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ABSTRACT

The structure of a synthetic analogue of sodium birnessite (NaBi) was studied by powder

X-ray diffraction (XRD). It is shown that NaBi has a one-layer triclinic structure with sub-cell

parameters aP = 2.9513(4) Å, bP = 2.9547(4) Å, cP = 7.334(1) Å, αP = 78.72(2)°,

βP = 101.79(1)°, γP = 122.33(1)°, and space group P1bar. This sub-cell is equivalent to the

base-centered sub-cell with parameters a = 5.174 Å, b = 2.848 Å, c = 7.334 Å, α = 90.53°,

β = 103.20°, γ = 90.07°. A structure model has been refined using the Rietveld technique.

NaBi consists of vacancy-free manganese octahedral layers whose negative charge arises

mostly from the substitution of Mn3+ for Mn4+. The departure from the hexagonal symmetry

of layers results from the Jahn-Teller distortion of Mn3+ octahedra, which are elongated along

the a axis, segregated in Mn3+-rich rows parallel to the b axis, and separated from each other

along the a axis by two Mn4+-rows. Structural sites of interlayer Na cations and H2O have

been determined as well as their occupancies. The sub-cells of the two NaBi modifications

described by Drits et al. (1997) as type I and II likely contain four sites for interlayer species,

two of which are occupied by Na and the other two by H2O molecules. In the two NaBi

varieties, these pairs of sites are split along the c axis and related by a center of symmetry.

This splitting is consistent with the modulated structure of both NaBi types, which arises from

the periodic displacement of interlayer species along the b axis with a periodicity λ = 6b

(Drits et al. 1997).
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INTRODUCTION

Birnessite is the most common mineral of the phyllomanganate family. It can form under

a variety of physico-chemical conditions and is consequently present in different geological

environments such as soils (Taylor et al. 1964; Chukhrov and Gorshkov 1981; Cornell and

Giovanoli 1988), marine manganese nodules and micro-nodules (Burns and Burns 1976;

Glover 1977; Chukhrov et al. 1978, 1985, 1989; Drits et al. 1985), and Mn-rich ore deposits

(Usui and Mita 1995). Further, birnessite possesses unique surface charge (Healy et al. 1966;

Murray 1974), cation exchange (Balistrieri and Murray 1982; Le Goff et al. 1996), and redox

(Stone et al. 1994) properties, which makes it highly reactive with respect to sorption

phenomena (Paterson et al. 1994; Tu et al. 1994). It is also easily synthesized under laboratory

conditions (Bricker 1965; Stälhi 1968; Giovanoli et al. 1970a, 1970b; Golden et al. 1986;

Strobel et al. 1987; Cornell and Giovanoli 1988) and therefore has been often used as a model

manganese oxide in environmental chemical studies (Stone and Morgan 1984; Stone 1987;

Manceau and Charlet 1992; Xyla et al. 1992; Bidoglio et al. 1993).

Two major synthetic analogues of sodium birnessite (NaBi) have been described in the

literature. A three-layer hexagonal modification was synthesized recently under hydrothermal

conditions (Chen et al. 1996). However, the most common way to synthesize NaBi is the

formation at room temperature and high pH of Na-rich 10Å buserite, which is then partially

dehydrated to form NaBi (Giovanoli et al. 1970a; Feng et al. 1997). Post and Veblen (1990)

determined for the first time the monoclinic one-layer sub-structure of this phyllomanganate

using the Rietveld technique, together with transmission electron microscopy (TEM) and

selected area electron diffraction (SAED). Drits et al. (1997), and Silvester et al. (1997), using

SAED and extended X-ray absorption fine structure (EXAFS) spectroscopy, further studied
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the structure and crystal chemistry of synthetic NaBi, concentrating on the nature and origin

of its super-cell and modulated structures.

These authors did not perform any additional XRD analysis and assumed that the sub-

structure determined by Post and Veblen (1990) was correct. However, the precision of

refined structural parameters (atomic positions and occupancies) was not sufficient to allow a

complete and unambiguous determination of all details of NaBi sub-structure, even though its

main structural and chemical properties were reasonably known. In particular, they were

unable to draw definitive conclusions about the respective contributions of layer Mn3+ and/or

layer vacancies to the layer charge. Accordingly, it was impossible from their results to

choose unambiguously between the two structural formulae

Na+
0.29(Mn4+

0.71Mn3+
0.29)O2·0.75H2O and Na+

0.29(Mn4+
0.93 0.07)O2·0.75H2O. Similarly, the

position of the interlayer species could not be determined precisely because the O2 site on the

difference-Fourier map was very diffuse, and specific sites for interlayer Na and H2O could

not be determined. This diffuseness was assumed to result from structural disorder (Post and

Veblen 1990). Finally, the actual structural features responsible for the pronounced

anisotropic peak broadening remained unclear. Anisotropic shapes of the coherent scattering

domains (CSDs), and structural disorder along one direction, which was consistent with

streaking observed in SAED patterns, were the two hypotheses invoked by Post and Veblen

(1990).

