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GET/Télécom Paris,
46 rue Barrault, 75634 Paris Cédex 13, France,

e-mail: moulines@tsi.enst.fr

Ya’acov Ritov

Department of Statistics, The Hebrew University of Jerusalem,
e-mail: yaacov.ritov@huji.ac.il

AMS 2000 subject classifications: Primary 93E11, hidden Markov chain,

stability, non-linear filtering; secondary 60J57.

1. Introduction and Notation

We consider the filtering problem for a Markov chain {Xk, Yk}k≥0 with state X
and observation Y . The state process {Xk}k≥0 is an homogeneous Markov chain
taking value in a measurable set X equipped with a σ-algebra B(X). We let Q be the
transition kernel of the chain. The observations {Yk}k≥0 takes values in a measurable
set Y (BY is the associated σ-algebra). For i ≤ j, denote Yi:j , (Yi, Yi+1, · · · , Yj).
Similar notation will be used for other sequences. We assume furthermore. that for
each k ≥ 1 and given Xk, Yk is independent of X1:k−1,Xk+1:∞, Y1:k−1, and Yk+1:∞.
We also assume that for each x ∈ X, the conditional law has a density g(x, ·) with
respect to some fixed σ-finite measure on the Borel σ-field B(Y).

We denote by φξ,n[y0:n] the distribution of the hidden state Xn conditionally on

the observations y0:n
def
= [y0, . . . , yn], which is given by

φξ,n[y0:n](A) =

∫
Xn+1 ξ(dx0)g(x0, y0)

∏n
i=1Q(xi−1, dxi)g(xi, yi)1A(xn)∫

Xn+1 ξ(dx0)g(x0, y0)
∏n
i=1Q(xi−1, dxi)g(xi, yi)

, (1)

In practice the model is rarely known exactly and therefore suboptimal filters
are computed by replacing the unknown transition kernel, likelihood function and
initial distribution by approximations.

The choice of these quantities plays a key role both when studying the conver-
gence of sequential Monte Carlo methods or when analysing the asymptotic be-
haviour of the maximum likelihood estimator (see e.g., (8) or (5) and the references
therein). A key point when analyzing maximum likelihood estimator or the stabil-
ity of the filter over infinite horizon is to ask whether φξ,n[y0:n] and φξ′,n[y0:n] are
close (in some sense) for large values of n, and two different choices of the initial
distribution ξ and ξ′.

The forgetting property of the initial condition of the optimal filter in nonlinear
state space models has attracted many research efforts and it is impossible to give

1

imsart-generic ver. 2007/09/18 file: hmmGSS1.hyper12274.tex date: December 3, 2007

mailto:douc@cmapx.polytechnique.fr
mailto:moulines@tsi.enst.fr
mailto:yaacov.ritov@huji.ac.il


/ 2

credit to every contributors. The purpose of the short presentation of the existing
results below is mainly to allow comparison of assumptions and results presented in
this contributions with respect to those previously reported in the literature. The
first result in this direction has been obtained by (13), who established Lp-type
convergence of the optimal filter initialised with the wrong initial condition to the
filter initialised with the true initial distribution; their proof does not provide rate
of convergence. A new approach based on the Hilbert projective metric has later
been introduced in (1) to establish the exponential stability of the optimal filter
with respect to its initial condition. However their results are based on stringent
mixing conditions for the transition kernels; these conditions state that there exist
positive constants ε− and ε+ and a probability measure λ on (X,B(X)) such that
for f ∈ B+(X),

ε−λ(f) ≤ Q(x, f) ≤ ε+λ(f) , for any x ∈ X . (2)

This condition implies in particular that the chain is uniformly geometrically er-
godic. Similar results were obtained independently by (9) using the Dobrushin er-
godicity coefficient (see (10) for further refinements of this result). The mixing
condition has later been weakened by (6), under the assumption that the kernel Q
is positive recurrent and is dominated by some reference measure λ:

sup
(x,x′)∈X×X

q(x, x′) <∞ and

∫
essinfq(x, x′)π(x)λ(dx) > 0 ,

where q(x, ·) = dQ(x,·)
dλ , essinf is the essential infimum with respect to λ and πdλ is

the stationary distribution of the chain Q . Although the upper bound is reasonable,
the lower bound is restrictive in many applications and fails to be satisfied e.g., for
the linear state space Gaussian model.

In (12), the stability of the optimal filter is studied for a class of kernels referred
to as pseudo-mixing. The definition of pseudo-mixing kernel is adapted to the case
where the state space is X = R

d, equipped with the Borel sigma-field B(X). A kernel
Q on (X,B(X)) is pseudo-mixing if for any compact set C with a diameter d large
enough, there exist positive constants ε−(d) > 0 and ε+(d) > 0 and a measure λC
(which may be chosen to be finite without loss of generality) such that

ε−(d)λC(A) ≤ Q(x,A) ≤ ε+(d)λC(A) , for any x ∈ C, A ∈ B(X) (3)

This condition implies that for any (x′, x′′) ∈ C × C,

ε−(d)

ε+(d)
< essinfx∈Xq(x

′, x)/q(x′′, x) ≤ esssupx∈Xq(x
′, x)/q(x′′, x) ≤

ε+(d)

ε−(d)
,

where q(x, ·)
def
= dQ(x, ·)/dλC , and esssup and essinf denote the essential supremum

and infimum with respect to λC . This condition is obviously more general than (2),
but still it is not satisfied in the linear Gaussian case (see (12, Example 4.3)).

Several attempts have been made to establish the stability conditions under the
so-called small noise condition. The first result in this direction has been obtained by
(1) (in continuous time) who considered an ergodic diffusion process with constant
diffusion coefficient and linear observations: when the variance of the observation
noise is sufficiently small, (1) established that the filter is exponentially stable. Small
noise conditions also appeared (in a discrete time setting) in (4) and (14). These
results do not allow to consider the linear Gaussian state space model with arbitrary
noise variance.

More recently, (7) prove that the nonlinear filter forgets its initial condition in
mean over the observations for functions satisfying some integrability conditions.
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The main result presented in this paper relies on the martingale convergence the-
orem rather than direct analysis of filtering equations. Unfortunately, this method
of proof cannot provide any rate of convergence.

It is tempting to assume that forgetting of the initial condition should be true in
general, and that the lack of proofs for the general state-space case is only a matter
of technicalities. The heuristic argument says that either

• the observations Y ’s are informative, and we learn about the hidden state X
from the Y s around it, and forget the initial starting point.

• the observations Y s are non-informative, and then the X chain is moving by
itself, and by itself it forgets its initial condition, for example if it is positive
recurrent.

Since we expect that the forgetting of the initial condition is retained in these two
extreme cases, it is probably so under any condition. However, this argument is
false, as is shown by the following examples where the conditional chain does not
forget its initial condition whereas the unconditional chain does. On the other hand,
it can be that observed process, {Yk}k≥0 is not ergodic, while the conditional chain
uniformly forgets the initial condition.

Example 1. Suppose that {Xk}k≥0 are i.i.d. B(1, 1/2). Suppose Yi = 1(Xi =
Xi−1). Then P (Xi = 1 |X0 = 0, Y0:n) = 1 − P (Xi = 1 |X1 = 1, Y0:n) ∈ {0, 1}.

Here is a slightly less extreme example. Consider a Markov chain on the unit
circle. All values below are considered modulus 2π. We assume that Xi = Xi−1 +Ui,
where the state noise {Uk}k≥0 are i.i.d. . The chain is hidden by additive white noise:
Yi = Xi + εi, εi = πWi + Vi, where Wi is Bernoulli random variable independent
of Vi. Suppose now that Ui and Vi are symmetric and supported on some small
interval. The hidden chain does not forget its initial distribution under this model.
In fact the support of the distribution of Xi given Y0:n and X0 = x0 is disjoint from
the support of its distribution given Y0:n and X0 = x0 + π.

