality (3.8) and from the definition of the energy norm (2.4),
and finally using [30, Lemma 4.5] for the last term, by

∑

T∈Th

(
ηR,T + (η2

DF,T + η2
C,2,T )1/2 + ηC,1,T + ηU,T

)
|||ϕ|||T .

Using the Cauchy–Schwarz inequality, noticing that |||ϕ||| = 1, and adding the nonconformity
estimator, which appears directly as the first term in the estimate of Remark 6.5, concludes the
proof.
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Remark 6.8 (Properties of the estimate of Theorem 6.7). As in the pure diffusion case, we remark
that the estimate of Theorem 6.7 yields a guaranteed upper bound, the residual represents a higher-
order term, neither CP nor CF,T,F depend on the polynomial degree of uh, whence the estimate is
valid uniformly with respect to k, no polynomial data form is needed at this stage, and, finally, the
estimate is valid for any th,qh ∈ H(div,Ω) such that (∇·th +∇·qh +(µ−∇·β)uh, 1)0,T = (f, 1)0,T

for all T ∈ Th.

Remark 6.9 (Mean values in ηC,1,T and ηU,T ). Since ‖g−Π0(g)‖ ≤ ‖g‖ and ‖Π0(g)‖ ≤ ‖g‖, where
‖·‖ denotes the L2-norm for a square-integrable function g, the estimators ηC,1,T and ηU,T may be
considerably smaller in the convection-dominated case when compared to the situation where the
piecewise constant projection is not subtracted/used.

7 Efficiency of the estimates in the general case

In this section, we first rapidly check the (global) efficiency of the abstract framework of Theo-
rem 6.3. We then investigate in detail the (local) efficiency of the a posteriori error estimate of
Theorem 6.7.

7.1 Global efficiency of the abstract estimate

Theorem 7.1 (Global efficiency of the abstract estimate in the general case). Let u be the unique
solution of (2.5) and let uh ∈ H1(Th) be arbitrary. Let the a posteriori error estimate be given
by Theorem 6.3. Then

inf
s∈H1

0
(Ω)

{
|||uh − s||| + inf

t∈H(div,Ω)
sup

ϕ∈H1
0
(Ω), |||ϕ|||=1

(
(f −∇·t − β·∇s− µs, ϕ)

−(K∇huh + t,∇ϕ) +
((
µ− 1

2∇·β
)
(s− uh), ϕ

))}

≤ 2|||u − uh|||.

Proof. It suffices to put s = u and t = −K∇u in Theorem 6.3 and to use the Cauchy–Schwarz
inequality and the fact that |||ϕ||| = 1.

Before we start to investigate the local efficiency of the locally computable estimate, we note
that the same global efficiency result holds true also for the form of the estimate of Remark 6.5—it
suffices to put in addition q = βu. Also, similar observations to those given after Theorem 4.1
hold true also in the present case.

7.2 Local efficiency of the locally computable estimate

The following theorem is a generalization of Theorem 4.4:

Theorem 7.2 (Local efficiency of the locally computable estimate in the general case). Let Th

be shape-regular, let f be a piecewise polynomial of degree m, and let, for the sake of simplicity,
∇·(qh − βsh) ∈ Pl on all T ∈ Th. Let next u be the unique solution of (2.5) and let uh be its
discontinuous Galerkin approximation given by (2.9). Assume (4.1)–(4.3) for the weights ωT,F

and for the penalty parameters γK,F and that γβ,F ≤ ‖β‖∞,T for all T ∈ Th and F ∈ FT (both
γK,F and γβ,F are for the simplicity supposed facewise constant). Let finally the a posteriori error
estimate be given by Theorem 6.7, with in particular ηNC,T given by (3.6), ηR,T by (6.4), ηDF,T
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by (3.7), ηC,1,T by (6.5), ηC,2,T by (6.6), and ηU,T by (6.9). Recall the notation c
K,T̃T

from (4.7)
and put

c
β,µ,T̃T

:= min
T ′∈T̃T

cβ,µ,T ′ , c
β,F̃T

:= min
F∈F̃T

γβ,F , (7.1)

and R(uh) := f + ∇·(K∇huh) − β·∇huh − µuh. Then, for each T ∈ Th, there holds

ηNC,T ≤ C


C

1/2
K,T

c
1/2

K,T̃T

+
∥∥µ− 1

2∇·β
∥∥1/2

∞,T
min





hT

c
1/2

K,T̃T

,
h

1/2
T

c
1/2

β,F̃T






 |||u− uh|||∗,F̃T

, (7.2)