In the present article, this anisotropic broadening is interpreted and, as a result, NaBi is

shown to have a one layer triclinic sub-cell. By simulating the XRD pattern of NaBi with this

sub-cell, new results concerning its sub-structure were obtained. In particular, interlayer sites

for Na and H2O have been re-determined and are now consistent with the modulated structure

proposed by Drits et al. (1997) and relating the satellites observed on SAED patterns with a
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periodic λ = 6b displacement of Na and H2O along the b axis. In addition, simulation of the

NaBi XRD pattern provides direct evidence that negative layer charge and departure from the

hexagonal layer symmetry originate from the Mn3+ for Mn4+ substitution in octahedral layers.

EXPERIMENTAL

Experimental methods

Sample NaBi1 was prepared following the procedure of Giovanoli et al. (1970a) as

described by Drits et al. (1997); its structural formula is Na+
0.31(Mn4+

0.69Mn3+
0.31)O2·nH2O

(Silvester et al. 1997). One additional NaBi sample (NaBi2) was synthesized following the

procedure of Feng et al. (1997). The initial NaBu suspension was prepared at room

temperature using a NaOH/Mn(NO3)2 ratio of 3.3, and H2O2 as oxidizing agent. This

suspension was then hydrothermally treated at 150°C in a 1M NaOH solution for 24 hours to

produce a NaBi suspension which was then filtered, washed and dried at room temperature.

Powder XRD patterns were obtained using CuKα radiation with a Siemens D5000 powder

diffractometer equipped with a Kevex Si(Li) solid detector. Intensities were measured at a

0.04° 2θ interval with a 30s counting time per step.

The XRD pattern of sample NaBi1 (Fig. 1) is almost identical to that reported by Post and

Veblen (1990) but does not contain hausmannite. To a first approximation all major

diffraction maxima can be indexed with a one-layer monoclinic sub-cell with a = 5.169 Å, b =

2.848 Å, c = 7.321 Å, β = 103.2°. As noted by Post and Veblen (1990), there is a strong

anisotropic peak broadening, 11� reflections being much broader than 20� reflections for the

same � value.
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Thermal analysis was carried out with a Netzsch Simultan STA409EP micro-analyzer

with a heating rate of 10°C/min up to 1100°C. Thermo-gravimetric analysis (TGA) and

differential scanning calorimetry (DSC) were performed on ~20 mg samples to determine the

weight loss due to adsorbed and interlayer water. Figure 2 shows that the heating of NaBi1

sample induces two low-temperature weight losses which are likely related to the release of

adsorbed (2.1%) and interlayer (7.1%) H2O, respectively. To account for the loss of interlayer

H2O determined from TGA, the structural formula proposed by Silvester et al. (1997) for

NaBi1 may be refined as Na+
0.31(Mn4+

0.69Mn3+
0.31)O2·0.40H2O.

Simulation of XRD patterns

To build up an initial structure model for NaBi, diffraction effects were calculated for

structure models realistic from a crystal chemistry point of view. The agreement between

calculated and experimental XRD patterns was first improved using a trial-and-error

procedure, as recommended by Drits and Tchoubar (1990) for defective structures. This

approach was successfully applied to natural and synthetic one-layer hexagonal birnessites

(Chukhrov et al. 1985; Manceau et al. 1997; Lanson et al. 2000), as well as to four-layer

monoclinic Ca-exchanged birnessite (Drits et al. 1998). Details on the program used to

calculate XRD patterns, as well as on the fitting procedure, are given by Drits et al. (1998).

The background was assumed to be constant over the angular range considered (30-65°2θ

CuKα, 2.95-1.45 Å). The function used to describe the preferred orientation of particles is

given by Drits and Tchoubar (1990).

Sub-cell parameters, atomic coordinates, and occupancies obtained from the trial-and-

error approach were used to build up an initial structural model for NaBi. Rietveld refinement

of this model was subsequently carried out over a larger angular range using the computer
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program XND (Bérar and Baldinozzi 1998). To de-correlate instrumental broadening from

defect broadening, PSF parameters and spectral distribution were first refined using a quartz

reference, and then set constant during the refinement of the NaBi sub-structure. As in the

previous calculations, the background was held constant over the considered angular range

(34-90°2θ CuKα, 2.95-1.09 Å). During initial cycles of the Rietveld refinement, only the

scale factor was refined. In a second step, sub-cell parameters were refined prior to atomic

coordinates and site occupancy factors. In the final stages of the refinement, preferred

orientation was introduced using orientation dependent profiles, and calculating 00� lines as a

separate phase having parameters identical to those used to calculate hk� reflections, but with

different orientation-dependent profiles.