On the other hand, let {Yk}k≥0 be an arbitrary process. Suppose it is modeled
(incorrectly!) by a autoregressive process observed in additive noise. We will show
that under different assumptions on the distribution of the state and the observation
noise, the conditional chain (given the observations Y s which are not necessarily
generated by the model) forgets its initial condition geometrically fast.

The proofs presented in this paper are based on generalization of the notion of
small sets and coupling of the two (non-homogenous) Markov chains sampled from
the distribution of X0:n given Y0:n. The coupling argument is based on presenting
two chains {Xk} and {X ′

k}, which marginally follow the same sequence of transition
kernels, but have different initial distributions of the starting state. The chains move
independently, until they coupled at a random time T , and from that time on they
remain equal.

Roughly speaking, the two copies of the chain may couple at a time k if they
stand close one to the other. Formally, we mean by that, that the the pair of states
of the two chains at time k belong to some set, which may depend of the current, but
also past and future observations. The novelty of the current paper is by considering
sets which are in fact genuinely defined by the pair of states. For example, the set
can be defined as {(x, x′) : ‖x − x′‖ < c}. That is, close in the usual sense of the
word.

The prototypical example we use is the non-linear state space model:

Xi = a(Xi−1) + Ui

Yi = b(Xi) + Vi,
(4)

where {Uk}k≥0 is the state noise and {Vk}k≥0 is the measurement noise. Both
{Uk}k≥0 and {Vk}k≥0 are assumed to be i.i.d. and mutually independent. Of course,
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the filtering problem for the linear version of this model with independent Gaussian
noise is solved explicitly by the Kalman filter. But this is one of the few non-
trivial models which admits a simple solution. Under the Gaussian linear model, we
argue that whatever are Y0:n, two independent chains drawn from the conditional
distribution will be remain close to each other even if the Y s are drifting away.
Any time they will be close, they will be able to couple, and this will happen quite
frequently.

Our approach for proving that a chain forgets its initial conditions can be decom-
posed in two stages. We first argue that there are coupling sets (which may depend
on the observations, and may also vary according to the iteration index) where we
can couple two copies of the chains, drawn independently from the conditional dis-
tribution given the observations and started from two different initial conditions,
with a probability which is an explicit function of the observations. We then argue
that a pair of chains are likely to drift frequently towards these coupling sets.

The first group of results identify situations in which the coupling set is given in
a product form, and in particular in situations where X×X is a coupling set. In the
typical situation, many values of Yi entail that Xi is in some set with high proba-
bility, and hence the two conditionally independent copies are likely to be in this
set and close to each other. In particular, this enables us to prove the convergence
of (nonlinear) state space processes with bounded noise and, more generally, in sit-
uations where the tails of the observations error is thinner than those of dynamics
innovations.

The second argument generalizes the standard drift condition to the coupling set.
The general argument specialized to the linear-Gaussian state model is surprisingly
simple. We generalize this argument to the linear model where both the dynamics
innovations and the measurement errors have strongly unimodal density.

2. Notations and definitions

Let n be a given positive index and consider the finite-dimensional distributions
of {Xk}k≥0 given Y0:n. It is well known (see (5, Chapter 3)) that, for any positive
index k, the distribution of Xk given X0:k−1 and Y0:n reduces to that of Xk given
Xk−1 only and Y0:n. The following definitions will be instrumental in decomposing
the joint posterior distributions.

Definition 1 (Backward functions). For k ∈ {0, . . . , n}, the backward function
βk|n is the non-negative measurable function on Y

n−k × X defined by

βk|n(yk+1:n, x) =
∫

· · ·

∫
Q(x, dxk+1)g(xk+1, yk+1)

n∏

l=k+2

Q(xl−1, dxl)g(xl, yl) , (5)

for k ≤ n − 1 (with the same convention that the rightmost product is empty for
k = n− 1); βn|n(·) is set to the constant function equal to 1 on X.

The term “backward variables” is part of the HMM credo and dates back to the
seminal work of Baum and his colleagues (2, p. 168). The backward functions may
be obtained, for all x ∈ X by the recursion

βk|n(x) =

∫
Q(x, dx′)g(x′, yk+1)βk+1|n(x′) (6)

operating on decreasing indices k = n− 1 down to 0 from the initial condition

βn|n(x) = 1 . (7)
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Definition 2 (Forward Smoothing Kernels). Given n ≥ 0, define for indices
k ∈ {0, . . . , n− 1} the transition kernels

Fk|n(x,A)
def
=

{
[βk|n(x)]

−1
∫
A
Q(x, dx′)g(x′, yk+1)βk+1|n(x′) if βk|n(x) 6= 0

0 otherwise ,
(8)

for any point x ∈ X and set A ∈ B(X). For indices k ≥ n, simply set

Fk|n
def
= Q , (9)

where Q is the transition kernel of the unobservable chain {Xk}k≥0.

Note that for indices k ≤ n− 1, Fk|n depends on the future observations Yk+1:n

through the backward variables βk|n and βk+1|n only. The subscript n in the Fk|n
notation is meant to underline the fact that, like the backward functions βk|n, the
forward smoothing kernels Fk|n depend on the final index n where the observation
sequence ends. Thus, for any x ∈ X, A 7→ Fk|n(x,A) is a probability measure on
B(X). Because the functions x 7→ βk|n(x) are measurable on (X,B(X)), for any set
A ∈ B(X), x 7→ Fk|n(x,A) is B(X)/B(R)-measurable. Therefore, Fk|n is indeed a
Markov transition kernel on (X,B(X)).

Given n, for any index k ≥ 0 and function f ∈ Fb (X),

Eξ[f(Xk+1) | X0:k, Y0:n] = Fk|n(Xk, f) .

More generally, For any integers n and m, function f ∈ Fb

(
X
m+1

)
and initial

probability ξ on (X,B(X)),

Eξ[f(X0:m) | Y0:n] =

∫
· · ·

∫
f(x0:m) φξ,0|n(dx0)

m∏

i=1

Fi−1|n(xi−1, dxi) , (10)

where {Fk|n}k≥0 are defined by (8) and (9) and φξ,k|n is the marginal smoothing
distribution of the state Xk given the observations Y0:n. Note that φξ,k|n may be
expressed, for any A ∈ B(X), as

φξ,k|n(A) =

[∫
φξ,k(dx)βk|n(x)

]−1 ∫

A

φξ,k(dx)βk|n(x) , (11)

where φξ,k is the filtering distribution defined in (1) and βk|n is the backward
function.

3. The coupling construction and coupling sets

3.1. Coupling constant and the coupling construction

As outlined in the introduction, our proofs are based on coupling two copies of the
conditional chain started from two different initial conditions. For any two prob-
ability measures µ1 and µ2 we define the total variation distance ‖µ1 − µ2‖TV =
supA |µ1(A)−µ2(A)| and we also recall the identities sup|f |≤1 |µ(f)| = 2 ‖µ1 − µ2‖TV

and sup0≤f≤1 |µ(f)| = ‖µ1 − µ2‖TV. Let n andm be integers, and let k ∈ {0, . . . , n−
m}. Define the m-skeleton of the forward smoothing kernel as follows:

Fk,m|n
def
= Fkm+m−1|n . . .Fkm|n , (12)
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Definition 3 (Coupling constant of a set). Let n and m be integers, and let
k ∈ {0, . . . , n−m}. The coupling constant of the set C ⊂ X × X is defined as

εk,m|n(C)
def
= 1 −

1

2
sup

(x,x′)∈C

∥∥Fk,m|n(x, ·) − Fk,m|n(x′, ·)
∥∥

TV
. (13)

The definition of the coupling constant implies that, for any (x, x′) ∈ C,

Fk,m|n(x,A) ∧ Fk,m|n(x
′, A) ≥ εk,m|n(C)νCk,m|n(x, x′;A) . (14)

where

νCk,m|n(x, x
′;A) =

(Fk,m|n(x, ·) ∧ Fk,m|n(x
′, ·))(A)

(Fk,m|n(x, ·) ∧ Fk,m|n(x′, ·))(X)
, (15)

where for any measures µ and ν on (X,B(X)), µ∧ν is the largest measure for which
(µ ∧ ν)(A) ≥ min(µ(A), ν(A)), for all A ∈ B(X).

