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†
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Abstract

Local self-similarity for Euclidean random fields has been introduced since a while. In this
paper, we extend it for manifold indexed random fields. We then give examples and derive some
properties of the tangent field. In the Gaussian (α = 2) and α-stable (0 < α < 2) cases, we obtain
the expected relations between the fractional index H and the stability index α.
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1 Introduction

Self-similar random fields are widely used to model natural phenomena in Internet traffic, hydrology,
geophysics or financial markets, e.g. [1, 13]. The most famous and classical self-similar model is
the fractional Brownian motion, see [7, 8]. However, self-similarity is a global property and is then
too restrictive for some applications, see [12] and references therein. Therefore, [2, 9] has introduced
a weakened property, called local asymptotically self-similarity (in short lass) at point x0. This
property has been defined for random fields indexed by the Euclidean space R

n and many examples
have been developped to illustrate it, see [3] and references therein.

Observe that the self-similarity property is well-defined on Euclidean spaces but it is not on a
metric space or even on a manifold equipped with a distance. Then, only weak versions of self-
similarity, that still be global properties, have been defined, e.g. [5, 6]. However, in this paper, we
see that the local self-similarity, introduced for Euclidean fields in [2, 9], can also be extended in the
manifold indexed field realm.

We then illustrate this property by some Gaussian and stable examples. Since moving average
fractional fields are on common use for modelling purpose, see [11], we focus on spherical and hy-
perbolic moving average fractional fields. We also consider multifractional random fields. Then, we
give some expected properties of tangent fields of lass random fields indexed by a manifold. Let us
emphasize that in the manifold framework, tangent fields may not be defined on whole the tangent
space and are self-similar but not at any scale. Moreover, if the manifold indexed field has weak sta-
tionary increments, so has the tangent field. Some expected consequences are derived. In particular,
if the tangent field is Gaussian, then it is a restriction of an Euclidean fractional Brownian motion.

In Section 2, notation in the framework of manifold indexed lass random fields are given. Section 3
is devoted to the definition of the lass property. Examples are developed in Section 4. Then, some
properties of the tangent field of a lass field are studied in Section 5.
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2 Preliminaries and Notation

Throughout this note, (M, g) is a C∞ Riemannian manifold of dimension n ∈ N\{0} and for any
M1,M2 ∈ M, the distance d(M1,M2) is the length of the shortest curve between M1 and M2.

Let M0 ∈ M and denote by TM0
M the tangent space to M at M0. Then, there exists a

neighborhood V(M0) of M0 and δ ∈ (0,+∞], see for example [4], such that

1. for all M ∈ V(M0), there exists an unique minimal geodesic between M and M0,

2. the exponential map exp
M0

at point M0 is a diffeomorphism between the open ball B(0, δ) ⊂

TM0
M and V(M0).

In the following, Π
M0

denotes the inverse of the exponential map exp
M0

at point M0.

3 Local asymptotic self-similarity property

In the sense of [2, 9], a random field (X(x))x∈Rn is locally asymptotically self-similar at point x0 with
index H if

lim
ε→0+

(

X(x0 + εx)−X(x0)

εH

)

x∈Rn

(d)
= (Zx0

(x))x∈Rn (1)

where
(d)
= stands for equality of finite dimensional distributions and Zx0

is a non degenerate field. To
extend this property to fields indexed by the manifold M, we have to interpret x0 + εx as a point
of Rn without the help of the addition. To this aim, let us observe that x0 + εx is the shift of x0 by
the vector εx ∈ Tx0

R
n ≈ R

n. Also, since the geodesics in R
n are the segments, x0 + εx = expx0

(εx).
Then, we propose to replace in (1) the point x0 by M0 and its translate x0 + εx by

M0 + εv
def
= exp

M0
(εv). (2)

Definition 3.1. A random field X = (X(M))M∈M is locally asymptotically self-similar at point M0

with index H > 0 if

lim
ε→0+

(

X(M0 + εv)−X(M0)

εH

)

v∈B(0,δ)

(d)
= (ZM0

(v))v∈B(0,δ)

with M0 + εv defined by (2), δ introduced in Section 2 and ZM0
a non degenerate field, which means

that for almost all ω, there exists v, such that Zx0
(v, ω) 6= 0. The random field ZM0

is called tangent
field at point M0 of X.