RESULTS

Anisotropic broadening

A careful examination of the experimental XRD patterns (Figs. 1, 3a) shows that the

broadening of 11� reflections increases with �, whereas 20� reflections are much sharper for

the same � value, as described previously by Post and Veblen (1990). However, the intensity

of 11� reflections does not decrease strongly as it would if this broadening was related only to

structural disorder along the b axis. Because of the very similar breadths of 200 and 020

reflections, this broadening is likely not associated with the anisotropic shape of the CSDs as

suggested by Post and Veblen (1990). On the other hand, 11� reflections are clearly split for

the NaBi2 sample (Fig. 3b – See especially 11±2bar, 11±3bar and 11±4bar reflections) whereas

the overall distribution of diffracted intensity is similar for the two samples. This split proves

unambiguously the triclinic character of NaBi; and a triclinic sub-cell with parameters a =
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5.174 Å, b = 2.848 Å, c = 7.334 Å, α = 90.5°, β = 103.2°, and γ = 90° indeed permits to

explain the observed selective broadening of 11� reflections. The sub-structure refinement

was carried out on sample NaBi1 because sample NaBi2 contains a small manganite impurity,

and because a model super-structure was available for this particular sample (Drits et al.

1997; Silvester et al. 1997). As a consequence, it was possible to interpret the structure model

refined for NaBi1 in the light of available SAED and chemical data as the same sample was

used.

SIMULATION OF THE NABI XRD PATTERN

Trial and error approach

The similarity of the monoclinic (Post and Veblen 1990) and triclinic a, b, c, and α, β, γ 

sub-cell parameters suggests that the origin of the triclinicity of NaBi is a small layer

displacement along the b axis. This shift lowers the space group C2/m (Post and Veblen

1990) to either C1bar or C1, probably without changing the layer symmetry (2/m). The

present sub-structure refinement was performed using the centro-symmetric C1bar space

group because no experimental argument in favor of a non-centro-symmetric sub-structure

was found. At first, the XRD pattern of NaBi1 was simulated using positions and occupancies

of layer and interlayer atomic sites refined by Post and Veblen (1990), taking into account the

triclinic character of NaBi. In particular, Post and Veblen (1990) determined the presence of

two interlayer sites, host to Na and H2O, both of which were modeled with the scattering

factor for oxygen. The predominant site (0.595, 0, 0.5) and the accessory site (0, 0, 0.5) had

occupancy factors of 2.0 and 0.3 oxygen atoms per unit cell, respectively. However, the XRD

pattern calculated for this model differs from the experimental one (Fig. 4a).
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The trial-and-error approach was subsequently used to improve the initial structural

model. Because of the modulated super-structures described by Drits et al. (1997) for sample

NaBi1, and because of the diffuseness of the O2 site on the difference Fourier map described

by Post and Veblen (1990), splitting of the interlayer site was considered; the agreement

between the calculated and experimental XRD patterns was significantly improved (Figs. 3,

4b) by splitting the predominant interlayer position into four sites related by a center of

symmetry (0.551, ±0.135, 0.500) and (0.449, ±0.135, 0.500). Even though at this stage

structural sites for Na and H2O cannot be separated, the trial-and-error analysis clearly

demonstrates that the predominant interlayer site is split (Figs. 4b, 4c).

Another conclusion obtained with the trial-and-error method is that NaBi1 contains very

few stacking faults or other structural defects which alter its three-dimensional (3D)

periodicity. The intensity and profiles of the measured reflections were reproduced assuming

that cylinder-like CSDs have a 225 Å radius and contain an average of 20 birnessite layers,

the amount of random stacking faults being only 3%. The NaBi sub-structure was further

refined using the Rietveld technique.

The Rietveld approach

Atomic coordinates obtained with the trial-and-error approach in space group C1bar were

transformed to space group P1bar. The Rietveld refinement of the sub-cell parameters gave

values of aP = 2.9513(4) Å, bP = 2.9547(4) Å, cP = 7.334(1) Å, αP = 78.72(2)°, βP = 101.79(1)°

and γP = 122.33(1)°. The refined positions and occupancies of structural sites for this sub-cell

led to the fit shown in Figure 5. Final RWP and RB are respectively 10.7 and 6.2%. In spite of

these high values, the refinement was stopped because the main discrepancies between

experimental and calculated patterns arise from the presence of super-cell reflections in the
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XRD pattern of NaBi1. Furthermore, the discrepancy observed for the 200 reflection (Fig. 5)

may be explained by the small amount of random stacking faults in this sample. Indeed,

calculations performed using the trial-and-error approach show that the intensity calculated

for this reflection strongly depends on the amount of such defects, and that the addition of

random stacking faults (3-4%) to the refined model significantly improves the agreement

between calculated and experimental distributions of intensities. As a consequence no

significant modification was expected for the sub-cell parameters. Refined structural

parameters and selected inter-atomic distances of NaBi are found in Tables 1 and 2.