We may now proceed to the coupling construction. Let n be an integer, and for
any k ∈ {0, . . . , ⌊n/m⌋}, let C̄k|n be a set-valued function, C̄k|n : Y

n → B(X)⊗B(X),
where B(X)⊗B(X) is the smallest σ-algebra containing the sets A×B with A,B ∈
B(X). We define R̄k|n as the Markov transition kernel satisfying, for all (x, x′) ∈ C̄k|n
and for all A ∈ B(X) and (x, x′) ∈ C̄k|n,

R̄k,m|n(x, x
′;A×A′) =

{
(1 − εk,m|n)

−1(Fk,m|n(x,A) − εk,m|nνk,m|n(x, x′;A))
}

×
{
(1 − εk,m|n)

−1(Fk,m|n(x′, A′) − εk,m|nνk,m|n(x, x′;A′))
}
, (16)

where we have omitted the dependence upon the set C̄k|n in the definition of the
coupling constant εk,m|n and of the minorizing probability νk,n|m. For all (x, x′) 6∈
X × X, we define

F̄k,m|n(x, x
′; ·) = Fk,m|n ⊗ Fk,m|n(x, x′; ·) , (17)

where, for two kernels K and L on X, K ⊗L is the tensor product of the kernels K
and L, i.e., for all (x, x′) ∈ X × X and A,A′ ∈ B(X)

K ⊗ L(x, x′;A×A′) = K(x,A)L(x′, A′) . (18)

Define the product space Z = X × X × {0, 1}, and the associated product sigma-

algebra B(Z). Define on the space (ZN,B(Z)⊗N) a Markov chain Zi
def
= (X̃i, X̃

′
i, di),

i ∈ {0, . . . , n} as follows. If di = 1, then draw X̃i+1 ∼ Fi,m|n(X̃i, ·), and set X̃ ′
i+1 =

X̃i+1 and di+1 = 1. Otherwise, if (X̃i, X̃
′
i) ∈ C̄i|n, flip a coin with probability of

heads εi,m|n. If the coin comes up head, then draw X̃i+1 from νi,m|n(X̃i, X̃
′
i; ·), and

set X̃ ′
i+1 = X̃i+1 and di+1 = 1. If the coin comes up tail, then draw (X̃i+1, X̃

′
i+1)

from the residual kernel R̄i,m|n(X̃i, X̃
′
i; ·) and set di+1 = 0. If (X̃i, X̃

′
i) 6∈ C̄i|n, then

draw (X̃i+1, X̃
′
i+1) according to the kernel F̄i,m|n(X̃i, X̃

′
i; ·) and set di+1 = 0. For

µ a probability measure on B(Z), denote PYµ the probability measure induced by
the Markov chain Zi, i ∈ {0, . . . , n} with initial distribution µ. It is then easily
checked that for any i ∈ {0, . . . , ⌊n/m⌋} and any initial distributions ξ and ξ′, and
any A,A′ ∈ B(X),

PYξ⊗ξ′⊗δ0 (Zi ∈ A× X × {0, 1}) = φξ,im|n(A) ,

PYξ⊗ξ′⊗δ0 (Zi ∈ X ×A′ × {0, 1}) = φξ′,im|n(A) ,

where δx is the Dirac measure and ⊗ is the tensor product of measures and φξ,k|n
is the marginal posterior distribution given by (11)
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Note that di is the bell variable, which shall indicate whether the chains have
coupled (di = 1) or not (di = 0) by time i. Define the coupling time

T = inf{k ≥ 1, dk = 1} , (19)

with the convention inf ∅ = ∞. By the Lindvall inequality, the total variation dis-
tance between the filtering distribution associated to two different initial distribu-
tion ξ and ξ′, i.e., Pξ (Xn ∈ · |Y0:n) and Pξ′ (Xn ∈ · |Y0:n), is bounded by the tail
distribution of the coupling time,

‖Pξ (Xn ∈ · |Y0:n) − Pξ′ (Xn ∈ · |Y0:n)‖TV ≤ PYξ⊗ξ′⊗δ0(T ≥ ⌊n/m⌋) . (20)

In the following section, we consider several conditions allowing to bound the tail
distribution of the coupling time.

3.2. Coupling sets

Of course, the construction above is of interest only if we may find set-valued func-
tion C̄k|n such whose coupling constant εk,m|n(C̄k|n) is non-zero ‘most of the time’.
Recall that this quantity are typically functions of the whole trajectory y0:n. It is
not always easy to find such sets because the definition of the coupling constant
involves the product Fk|n forward smoothing kernels, which is not easy to handle.
In some situations (but not always), it is possible to identify appropriate sets from
the properties of the unconditional transition kernel Q.

Definition 4 (Strong small set). A set C ∈ B(X) is a strong small set for the
transition kernel Q, if there exists a measure νC and constants σ−(C) > 0 and
σ+(C) <∞ such that, for all x ∈ C and A ∈ B(X),

σ−(C)νC(A) ≤ Q(x,A) ≤ σ+(C)νC(A) . (21)

The following Lemma helps to characterize appropriate sets where coupling may
occur with a positive probability from products of strong small sets.

Proposition 1. Assume that C is a strong small set. Then, for any n and any
k ∈ {0, . . . , n}, C×C is a coupling set for the forward smoothing kernels Fk|n; more
precisely, there exists a probability distribution νk|n such that, for any A ∈ B(X),

inf
x∈C

Fk|n(x,A) ≥
σ−(C)

σ+(C)
νk|n(A)

Proof. The proof is postponed to the appendix.

Assume that X = R
d, and that the kernel satisfies the pseudo-mixing condition

(3). Let C be a compact set C with diameter d = diam(C) large enough so that
(3) is satisfied. Then, for any n and any k ∈ {0, . . . , n}, C̄ = C × C is a coupling
set for Fk|n, and ε(C̄) may be chosen to be equal to ε−(d)/ε+(d). (12) gives non-
trivial examples of pseudo-mixing Markov chains which are not uniformly ergodic.
Nevertheless, though the existence of small sets is automatically guaranteed for
phi-irreducible Markov chains, the conditions imposed for the existence of a strong
small set are much more stringent. As shown below, it is sometimes worthwhile to
consider coupling set which are much larger than products of strong small sets.
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4. Coupling over the whole state-space

The easiest situation is when the coupling constant of the whole state space εk,m|n(X×
X) is away from zero for sufficiently many trajectories y0:n; for unconditional Markov
chains, this property occurs when the chain in uniformly ergodic (i.e., satisfies the
Doeblin condition). This is still the case here, through now the constants may de-
pend on the observations Y ’s. As stressed in the discussion, perhaps surprisingly,
we will find non trivial examples where the coupling constant εk,m|n(X × X) is
bounded away from zero for all y0:n, whereas the underlying unconditional Markov
chain is not uniformly geometrically ergodic. We state without proof the following
elementary result.

Theorem 2. Let n be an integer and m ≥ 1. Then,

‖φξ,n − φξ′,n‖TV ≤

⌊n/ℓ⌋∏

k=0

{
1 − εk,m|n(X × X)

}
.

Remark 1. Consider the case where the kernel is uniformly ergodic, i.e.,

σ−
def
= inf

(x,x′)∈X×X

q(x, x′) > 0 and σ+
def
= sup

(x,x′)∈X×X

q(x, x′) <∞ .

