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Tests for Gaussian graphi
al modelsNi
olas Verzelen1, Fanny Villers2November 2007Abstra
tGaussian graphi
al models are promising tools for analysing geneti
 networks. However,assessing a network using mi
roarray experiments arises di�
ult statisti
al and 
omputa-tional questions. In the present paper, we 
onstru
t a pro
edure for testing the neighbor-hoods of a Gaussian graphi
al model. Our approa
h is based on the 
onne
tion betweenlo
al Markov property and 
onditional regression of a Gaussian random variable. Thus, weadapt the testing pro
edures de�ned in a pre
eding paper (Verzelen and Villers, 2007) to thisGaussian graphi
al modelling framework. Our new tests then inherits appealing theoreti
alproperties. Besides, they apply and are 
omputationally feasible in a high-dimensional set-ting: the number of observations may be mu
h smaller than the number of nodes. A largepart of this study is deserved to illustrate and dis
uss the appli
ation of our pro
edures tosimulated data and to biologi
al data.1 Introdu
tionBiologi
al pro
esses regulating the expression of the genes lead to 
omplex high-dimensionalsystems. Thus, inferring these underlying networks re
ently be
ame an arising issue in systemsbiology. More pre
isely, the 
hallenge at hand is to use gene expression data 
oming frommi
roarray experiments to estimate or to test the network. In this regard, mathemati
al toolswere developped to provide a suitable framework for modelling 
omplex dependen
e stru
tures.Among these, Gaussian graphi
al models (GGMs) (Lauritzen, 1996; Edwards, 2000) have gaineda lot of attention and have already been applied in several works (Kishino and Waddell, 2000; Toand Horimoto, 2002; Wu et al., 2003; Wille et al., 2004; S
häfer and Strimmer, 2005). However,the number of genes p will typi
ally ex
eed by far the number n of the samples given by themi
roarray experiments. In this high-dimensional setting, estimating or assessing a GGM raisesdi�
ult statisti
al and 
omputational issues. For instan
e, most of the methodologies based onasymptoti
 statisti
s do not apply anymore.In re
ent years, the problem of graph estimation for massive data sets be
ame a hot spotin statisti
s. Most of the emerging methods fall in two 
ategories. On the one hand, some arebased on multiple testing pro
edures, see for instan
e S
häfer and Strimmer (2005) or Willeand Bühlmann (2006). On the other hand, other methods are based on variable sele
tion forhigh-dimensional data. We mention the seminal work of Meinshausen and Bühlmann (2006)who proposed a 
omputationally feasible model sele
tion algorithm using Lasso penalisation(Tibshirani, 1996). Huang et al. (2006) and Yuan and Lin (2007) extend this method to inferdire
tly the graph by minimizing the log-likehood penalised by the l1 norm.1Université Paris-Sud, Laboratoire de Mathématique d'Orsay, 91405 Orsay Cedex INRIA Futurs, EquipeSELECT, Université Paris-Sud 91405 Orsay Cedex Fran
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In 
ontrast, the problem of hypothesis testing in a high-dimensional setting has not yet raisedmu
h interest. We believe that this issue is signi�
ant for two reasons: First, when 
onsideringa gene regulation network, the biologists often have a previous knowledge of the graph and maywant to test if the mi
roarray data mat
h with their model. Se
ond, when applying an estimationmethod in a high-dimensional setting, it 
ould be useful to test the estimated graph as some ofthese methods reveal too 
onservative. Admittedly, some of the previously mentioned estimationmethods are based on multiple testing. However, as they are 
onstru
ted for an estimationpurpose, most of them do not take into a

ount some previous knowledge about the graph.This is for instan
e the 
ase for the approa
hes of Drton and Perlman (2007) and S
häfer andStrimmer (2005). Some of the other existing pro
edures 
annot be applied in a high-dimensionalsetting (e.g. Drton and Perlman (2008)). Finally, most of them la
k of theoreti
al justi�
ationsin a non asymptoti
 way.Let us pre
ise our obje
tive: 
onsider X = (X1, . . . , Xp)
t a random ve
tor distributed as amultivariate Gaussian N (0, Σ). Throughout this paper, we assume that the matrix Σ is non-singular. The 
onditional independen
e stru
ture of this distribution 
an be represented byan undire
ted graph G = (Γ, E) where Γ = {1, . . . , p} is the set of nodes and E the set ofedges. There is an edge between nodes a and b if and only if the random variables Xa and Xbare 
onditionally dependent given all remaining variables X−{a,b} = {Xi, i ∈ Γ \ {a, b}}. Therandom ve
tor X is then said to be a Gaussian graphi
al model with respe
t to the graph G.Given a node a ∈ Γ, we de�ne its neighborhood ne(a) as the set of nodes b ∈ Γ \ {a} su
h that