Refinement of the layer Mn site occupancy factor for NaBi (range: 1.00 to 1.02) indicated

that NaBi layers do not contain vacant octahedral sites. In addition, because the refined

position of layer oxygen atoms (Olayer) is slightly off the long diagonal of the P sub-cell, the

octahedral layer has no mirror plane, and its symmetry is lower than 2/m. Figure 6 shows the

positions of four refined interlayer sites and the distances from these sites to the closest Olayer

atoms. The analysis of these bond lengths allows determination of the nature of the interlayer

species in these sites. For example, the two symmetrically related interlayer sites at 2.46 Å

from the nearest Olayer are likely occupied by Na cations, whereas the other two symmetrically

related sites, at ~2.70 Å from the nearest Olayer are likely occupied by H2O (Fig. 6). Using this

assumption, refined site occupancy factors for both Na (0.18 ±0.02) and H2O (0.27 ±0.02) are

similar to the values derived from the chemical formula (0.145, and 0.20, respectively) and

support the hypothesized site allocation.

One may note that the same quality of fit may be obtained for a configuration of interlayer

sites which, with respect to the first model, is almost symmetrically reflected by a plane

passing through the c* axis and the long diagonal of the P sub-cell. However, this alternative

model was rejected because distances from each of the interlayer sites to the nearest Olayer



11

atoms are significantly shorter than 2.5 Å, which is short for interlayer H2O - Olayer bond

lengths.

DISCUSSION

For clarity and to be consistent with previously published data, all structural features of

NaBi are hereafter discussed in terms of the base-centered sub-cell with parameters a = 5.174

Å, b = 2.848 Å, c = 7.334 Å, α = 90.53°, β = 103.20°, γ = 90.07°, which is equivalent to the

refined primitive sub-cell with aP = 2.951 Å, bP = 2.955 Å, cP = 7.334 Å, αP = 78.72°,

βP = 101.79°, γP = 122.33°.

Presence and azimutal orientation of Mn3+ octahedra in the layer

One of the most notable features of the NaBi layer is the strong elongation of individual

octahedra along the a axis. Within a MnO6 octahedron, the two Mn-O distances oriented in

the ac* plane are much longer (2.003 Å) than the other four Mn-O distances (1.945, and 1.925

Å - Table 2). This elongation originates from the displacement along the a axis of Olayer atoms

lowering the ideal symmetry of the octahedron. Additionally, this elongation is responsible

for the departure from the hexagonal symmetry of the layer (a/b = 1.817 = 30.3 ). This

distortion likely results from the presence of a significant amount of Mn3+ cations in NaBi;

two Mn3+-O distances in Mn3+ octahedra are commonly much longer than the other four

because of the Jahn-Teller effect. In crednerite for example, Mn3+ octahedra contain two

2.260 Å and four 1.929 Å Mn3+-O bond lengths, with an average <Mn-O> distance of 2.04 Å

(Töpfer et al. 1995). Similar distortions of Mn3+ octahedra and <Mn3+-O> have been reported
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by Shannon et al. (1975) for α-MnOOH (2.041 Å - Glasser and Ingram 1968), γ-MnOOH

(2.037 Å - Dachs 1963), and α-Mn2O3 (2.039-2.045 Å - Norrestam 1967).

If one assumes that <Mn-O> is a statistically-weighted sum of the mean Mn3+-O distance

determined for crednerite and for Mn oxy-hydroxides (~2.04 Å), and of the Mn4+-O distance,

determined for λ-MnO2 (1.912 Å - Thackeray et al. 1993), the mean Mn-O distance for the

0.69:0.31 cation composition of NaBi1 should be 1.952 Å. This value is consistent with the

observed one (1.958 Å). For the same average layer cation composition (Mn4+
0.69Mn3+

0.31),

the long Mn-O distance calculated as the weighted sum of long Mn-O distances determined

for Mn4+ and Mn3+ octahedra for λ-MnO2 (1.912 Å) and crednerite (2.26 Å), respectively,

equals 2.003 Å and coincides with the experimentally determined value (2.002 Å). As a

consequence, the origin of the negative layer charge is undoubtedly the presence of Mn3+

cations, rather than the existence of vacant layer sites. Furthermore, the distribution of Mn-O

distances indicates that all Mn3+ octahedra have the same azimutal orientation with their long

Mn-O distance in the ac* plane. This unique azimutal orientation is responsible for the

departure from the hexagonal layer symmetry.

Structure of the interlayer region

As compared with the model proposed by Post and Veblen (1990), the main difference in

our refined model of the NaBi interlayer region is the determination of specific sites for Na

and H2O. Post and Veblen (1990) did not determine the respective positions of these

interlayer species because the maximum observed in their difference Fourier map was very

diffuse, and because of the very similar scattering powers of these two species. To account for

this diffuseness, these authors invoked positional disorder in the distribution of interlayer

species possibly occupying "different sites within a unit-cell and a range of positions in
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different unit cells". The results of our refinement support this hypothesis, as within the sub-

cell Na and H2O occupy different sites related by a center of symmetry (Figs. 6, 7 & 8). Such

split of Na and H2O sites is likely responsible for the diffuse character of the electron density

described by Post and Veblen (1990).