ηC,2,T ≤ C

∣∣1
2∇·β

∣∣

c
1/2
β,µ,T

min





hT

c
1/2

K,T̃T

,
h

1/2
T

c
1/2

β,F̃T



 |||u − uh|||∗,F̃T

, (7.3)

ηU,T ≤ Cmin





1

c
1/2
K,TT

,
1

hT c
1/2
β,µ,TT



 ‖β‖∞,T min





hT

c
1/2

K,T̃T

,
h

1/2
T

c
1/2

β,F̃T



 |||u − uh|||∗,F̃T

, (7.4)

ηC,1,T ≤ Cmin





1

c
1/2
K,TT

,
1

hT c
1/2
β,µ,TT



 ‖β‖∞,T min





hT

c
1/2

K,T̃T

,
h

1/2
T

c
1/2

β,F̃T



 |||u − uh|||∗,F̃T

, (7.5)

ηDF,T ≤ C̃ max
T ′∈TT

{
CK,T ′

cK,T ′

}
|||u − uh|||∗,FT

+ C̃ max
T ′∈TT

{
CK,T ′

cK,T ′

}1/2



∑

T ′∈TT

hT ′

c
1/2
K,T ′

‖R(uh)‖0,T ′ +
∑

T ′∈TT

{
max

{
1,

‖µ‖∞,T ′

cβ,µ,T ′

}
(7.6)

+


1 +

‖µ− 1
2∇·β‖1/2

∞,T ′

c
1/2
K,T ′

hT ′


+

‖β‖∞,T ′

cK,T ′

hT ′



 |||u− uh|||TT


 ,

and

‖R(uh)‖0,T ≤ C̄


C

1/2
K,T

hT
+ min





‖µ‖∞,T

c
1/2
β,µ,T

+
‖β‖∞,T

c
1/2
K,T

,
‖µ−∇·β‖∞,T

c
1/2
β,µ,T

+
‖β‖∞,T

c
1/2
β,µ,ThT








×|||u − uh|||T . (7.7)

Here, the constants C depend only on the space dimension d, on the maximal polynomial degree
k, on the shape regularity parameter κT , on the DG parameters αF , and on the constant C1

from (4.1)–(4.2), C̃ in addition depends on the polynomial degree m of f , on the DG parameter θ,
and on the constant C3 from (4.3), and C̄ depends only on d, k, m, and κT .

Proof. Since ηR,T is a higher-order term owing to Lemma 6.6 (given by mT,K,β,µ‖f − Πk(f)‖0,T

when µ and ∇·β are elementwise constant and when l = k), we prove only the efficiency of the
other estimates. In this proof, we denote by C a general constant not necessarily the same at each
occurrence, depending only on d, k, and κT . Also, recall that it follows from (4.11) that

∑

F∈F̃T

h−1
F ‖[[uh]]‖2

0,F ≤ C−1
1 ( min

F∈F̃T

αF )−1 1

c
K,T̃T

|||u− uh|||2∗,F̃T
. (7.8)

Similarly, one obviously has, using (4.8) and (7.1),

∑

F∈F̃T

‖[[uh]]‖2
0,F ≤ 1

c
β,F̃T

|||u − uh|||2∗,F̃T
. (7.9)
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We begin with ηNC,T . As the estimate for its diffusive part is given by (4.11), we only estimate

∥∥(µ− 1
2∇·β

) 1

2 (uh − IOs(uh))
∥∥2

0,T
≤ C

∥∥µ− 1
2∇·β

∥∥
∞,T

∑

F∈F̃T

hF ‖[[uh]]‖2
0,F ,

using Lemma 3.5. We can further bound this term either by (7.8) or by (7.9), whence (7.2) follows.
Similarly, (7.3) is readily deduced, using

η2
C,2,T ≤ C

∣∣1
2∇·β

∣∣2

cβ,µ,T

∑

F∈F̃T

hF ‖[[uh]]‖2
0,F .