(a, b) ∈ E. We say that X follows the lo
al Markov property at node a with respe
t to the graph
G if Xa is independent from {Xi, i ∈ Γ \ (ne(a) ∪ {a})} given {Xi, i ∈ ne(a)}. Lauritzen (1996)shows that X is a Gaussian graphi
al model with respe
t to G if and only if it follows the lo
alMarkov property at ea
h node a ∈ Γ.Suppose we are given a n-sample of the ve
tor X and an undire
ted graph G = (Γ, E). In thepresent paper, we 
onstru
t testing pro
edures of the hypothesis �X follows the lo
al Markovproperty at the node a with respe
t to the graph G� against the hypothesis that it does not.In the following, we refer to su
h tests as test of neighborhood. We dedu
e testing pro
eduresof the hypothesis �X is a Gaussian graphi
al model with respe
t to the graph G� against thehypothesis that it is not. We 
all these tests tests of graph. Our test of neighborhood appliesand is 
omputationally feasible in a high-dimensional setting as long as the graph G is sparse.Besides, it inherits the appealing theoreti
al properties shown in a previous paper (Verzelen andVillers, 2007): we are able to 
ompute non asymptoti
 bounds of its power and we show itsoptimality in the minimax sense.In Se
tion 2.1.1 we highlight the 
onne
tion between tests of neighborhood and tests inGaussian linear regression in a random Gaussian design. Thus, we 
onstru
t pro
edures basedon tests of linear hypothesis in this regression framework introdu
ed in (Verzelen and Villers,2007). They are feasible in a high-dimensional setting and we 
ontrol exa
tly their family-wiseerror rate. Then, we exhibit non asymptoti
 results on their power in Se
tion 2.2. Finally, weapply our pro
edures to simulated data in Se
tion 3 and to real data sets in Se
tion 4.In the sequel, we denote ne(a) := ne(a) ∪ {a} for any node a ∈ Γ.
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2 Des
ription of the testing pro
edures2.1 Test of neighborhood2.1.1 Conne
tion with 
onditional Gaussian regressionIn this part, we highlight the 
onne
tion between the lo
al Markov property and 
onditionalregression of a Gaussian random variable. We de�ne pre
isely the testing pro
edure in the nextpart, following the approa
h introdu
ed in Verzelen and Villers (2007).Let G = (Γ, E) be an undire
ted graph and a ∈ Γ be a node of this graph. We wantto test the hypothesis �Xa is independent from XΓ\ne(a) 
onditionally to Xne(a)� against thegeneral alternative that it is not. This hypothesis 
orresponds to the lo
al Markov propertyde�ned in Lauritzen (1996) of X at the node a. In order to perform this test, we use a di�erent
ara
terisation of 
onditional independen
e.Let us 
onsider the 
onditional distribution of Xa given all remaining variables X−a =
{Xb, b ∈ Γ \ {a}}. Using standard Gaussian properties (see for instan
e Lauritzen (1996) ap-pendix C), we know that this 
onditional distribution is a Gaussian distribution whose mean isa linear 
ombination of elements in X−a and whose varian
e does not depend on X−a. Hen
e,we 
an de
ompose Xa as:

Xa =
∑

b∈Γ\a

θa
b Xb + ǫa, (1)where θa is a ve
tor of 
oe�
ients in R

p−1 and ǫa is a zero mean Gaussian random variable inde-pendent from X−a whose varian
e equals the 
onditional varian
e of Xa given X−a, var(Xa|X−a).The ve
tor θa is determined by the inverse 
ovarian
e matrix K of X (see Edwards (2000)). Morepre
isely, θa
b = −K[a, b]/K[a, a] for any b 6= a and var(Xa|X−a) = 1/K[a, a]. As a 
onsequen
e,the set of non-zero 
oe�
ients of θa 
orresponds to the non zero-
omponents of the a-th row of

K. Equivalently, there is an edge between the nodes a and b in the graph if the quantity K[a, b]is not zero. For any set V ⊂ Γ \ {a}, θa
V denotes the sequen
e (θa

b )b∈V .Testing the null-hypothesis �Xa is independent from XΓ\ne(a) 
onditionally to Xne(a)� againstthe general alternative is therefore equivalent to testing the null-hypothesis H0,a : �θa
Γ\ne(a) = 0�against the general alternative H1,a : �θa

Γ\ne(a) 6= 0�. Consequently, the test of neighborhoodamounts to goodness-of-�t tests for Gaussian regression with random Gaussian 
ovariates as
onsidered in Verzelen and Villers (2007).2.1.2 Des
ription of the pro
edureIn this part, we adapt the test introdu
ed in Verzelen and Villers (2007) to our statisti
al 
ontext.We are given n observations of the ve
tor X = (X1, . . . , Xp)
t. For any a ∈ Γ, let us note Xa the

n-ve
tor of observations of Xa and X−a the set of ve
tors Xb where b belongs to Γ \ {a}. Thejoint distribution of (Xa, X−a) is uniquely de�ned by the ve
tor θa, the 
ovarian
e matrix of X−adenoted Σ−a, and var(Xa|X−a) the 
onditional varian
e of Xa. In the sequel, Pθa refers to thejoint distribution of (Xa,X−a). For the sake of simpli
ity, we do not emphasize the dependen
eof Pθa on Σ−a and var(Xa|X−a).Let us �rst �x some level α ∈]0, 1[ and let m be a subset of Γ \ ne(a). In the sequel da and
Dm denote the 
ardinalities of ne(a) and m, and we de�ne Nm as n− da −Dm. We assume that
n ≥ da + 2.We de�ne the Fisher statisti
 φm by

φm(Xa,X−a) :=
Nm‖Πne(a)∪mXa − Πne(a)Xa‖2

n

Dm‖Xa − Πne(a)∪mXa‖2
n

, (2)3



where ‖.‖n is the 
anoni
al norm in R
n, and Πne(a) and Πne(a)∪m respe
tively refer to theorthogonal proje
tion onto the spa
e generated by the ve
tors (Xb)b∈ne(a) and to the orthogonalproje
tion onto the spa
e generated by the ve
tors (Xb)b∈ne(a)∪m. Then, φm 
orresponds to thestatisti
 of the Fisher test of the null hypothesis

H0,a : θΓ\ne(a) = 0 against the alternative H1,a,m : θΓ\ne(a) 6= 0 and θΓ\(ne(a)∪m) = 0. (3)In the sequel, Πne(a)⊥ stands for the orthogonal proje
tion along the spa
e generated by
(Xb) with b belonging to ne(a). Let us 
onsider a �nite 
olle
tion Ma of non empty subsetsof Γ \ ne(a). For all m ∈ Ma, the 
ardinality Dm must be smaller than n − da. We de�ne
{αm, m ∈ Ma} a suitable 
olle
tion of numbers in ]0, 1[ (whi
h possibly depend on X−a). Ourtesting pro
edure 
onsists in doing for ea
h m ∈ Ma the Fisher test based on the statisti
 φmde�ned in Equation (2) at level αm and reje
ting the null hypothesis H0,a if one of those testsdoes. More pre
isely, we de�ne the test Tα as