The existence of two distinct H2O sites is favored by the equal opportunity for the

formation of strong hydrogen bonds between interlayer H2O and layer oxygen atoms offered

by each of these positions (Fig. 7). According to our refinement, the two H2O sites differ from

each other by their z-coordinate; one site is shifted towards the lower octahedral layer

(z = 0.495 – (H2O)1) whereas the other is shifted towards the upper layer (z = 0.505 – (H2O)2).

If the nearest oxygen atoms of adjacent lower and upper layers are respectively labeled O1 and

O2, bond lengths (H2O)1-O1, (H2O)2-O2 (2.69 Å), and (H2O)2-O1 and (H2O)1-O2 (2.71 Å) are

typical for the formation of H-bonds (Fig. 8). Furthermore, the 145° angle between O1, O2,

and H2Oi (i = 1, 2 - Fig. 7) is also suitable for the formation of strong H-bonds which are

responsible for most of the cohesion between layers.

The two Na sites are also shifted along the c* axis, one towards the lower layer (Na1) and

the other towards the upper layer (Na2; Fig. 8), leading to typical Nai-Oi distances (2.46 Å).

Origin of the super-cell and modulated structures

The results of our refinement on NaBi1 confirm unambiguously the assumption of Post

and Veblen (1990), Manceau et al. (1992), and Drits et al. (1997) that super-cell reflections

and satellites observed in the SAED patterns of NaBi micro-crystals result from a regular

distribution of interlayer species rather than vacancies in the octahedral layer.

For NaBi micro-crystals, two types of SAED patterns have been reported (Drits et al.

1997). The distribution of super-cell reflections in NaBi type I corresponds to a base-centered
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layer super-cell with A = 3a = 15.52 Å, B = b = 2.848 Å, and γ = 90°. To account for these

super-cell reflections, Drits et al. (1997) proposed the arrangement of interlayer Na cations

shown in Figure 9a. In addition, any sub- and super-cell reflection is surrounded by satellites

at ±b*/6 along the [01]* direction. According to Drits et al. (1997) these satellites arise from a

periodic variation of distances between planes parallel to (010) containing interlayer species

(Fig. 10). The distribution of super-cell reflections reported for NaBi type II corresponds to a

base-centered super-cell with A = 3a = 15.52 Å, B = 3b = 8.55 Å, and γ = 90°. A possible

distribution of Na within the interlayer super-cell is shown in Figure 9b. As discussed by Drits

et al. (1997), the (0, 0) and the (0.5, 0.5) sites should be fully occupied whereas other sites are

occupied by Na with a lower probability to keep its base-centered character to the interlayer

Na distribution (Fig. 9b).

In both NaBi varieties, the super-periodicity A = 3a arises from the ordered distribution of

Mn3+-rich rows parallel to [010] and separated from each other along [100] by two Mn4+ rows

(Drits et al. 1997). Along with sub- and super-cell reflections, SAED patterns of NaBi type II

contain two types of satellites: 1) the first type are similar to those observed for NaBi type I,

and 2) the second type are elongated along [11]* and [11bar]*. Satellites elongated along

[11bar]* are located in the middle of two nearest point reflections located along [11]*. A

possible arrangement of interlayer species which accounts for the main diffraction features of

NaBi type II is shown in Figure 11. A periodic displacement of Na and H2O along the b axis

with BS = 6b accounts for the origin of the satellites of the first type. A periodic modulation

along [13] and [1bar3] of Na and H2O species located along (110) and (11bar0), respectively,

gives rise to the satellites of the second type. As can be seen in Figure 11, waves parallel to

(110) located in two neighboring rhomb-shaped unit cells (I and II) do not scatter X-rays
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strictly in phase because of opposite displacements of Na and H2O along the b axis. This

phase difference is likely responsible for the elongation of the satellites (Drits et al. 1997).

Results from the present refinement may be combined with the above interpretation of

SAED patterns to propose consistent 2D distributions of interlayer Na and H2O responsible

for the presence of super-cell reflections and satellites for both NaBi type I and II crystals.

NaBi type II. In agreement with SAED data, Na cations should be distributed with a 3b

period along the b axis to a super-cell with A = 3a, B = 3b, γ = 90° (Fig. 9b). To comply with

the two positions determined for Na, these cations are likely shifted along the b axis

alternately towards the upper and lower layer surfaces to provide homogeneous compensation

of the negative layer charge. As a result, Na cations form a Na1-Na2-Na1… sequence inducing

a 6b period along the b axis consistent with the satellite periodicity. In addition to Olayer

atoms, Na cations are likely coordinated by H2O molecules at 2.60-2.65 Å, and H2O

molecules coordinating Nai cations are located in the H2Oi sites. The combination of the

above conditions leads to the 2D distribution of interlayer Na and H2O shown in Figure 12.