Next, we remark that, for all F ∈ FT ,

m2
F,K,β,µ ≤ Cmin

{
hT

cK,TT

,
1

hT cβ,µ,TT

}
,

whence, employing (6.2) and the fact that ‖Π0,F (g)‖0,F ≤ ‖g‖0,F , we get, with sh = IOs(uh),

ηU,T

≤ Cmin




h

1/2
T

c
1/2
K,TT

,
1

h
1/2
T c

1/2
β,µ,TT




∑

F∈FT

‖β·nF {uh} + γβ,F [[uh]] − β·nF sh‖0,F

≤ Cmin




h

1/2
T

c
1/2
K,TT

,
1

h
1/2
T c

1/2
β,µ,TT




∑

F∈FT



‖γβ,F [[uh]]‖0,F + 1

2

∑

T ′;F∈FT ′

‖β·nF (uh − sh)‖0,F





≤ Cmin





1

c
1/2
K,TT

,
1

hT c
1/2
β,µ,TT



 ‖β‖∞,T

∑

F∈F̃T

h
1/2
F ‖[[uh]]‖0,F ,

using also the inequality

‖uh − IOs(uh)‖0,F ≤ C
∑

F ′;F ′∩F 6=∅

‖[[uh]]‖0,F ′

valid for the Oswald interpolation operator.
We next prove the efficiency of ηC,1,T . First of all,

mT,K,β,µ‖∇·(qh − βsh) − Π0(∇·(qh − βsh))‖0,T

≤ mT,K,β,µ‖∇·(qh − βsh)‖0,T = mT,K,β,µ sup
ξh∈Pl(T )

(∇·(qh − βsh), ξh)0,T

‖ξh‖0,T
,

using the assumption ∇·(qh − βsh) ∈ Pl on all T ∈ Th. Next, using the Green theorem, the

definition of qh (6.2)–(6.3), the inverse inequalities ‖ξh‖0,F ≤ Ch
−1/2
T ‖ξh‖0,T and ‖∇ξh‖0,T ≤
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Ch−1
T ‖ξh‖0,T , and Lemma 3.5,

(∇·(qh − βsh), ξh)0,T

= −(qh − βsh,∇ξh)0,T +
∑

F∈FT

((qh − βsh)·nT , ξh)0,F

= −(uh − sh,β·∇ξh)0,T +
∑

F∈FT

(β·nT {uh} + nt
FnF γβ,F [[uh]] − β·nT sh, ξh)0,F

≤ C‖β‖∞,Th
−1
T ‖ξh‖0,T

∑

F∈F̃T

h
1/2
F ‖[[uh]]‖0,F

+Ch
−1/2
T ‖ξh‖0,T

∑

F∈FT

‖β·nT {uh} + nt
FnF γβ,F [[uh]] − β·nT sh‖0,F

≤ C‖β‖∞,Th
−1
T ‖ξh‖0,T

∑

F∈F̃T

h
1/2
F ‖[[uh]]‖0,F ,

using finally the result proved previously for ηU,T , whence (7.5) follows.
According to Lemma 4.12, which holds true also in the general case, the estimate on ηDF,T can

be decomposed into three parts, the first two of which are bounded by

C̃ max
T ′∈TT

{
CK,T ′

cK,T ′

}
|||u− uh|||∗,FT

with C̃ depending on d, k, κT , αF , θ, C2, and C3. The estimate for the third term is similar
to that of [13] and can be obtained using the edge bubble function technique introduced in [28],
yielding altogether (7.6).