Tα := sup
m∈Ma

{

φm(Xa,X−a) − F̄−1
Dm,Nm

(αm(X−a))
}

, (4)where for any u ∈ R, F̄D,N (u) denotes the probability for a Fisher variable with D and N degreesof freedom to be larger than u. We therefore reje
t the null hypothesis when Tα is positive. Themain di�eren
e between this pro
edure and the one de�ned in Verzelen and Villers (2007) lies inthe fa
t that we now deal with possibly random 
olle
tion of models.In order to ensure that the level Tα is less than α, the 
olle
tion of weights {αm(X−a), m ∈ Ma}in ]0, 1[ must satisfy the property: for all θ ∈ R
p−1 su
h that θΓ\ne(a) = 0, then Pθ(Tα > 0) ≤ α.We 
hoose the 
olle
tion {αm(X−a), m ∈ Ma} in a

ordan
e with one of the two followingpro
edures :

• P1 : The αm 's do not depend on X−a and satisfy the equality :
∑

m∈Ma

αm = α (5)
• P2 : For all m ∈ Ma, αm(X−a) = qX−a,α, where qX−a,α is de�ned 
onditionally to X−aas the α-quantile of the distribution of the random variable

inf
m∈Ma

F̄Dm,Nm
(φm(ǫa,X−a)) (6)Note that this last distribution does not depend on the varian
e of ǫa and thus we 
anwork out qX−a,α using Monte-Carlo method.2.1.3 Comparison of Pro
edures P1 and P2If the 
olle
tion of models is not random, one 
an either use Pro
edure P1 or P2. In Verzelenand Villers (2007), Se
tion 2.2, we show that the test Tα with Pro
edure P1 has a size less than

α, whereas the size of Tα with Pro
edure P2 is exa
tly α. We dedu
e from this fa
t that the test
Tα with pro
edure P2 is more powerful than the 
orresponding test de�ned with Pro
edure P1with weights αm = α/|Ma| (see Verzelen and Villers (2007), Se
tion 2.3).On the one hand the 
hoi
e of Pro
edure P1 allows to avoid the 
omputation of the quantile
qX−a,α and possibly permits to give a Bayesian �avor to the 
hoi
e of the weights. On the otherhand, Pro
edure P1 be
omes too 
onservative when the 
olle
tion of models Ma is large. Thisis often the 
ase when the number p of nodes in the graph is large. That is why we advise touse Pro
edure P2 when 
onsidering large graphs. We 
ompare both Pro
edures in pra
ti
e inVerzelen and Villers (2007) Se
tion 6 and in Se
tion 3.4



2.1.4 Colle
tion of models MaThe main advantage of our pro
edure is that it is very �exible in the 
hoi
es of the models m ∈
Ma. If we 
hoose suitable 
olle
tions Ma, the test is powerful over a large 
lass of alternativesas shown in Verzelen and Villers (2007) for non random 
olle
tions. In this part, we propose tworelevant 
lasses of models M1

a and M2
a for our issue of test of neighborhood.The 
olle
tionM1

a is de�ned asM1
a := {{b}, b ∈ Γ\ne(a)} and 
onsists in taking ea
h node in

Γ\ne(a) in turn. In Se
tion 2.2, we present theoreti
al results of the power of Tα with 
olle
tion
M1

a and Pro
edure P1. This 
olle
tion presents the advantage to be relatively small 
ompared toother possible 
olle
tions and the obtained pro
edure is 
onsequently 
omputationally attra
tive.We have shown in Verzelen and Villers (2007), and this will be illustrated again in Se
tion 3,that if there are several non-zero 
oe�
ients in θa
Γ\ne(a), 
onsidering models of larger dimensions
an improve the performan
e of the test. For instan
e, if we are given an order on the nodes andif the ve
tor θa belongs to an ellipsoid relative to this order, one should 
hoose the 
olle
tion ofnested models de�ned by this order (see Verzelen and Villers (2007), Se
tion 5). There is notsu
h an order in our 
ontext as we do not know in prin
iple whi
h nodes are more relevant totest. That is why we propose to use the LARS (least angle regression) algorithm introdu
edby Efron et al. (2004). This model sele
tion algorithm provides an order of relevan
e of the
ovariates in linear regression. Besides, one of its main advantage lies in its 
omputationallyattra
tiveness. The 
olle
tion of models M2

a is built as follows. We �rst 
hoose an integer Jwhi
h 
orresponds to the maximal size of the models we want to 
onsider. We advise to take Jsmaller than n/2. Then, we apply the LARS algorithm to the response Πne(a)⊥Xa with the setof 
ovariates Πne(a)⊥Xb where b ∈ Γ \ ne(a) and we obtain the sequen
e sLARS = (j1, . . . , jJ).Finally we de�ne the 
olle
tion M2
a as:

M2
a := {{j1, . . . , jk} , 1 ≤ k ≤ J}As the 
olle
tion of models M2

a given by the LARS algorithm now depends on the data, we needdo de�ne a new pro
edure to handle random 
olle
tions.Suppose we are given a random 
olle
tion of models Ma whi
h only depends on
Ψ(Xa,X−a) :=

(

Πne(a)⊥Xa

‖Πne(a)⊥Xa‖n

,X−a

)

, (7)then we shall use the test statisti
 (4) with weights given by the pro
edure P3 de�ned as follows:
• P3: For all m ∈ Ma [Ψ (Xa,X−a)], αm(X−a) = q′