This distribution presents several remarkable features. First, interlayer cohesion is insured

by a set of chains, elongated along the a axis, in which Na and H2O are distributed in a Nai-

(H2O)i-Nai-(H2O)i… sequence (i = 1, 2). As a consequence, each Na is tetrahedrally-

coordinated by two Olayer atoms at 2.46 and 2.74 Å and two H2O molecules at 2.61 and

2.64 Å. Similarly, in these chains each H2O is bound to two Olayer atoms (2.69-2.71 Å) and to

two Na cations (2.61-2.64 Å). On Figure 12, one may note that successive chains are not

linked to each other by inter-chain interlayer species. Second, the distance between successive

chains changes periodically along the b axis with a 6b super-periodicity because the

displacements of Na cations along the b axis induce the same periodicity in the distribution of
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associated H2O. As shown on Figure 13a, the shift of interlayer Na along the c axis and in the

ab plane likely results from the Mn3+-Mn3+-Mn3+-Mn3+-Mn2+-Mn4+… distribution of

heterovalent Mnlayer in Mn3+-rich rows described by Drits et la. (1997), interlayer Na being

shifted towards Mn2+ cations. To account for the observed B = 3b super-cell periodicity, the

respective positions of heterovalent Mnlayer sequences in adjacent layers have to be

considered. If Mn3+-rich rows from adjacent layers are shifted by -a/3 with respect to each

other, sequences of heterovalent Mnlayer cations in these Mn3+-rich rows should be shifted

along the b axis as shown on Figure 13b to induce the observed B = 3b super-cell periodicity.

As a result, Na1 and Na2 cations are shifted in opposite directions along the c axis and in the

ab plane leading to the modulated distance between successive chains of interlayer species,

which in turn is responsible for satellites of the first type observed in SAED patterns of NaBi

type II crystals.

The third feature of the interlayer species distribution shown on Figure 12 is the

fluctuation, along [13]and [13bar], of interlayer Na and H2O atomic positions. As an

illustration, a rhomb-shaped unit-cell with 2(A + B) and 2(B - A), or 12aP and 12bP, may be

chosen (A, B, aP, and bP are parameters of the base-centered super-cell and of the primitive

sub-cell, respectively - Fig. 14). One may note that interlayer Na and H2O (not shown) are

distributed periodically as waves parallel to (110), or bp. The amplitude of these waves varies

along [13] with a 8d(310) (or 12ap) period. Drits and Kashaev (1969) showed that a periodic

displacement of atoms along the a axis with a λ = nb period along the b axis induces, in

reciprocal space, satellites which are located along the b* axis and separated from the main

nodes by b*/n. Similarly, the periodic displacement of interlayer species (Na, and H2O) along

[13] with a 8d(310) (or 12ap) period along [11] should induce satellites distributed along

[11bar]* and separated from super-cell reflections by ap
*/12 (or B*/4sinγ). Similar



17

displacements of interlayer species along [13bar] (not shown) induce additional satellites

located along [11]* at the same distance from super-cell reflections as the previous group of

satellites. Such satellite distribution has been described as satellites of the second type in

SAED patterns of NaBi crystals type II (Drits et al. 1997).

NaBi type I. As mentioned, this variety has a A = 3a = 15.52 Å, B = b, γ = 90° layer

super-cell (Fig. 9a), whereas the presence of satellites indicates the existence of a modulated

super-cell with a 6b period. As a consequence, the 2D distribution of interlayer Na and H2O in

NaBi type I crystals should satisfy several conditions. First, Na cations should form rows

parallel to the b axis and separated from each other by A/2 along the a axis. In addition,

successive Na should be separated from each other by distances of 2b along the b axis to

avoid Na-Na pairs. Second, to generate the modulated structure responsible for the satellites,

Na cations should be specifically distributed along these rows with a 6b period, as in Na1-

Na1-Na2-Na1…, and Na2-Na2-Na1-Na2… sequences. In addition, one may assume that

predominant Na-Olayer distances are 2.61-2.64 Å, inducing Nai-Oi-Oi-Nai… (i = 1, 2)

sequences of interlayer species along the a axis. Third, to induce an average b period for the

base-centered super-cell, the rows separated by A, as well as rows separated by A/2, should be

shifted at random with respect to each other by ±b.

A 2D distribution of interlayer species in NaBi type I satisfying these conditions is shown

in Figure 15. As for NaBi type II, each Na has a tetrahedral coordination with the same bond

lengths and each H2O is bound to the two nearest Olayer atoms and to two Na cations. Figure

15a shows that interlayer Na and H2O form chains elongated along the a axis (solid lines).

The distance between these chains along the b axis changes with a λ = 6b period, accounting

for the satellites observed in SAED patterns of NaBi type I crystals (Drits et al. 1997). An
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alternative origin for these satellites (Drits and Kashaev 1969) is a periodic displacement of

interlayer species along the a axis with a 6b period along the b axis (Fig. 15a). In these chains

there are two equally probable configuration for H2O-H2O pairs. As a consequence,

propagation of these chains along the a axis may be random (Fig. 15b - dashed lines),

inducing the average B = b periodicity.