Finally, the estimate (7.7) was established in [13] using the equivalence of norms on finite-di-
mensional spaces, inverse inequalities, and the definition of |||·|||T by (2.4), following the approach
given in [28].

Remark 7.3 (Comments on the results of Theorem 7.2). In comparison with Theorem 7.1, again
the crucial advantage of Theorem 7.2 is the confirmation of the localization of the error. How-
ever, the efficiency constant is no longer parameter-independent, the major overestimation being
produced in the convection-dominated case. Nevertheless, as h → 0, the estimators ηC,1,T , ηC,2,T ,
and ηU,T will completely loose influence and ηNC,T and ηDF,T will become optimally efficient, the

rapidity being a function of the local Péclet number
‖β‖∞,T

cK,T
hT on each T ∈ Th. This result is of

the same quality as those achieved in [28, 31, 30, 13].

Remark 7.4 (Efficiency of ηDF,T ). In comparison with the results of [28, 31, 30, 13], the diffusive
flux estimator ηDF,T is not efficient with a constant of the form c1 +c2 min{Pe, ̺} with ̺ depending
on β and K, but only of the form c1 +c2Pe. The former efficiency can be obtained if integration by
parts is performed and ηDF,T is replaced by a minimum of ηDF,T and an estimator as that in [13].
We did not perform here such a modification, also in view of the fact that the numerical experiments
presented below show that ηDF,T is actually small in comparison with the other estimators.

Remark 7.5 (Efficiency of ηU,T in comparison with finite volumes or mixed finite elements). In
finite volume or mixed finite schemes, upwinding can likewise be used in order to stabilize the
schemes in the convection-dominated regime. However, no efficiency of the corresponding upwind-
ing estimator ηU,T can be proved for these schemes, see [30] and [31], respectively. Contrarily
to this situation, ηU,T in the discontinuous Galerkin method is by (7.4) locally efficient (with a
constant depending on the local Péclet number).
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Remark 7.6 (Efficiency of ηC,1,T and ηU,T ). We remark that the improvements in ηC,1,T and ηU,T

described in Remark 6.9 were not taken into account in the proof of Theorem 7.2. Hence the actual
efficiency of these estimators may be still better.

8 Numerical experiments

We present in this section the results of several numerical experiments.

8.1 Pure diffusion

For the pure diffusion problem we have examined three different test cases, all posed on the domain
Ω = {−1 < x, y < 1} with Dirichlet boundary conditions. The diffusion tensor is isotropic (but
heterogeneous in test cases 2 and 3) and can thus be identified with a scalar diffusion coefficient
denoted by κ. The discrete solution has been obtained using the weighted interior-penalty DG
scheme proposed in [14] with polynomial degree p = 1, given by (2.8)–(2.10) with the penalty
parameter and the weights given by (4.4)–(4.6). The diffusive flux th was reconstructed using (3.3)–
(3.4) for both l = 0 or l = 1. Next, the piecewise affine Oswald interpolate IOs(uh) of the discrete
solution uh was used. In the subsequent tables, sequences of uniformly refined, structured or
unstructured meshes are considered to evaluate the convergence rates and N indicates the number
of mesh elements. Columns labeled “eff” report the global effectivity index, that is the ratio of the a
posteriori error estimate to the actual error, both quantities being computed over all mesh elements.

We employ the following notation for the various error estimators: ηNC :=
{∑

T∈Th
η2
NC,T

}1/2
,

ηR :=
{∑

T∈Th
η2
R,T

}1/2
, ηDF :=

{∑
T∈Th

η2
DF,T

}1/2
, and so on.