One may thus take m = 1 and, using Proposition 1 εk,1|n(X×X)
def
= σ−/σ+. In such

a case, ‖φξ,n − φξ′,n‖TV ≤ (1 − σ−/σ+)n.

To go beyond this example, we have to find verifiable conditions upon which we
may ascertain that X × X is an m-coupling set.

Definition 5 (Uniform accessibility). Let k, ℓ, n be integers satisfying ℓ ≥ 1 and
k ∈ {0, . . . , n−ℓ}. A set C is uniformly accessible for the forward smoothing kernels
Fk,ℓ|n if there exists a constant κk,ℓ(C) > 0 satisfying,

inf
x∈X

Fk,ℓ|n(x,C) ≥ κk,ℓ(C) . (22)

The next step is to find conditions upon which a set is uniformly accessible. For
any set A ∈ B(X), define the function α : Y

ℓ → [0, 1]

α(y1:ℓ;A)
def
= inf

x0,xℓ+1∈X×X

W [y1:ℓ](x0, xℓ;A)

W [y1:ℓ](x0, xℓ+1; X)
= (1 + α̃(y1:ℓ;A))

−1
, (23)

where we have set

W [y1:ℓ](x0, xℓ+1;A)
def
=

∫
· · ·

∫ ℓ∏

i=0

q(xi−1, xi)g(xi, yi)q(xℓ, xℓ+1)1A(xℓ)µ(dx1:ℓ) . (24)

and

α̃(y1:ℓ−1;A)
def
= sup

x0,xℓ∈X×X

W [y1:ℓ−1](x0, xℓ;A
c)

W [y1:ℓ−1](x0, xℓ;A)
. (25)

Of course, the situations of interest are when α(y1:ℓ−1;A) is positive or, equivalently,
α̃(y1:ℓ−1;A) < ∞. In such case, we may prove the following uniform accessibility
condition:

Proposition 3. For any integer n and any k ∈ {0, . . . , n− ℓ},

inf
x∈X

Fk,ℓ|n(x,C) ≥ α(Yk+1:k+ℓ;C) . (26)
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If in addition C is a strong small set for Q, then X × X is a (ℓ + 1)-coupling set,

inf
x∈X

Fk+ℓ+1|n . . .Fk|n(x,A) ≥
σ−(C)

σ+(C)
α(Yk+1:k+ℓ;C) . (27)

The proof is given in Section 6.

4.1. Examples

4.1.1. Bounded noise

Assume that a Markov chain {Xk}k≥0 in X = R
dX is observed in a bounded noise.

The case of bounded error is of course particular, because the observations of the
Y ’s allow to locate the corresponding X ’s within a set. More precisely, we assume
that {Xk}k≥0 is a Markov chain with transition kernel Q having density q with
respect to the Lebesgue measure and Yk = b(Xk) + Vk where,

• {Vk} is an i.i.d., independent of {Xk}, with density pV . In addition, pV (|x|) =
0 for |x| ≥M .

• the transition density (x, x′) 7→ q(x, x′) is strictly positive and continuous.
• The level sets of b, {x ∈ X : |b(x)| ≤ K} are compact.

This case has already been considered by (3), using projective Hilbert metrics
techniques. We will compute an explicit lower bound for the coupling constant
εk,2|n(X × X), and will then prove, under mild additional assumptions on the dis-
tribution of the Y ’s that the chain forgets its initial conditions geometrically fast.

For y ∈ Y, denote C(y)
def
= {x ∈ X, |b(x)| ≤ |y| +M}. Note that, for any x ∈ X and

A ∈ B(X),

Fk+1|nFk|n(x,A) =
∫∫

q(x, xk+1)g(xk+1, Yk+1)q(xk+1, xk+2)g(xk+2, Yk+2)1A(xk+2)βk+2|n(xk+2)dxk+2∫∫
q(x, xk+1)g(xk+1, Yk+1)q(xk+1, xk+2)g(xk+2, Yk+2)βk+2|n(xk+2)dxk+2

Since q is continuous and positive, for any compact sets C and C′, infC×C′ q(x, x′) >
0 and supC×C′ q(x, x′) < ∞. On the other hand, because the observation noise is
bounded, g(x, y) = g(x, y)1C(y)(x). Therefore,

Fk+1|nFk|n(x,A) ≥ ρ(Yk+1, Yk+2)νk|n(A) ,

where

ρ(y, y′) =
infC(y)×C(y′) q(x, x

′)

supC(y)×C(y′) q(x, x
′)
,

and

νk|n(A)
def
=

∫
g(xk+2, Yk+2)1A(xk+2)βk+2|n(xk+2)ν(dxk+2)∫

g(xk+2, Yk+2)βk+2|n(xk+2)ν(dxk+2)
.

By applying Theorem 2, we obtain that

‖φξ,n − φξ′,n‖TV ≤

⌊n/2⌋∏

k=0

{1 − ρ(Y2k, Y2k+1)} .

Hence, the Markov chain is geometrically ergodic if

lim inf
n→∞

n−1

⌊n/2⌋∑

k=0

ρ(Y2k, Y2k+1) > 0 , a.s. .

This property holds under many different assumptions on the observations Y0:n and
in particular, if the observations follow a model which ‘approximately equal’ to the
assumed one.
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4.1.2. Functional autoregressive in noise

It is also of interest to consider cases where both the X ’s and the Y ’s are un-
bounded. We consider a non-linear non-Gaussian state space model (borrowed from
(12, Example 5.8)). We assume that X0 ∼ ξ and for k ≥ 1,

Xk = a(Xk−1) + Uk ,

Yk = b(Xk) + Vk ,

where {Uk} and {Vk} are two independent sequences of random variables, with
probability densities p̄U and p̄V with respect to the Lebesgue measure on X = R

dX

and Y = R
dY , respectively. In addition, we assume that

• For any x ∈ X = R
dX , p̄U (x) = pU (|x|) where pU is a bounded, bounded

away from zero on [0,M ], is non increasing on [M,∞[, and for some positive
constant γ,

pU (α+ β)

pU (α)pU (β)
≥ γ > 0 . (28)

,
• the function a is Lipshitz, i.e., there exists a positive constant a+ such that
|a(x) − a(x′)| ≤ a+|x− x′|, for any x, x′ ∈ X,

• the function b is one-to-one differentiable and its Jacobian is bounded and
bounded away from zero.

• For any y ∈ Y = R
dY , p̄V (y) = pV (|y|) where pV is a bounded positive lower

semi-continuous function, pV is non increasing on [M,∞[, and satisfies

Υ
def
=

∫ ∞

0

[pU (x)]−1pV (b−x)[pU (a+x)]
−1dx <∞ , (29)

where b− is the lower bound for the Jacobian of the function b.

The condition on the state noise {Uk} is satisfied by Pareto-type, exponential and
logistic densities but obviously not by Gaussian density, because the tails are in
such case too light.

The fact that the tails of the state noise U are heavier than the tails of the
observation noise V (see (29)) plays a key role in the derivations that follow. In
Section 5 we consider a case where this restriction is not needed (e.g., normal).

The following technical lemma (whose proof is postponed to section 7), shows
that any set with finite diameter is a strong small set.