Remark 3.2. As one could expect, the definition 3.1 coincide with the definitions of [2, 9] in the
framework of random fields indexed by R

n choosing δ = +∞.

Remark 3.3. Let us fix M ∈ V(M0) and consider the unique v ∈ B(0, δ) such that M0 + v =
exp

M0
(v) = M . Then, M0 + εv describes the geodesic between M0 and M as ε varies in [0, 1]. In

addition, M0 + εv tends to M0 in the direction given by this geodesic as ε tends to zero.

4 Examples

Let us now give examples of locally asymptotically self-similar random fields indexed by manifold M,
which may differ from the Euclidean space R

n. Most of our examples are random fields indexed or
by the n-dimensional unit sphere Sn = {x1, x2, . . . , xn+1 ∈ R,

∑n+1
i=1 x2i = 1} or by the n-dimensional

hyperbolic space Hn = {x1, x2, . . . , xn+1 ∈ R, −x21 +
∑n+1

i=2 x2i = 1}.
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4.1 Fractional Brownian motions indexed by a manifold

Let XH = (XH(M))M∈M be a fractional Brownian motion indexed by the manifold M and with
index H. This random field, introduced in the indexed manifold realm by [5], is a Gaussian centered
random field such that

∃O ∈ M, ∀(M,N) ∈ M2, E(XH(M)XH(N)) =
1

2

(

d2H(O,M) + d2H(O,N)− d2H(M,N)
)

. (3)

Moreover, XH exists for H ∈ (0, βM], with βM a constant depending on the manifold M (see [5, 6]).
Let us now fix M0 ∈ M and u, v ∈ B(0, δ) ⊂ TM0

M. For every ε ∈ (0, 1], let

R(M0 + εv,M0 + εw) = ε−2HCov(XH(M0 + εv)−XH(M0), XH(M0 + εw)−XH(M0)).

Then, using (3) and d(M0 + u,M0) = ‖u‖ for u ∈ B(0, δ), one easily obtains that

R(M0 + εv,M0 + εw) =
1

2

(

‖v‖2H + ‖w‖2H −
d2H(M0 + εv,M0 + εw)

ε2H

)

Let us now give the behaviour of d(M0 + εv,M0 + εw) as ε tends to 0+ (see [10, Chapter 5]).

Lemma 4.1. For any v, w ∈ B(0, δ), lim
ε→0+

ε−1d(M0 + εv,M0 + εw) = ‖v − w‖.

SinceXH is a centered Gaussian random field, one easily derives from the previous lemma thatXH

is locally asymptotically self-similar at point M0 with index H and with tangent field an Euclidean
fractional Brownian motion BH with index H restricted to B(0, δ).

4.2 Moving average fractional random fields

Let α ∈ (0, 2] and let Wα,M be a symmetric real α-stable random measure on the manifold M with
control measure the uniform measure σ

M
on M (see [11] for details on such random measures). Let

us recall that the stochastic integral
∫

M
gdWα,M is well-defined iff g ∈ Lα(M, dσ

M
). Moreover, if

g ∈ Lα(M, dσ
M
), then

∀λ ∈ R, E
(

eiλ
∫
M

gdWα,M

)

= exp

(

−|λ|α
∫

M

|g|αdσ
M

)

. (4)

Let H ∈ R such that H 6= n/α and f : R+ → R be a continuous function. As soon as

XH,α,M(M) =

∫

M

d
(

M,M ′
)H−n/α

f
(

d(M,M ′)
)

dWα,M(M ′), M ∈ M, (5)

is well-defined, with convention 0β = 0 for β < 0, XH,α,M is called moving average fractional α-stable
random field. Note that XH,2,M is a Gaussian field.