For test case 1 the exact solution is u(x, y) = cos(0.5πx) cos(0.5πy) and κ is equal to unity.
The purpose of this test case is to assess the convergence rate of all the estimators in the case
of a smooth solution. Tables 1 and 2 report the results obtained on structured and unstructured
meshes, respectively. As expected, the residual estimator ηR converges to order (l+2), i.e., super-
converges with respect to the nonconformity estimator and to the diffusive flux estimator, the latter
always dominating the former by a factor between 2 and 3. For l = 0, the efficiency index is equal
to 1.2. This exceptionally good result is actually below the value derived for the global efficiency of
the abstract estimate in Theorem 4.1, namely

√
2. This is not a contradiction since in the present

case, it turns out that the Oswald interpolate IOs(uh) is closer to the discrete solution uh than the
exact solution u. For l = 1, the effectivity index is equal to 1.5 on structured meshes and to 1.3 on
unstructured meshes, which confirms the sharpness of the estimate for l = 1 also. The effectivity
index for l = 1 is however slightly larger than for l = 0, showing that for the present test case,
the lowest-order diffusive flux reconstruction yields the sharpest results (a different conclusion is
reached in the two following test cases).

Before moving to the following test cases, it is useful to compare the present error estimators
to those previously available in the literature. We focus here on the classical error estimator for
the pure diffusion case which consists of four terms: the nonconformity estimator (evaluated using
the Oswald interpolate as in this paper) and three additional terms, namely the residual estimator
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l = 0 l = 1

N |||u − uh||| ηNC ηR ηDF eff. ηR ηDF eff.

128 3.28e-1 1.89e-1 7.23e-2 3.38e-1 1.2 5.50e-3 4.32e-1 1.4
512 1.62e-1 9.72e-2 1.82e-2 1.69e-1 1.2 6.90e-4 2.22e-1 1.5
2048 8.04e-2 4.89e-2 4.54e-3 8.39e-2 1.2 8.64e-5 1.12e-1 1.5
8192 4.01e-2 2.45e-2 1.14e-3 4.18e-2 1.2 1.08e-5 5.64e-2 1.5

order 1.0 1.0 2.0 1.0 - 3.0 1.0 -

Table 1: Convergence rates of error estimators for test case 1, structured meshes

l = 0 l = 1

N |||u − uh||| ηNC ηR ηDF eff. ηR ηDF eff.

112 3.16e-1 1.25e-1 7.01e-2 3.60e-1 1.2 5.13e-3 3.58e-1 1.2
448 1.58e-1 6.85e-2 1.76e-2 1.82e-1 1.2 6.90e-4 2.22e-1 1.5
1792 7.88e-2 3.53e-2 4.40e-3 9.10e-2 1.2 8.05e-5 9.43e-2 1.3
7168 3.93e-2 1.77e-2 1.10e-3 4.55e-2 1.2 1.01e-5 4.76e-2 1.3

order 1.1 1.1 2.1 1.1 - 3.2 1.1 -

Table 2: Convergence rates of error estimators for test case 1, unstructured meshes

η∗R, the diffusive flux (mass balance) estimator η∗DF, and the jump estimator η∗J defined as follows:

(η∗R)2 =
∑

T∈Th

m2
T,K‖f + ∇·(K∇uh)‖2

0,T ,

(η∗DF)2 =
∑

T∈Th

CT
hT

cK,T
‖nt

F [[K∇huh]]‖2
0,∂T\∂Ω,

(η∗J)2 =
∑

T∈Th

CT
1

hT
‖γ1/2

K,F [[uh]]‖2
0,∂T ,

where CT = 3dhT |∂T |/|T |. Results are presented in Table 3. In particular, the 5th column, which
displays the effectivity index, shows that the error is overestimated by a factor of 10. It should
be observed that the main source for overestimation is the residual estimator η∗R, which we have
transformed into a super-convergent term in the present work. The diffusive flux estimator η∗DF is
also observed to be about three-times larger than the estimators ηDF evaluated using the present
reconstructed flux th either with l = 0 or with l = 1. For completeness, the last column of Table 3
proposes a comparison with the recent results of [13] where the mean value is subtracted from
the residue within each mesh element, while the diffusive flux estimator and the nonconformity
estimator are considered together as one unique term. We see that the estimate becomes sharper,
though it still overestimates the error by a factor of 4.5, mainly because the reconstructed flux th

is not used.
The aim of test cases 2 and 3, which were proposed in [26], is to address the question of

diffusion inhomogeneities. The domain Ω is split along the Cartesian axes into four subregions
Ωi. The subregion {x > 0, y > 0} ∩ Ω is indicated by Ω1 and the subsequent numbering is done
in a counterclockwise manner. The diffusion coefficient is equal to κi in subregion Ωi where κi
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N η∗R η∗DF η∗J eff. eff. [13]