X−a,α, the α-quantile of the distributionof the random variable
inf

m∈Ma[Ψ(ǫa,X−a)]
F̄Dm,Nm

(φm(ǫa,X−a)) (8)
onditionally to X−a. As for the pro
edure P2, the distribution of (8) does not depend onthe varian
e of ǫa and thus we are able to 
ompute q′
X−a,α using Monte-Carlo method.Clearly, if the 
olle
tion of models is not random, Pro
edures P2 and P3 lead to the same weights.As with Pro
edure P2, the size of Tα with Pro
edure P3 is exa
tly α. More Pre
isely, for any

θa ∈ R
p−1 su
h that θa

Γ\ne(a) = 0, we have that
Pθa (Tα|X−a) = α X−a a.s. .5



The result follows from the fa
t that q′
X−a,α satis�es

Pθa

(

sup
m∈Ma[Ψ(ǫa,X−a)]

{

φm(ǫa,X−a) − F̄−1
Dm,Nm

(

q′
X−a,α

)}

> 0

∣

∣

∣

∣

∣

X−a

)

= α,and for any θa ∈ R
p−1 su
h that θΓ\ne(a) = 0,

Πne(a)∪mXa − Πne(a)Xa = Πne(a)∪mǫa − Πne(a)ǫaand Xa − Πne(a)∪mXa = ǫa − Πne(a)∪mǫa .As the sequen
e of relevant variables given by the LARS algorithm does not depend on thenorm of the reponse, the 
olle
tion M2
a only depends on Ψ(Xa,X−a) and thus we are able toapply Pro
edure P3.The size of these two 
olle
tions M1
a and M2

a is smaller than the number of nodes p. Conse-quently, the 
omputational 
omplexity of our pro
edure is at most linear with respe
t to p when
onsidering the 
olle
tion M1
a and is of the same order as the 
omplexity of the LARS algorithmwhen 
onsidering M2

a.2.2 Properties of the test of neighborhood with 
olle
tion M1

aFor the 
onvenien
e of the reader, we re
all in this part some of the theoreti
al results establishedin Verzelen and Villers (2007). First, we give a proposition whi
h 
ara
terizes the set of ve
tors
θa over whi
h the test Tα with the 
olle
tion M1

a and weights αm = α/|M1
a| is powerful. Weshall then dis
uss the optimality of this test.Proposition 1. Let us assume that n satis�es:

n − da − 1 ≥

[

10 log

(

p − da − 1

α

)

∨ 21 log (1/δ)

]

.Let us set the quantity
ρ2

n−da,p−da
:=

C1

n − da

log

(

p − da − 1

αδ

)

, (9)where C1 is a universal 
onstant. For any θa in R
Γ\{a}, Pθ (Tα > 0) ≥ 1 − δ if there exists

b ∈ Γ \ ne(a) su
h thatvarθa(Xa|Xne(a)) − varθa(Xa|Xne(a)∪{b})varθa(Xa|Xne(a)∪{b})
≥ ρ2

n−da,p−da
. (10)This proposition is a straightforward 
orollary of Theorem 1 in Verzelen and Villers (2007).One interprets the quantity appearing in (10) as follows: the quotient of 
onditional varian
esmeasures the ratio of the quantity of information brought by Xi for the predi
tion of Xa to thepart of Xa not explained by Xne(a)∪{i}. In other words, the test Tα has a power larger than δfor ve
tors θa su
h that there exists a node i ∈ Γ \ ne(a) whi
h improves enough the predi
tionof Xa.This test is optimal in the minimax sense if we test against the alternative �θa

Γ\ne(a) has onlyone non-zero 
omponent� and if the 
ovariates are independent (see Verzelen and Villers (2007),6



Se
tion 4.2). The 
ondition of independen
e for 
ovariates is unrealisti
 in a Gaussian graphi
al
ontext, but it is nevertheless relevant as the independent 
ase is an important ben
hmark fromthe minimax point of view (see Verzelen and Villers (2007), Se
tion 4.2 for more details). Whenthe 
ovariates are 
orrelated we know from a simulation study (Verzelen and Villers (2007),Se
tion 6) that using Pro
edure P2 slightly improves the power of the test Tα.2.3 Test of graphFrom the test of neighborhood we de�ne a pro
edure to test a graph. More pre
isely, we testthe null hypothesis H0 that �X is a Gaussian graphi
al model with respe
t to G� against thealternative that it is not. Let {αa, a ∈ Γ} be a 
olle
tion of numbers in ]0, 1[. For ea
h node
a ∈ Γ, we test at level αa the neighborhood of the node a with one of the pro
edures explainedin Se
tion 2.1.2. We de
ide to reje
t the null hypothesis H0 as soon as one of the test T a

αa
isreje
ted. We obtain a test of level α of the graph G if we take {αa, a ∈ Γ} su
h that∑a∈Γ αa = α.In the sequel we 
hoose αa = α/p for ea
h a ∈ Γ.This pro
edure 
orresponds to a Bonferroni 
hoi
e of the weights. As a 
onsequen
e, if thenumber p of nodes is very large, our test may su�er a loss of its size. This restri
ts ourselves to
onsider tests of graph only for relatively small graphs, or for subgraphs of a large graph. Let usre
all that when we apply the test of neighborhood to one node, the number p of nodes 
an bearbitrary large without any loss in the size of the test, provided that we use Pro
edure P2 or P3.3 SimulationsIn this se
tion we present two simulation studies. First, we study the test of graph when thenumber of nodes is small. On the one hand we 
ompare the e�
ien
y of Pro
edures P1 and