Lemma 4. Assume that diam(C) <∞. Then, for all x0 ∈ C and x1 ∈ X,

ε(C)hC(x1) ≤ q(x0, x1) ≤ ε−1(C)hC(x1) , (30)

with

ε(C)
def
= γpU (diam(C)) ∧ inf

u≤diam(C)+M
pU (u) ∧

(
sup

u≤diam(C)+M

pU (u)

)−1

, (31)

hC(x1)
def
= 1(d(x1, a(C)) ≤M) + 1(d(x1, a(C)) > M)pU (|x1 − a(z0)|) , (32)

where γ is defined in (28) and z0 is an arbitrary element of C. In addition, for all
x0 ∈ X and x1 ∈ C,

ν(C)kC(x0) ≤ q(x0, x1) , (33)

with

ν(C)
def
= inf

|u|≤diam(C)+M
pU , (34)

kC(x0)
def
= 1(d(a(x0), C) < M) + 1(d(a(x0), C) ≥M)pU (|z1 − a(x0)|) , (35)

where z1 is an arbitrary point in C.
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By Lemma 4, the denominator of (25) is lower bounded by

W [y](x0, x2;C) ≥ ε(C) ν(C)kC (x0)hC(x2)

∫

C

g(x1, y)dx1 . (36)

Therefore, we may bound α̃(y1, C), defined in (25), by

α̃(y1, C) ≤

(
ε(C) ν(C)

∫

C

g(x1, y1)dx1

)−1

× sup
x0,x2∈X

[kC(x0)]
−1[hC(x2)]

−1W [y1](x0, x2;C
c) . (37)

In the sequel, we choose C = CK(y)
def
= {x, |x − b−1(y)| ≤ K}, where K is a

constant which will be chosen later. Since, by construction, the diameter of the
set CK(y) is 2K uniformly with respect to y, the constants ε(CK(y)) (defined in
(31)) and ν(CK(y)) (defined in (34)) are functions of K only and are therefore
uniformly bounded from below with respect to y. We will first show that, for K
large enough,

∫
CK(y)

g(x1, y)dx1 is uniformly bounded from below, as shown in

the following Lemma (whose proved is postponed to Section 7). The following two
Lemmas bound the terms appearing in the RHS of (37).

Lemma 5.

lim
K→∞

inf
Y

∫

CK(y)

pV (|y − b(x)|)dx > 0 .

We set z0 = b−1(y) in the definition (32) of hC(y) and z1 = b−1(y) in the definition
(35). We denote

IK(x0, x2; y)
def
= [kCK(y)(x0)]

−1[hCK(y)(x2)]
−1

×

∫

Cc
K

(y)

pU (|x1 − a(x0)|)pV (|y − b(x1)|)pU (|x2 − a(x1)|)dx1 . (38)

The following Lemma shows thatK may be chosen large enough so that IK(x0, x2, y)
is uniformly bounded over x0, x2 and y.

Lemma 6.
lim sup
K→∞

sup
y∈Y

sup
(x0,x2)∈X×X

IK(x0, x2; y) <∞ . (39)

The proof is postponed to Section 7.

5. Pairwise drift conditions

5.1. The pair-wise drift condition

In the situations where coupling over the whole state-space leads to trivial result,
one may still use the coupling argument, but this time over smaller sets. In such
cases, however, we need a device to control the return time of the joint chain to the
set where the two chains are allowed to couple. In this section we obtain results that
are general enough to include the autoregression model with Gaussian innovations
and Gaussian measurement error. Drift conditions are used to obtain bounds on the
coupling time. Consider the following drift condition.

Definition 6 (Pair-wise drift conditions toward a set). Let n be an integer and
k ∈ {0, . . . , n−1} and let C̄k|n be a set valued function C̄k|n : Y

n+1 → B(X)×B(X).
We say that the forward smoothing kernel Fk|n satisfies the pair-wise drift condition
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toward the set C̄k|n if there exist functions Vk|n : X × X × Y
n+1 → R, Vk|n ≥ 1,

functions λk|n : Y
n+1 → [0, 1), ρi|n : Y

n+1 → R
+ such that, for any sequence

y0:n ∈ Y
n,

R̄k|nVk+1|n(x, x′) ≤ ρk|n (x, x′) ∈ C̄k|n (40)

F̄k|nVk+1|n(x, x′) ≤ λk|nVk|n(x, x′) (x, x′) 6∈ C̄k|n . (41)

where R̄k|n is defined in (16) and F̄k|n is defined in (17).

We set εk|n = εk|n(C̄k|n), the coupling constant of the set C̄k|n, and we denote

Bk|n
def
= 1 ∨ ρk|n(1 − εk|n)λk|n . (42)

For any vector {ai,n}1≤i≤n, denotes by [↓ a](i,n) the i-th largest order statistics,
i.e., [↓ a](1,n) ≥ [↓ a](2,n) ≥ · · · ≥ [↓ a](n,n) and [↑ a](i,n) the i-th smallest order
statistics, i.e., [↑ a](1,n) ≤ [↑ a](2,n) ≤ · · · ≤ [↑ a](n,n).

Theorem 7. Let n be an integer. Assume that for each k ∈ {0, . . . , n − 1}, there
exists a set-valued function C̄k|n : Y

n+1 → B(X) ⊗ B(X) such that the forward
smoothing kernel Fk|n satisfies the pairwise drift condition toward the set C̄k|n.
Then, for any probability ξ, ξ′ on (X,B(X)),

‖φξ,n − φξ′,n‖TV ≤ min
1≤m≤n

Am,n (43)

where

Am,n
def
=

m∏

i=1

(1 − [↑ ε](i|n)) +

n∏

i=0

λi|n

m∏

i=0

[↓ B](i|n)ξ ⊗ ξ′(V0) (44)

The proof is in section 6.1.

Corollary 8. If there exists a sequence {m(n)} of integers satisfying, m(n) ≤ n
for any integer n, limn→∞m(n) = ∞, and, PY -a.s.

lim sup



m(n)∑

i=0

log(1 − [↑ ε](i|n)) +
n∑

i=0

logλi|n +

m(n)∑

i=0

log[↓ B(i,n)]


 = −∞ ,

then
lim sup

n
‖φξ,n − φξ′,n‖TV

a.s.
−→ 0 , PY −a.s. .

Corollary 9. If there exists a sequence {m(n)} of integers such that m(n) ≤ n for
any integer n, lim inf m(n)/n = α > 0 and PY -a.s.

lim sup


 1

n

m(n)∑

i=0

log(1 − [↑ ε](i|n)) +
1

n

n∑

i=1

logλi|n +
1

n

n−m(n)∑

i=1

log[↓ B(i|n)]


 ≤ −λ ,

then there exists ν ∈ (0, 1) such that

ν−n ‖φξ,n − φξ′,n‖TV

a.s.
−→ 0 , PY −a.s. .

5.2. Examples

5.2.1. Gaussian autoregression

Let

Xi = αXi−1 + σUi

Yi = Xi + τVi
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where |α| < 1 and {Ui}i≥0 and {Vi} are i.i.d. standard Gaussian and are indepen-
dent from X0. Let n be an integer and k ∈ {0, . . . , n− 1}. The backward functions
are given by

βk|n(x) ∝ exp
(
−(αx−mk|n)

2/(2ρ2
k|n)

)
, (45)

where mk|n and ρk|n can be computed for k = {0, . . . , n − 2} using the following
backward recursions (see (6))

mk|n =
ρ2
k+1|nYk+1 + ατ2mk+1|n

ρ2
k+1|n + α2τ2

, ρ2
k|n =

(τ2 + σ2)ρ2
k+1|n + α2σ2τ2

ρ2
k+1|n + α2τ2

. (46)

initialized with mn−1|n = Yn and ρn−1|n = σ2 + τ2. The conditional transition
kernel Fi|n(x, ·) has a density with respect to to the Lebesgue measure given by
φ(·;µi|n(x), γ2

i|n), where φ(z;µ, σ2) is the density of a Gaussian random variable

with mean µ and variance σ2 and

µi|n(x) =
τ2ρ2

i+1|nαx + σ2ρ2
i+1|nYi+1 + σ2ατmi+1|n

(σ2 + τ2)ρ2
i+1|n + τ2α2σ2

,

γ2
i|n =

σ2τ2ρ2
i+1|n

(τ2 + σ2)ρ2
i+1|n + α2τ2σ2

.