SUMMARY

A synthetic analogue of sodium birnessite (NaBi) prepared along the protocol of

Giovanoli et al. (1970a) has a one-layer triclinic base-centered sub-cell with parameters a =

5.174 Å, b = 2.848 Å, c = 7.334 Å, α = 90.53°, β = 103.20° and γ = 90.07°, which is

equivalent to the refined primitive sub-cell with aP = 2.951 Å, bP = 2.955 Å, cP = 7.334 Å,

αP = 78.72°, βP = 101.79° and γP = 122.33°.

A trial-and-error approach was used to determine an appropriate initial model which was

further refined using the Rietveld technique. The NaBi structure consists of vacancy-free

layers whose negative charge arises from the substitution of Mn3+ for Mn4+. The Jahn-Teller

distortion of Mn3+ octahedra, which are systematically elongated along the a axis, leads to the

departure from the hexagonal symmetry of layers. In the NaBi interlayer two positions were

determined for both Na and H2O. The presence of such split positions, which are related by a

center of symmetry, for interlayer Na and H2O allows to propose 2D distributions of interlayer

species responsible for the super-cell and modulated structures observed for NaBi type-I and

-II micro-crystals (Drits et al. 1997).
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Figure Captions

Figure 1. Experimental X-ray diffraction pattern of synthetic NaBi1 sample.

Figure 2. Experimental DTA-TG (a) and DSC (b) profiles obtained for synthetic NaBi1 and

NaBi2 samples.

Figure 3. X-ray diffraction patterns of synthetic NaBi1 (a) and NaBi2 (b) samples. The

experimental pattern of NaBi1 sample (crosses), prepared according to the protocol of

Giovanoli et al. (1970a), is compared with the optimal one obtained with the trial-and-

error approach (solid line – only 20� and 11±
�� reflections are calculated). Rwp was

calculated for the 34-62 °2θ range. a = 5.174 Å, b = 2.848 Å, c = 7.334 Å, α = 90.8°, β =

103.2°, γ = 90°. Corresponding structural parameters are listed in the text except for the

position of layer Mn (origin) and O (0.384, 0, 0.137) atoms and for the occupancy of

interlayer sites (0.39 Na or H2O in each site per unit cell).

Figure 4. Influence of structural parameters on calculated XRD patterns as compared with the

experimental NaBi1 pattern (crosses). (a) Calculation using the positions, (0.595, 0, 0.5)

and (0, 0, 0.5), and the occupancy factors, 2.0 and 0.3, refined by Post and Veblen (1990).

Other structural parameters as in the text and the caption of Figure 3. (b) Optimum fit

obtained by splitting the predominant interlayer position into four sites related by a center

of symmetry, (0.551, ±0.135, 0.500) and (0.449, ±0.135, 0.500), with 0.39 Na or H2O per

site. (C) Influence of the predominant interlayer position. Interlayer species are located in

a unique non-split interlayer site (0.551(5), 0, 0.5) with 1.56 Na or H2O per unit cell. All

other structural parameters are constant. Rwp were calculated for restricted 34-62 °2θ

range as for Figure 3.
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Figure 5. Final experimental (crosses), calculated , and difference powder XRD patterns for

NaBi1 sample. The calculated background is indicated by the horizontal line.

Figure 6. Schematic location of interlayer Na and H2O sites with respect to layer O and Mn

atoms in projection on the ab plane. Inter-atomic distances are given in Å. Positions and

distances are listed in Tables 1, 2. Layer O and Mn atoms are shown as large and small

circles. Atoms of the lower (subscript 1) and upper (subscript 2) layers are shown as solid

and open circles, respectively. Interlayer species closer to the lower and upper layer are

labeled with subscripts 1 and 2, respectively. (H2O)1 and (H2O)2 molecules are shown as

solid and open symbols, respectively, whereas the two Na cations are shown as shaded

circles. P and B subscripts refer to the primitive and base-centered sub-cell parameters,

respectively.

Figure 7. Schematic location of interlayer H2O sites with respect to layer O atoms in

projection along the a axis. Inter-atomic distances are given in Å. Positions and distances

are listed in Tables 1, 2. Layer O and Mn atoms are shown as large and small circles.

Subscripts as for Figure 6. H2O molecules are shown as shaded circles.

Figure 8. Schematic location of interlayer Na sites with respect to layer O atoms in projection

along the b axis. Inter-atomic distances are given in Å. Positions and distances are listed

in Tables 1, 2. Subscripts as for Figure 6. Layer O and Mn atoms are shown as large and

small circles. Na cations are shown as shaded circles. Open circles indicate atoms at y =

0, and solid symbols indicate atoms at y = ±1/2.