112 1.74 1.38 3.57e-1 7.5 5.2
448 8.73e-1 5.86e-1 2.03e-1 7.2 4.9
1792 4.37e-1 2.75e-1 1.07e-1 7.1 4.7
7168 2.19e-1 1.31e-1 5.42e-2 7.1 4.5

order 1.1 1.1 1.0 - -

Table 3: Comparison with other error estimators for test case 1, unstructured meshes

is a constant. Taking the forcing term equal to zero, the analytical solution with corresponding
nonhomogeneous Dirichlet boundary conditions can be written in polar coordinates as

u(r, φ)|Ωi
= rα (ai sin(αφ) + bi cos(αφ)) ,

where the subscript i refers to the corresponding subregion. Owing to the singularity in the origin,
the calculated solution converges with order 2α in the L2-norm and with order α in the energy
(semi)norm. For test case 2, we take κ1 = κ3 = 5 and κ2 = κ4 = 1, yielding α = 0.53544095 and

a1 = 0.44721360; b1 = 1.00000000;

a2 =−0.74535599; b2 = 2.33333333;

a3 =−0.94411759; b3 = 0.55555556;

a4 =−2.40170264; b4 =−0.48148148.

For test case 3, we take κ1 = κ3 = 100 and κ2 = κ4 = 1, yielding α = 0.12690207 and

a1 = 0.10000000; b1 = 1.00000000;

a2 =−9.60396040; b2 = 2.96039604;

a3 =−0.48035487; b3 =−0.88275659;

a4 = 7.70156488; b4 =−6.45646175.

The results for test case 2 are shown in Tables 4 and 5 for structured and unstructured meshes,
respectively. Since the forcing term is zero, the residual estimator is also equal to zero, and has
not been reported. The interpolation error on nonhomogeneous Dirichlet boundary conditions is
not reported either. We observe that the expected convergence rate of order α is obtained for both
the nonconformity estimator ηNC and for the diffusive flux estimator ηDF. Both estimators yield
comparable values. The effectivity index is 1.9 for l = 0 and 1.8 for l = 1; hence, for this test case,
employing l = 1 for the reconstruction leads to a slightly sharper estimator.

The results for test case 3 are shown in Tables 6 and 7 for structured and unstructured meshes,
respectively. The order of convergence of the error estimators is close to α, and the error is
overestimated by a factor of approximately 3.8. This is because the nonconformity error estimator
now dominates over the diffusive flux estimator. Hence, although the diffusive flux estimator is
lower for l = 1 than for l = 0, this difference is scarcely reflected in the effectivity index. Finally, it
is worthwhile to notice that in the present setting, the diffusion coefficient is not monotone around
the singularity, thus precluding the use of weighted variants of the Oswald interpolate such as that
proposed in [2]. On the other hand, one can employ a piecewise quadratic Oswald interpolate as
in [31, 30].
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l = 0 l = 1

N |||u− uh||| ηNC ηDF eff. ηDF eff.

128 6.61e-01 9.60e-1 8.02e-1 1.9 6.54e-1 1.8
512 4.58e-01 6.68e-1 5.63e-1 1.9 4.63e-1 1.8
2048 3.17e-01 4.62e-1 3.92e-1 1.9 3.23e-1 1.8
8192 2.19e-01 3.20e-1 2.72e-1 1.9 2.25e-1 1.8

order 0.53 0.53 0.53 - 0.53 -

Table 4: Convergence rates of error estimators for test case 2, structured meshes

l = 0 l = 1

N |||u− uh||| ηNC ηDF eff. ηDF eff.