To ensure that the singularity of the kernel at M = M ′ is given by d(M,M ′)H−n/α we assume that
f(0) 6= 0. Then for the sake of simplicity, we choose f so that f(0) = 1.
Let us now observe that XH,α,M(M) is well-defined iff

IM(M) :=

∫

M

d
(

M,M ′
)αH−n∣

∣f
(

d(M,M ′)
)∣

∣

α
dσ

M
(M) < +∞

that is iff

IM(M) =

∫

Sn−1

∫ ρ
M

(θ)

0
rαH−1|f(r)|αJ

M
(θ, r)dr dσ

Sn−1
(θ) < +∞ (6)

with J
M

the Jacobian of the exponential map exp
M

at point M and ρ
M
(θ) the distance between M

and the cut locus in the direction θ (see [4]). The choice of f is then closely linked to the behavior
of J

M
. Moreover, to prove the local asymptotic self-similarity, we use the dominated convergence

theorem and then we may choose a quite simple function f . The next proposition state the behaviour
of the increments around M0.
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Proposition 4.2. Let H > 0 such that H 6= n/α. Assume that M = Sn or Hn. If M = Hn, we
assume that f(x) = e−γx. Observe that δ = π if M = Sn and δ = +∞ if M = Hn.

1. (a) The random field XH,α,Sn is well-defined if and only if H > 0.

(b) The random field XH,α,Hn
is well-defined if and only if (H > 0 and γ > (n − 1)/α) or

(0 < H < (n− 1)/α and γ = (n− 1)/α).

2. Assume that XH,α,M is well-defined on M and that f is C1. Define g : [0,+∞) → R by

g(x) = xH−n/αf(x) (7)

with convention 0β = 0 for β < 0.

(a) If H ∈ (0, 1), then for every M0 ∈ M,

lim
ε→0+

(

XH,α,M(M0 + εv)−XH,α,M(M0)

εH

)

v∈B(0,δ)

(d)
= (BH,α(v))v∈B(0,δ),

where BH,α is an Euclidean moving average α-stable random field with index H, that is

BH,α(v) =

∫

Rn

(

‖v − x‖H−n/α − ‖x‖H−n/α
)

Wα,Rn(dx). (8)

(b) If H > 1, then for every M0 ∈ M,

lim
ε→0+

(

XH,α,M(M0 + εv)−XH,α,M(M0)

ε

)

v∈B(0,δ)

(d)
= (< v, Sα >)v∈B(0,δ),

where Sα is the the stable random variable defined by

Sα =

∫

M

Π
M0

(M ′)
∥

∥

∥ΠM0
(M ′)

∥

∥

∥

g′
(

d
(

M0,M
′
))

dWα,M

(

M ′
)

. (9)

Proof. 1. Let us recall that ρ(θ) := ρ
M
(θ) = δ and that

J(r) := J
M
(r, θ) =

{

r1−n sinn−1 r if M = Sn

r1−n sinhn−1 r if M = Hn.

Then, replacing in (6) J
M

and ρ
M

by their value, one easily obtains Assertion 1.

2. Let M0 ∈ M and consider the open ball B(0, δ) ⊂ TM0
M ≈ R

n. Then, let ε ∈ (0, 1], k ∈ N\{0},
λ = (λ1, . . . , λk) ∈ R

k and v = (v1, . . . , vk) ∈ B(0, δ)k.

(a) Assume H ∈ (0, 1). Before we study the behavior of XH,α,M around M0 ∈ M, let us
observe that we can define the random field YH,α,M on M×M by

Y (M1,M2) =

∫

M

d
(

M1,M
′
)H−n/α

f
(

d
(

M2,M
′
))

dWα,M

(

M ′
)

, M1,M2 ∈ M.

Then, XH,α,M(M0 + εw)−XH,α,M(M0) = Zε,1(w) + Zε,2(w) with

{

Zε,1(w) = Y (M0 + εw,M0)− Y (M0,M0)
Zε,2(w) = Y (M0 + εw,M0 + εw)− Y (M0 + εw,M0).
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We first study the behavior of Zε,1 as ε → 0+. Using (4), the exponential map exp
M0

and

the change of variables ρ = r/ε, one obtains that

E



exp



iε−H
j

∑

j=1

λjZε,1(vj)







 = exp
(

−ε−αHI1(ε)
)

where I1(ε) =

∫

(0,δ/ε)×Sn−1

fε(ρ, u)dρdσSn−1
(u) with

fε(ρ, u) = εn

∣

∣

∣

∣

∣

∣

k
∑

j=1

λj

(

d(M0 + εvj ,M0 + ερu)H−n/α − (ερ)H−n/α
)

∣

∣

∣

∣

∣

∣

α

|f(ερ)|αJ(ερ)ρn−1.