P2 and on the other hand we show the in�uen
e of the per
entage of edges in the graph on thepower of the test. Se
ond, we study the test of neighborhood when p is large, illustrating thepower of our pro
edure in a high-dimensional setting. Besides, we 
ompare the e�
ien
y of thetests based on the 
olle
tions of models M1
a and M2

a de�ned in Se
tion 2.1.4.3.1 Simulation of a GGM3.1.1 Simulation of a graphIn our simulations we use two di�erent methods to generate random graphs. The �rst one allowsto 
ontrol the number of nodes p and the per
entages of edges η in the graph. It 
onsists in
hoosing uniformly and independently the positions of the η × p(p − 1)/2 edges. We use thismethod in the simulation experiment on the test of graph, with di�erent values of η to measurethe in�uen
e of the per
entage of edges on the test.However, the verti
es of real-world networks are often stru
tured in 
lusters, i.e groups ofproteins fun
tionally related, with di�erent 
onne
tivity properties. That is why Daudin et al.(2006) proposed a model 
alled ERMG for Erdös-Rényi Mixtures for Graphs, whi
h des
ribes theway edges 
onne
t nodes, a

ounting for some groups of nodes, and some preferential 
onne
tionsbetween the groups. The ERMG model assumes that the nodes are spread into Q 
lusters withprobabilities {p1, . . . , pQ}. We are given a 
onne
tivity matrix C of size Q × Q whi
h spe
i�esthe probability of 
onne
tion between two nodes a

ording to the 
lusters they belong to. Morepre
isely, the probability that two nodes belonging to the 
lusters i and j share an edge equals
C[i, j]. We use this method to generate a graph in the simulation experiment on the test of7



neighborhood, with the following parameters provided by Daudin et al. (2006): p = 199 nodes,
Q = 7 
lusters, the probabilities (p1, . . . , pQ) and the 
onne
tivity matrix C equal:

(p1, . . . , pQ) =
(

0.038 0.052 0.060 0.082 0.083 0.125 0.560
) (11)

C =





















0.999 0.319 1e − 06 0.116 1e − 06 1e − 06 0.007
0.319 0.869 1e − 06 1e − 06 0.140 0.004 0.002

1e − 06 1e − 06 0.467 0.0155 0.005 0.014 0.004
0.116 1e − 06 0.016 0.216 1e − 06 0.017 0.005

1e − 06 0.140 0.005 1e − 06 0.229 1e − 06 0.004
1e − 06 0.004 0.014 0.017 1e − 06 0.239 0.013
0.007 0.002 0.004 0.005 0.0041 0.0129 0.0163





















(12)Using these parameters, the per
entage of edges η in the graph equals 2.5%.3.1.2 Simulation of the dataGiven a graph we generate random ve
tors whose 
onditional independen
e stru
ture is repre-sented by the graph.First, we generate the partial 
orrelation matrix Π as follows : to a graph with p nodes weasso
iate a symmetri
 p× p matrix U su
h that for any (i, j) ∈ {1, . . . , p}2, U [i, j] is drawn fromthe uniform distribution between −1 and 1 if there is an edge between the nodes i and j and
U [i, j] is set to 0 in the other 
ase. We then 
ompute 
olumn-wise sums of the absolute valuesof the matrix U entries, and set the 
orresponding diagonal element equal to this sum plus asmall 
onstant. This ensures that the resulting matrix is diagonally dominant and thus positivede�nite. Finally, we standardize the matrix so that the diagonal entries all equal 1 to obtain thesimulated partial 
orrelation matrix Π.Se
ond, we simulate data of the sample size n. We generate n independent samples fromthe multivariate normal distribution with mean zero, unit varian
e, and 
orrelation stru
tureasso
iated to the partial 
orrelation matrix Π. In the sequel, we note X the n × p asso
iateddata matrix.3.2 Simulation setup3.2.1 Simulation study of the test of graphWe evaluate the performan
e of the test of graph, �rst with simulations on randomly generatedgraphs, and se
ondly on a network 
oming from the data base KEGG.1. First simulation experiment: We estimate the level and the power of the test of graph with

1000 simulations. For �xed parameters (p, η, n), we generate 1000 graphs by using the �rstmethod des
ribed in Se
tion 3.1.1 and 1000 data matri
es as des
ribed in Se
tion 3.1.2.Let Gs and X
s for s = 1, . . . , 1000 denote the graphs and the data matri
es for the 1000simulations. For ea
h simulation s, we test the null hypothesis �Xs is a Gaussian graphi
almodel with respe
t to the graph Gs�. We thus estimate the level of the test by dividing thenumber of simulations for whi
h we reje
t the null hypothesis by 1000. Let q be a numberin ]0, 1[. For ea
h simulation s, let Gs

−q be the graph built from the graph Gs in whi
h wedelete randomly q p(p−1)
2 η edges. For ea
h simulation s, we test the null hypothesis �Xs is8



a Gaussian graphi
al model with respe
t to the graph Gs
−q�. We estimate the power of thetest by dividing the number of simulations for whi
h we reje
t the null hypotheses by 1000.The number of variables p is set to 15, whereas the number of observations n is taken equalto 10, 15 and 30 to study the e�e
t of the sample size. We examine the in�uen
e of theper
entage of edges in the graph, by taking η = 0.1 and 0.15. Besides, we show the e�e
tof the per
entage q of missing edges on the power, by presenting the results for q equal to

10%, 40% and 100%.2. Se
ond simulation experiment: This simulation is based on the 
ell 
y
le of yeast (Sa
-
haromy
es 
erevisiae). This experiment aims at showing the performan
e of our pro
e-dure with simulations on a real biologi
al network. The graph 
orreponding to the 
ell
y
le of yeast is available in the data base KEGG from the following website: http://www.genome.jp/kegg/pathway/s
e/s
e04111.html. We fo
us on a part of this path-way involving 16 proteins and 18 intera
tions. The graph, denoted in the sequel Gcellcycleis shown in Figure 1. We estimate the level and the power of the test by simulating 1000data matrix (Xs)s=1,...,1000 from the graph Gcellcycle as des
ribed in Se
tion 3.1.2. We �rstestimate the level of the test by testing for ea
h simulation s, the null hypothesis �Xs is aGaussian graphi
al model with respe
t to the graph Gcellcycle�. Then, we delete the threeedges involving the protein 
omplex SCF Cdc4 in Gcellcycle in order to de�ne the graph
G−Cdc4

cellcycle. This protein 
omplex SCF Cdc4 parti
ipates in 
ell death. We estimate thepower of the test by testing for ea
h simulation s the null hypothesis �Xs is a Gaussiangraphi
al model with respe
t to the graph G−Cdc4
cellcycle. In other words we evaluate the abilityof our pro
edure to dete
t the link of the protein 
omplex SCF Cdc4 with the 
ell 
y
le.