112 6.11e-01 8.70e-1 7.43e-1 1.9 6.00e-1 1.7
448 4.28e-01 6.09e-1 5.35e-1 1.9 4.32e-1 1.7
1792 2.97e-01 4.23e-1 3.74e-1 1.9 3.05e-1 1.8
7168 2.01e-01 2.92e-1 2.60e-1 1.9 2.12e-1 1.8

order 0.53 0.53 0.53 - 0.52 -

Table 5: Convergence rates of error estimators for test case 2, unstructured meshes

l = 0 l = 1

N |||u − uh||| ηNC ηDF eff. ηDF eff.

128 3.49 12.4 2.68 3.6 2.02 3.6
512 3.29 11.9 2.57 3.7 1.95 3.6
2048 3.09 11.3 2.45 3.7 1.86 3.7
8192 2.88 10.7 2.32 3.8 1.76 3.8

order 0.10 0.08 0.08 - 0.08 -

Table 6: Convergence rates of error estimators for test case 3, structured meshes

l = 0 l = 1

N |||u − uh||| ηNC ηDF eff. ηDF eff.

112 3.27 11.8 2.39 3.7 1.89 3.7
448 3.11 11.3 2.33 3.7 1.84 3.7
1792 2.93 10.8 2.23 3.8 1.77 3.7
7168 2.75 10.3 2.12 3.8 1.68 3.8

order 0.09 0.08 0.08 - 0.07 -

Table 7: Convergence rates of error estimators for test case 3, unstructured meshes
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N |||u − uh||| ηNC eff. l = 0 eff. l = 1

128 1.95e-3 3.62e-3 13.8 14.4
512 4.01e-4 1.84e-3 11.1 10.9
2048 1.89e-3 8.84e-4 8.10 7.75

order 1.1 1.1 - -

Table 8: Efficiency of error estimators for test case 4 (κ = 10−2)

l = 0 l = 1

N η∗R ηR ηDF ηU ηR ηDF ηU ηC,1

128 4.91e-2 3.94e-2 8.82e-3 6.35e-2 1.12e-2 8.73e-3 6.35e-2 3.28e-2
512 1.44e-2 9.86e-3 4.93e-3 2.87e-2 1.66e-3 4.73e-3 2.87e-2 7.69e-3
2048 4.63e-3 2.42e-3 2.51e-3 9.77e-3 3.19e-4 2.37e-3 9.77e-3 1.53e-3

order 1.6 2.0 1.0 1.6 2.4 1.0 1.6 2.3

Table 9: Convergence of error estimators for test case 4 (κ = 10−2)

8.2 Convection–diffusion–reaction

We consider the domain Ω = {0 < x, y < 1}, the reaction coefficient µ = 1, the convection field
β = (1, 0)t, and an isotropic homogeneous diffusion tensor represented by a diffusion coefficient κ.
We run tests with κ = 10−2 (test case 4) and κ = 10−4 (test case 5). The source term f is chosen
so that the exact solution with homogeneous Dirichlet boundary conditions is

u = 1
2x(x− 1)y(y − 1) (1 − tanh(10 − 20x)) .

For brevity, only results for uniformly refined structured meshes are presented.
Tables 8 and 9 report the results for κ = 10−2. Table 8 focuses on the global effectivity index

when both the diffusive and convective fluxes are reconstructed using l = 0 or l = 1. Both choices
yield comparable results with efficiency indices ranging between 8 and 14 approximately. A more
detailed comparison can be found in Table 9. The residual estimator ηR super-converges and
converges faster for l = 1 than for l = 0. The classical residual estimator η∗R evaluated using
solely the discrete solution is also reported; it takes, as expected, larger values. The diffusive flux
estimator ηDF yields the smallest contribution among the different terms in the error estimate. The
upwinding estimator ηU is dominant, along with the first convection estimator ηC,1 for l = 1, while
this latter estimator vanishes for l = 0 since in this case, ∇·(qh − βIOs(uh)) is by construction
piecewise constant. Finally, the second convection estimator ηC,2 vanishes identically because β is
divergence-free. All in all, there is little gain in efficiency when going from l = 0 to l = 1.