Figure 9. Super-cells for NaBi types I and II with A = 3a and B = b (a), and A = 3a and B =

3b (b). In the two super-cells, solid and open circles correspond to interlayer Na and H2O

positions, respectively. In the first super-cell (a) the occupancy factor for Na sites is 0.5,

whereas in the second super-cell (b), the (0,0) and the (0.5, 0.5) positions (large solid
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circles) have a higher occupancy than the other positions (small solid circles – modified

from Drits et al. 1997).

Figure 10. Idealized super-structure model for NaBi interlayers of type I. Grey triangles

correspond to the upper surface of the lower layer. Solid circles represent Na-rich

interlayer sites. The thick vertical lines with variable distances correspond to (010) planes

(irregular dashed lines), which contain Na sites (modified from Drits et al. 1997).

Figure 11. Idealized super-structure model for NaBi interlayers of type II. Large and small

solid circles represent Na sites with different degrees of occupancy. Small open circles

correspond to H2O sites. Arrows attached to circles indicate the periodic displacement of

interlayer species along the b axis with a BS = 6b period. Rhomb-shaped unit cells I and II

have the same sizes and shapes but differ slightly in the arrangement of Na and H2O sites.

Variations of d(010) and d(110) are equal to 6b, and 6a, respectively (modified from Drits et

al. 1997).

Figure 12. Schematic distribution of interlayer species in projection on the ab plane for NaBi

type II crystals. All symbols as for Figure 6, except for Na1 and Na2 cations, which are

shown as solid and open large circles, respectively. Na sites with a higher occupancy are

shown as enlarged circles. Nai-(H2O)i-Nai-(H2O)i… chains parallel to the a axis with i =

1, 2 are shown as solid and dashed lines, respectively.

Figure 13. Schematic distribution of interlayer species in projection on the ab plane for NaBi

type II crystals. All symbols as for Figure 12. Heterovalent Mn layer cations are shown as

2+, 3+, and 4+. a) Distribution of heterovalent Mn cations in the lower layer. In Mn3+-

rich rows, Mn cations are distributed as Mn3+-Mn3+-Mn3+-Mn3+-Mn2+-Mn4+… (Drits et

al. 1997). The shift of interlayer Na induced by the presence of Mn2+ is shown by the

arrow. b) Distribution of heterovalent Mn cations in the Mn3+-rich rows of two adjacent
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layers. Mnlayer from the upper layer are shifted by -a/3 with respect to those of the lower

layer. Shift of interlayer Na towards Mn2+ cations is indicated by arrows.

Figure 14. Schematic distribution of interlayer species in projection on the ab plane for NaBi

type II crystals. All symbols as for Figure 12. Dashed lines outline the periodic

displacement of interlayer Na parallel to (110), whose amplitude varies along [13] with a

8d(310) (or 12ap) period. The thick solid line outlines the rhomb-shaped unit-cell with 2(A

+ B) and 2(B - A), or 12 aP and 12 bP.

Figure 15. Schematic distribution of interlayer species in projection on the ab plane for NaBi

type I crystals. All symbols as for Figure 12. One possible 2D distribution of interlayer

species is shown in Figure 15a, whereas Figure 15b shows an alternative distribution

induced by different geometric configurations of H2O-H2O pairs.
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Table 1. Atomic positions, and site occupancy factors determined in the triclinic P sub-cell

from the refined model shown in Figure 5.

Atom x y Z Occ.

Mnlayer 0 0 0 0.5

Olayer 0.3886(26) -0.3733(26) 0.1396(6) 1

NaInt 0.628(11) 0.476(13) 0.481(3) 0.182(14)

H2OInt 0.290(8) -0.819(15) 0.496(3) 0.272(16)

Note: aP = 2.9513(4) Å, bP = 2.9547(4) Å, cP = 7.334(1) Å, αP = 78.72(2)°,

βP = 101.79(1)°, γP = 122.33(1)°. Positions and site occupancy factors (Occ.) are given for

space group P1bar. Un-refined isotropic B factors are 0.5 for Mn, 1 for O, and 2 for interlayer

species. Layer and Int subscripts refer to the location of the atoms in the layer and in the

interlayer, respectively.
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Table 2. Selected bond lengths (Å) determined in the refined NaBi sub-structure.

Mn-O1 1.925(22) x 2 Mn-O1 1.945(27) x 2 Mn-O1 2.003(18) x 2

Mn-Mn 2.848 (36) x2 Mn-Mn 2.951(0) x2 Mn-Mn 2.955 (1) x2

O1-O1 2.593(41) O1-O'1 2.619(27) O1-O'1 2.848(37) x2

O1-O''1 2.620(18) O1-O''1 2.951(13) x2 O'1-O''1 2.955(12) x2

Nai-Oi 2.46(2) Nai-Oi±1 2.74(2) Nai-H2Oi 2.61(6)

Nai-H2Oi±1 2.62(6) Nai-H2Oi 2.64(6) Nai-H2Oi±1 2.64(6)

H2Oi-Oi 2.68(4) H2Oi-Oi±1 2.71(3)
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