Figure 1: Gcellcycle9



3.2.2 Simulation study of the test of neighborhoodWe �rst simulate a graph G a

ording to the ERMG model des
ribed in Se
tion 3.1.1 with
p = 199 nodes, Q = 7 
lusters, and the parameters (p1, . . . , pQ) and the matrix C de�ned inEquations (11) and (12). We then fo
us on a node a of this graph, 
hosen su
h that it has severalneighbours. In our simulation this node has 6 neighbours. Let us denote ne(a) its neighborhoodgiven by the graph G. We simulate 1000 data matrix as des
ribed in Se
tion 3.1.2 from the graph
G and estimate the level of the test by testing the null hypothesis that the node a has no otherneighbour than the set ne(a), and the power by testing the null hypothesis that the node a hasno neighbour. We present results when the sample size n is equal to 50, 100, and 200.3.2.3 Colle
tions of models Ma and 
olle
tions {αm, m ∈ Ma}For ea
h node a, we use the testing pro
edure de�ned in (4) with di�erent 
olle
tions Ma anddi�erent 
hoi
es of the weights {αm, m ∈ Ma}. Let us re
all that ne(a) denotes the neighborhoodof the node a under the null hypothesis and αa the level of the test of neighborhood for the node
a. For the test of graph we 
hoose αa = α/p and for the test of neighborhood αa equals α.The 
olle
tions Ma: we 
onsider the two 
olle
tions de�ned in Se
tion 2.1.4.

M1
a = {{b}, b ∈ Γ \ ne(a)}.

M2
a = {{j1, . . . , jk} , 1 ≤ k ≤ J}where SLars [Ψ (Xa,X−a)] = {j1, j2, . . . , jJ} is the sequen
e given by the LARS algorithmfor the predi
tion of Πne(a)⊥Xa with the set of 
ovariates Πne(a)⊥Xb where b ∈ Γ \ ne(a). Themaximum number of steps J is taken equal to 10. We evaluate the performan
e of our testingpro
edure withM1

a in the simulation experiment on the test of graph, and we 
ompare 
olle
tions
M1

a and M2
a in the simulation experiment on the test of neighborhood. Indeed, in the se
ondsimulation experiment p and thus the 
olle
tion M1

a are large. It is therefore interesting to
ompare their respe
tive 
omputational 
ost.The 
olle
tion {αm, m ∈ Ma} : When we 
onsider the 
olle
tion of models M1
a we use eitherPro
edure P1 or Pro
edure P2 de�ned in Se
tion 2.1.2. For Pro
edure P1 the αm's are taken equalto αa/|Ma|. The quantity qX−a,αa

o

urring in Pro
edure P2 is evaluated by simulation. Let Zbe a standard Gaussian random ve
tor of size n independent from X−a. As ǫa is independentfrom X−a, the distribution of (6) 
onditionally to X−a is the same as the distribution of
inf

m⊂Ma

F̄Dm,Nm

‖Πne(a)∪m(Z) − Πne(a)(Z)‖2/Dm

‖Z − Πne(a)∪m(Z)‖2/Nm
onditionally to X−a. Consequently, we estimate the quantile qX−a,αa
by a Monte-Carlo methodwith 1000 samples. When we use the 
olle
tion M2

a we apply Pro
edure P3. The quantile
q′
X−a,αa

is again 
omputed by a Monte-Carlo method with 1000 simulations.. The di�eren
ewith the simulation of qX−a,αa
lies in the fa
t that the 
olle
tion M2

a is random and depends on
ǫa. For ea
h simulation, let Z be a standard Gaussian random ve
tor of size n independent from
X−a. We apply the LARS algorithm for the predi
tion of Πne(a)⊥Z with the set of 
ovariates
Πne(a)⊥Xb where b ∈ Γ−a \ne(a). We obtain the sequen
e SLars [Ψ (Z,X−a)] whi
h leads to the
olle
tion of models M2

a [Ψ (Z,X−a)]. The Ψ fun
tion is de�ned in (7). As ǫa is independent10



from X−a, the distribution of (8) 
onditionally to X−a is the same as the distribution of
inf

m∈Ma[Ψ(Z,X−a)]
F̄Dm,Nm

(

‖Πne(a)∪mZ − Πne(a)Z‖2
n/Dm

‖Z − Πne(a)∪mZ‖2
n/Nm

)
onditionally to X−a and we therefore estimate the quantile q′
X−a,αa

. In the sequel, we note
TMi

a,Pj
the test (4) with 
olle
tion Mi

a and Pro
edure Pj .3.3 The resultsIn Table 1 and 2 we present results of the �rst simulation experiment on the test of graphrespe
tively for η = 0.1 and η = 0.15. As expe
ted, the power of the tests in
reases with thenumber of observations n. Besides, the power of the tests in
reases also with the per
entageof missing edges q, the tests being indeed more powerful when the graphs under the null andthe alternative hypotheses are more di�erent. As expe
ted, the tests based on Pro
edure P2 aremore powerful than the 
orresponding tests based on Pro
edure P1. However be
ause p is small,the di�eren
e between the two pro
edures is not really signi�
ant. Nevertheless, Pro
edure P1may be
ome too 
onservative when p is large. As expe
ted, its implementation is faster: for
p = 15 and n = 10 a single simulation using Pro
edure P1 takes approximatively a tenth of ase
ond whereas a single simulation using Pro
edure P2 takes approximatively 9 se
onds. For
p small, Pro
edure P1 is therefore a good 
ompromise in pra
ti
e, Pro
edure P2 being ratherre
ommended when 
onsidering large graphs. Let us now 
ompare the in�uen
e of η on the powerof the test. When the per
entage of edges η in the graph in
reases, the tests are less powerful. Itis espe
ially signi�
ant for q = 10%. In fa
t, when η in
reases the average number of neighboursfor ea
h node in
reases as well. In pra
ti
e, the test of neighborhood is less powerful for anode whi
h already has several neighbours under the null hypothesis. Consequently, the issue oftesting the graph is more di�
ult when η is large.Estimated levels