Tables 10 and 11 report the results for κ = 10−4. Table 10 focuses on the global effectivity
index for the l = 0 and l = 1 flux reconstructions. Again, both choices yield similar results, and
the efficiency indices are roughly ten-times larger than those observed for κ = 10−2, in agreement
with the cut-off coefficients employed in front of the estimators. A more detailed comparison can
be found in Table 11. As for test case 4, the residual estimator ηR converges faster for l = 1 than
for l = 0, but this gain is compensated by the first convection estimator ηC,1. The diffusive flux
estimator ηDF yields the smallest contribution, while the upwinding estimator ηU dominates the
overall estimate.
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N |||u − uh||| ηNC eff. l = 0 eff. l = 1

128 1.72e-3 2.73e-3 80 89
512 5.68e-4 6.74e-4 124 128
2048 2.14e-4 1.66e-4 145 152

order 1.4 2.0 - -

Table 10: Efficiency of error estimators for test case 5 (κ = 10−4)

l = 0 l = 1

N η∗R ηR ηDF ηU ηR ηDF ηU ηC,1

128 7.77e-2 6.84e-2 1.06e-3 6.98e-2 1.92e-2 1.03e-3 6.55e-2 6.98e-2
512 3.90e-2 3.41e-2 6.20e-4 3.60e-2 3.44e-3 5.71e-4 3.38e-2 3.60e-2
2048 1.87e-2 1.63e-2 3.23e-4 1.47e-2 2.01e-3 2.86e-4 1.46e-2 1.60e-2

order 1.1 1.1 0.9 1.3 0.8 1.0 1.3 1.1

Table 11: Convergence of error estimators for test case 5 (κ = 10−4)

8.3 Adaptive meshes

We conclude this section by an example on how the error estimator with l = 0 can be used to adapt
the mesh. Test case 2 is considered. The adaptive mesh refinement procedure flags 5% of the mesh
elements yielding the largest error indicators. Results are reported in Table 12. The effectivity
index fluctuates between 1.7 and 2 and decreases as finer meshes are constructed. Comparing with
Table 5, we observe that the energy norm of the error on an adapted mesh with 494 elements is
comparable to that obtained on a uniformly refined mesh with 7168 elements. Finally, Figure 1
presents two meshes obtained within the adaptive refinement procedure, one with 342 elements
and one with 494 elements. We see that the adaptive refinement correctly aims at capturing the
singularity at the origin.

References

[1] Achdou, Y., Bernardi, C., and Coquel, F. A priori and a posteriori analysis of finite

N |||u− uh||| ηNC ηDF eff.

112 6.11e-1 8.70e-1 7.43e-1 1.87
148 4.58e-1 6.17e-1 5.78e-1 1.84
204 3.59e-1 5.59e-1 4.63e-1 2.02
264 2.96e-1 4.21e-1 3.76e-1 1.91
342 2.50e-1 3.05e-1 3.23e-1 1.78
494 2.10e-1 2.20e-1 2.78e-1 1.68

Table 12: Error as a function of mesh elements

28



−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Figure 1: Two meshes successively refined using the error estimator with l = 0 reconstruction: 342
elements (left) and 494 elements (right)

volume discretizations of Darcy’s equations. Numer. Math. 96, 1 (2003), 17–42.

[2] Ainsworth, M. Robust a posteriori error estimation for nonconforming finite element ap-
proximation. SIAM J. Numer. Anal. 42, 6 (2005), 2320–2341.

[3] Ainsworth, M. A posteriori error estimation for discontinuous Galerkin finite element
approximation. SIAM J. Numer. Anal. 45, 4 (2007), 1777–1798.

[4] Bastian, P., and Rivière, B. Superconvergence and H(div) projection for discontinuous
Galerkin methods. Internat. J. Numer. Methods Fluids 42, 10 (2003), 1043–1057.
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