From (46), it follows that for any i ∈ {0, . . . , n − 1}, σ2 ≤ ρ2
i|n ≤ σ2 + τ2. This

implies that, for any (x, x′) ∈ X×X, and any i ∈ {0, . . . , n− 1}, the function µi|n is
Lipshitz and with Lipshitz constant which is uniformly bounded by some β < |α|,

|µi|n(x) − µi|n(x′)| ≤ β|x− x′| , β
def
= |α|

τ2(σ2 + τ2)

(σ2 + τ2)2 + τ2α2σ2
, (47)

and that the variance is uniformly bounded

γ2
−

def
=

σ2τ2

(1 + α2)τ2 + σ2
≤ γ2

i|n ≤ γ2
+

def
=

σ2τ2(σ2 + τ2)

(τ2 + σ2)2 + α2τ2σ2
. (48)

Therefore, for any c <∞, all sets of the form

C
def
= {(x, x′) ∈ X × X : |x− x′| ≤ c} , (49)

are coupling sets. Note indeed that, for any i ∈ {0, . . . , n− 1},

1

2

∥∥Fi|n(x, ·) − Fi|n(x′, ·)
∥∥

TV
= 2erf

(
γ−1
i|n |µi|n(x) − µi|n(x′)|

)
≤ 2erf(γ−1

− βc) ,

where erf is the error function. More precisely, for any (x, x′) ∈ C and any integer
n and any i ∈ {0, . . . , n− 1},

Fi|n(x,A) ∧ Fi|n(x′, A) ≥ ενi,1|n(x, x
′;A) ,where ε

def
=
(
1 − 2erf(γ−1

− βc)
)
, (50)

and νi,1,n is defined as in (15). For c large enough, the drift condition is satisfied
with V (x, x′) = 1 + (x − x′)2:

F̄i|nV (x, x′) = 1 +
{
µi|n(x) − µi|n(x′)

}2
+ 2γ2

i|n ≤ 1 + β2|x− x′|2 + γ2
+ .

The condition (40) with

ρi|n ≤ ρ
def
= (1 − ε)−1

(
1 + β2c2 + γ2

+

)
, (51)
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where c is the width of the coupling set in (49). The condition (41) is satisfied with
λi|n = β̃2 for any β̃ and c satisfying β < β̃ < 1 and c2 > (1 − β̃2 + γ2

+)/(β̃2 −
β2). it is worthwhile to note that all these bounds are uniform with respect to
n, i ∈ {0, . . . , n − 1} and realization of the observations y0:n. Therefore, for any
m ∈ {0, . . . , n}, we may take upper bound Am,n (defined in (44)) by

Am,n ≤ (1 − ε)m +Bmβ̃2n(1 + 2

∫
ξ(dx)x2 + 2

∫
ξ′(dx)x2)

with B = 1 ∨ ρ(1 − ε)β̃2, where ε is defined in (50), ρ is defined in (51). Taking
m = [δn] for some δ > 0 such that Bδβ̃2 < 1, this upper bound may be shown to
go to zero exponentially fast and uniformly with respect to the observations y0:n.

5.2.2. State space models with strongly modal distributions

The Gaussian example can be generalized to the more general case where the distri-
bution of the state noise and the measurement noise are strongly unimodal. Recall
that a density is strongly modal if the log of its density is concave.

First note that if f and g are two strongly unimodal density, then the density
h = fg/

∫
fg is also strongly unimodal, with mode that lies between the two modes;

its second-order derivative of log h is smaller that the sum of the second-order
derivative of log f and log g. Let the state noise density be denoted by pU (·) = eϕ(·)

and that of the measurements’ errors be pV (·) = eψ(·). Define by the recursion
operating on the decreasing indices

β̄i|n(x) = pV (yi − x)

∫
q(x, xi+1)β̄i+1|n(xi+1)dxi+1 , (52)

with the initial condition β̄n|n(x) = pV (yn−x). These functions are the conditional
distribution of the observations Yi:n given Xi = x. They are related to the backward

function through the relation β̄i|n(x)
def
= βi|n(x)pV (yi − x). We denote ψi|n(x)

def
=

log β̄i|n(x). Now,

ψi|n(x) = ψ(Yi − x) + log

∫
pU (z − αx)β̄i+1|n(z)dz .

Under the stated assumptions, the forward smoothing kernel Fi|n has a density with
respect to the Lebesgue measure which is given by

fi|n(xi, xi+1) =

pU (xi+1 − αxi)β̄i+1|n(xi+1)/

∫
pU (z − αxi)β̄i+1|n(z)dz . (53)

Denote by C̃ovi|n,x the covariance function with respect to the forward smoothing
kernel density. We recall that for any probability distribution P on (X,B(X)) and
any two increasing measurable functions f and g which are square integrable with

imsart-generic ver. 2007/09/18 file: hmmGSS1.hyper12274.tex date: December 3, 2007



/ 15

respect to P, the covariance of f and g with respect to P, is non-negative. Hence,

ψi|n
′′(x)

= ψ′′(Yi − x) + α2

∫
p′′U (z − αx)β̄i+1|n(z) dz∫
pU (z − αx)β̄i+1|n(z) dz

− α2
(∫ p′U (z − αx)β̄i+1|n(z) dz∫

pU (z − αx)β̄i+1|n(z) dz

)2

= ψ′′(Yi − x) − α2

∫
p′U (z − αx)β̄′

i+1|n(z) dz
∫
pU (z − αx)β̄i+1|n(z) dz

+ α2
(∫ p′U (z − αx)β̄i+1|n(z) dz∫

pU (z − αx)β̄i+1|n(z) dz

)(∫ pU (z − αx)β̄′
i+1|n(z) dz

∫
pU (z − αx)β̄i+1|n(z) dz

)

= ψ′′(Yi − x) − α2C̃ovi|n,x
(
ϕ′(· − αx), ψ′

i+1|n(·)
)

≤ ψ′′(Yi − x),

(54)

where we used a direct differentiation, integration by parts, and the fact that both
φ′ and ψ′

i+1|n are monotone non-increasing functions (the last statement follows by

applying (54) inductively from n backward).
We conclude that ψi|n is strongly unimodal with curvature at least as that of the

original likelihood function. Hence the curvature of the logarithm of the forward
smoothing density is smaller than the sum of the curvature of the state and of the
measurement noise,

[
log fi|n(xi, xi+1)

]′′
≤ ϕ′′(xi+1 − αxi) + ψ′′(Yi+1 − xi+1) ≤ −c , (55)

where
c = −max

xi+1

ϕ′′(xi+1) + max
xi+1

ψ′′(xi+1) . (56)

Lemma 10 shows that the variance ofXi+1 givenXi and Yi+1:n is uniformly bounded

vi|n(x)
def
=

∫ (
xi+1 −

∫
xi+1fi|n(x, xi+1)dxi+1

)2

fi|n(x, xi+1)dxi+1 ≤ c−1 .

where c is defined in (56). Now let

ei|n(x)
def
=

∫
xi+1fi|n(x, xi+1)dxi+1 .

Similarly as above

dei|n
dx

(x) = −α C̃ovi|n,x (Z,ϕ′(Z − αx)) .

Note that xi+1 7→ ei|n(x) − xi+1, xi+1 7→ ϕ′(xi+1 − αx), and xi+1 7→ ψ′
i+1|n(xi+1)

are monotone non-increasing and therefore their correlation is positive with respect
to any probability measure. Hence
∣∣∣∣
dei|n

dx
(x)

∣∣∣∣

= |α|

∫ (
ei|n(x) − xi+1

)
ϕ′(xi+1 − αx)eϕ(xi+1−αx)+ψi+1|n(xi+1)dxi+1∫

eϕ(xi+1−αx)+ψi+1|n(xi+1)dxi+1

≤ |α|

∫ (
ei|n(x) − xi+1

) (
ϕ′(xi+1 − αx) + ψ′

i+1|n(xi+1)
)

eφ(xi+1−αx)+ψi+1|n(xi+1)dxi+1
∫

eϕ(xi+1−αx)+ψi+1|n(xi+1)dxi+1

= |α| .
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by integration by parts. Put as before V (x, x′) = 1 + (x − x′)2. It follows from the
discussion above that

F̄i|nV (x, x′) = 1 + (ei|n(x) − ei|n(x
′))2 + vi|n(x) + vi|n(x

′) ,

where vi|n(x) and vi|n(x′) are uniformly bounded with respect to x and x′ and
|ei|n(x)− ei|n(x′)| ≤ α|x− x′|. The rest of the argument is like that for the normal-
normal case.