n TM1,P1
TM1,P210 0.028 0.04615 0.035 0.06130 0.033 0.054Estimated powers

q = 10%
n TM1,P1

TM1,P210 0.73 0.7515 0.83 0.8430 0.95 0.95 q = 40%
n TM1,P1

TM1,P210 0.94 0.9415 0.97 0.9830 1 1 q = 100%
n TM1,P1

TM1,P210 0.99 0.9915 1 130 1 1Table 1: Test of graph, �rst simulation. η = 0.1. Estimated levels and powers. The nominallevel is α = 5%. The standard deviation of these estimators equals 0.007.In Table 3 we give the results of the se
ond experiment for the test of graph. The per
entageof edges in the graph Gcellcycle equals 15%, whereas the ratio of missing edges is q = 1/6 as wedelete 3 edges among 18 in Gcellcycle. In fa
t, as q is between 10% and 40% the powers of thetests in this setting are 
omparable to the results in Table 2. For n = 20 observations the test ispowerful and dete
ts the relation between the protein 
omplex SCF Cdc4 and the 
ell 
y
le with11



Estimated levels
n TM1,P1

TM1,P210 0.031 0.05015 0.044 0.05330 0.041 0.058Estimated powers
q = 10%

n TM1,P1
TM1,P210 0.28 0.3215 0.44 0.4630 0.73 0.75 q = 40%

n TM1,P1
TM1,P210 0.70 0.7215 0.87 0.8830 0.99 0.99 q = 100%

n TM1,P1
TM1,P210 0.90 0.9115 0.99 0.9930 1 1Table 2: Test of graph, �rst simulation. η = 0.15. Estimated levels and powers. The nominallevel is α = 5%. The standard deviation of these estimators equals 0.007.large probability. Even when n is smaller than p, the test dete
ts the relation with a moderateprobability. Estimated levels

n TM1,P1
TM1,P210 0.040 0.05520 0.046 0.06330 0.040 0.058 Estimated powers

n TM1,P1
TM1,P210 0.43 0.4620 0.76 0.7930 0.89 0.90Table 3: Test of graph, se
ond simulation experiment. Estimated levels and powers. The nominallevel is α = 5%. The standard deviation of these estimators equals 0.007.In Table 4 we give the results of the experiment on the test of neighborhood. For n = 50 and

100 the test is more powerful when using the 
olle
tion of models M1
a whereas when n is largerboth pro
edures exhibit a 
omparable power. This 
omes from the fa
t that the test with 
olle
-tion M2

a is performed in two steps: �rst, the sele
tion of the relevant 
ovariates using LARS andse
ond, the test (4) itself. When n is small, LARS makes mistakes and possibly sele
ts irrelevant
ovariates. In this 
ase, the 
olle
tion of models is bad and the test seldom reje
ts. When n islarge, LARS often sele
ts the relevant variables and the test TM2,P3
therefore takes advantageof exploiting models of several dimensions. However, its performan
es are not mu
h better thanthe ones of TM1,P2

even when n is large. Let us now 
ompare the 
omputational e�
ien
y ofthese two pro
edures. For p = 200 and n = 100 a single simulation using 
olle
tion M1
a isalmost three times longer than using 
olle
tion M2

a. It seems natural to exploit model of severaldimensions espe
ially when we 
onsider the test of neighborhood for a node whi
h has severalmissing neighbours. However, the LARS algorithm does not really improve the performan
e ofthe pro
edure. Nevertheless, using 
olle
tion M2
a is 
omputationally more attra
tive than using
olle
tion M1

a.
12



Estimated levels
n TM1,P2

TM2,P350 0.056 0.052100 0.044 0.054200 0.041 0.043 Estimated powers
n TM1,P2

TM2,P350 0.19 0.15100 0.47 0.41200 0.85 0.86Table 4: Test of neighborhood for the simulation experiment des
ribed in Se
tion 3.2.2. Es-timated levels and powers. The nominal level is α = 5%. The standard deviation of theseestimators equals 0.007.4 Appli
ation to biologi
al dataIn this se
tion, we apply the test of graph to the multivariate �ow 
ytometry data produ
ed bySa
hs et al. (2005). These data 
on
ern a human T 
ell signaling pathway whose deregulationmay lead to 
ar
enogenesis. Therefore, this pathway was extensively studied in the literatureand a network involving 11 proteins and 16 intera
tions was 
onventionally a