We conclude the argument by stating and proving a lemma which was used above.

Lemma 10. Suppose that Z is a random variable with probability density function f
satisfying supx(∂

2/∂x2) log f ≤ −c. Then, Z is square integrable and Var(Z) ≤ c−1.

Proof. Suppose, w.l.o.g., that the maximum of f is at 0. Under the stated assump-
tion, there exist constants a ≥ 0 and b such that f(x) ≤ ae−c(x−b)

2

. This implies
that Z is quare integrable. Denote z 7→ ζ(z) = log f(z)+cz2/2 which by assumption
is a concave function. Let m be the mean of Z.

E[(Z −m)2] =

∫
(z −m)zeξ(z)−cz

2/2dz =

c−1

∫
(z −m) (cz − ξ′(z)) eξ(z)−cz

2/2dz + c−1

∫
(z −m)ξ′(z)eξ(z)−cz

2/2dz.

By construction, z 7→ ξ′(z) is a non-increasing function. Since the inequality Cov(ϕ(Z), ψ(Z)) ≥
0 holds for any two non-decreasing function ϕ and ψ which have finite second
moment, the second term in the RHS of the previous equation is negative. Since
(cz − ξ′(z)) eξ(z)−cz

2/2 = −f ′(z), the proof follows by integration by part:

Var(Z) ≤ −c−1

∫
(z −m)f ′(z)dz = c−1

∫
f(z)dz = c−1 .

6. Proofs

Proof of Proposition 1. The proof is similar to the one done in (11). For x ∈ C, the
condition, (21) implies that

σ−(C)νC(dx′) ≤
dQ(x, ·)

dνC
(dx′) ≤ σ+(C)νC(dx′) .

Plugging the lower and upper bounds in the numerator and the denominator of (8)
yields,

Fk|n(xk, A) ≥
σ−
σ+

∫
A
dQ(xk,·)
dνC

(dxk+1)βk+1|n(xk+1)µ(dxk+1)
∫
X

dQ(xk,·)
dνC

(dxk+1)βk+1|n(xk+1)µ(dxk+1)

The result is established with

νk|n(A)
def
=

∫
A
dQ(xk,·)
dνC

(dxk+1)βk+1|n(xk+1)µ(dxk+1)
∫
X

dQ(xk,·)
dνC

(dxk+1)βk+1|n(xk+1)µ(dxk+1)
.

Proof of proposition 3. For any xi ∈ X,

P (Xi+ℓ ∈ C |Xi = xi, Y1:n)

=

∫
· · ·
∫
W [Yi+1:i+ℓ](xi, xi+ℓ+1;C)βi+ℓ+1|n(xi+ℓ+1)µ(dxi+1:i+ℓ+1)∫

· · ·
∫
W [Yi+1:i+ℓ](xi, xi+ℓ+1; X)βi+ℓ+1|n(xi+ℓ+1)µ(dxi+1:i+ℓ+1)

,

=

∫
· · ·
∫ W [Yi+1:i+ℓ](xi,xi+ℓ+1;C)
W [Yi+1:i+ℓ](xi,xi+ℓ+1;X)W [Yi+1:i+ℓ](xi, xi+ℓ+1; X)βi+ℓ+1|n(xi+ℓ+1)µ(dxi+ℓ+1)∫

· · ·
∫
W [Yi+1:i+ℓ](xi, xi+ℓ+1; X)βi+ℓ+1|n(xi+ℓ+1)µ(dxi+ℓ+1)

,
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where W is defined in (24). The proof is concluded by noting that, under the stated
assumptions,

sup
(xi,xi+ℓ+1)∈X×X

W [Yi+1:i+ℓ](xi, xi+ℓ+1;C)

W [Yi+1:i+ℓ](xi, xi+ℓ+1; X)
≥ α(Yi+1:i+ℓ;C) ,

6.1. Proof of Theorem 7

Proof. For notational simplicity, we drop the dependence in the sample size n.

Denote Nn
def
=
∑n

j=0 1C̄j
(Xj , X

′
j) and εi

def
= ε(C̄i). For any m ∈ {1, . . . , n + 1}, we

have:

PYξ,ξ′,0 (T ≥ n)

≤ PYξ,ξ′,0 (T ≥ n,Nn−1 ≥ m) + PYξ,ξ′,0 (T ≥ n,Nn−1 < m) . (57)

The first term on the RHS of the previous equation is the probability that we fail
to couple the chains after at least m independent trial. it is bounded by

PYξ,ξ′,0 (T ≥ n,Nn−1 ≥ m) ≤
m∏

i=1

(
1 − [↑ ε](i)

)
. (58)

where [↑ ε](i) are the smallest-order statistics of (ε1, . . . , εn). We consider now the

second term in the RHS of (57). Set Bj
def
= 1∨ρj(1−εj)λ

−1
j . On the event {Nn−1 ≤

m− 1},
n∏

j=1

B
1C̄j

(Xj ,X
′
j)

j ≤
m−1∏

j=1

[↓ B](j) ,

where [↓ B](j) is the j-th largest order statistics of B1, . . . , Bn. Hence,1{Nn−1 ≤ m− 1} ≤




n∏

j=1

B
1C̄j

(Xj ,X
′
j)

j




−1
m−1∏

j=1

[↓ B](j) ,

which implies that:

PYξ,ξ′,0 (T ≥ n,Nn−1 < m) ≤
n∏

j=1

λj

m1∏

j=1

[↓ B](j) EYξ⊗ξ′⊗δ0 [Mn] (59)

where, for k ∈ {0, . . . , n}:

Mk
def
=



k−1∏

j=0

λj




−1
k−1∏

j=0

B
−1C̄j

(Xj ,X
′
j)

j Vk(Xk, X
′
k)1{dk = 0} . (60)

Since, by construction,

Eξ,ξ′,0
[
Vk+1(Xk+1, X

′
k+1)1{dk+1 = 0}

∣∣Fk
]

(1 − εk)R̄kVk(Xk, X
′
k)1C̄c

k
(Xk, X

′
k) + λkVk(Xk, X

′
k)1C̄k

(Xk, X
′
k) ,

it is easily shown that (Mk, k ≥ 0) is a (F ,PYξ,ξ′,0)-supermartingale w.r.t. where

F
def
= (Fk)1≤k≤n with for k ≥ 0, Fk

def
= σ

[
(Xj , X

′
j , dj), 0 ≤ j ≤ k

]
. Therefore,

EYξ,ξ′,0(Mn) ≤ EYξ,ξ′,0(M0) = ξ ⊗ ξ′(V0) .

This establishes (43) and concludes the proof.
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7. Proofs of Section 4.1.2

To simplify the notations, the dependence of C(y) in K is implicit throughout the
section.

Proof of Lemma 4. Consider first the case d(x1, a(C)) ≥M . For any z1 ∈ a(C),

M ≤ |x1 − a(x0)| ≤ |x1 − z1| + |z1 − a(x0)| ≤ diam(C) + |x1 − z1| ,

M ≤ |x1 − z1| ≤ |x1 − a(x0)| + |z1 − a(x0)| ≤ diam(C) + |x1 − a(x0)| .