epted (Sa
hset al. (2005)). See Figure 2 for a representation of this network. The data from Sa
hs 
onsistof quantitative amounts of these 11 proteins, simultaneously measured from single 
ells underperturbation 
onditions. In the sequel, we fo
us on one general perturbation (anti-CD3/CD28 +ICAM-2) that overall stimulates the 
ellular signaling network. In this 
ondition the quantitiesof the 11 proteins are measured in 902 
ells. Let denote D this data set 
onstituted of p = 11variables and n = 902 observations. Contrary to most of postgenomi
 data, �ow 
ytometry dataprovide a large sample of observations that allow us to measure the in�uen
e of the sample sizeon the power. From this data set we infer the network using three methods and we apply our testof graph as a tool to validate these estimations. As su
h abondan
e of data is rarely availablein postgenomi
 data, we se
ondly 
arry out a simulation study to determine the in�uen
e of thenumber of observations on the test. From the empiri
al 
ovarian
e matrix obtained with thewhole data set D, we generate data of di�erent sample sizes and we evaluate the performan
e ofthe test with respe
t to the sample size.We use the methods proposed by Drton and Perlman (2008), Wille and Bühlmann (2006),and Meinshausen and Bühlmann (2006) to infer the network. Let us brie�y des
ribe them.The SINful approa
h introdu
ed by Drton and Perlman is a model sele
tion algorithm based onmultiple testing. For any 
ouple of nodes they perform a test of existen
e of an edge betweenthese two nodes and sele
t the graph by 
omputing the simultaneous p-values of these tests.This method assumes that the number of observations n is larger than the number of variables p.The two other methods have been re
ently proposed to deal with the usual fa
t in genomi
s of plarge and n small. Wille and Bühlmann (2006) estimate a lower-order 
onditional independen
egraph instead of the 
on
entration graph, while Meinshausen and Bühlmann (2006) estimate theneighborhood of any node with the Lasso method. We represent the three estimated graphs inFigure 3.Let us de�ne the graph G∩ as the interse
tion of the graph estimated by these three methodsand of the graph with the 
onne
tions well-established in the literature. This graph G∩ isrepresented in Figure 4. We test with our pro
edure the null hypothesis HG∩
: �the data set Dfollows the distribution of a Gaussian graphi
al model with respe
t to the graph G∩�. We use forea
h node a of the graph the 
olle
tion of models M1

a de�ned in Se
tion 2.1.4 and the pro
edure
P1. As p is small, the di�eren
e between Pro
edure P2 and P1 is indeed not signi�
ant and the13



Figure 2: Classi
 signaling network of the human T 
ell pathway. The 
onne
tions well-established in the literature are in grey and the 
onne
tions 
ited at least on
e in the literatureare represented by red dotted lines.

Figure 3: Inferred graphs. The graphs estimated with the methods of Drton and Perlman andWille and Bühlmann are identi
al and represented in blue. The graph estimated with the methodof Meinshausen and Bühlmann is in green dotted line
14



implementation of P1 is faster. If we apply our pro
edure at level α = 5%, we reje
t the nullhypothesis HG∩
. In fa
t the p-value of the test is smaller than 10−10. As our pro
edure 
onsistsin testing the neighborhood of ea
h node, it is interesting to look for the nodes for whi
h thetest of neighborhood is reje
ted. For any of these reje
ted neighborhood tests, we then look forthe alternatives leading to this reje
tion. In Table 5 we enumerate the nodes for whi
h the testof neighborhood is reje
ted and the alternatives whi
h lead to this de
ision.

Figure 4: Graph G∩Reje
tion of the neighborhood ofnode be
ause of node(s)Erk1/2 Akt, PKAAkt Erk1/2PKA Erk1/2p38 JNKJNK p38Table 5: Reje
tion of HG∩As the 
onne
tion PKA − Erk1/2 is well-established and the 
onne
tion Erk1/2 − Akt is
ited at least on
e in the literature, we de
ide to add those two edges in the graph G∩, de�ningthus a new graph G2 shown in Figure 5. The test of the null hypothesis HG2
at level α = 5%:�the data set D follows the distribution of a Gaussian graphi
al model with respe
t to the graph

G2� is reje
ted, the p-value of the test being smaller than 10−10. The reason is that the tests
on
erning respe
tively nodes p38 and JNK are reje
ted when we 
onsider in the alternativerespe
tively nodes JNK and p38.We therefore de�ne a new graph GT by adding the 
onne
tion p38 − JNK, even if this
onne
tion is not well-established in the literature. Let us note that the graph GT is the sameas the network inferred by Sa
hs et al. (2005) with approximatively the same data set by usinga Bayesian approa
h. We apply our test of graph and we a

ept the hypothesis that the dataset D is a Gaussian graphi
al model with respe
t to the graph GT at the level α = 5%. In fa
t,the p-value of the test equals 8%. As n is large we use the result of the test with 
on�den
e and15



Figure 5: Graph G2assume that the graph GT (Figure 6) represents the 
onditional independen
e stru
ture of thedata set D.

Figure 6: Graph GTWe now 
arry out a simulation study from this data set to determine the in�uen
e of thenumber of observations n on the power of our pro
edure. From the empiri
al 
ovarian
e matrixobtained with the data set D, we generate 1000 simulated data (Xs)s=1,...,1000 of di�erent samplesizes n whose 
onditional independen
e stru
ture is represented by the graph GT . First, weestimate the level of the test for di�erent values of n by testing for ea
h simulation that X
sis a Gaussian graphi
al model with respe
t to the graph GT . Se
ond, we delete the two edgesinvolving protein PKC in GT in order to de�ne G−

T . We estimate the power of the test fordi�erent values of n by testing for ea
h simulation that X
s is a Gaussian graphi
al model withrespe
t to the graph G−

T .The results of the simulation study from the sele
ted Sa
hs' data are presented in Table 6.We re
all that the graph involves p = 11 proteins and we take for the sample size n the values16



Estimated levels
n TM1,P110 0.03215 0.03620 0.033 Estimated powers

n TM1,P110 0.4915 0.8620 0.97Table 6: Sa
hs data. Estimated levels and powers
10, 15, and 20. As expe
ted, the power of the test in
reases with the number of observations n.However, the number of observations do not have to be very large to obtain a powerful test. For
n = 15 observations the test is able to re
over that the protein PKC is not independent fromthe proteins p38 and JNK with large probability.A
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