Using that pU is non-increasing for u ≥M and (28), we obtain

pU (|x1 − a(x0)|) ≥ pU (diam(C) + |x1 − z1|) ≥ γpU (diam(C))pU (|x1 − z1|) ,

and similarly,

pU (|x1 − z1|) ≥ γpU (diam(C))pU (|x1 − a(x0)|) ,

which establishes that (30) holds when d(x0, a(C)) ≥M .
Consider now the case d(x1, a(C)) ≤ M . Since x0 belongs to C, then |x1 −

a(x0)| ≤M + diam(C), which implies that

inf
u≤M+diam(C)

pU (u) ≤ pU (|x1 − a(x0)|) ≤ sup
u≤M+diam(C)

pU (u) ,

(30) holds for d(x1, a(C)) ≤M .
Consider now the second assertion. Assume first that x0 is such that d(a(x0), C) ≥

M and let z1 be an arbitrary point of C. Then, for any x1 ∈ C,

M ≤ |x1 − a(x0)| ≤ |x1 − z1| + |z1 − a(x0)| ≤ diam(C) + |z1 − a(x0)| .

Using that pU is monotone decreasing on [M,∞) and (28),

pU (|x1 − a(x0)|) ≥ pU (diam(C) + |z1 − a(x0)|)

≥ γpU [diam(C)]pU (|z1 − a(x0)|) . (61)

If d(a(x0), C) ≤M , then for any x1 ∈ C, |x1 − a(x0)| ≤ diam(C) +M , so that

inf
|u|≤diam(C)+M

pU ≤ pU (|x1 − a(x0)|) . (62)

Proof of Lemma 5. Choose K such that b−1
1 K ≥M . If |b−1(y) − x| ≥ K, then,

|y − b(x)| = |b(b−1(y)) − b(x)| ≥ b−1
1 |b−1(y) − x| ≥M , (63)

and since pV is non-increasing on the interval [M,∞[, the following inequality holds

∫

|x−b−1(y)|≥K

pV (|y − b(x)|)dx ≤

∫

|x−b−1(y)|≥M

pV (b−1
1 |b−1(y) − x|)dx

≤ b1

∫ ∞

b−1

1
K

pV (x)dx .

Since the Jacobian of b is bounded,
∫
pV (|y − b(x)|)dx is bounded away from zero

by change of variables. The proof follows.
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Proof of Lemma 6. We will establish the results by considering independently the
following cases:

1. For any y and any (x0, x2) such that d(a(x0), C(y)) ≤M and d(x2, a[C(y)]) ≤
M ,

I(x0, x2; y) ≤

(
sup

R

pU

)2

.

2. For any y and any (x0, x2) such that d(a(x0), C(y)) > M and d(x2, a[C(y)]) ≤
M ,

I(x0, x2; y) ≤ γ−1 (sup pU )

∫ ∞

K

[pU (x)]−1pV (b−x)dx .

3. For any y and any (x0, x2) such that d(a(x0), C(y)) ≤M and d(x2, a[C(y)]) >
M

I(x0, x2; y) ≤ γ−1 (sup pU )

{
b−1
− +

∫ ∞

K

pV (b−x)[pU (a+x)]
−1dx

}

4. For any y and any (x0, x2) such that d(a(x0), C(y)) > M and d(x2, a[C(y)]) >
M ,

I(x0, x2; y) ≤ γ−2

×

∫ ∞

K

[pU (x)]−1pV (b−x)

{(
inf
u≤M

pU (u)

)−1

+ [pU (a+x)]
−1

}
dx .

Proof of Assertion 1. On the set {x0, d(a(x0), C(y)) ≤ M}, kC(y)(x0) ≡ 1; On the
set {x2, d(x2, a[C(y)]) ≤ M}, hC(y)(x2) ≡ 1. Since pU is uniformly bounded, the
bound follows from Lemma 5 and the choice of K.

Proof of Assertion 2. On the set {x0, d(a(x0), C(y)) > M}, kC(x0) = pU (|b−1(y)−
a(x0)|) ; On the set {x2, d(x2, a[C(y)]) ≤ M}, hC(x2) ≡ 1. Therefore, for such
(x0, x2),

I(x0, x2; y) ≤ (sup pU )

p−1
U (|b−1(y) − a(x0)|)

∫

Cc(y)

pU (|x1 − a(x0)|)pV (|y1 − b(x1)|)dx1 . (64)

We set α = x1 − a(x0) and β = b−1(y)− x1. Note that |α+ β| = |b−1(y)− a(x0)| ≥
d(a(x0), C(y)) > M . Since pU is non-increasing on [M,∞[, pU (|α + β|) ≥ pU (|α| +

|β|), and the condition (28) shows that (pU (|α + β|))−1 pU (|α|) ≤ γ−1p−1
U (|β|) which

implies

p−1
U (|b−1(y) − a(x0)|)pU (|x1 − a(x0)|) ≤ γ−1p−1

U (|b−1(y) − x1|) . (65)

Therefore, plugging (65) into the RHS of (64) yields

I(x0, x2; y) ≤ γ−1 (sup pU )

∫

|x1−b−1(y)|≥K

p−1
U (|b−1(y) − x1|)pV (b−|b

−1(y) − x|)dx1

≤ γ−1 (sup pU )

∫ ∞

K

p−1
U (x)pV (b−x)dx .
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Proof of Assertion 3. On the set {x0, d(a(x0), C(y)) ≤M}, kC(x0) ≡ 1; on the set
{x2, d(x2, a[C(y)]) > M}, hC(x2) = pU (|x2 − a[b−1(y)]|) ≡ 1. Therefore, for such
(x0, x2);

I(x0, x2; y) ≤ (sup pU )

× p−1
U (|x2 − a[b−1(y)]|)

∫

Cc(y)

pV (|y − b(x1)|)pU (|x2 − a(x1)|)dx1 . (66)

We set α = x2 − a(x1), β = a(x1) − a[b−1(y)]. Since |α+ β| ≥ d(x2, a[C(y)]) > M ,

using as above that (pU (|α+ β|))−1
pU (|α|) ≤ γ−1p−1

U (|β|), we show

p−1
U (|x2 − a[b−1(y)]|)pU (|x2 − a(x1)|) ≤ γ−1p−1

U (|a(x1) − a[b−1(y)]|) . (67)

Since for any x, x′ ∈ X,

p−1
U (|a(x) − a(x′)|) ≤

(
inf
u≤M

pU (u)

)−1 1{|a(x) − a(x′)| ≤M}

+ p−1
U (a+|x− x′|)1{|a(x) − a(x′)| > M} , (68)

the RHS of (66) is therefore bounded by

I(x0, x2; y) ≤ γ−1 (sup pU )

∫

|x1−b−1(y)|≥K

pV (b−(|x1 − b−1(y)|))

{(
inf
u≤M

pU (u)

)−1

+ p−1
U (a+|x1 − b−1(y)|)

}
dx1 .

Proof of Assertion 4. On the set {x0, d(a(x0), C(y)) > M}, kC(y)(x0) = pU (|b−1(y)−
a(x0)|). On the set {x2, d(x2, a[C(y)]) > M}, kC(y)(x2) = pU (|x2−a[b−1(y)]). There-
fore, for such (x0, x2),

I(x0, x2; y) ≤ p−1
U (|b−1(y) − a(x0)|)p

−1
U (|x2 − a[b−1(y)]|)

×

∫

Cc(y)

pU (|x1 − a(x0)|)pV (|y − b(x1)|)pU (|x2 − a(x1)|)dx1 . (69)

Using (63), (65), (67), and (68), the RHS of the previous equation is bounded by

I(x0, x2; y) ≤ γ−2

∫ ∞

K

p−1
U (|x|)pV (b−|x|)

{(
inf
u≤M

pU (u)

)−1

+ p−1
U (a+x)

}
dx .

The proof follows.
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