By definition of J and continuity of f , Lemma 4.1 leads to

lim
ε→0+

ε−αHfε(ρ, u) =

∣

∣

∣

∣

∣

∣

k
∑

j=1

λj

(

‖vj − ρu‖H−n/α − ρH−n/α
)

∣

∣

∣

∣

∣

∣

α

ρn−1.

Moreover, using twice the triangle inequality and d(M0+εw,M0) = ε‖w‖ (with ‖w‖ < δ),
one obtains that

ε|‖vj‖ − ρ| ≤ d(M0 + εvj ,M0 + ερu) ≤ ε(‖vj‖+ ρ).

Using this inequality, one establishes that supε∈(0,1]
∣

∣ε−αHfε
∣

∣ ≤ G where G is defined by

G(ρ, u) = cρn−1





k
∑

j=1

|λj |
(∣

∣

∣
|‖vj‖ − ρ|H−n/α − ρH−n/α

∣

∣

∣
++

∣

∣

∣
|‖vj‖+ ρ|H−n/α − ρH−n/α

∣

∣

∣

)





α

.

with c a finite positive constant. Since H ∈ (0, 1), G ∈ L1
(

(0,+∞)× Sn−1, dρdσSn−1
(u)

)

and the dominated convergence theorem implies that

lim
ε→0+

E



i exp





k
∑

j=1

λjZε,1(vj)







 = E



exp



i
k

∑

j=1

λjBH,α(vj)







 (10)

with BH,α defined by (8).

We now study the behavior of Zε,2 as ε → 0+. For any w ∈ B(0, δ),

∀λ ∈ R, E
(

exp
(

iλε−HZε,2(w)
))

= exp
(

−|λ|αε−αHI2(ε)
)

with I2(ε) =

∫

M

d
(

M0 + εw,M ′
)αH−n∣

∣f
(

d
(

M0 + εw,M ′
))

− f
(

d
(

M0,M
′
))∣

∣

α
dσ

M

(

M ′
)

.

Using the mean value theorem and H < 1, one checks that

lim
ε→0+

ε−HαI2(ε) = 0.

Therefore, for any w ∈ B(0, δ) limε→0+ ε−HZε,2(u)
(d)
= 0 and Assertion 2(a) follows from

Equation (10).
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(b) Assume that H > 1. We only sketch the proof. Let K = 2max1≤j≤k ‖vj‖. The main idea
is to write XH,α,M(M) = X1,ε(M) +X2,ε(M) with

X1,ε(M) =

∫

M

g
(

d(M,M ′)
)

1d(M0,M ′)≤εK dσ
M
(M ′)

and

X2,ε(M) =

∫

M

g
(

d(M,M ′)
)

1d(M0,M ′)>εK dσ
M
(M ′).

We recall that g is defined by (7). Following the proof of Assertion 2(a), replacing f by
f1d(M0,M ′)≤εK , one proves (even though H > 1) that

lim
ε→0+

(

ε−1(X1,ε(M0 + εv)−Xε,1(M0))
)

v∈B(0,δ)

(d)
= 0. (11)

Let us now study the asymptotics of X2,ε as ε tends to 0+. Let us write

k
∑

j=1

λj(Xε,2(M0 + εvj)−Xε,2(M0)) =

∫

M

g̃ε(M
′)dWα,M

(

M ′
)

with

g̃ε(M
′) :=

k
∑

j=1

λj

(

g
(

d
(

M0 + εvj ,M
′
))

− g
(

d
(

M0,M
′
)))

1d(M0,M ′)>εK .

For any M ′ /∈ CutM0
∪ {M0}, where CutM0

is the cut locus of M0 in M,

lim
ε→0+

d(M0 + εw,M ′)− d(M0,M
′)

ε
= −

〈Π
M0

(M ′), w〉
∥

∥

∥
Π

M0
(M ′)

∥

∥

∥

.

Then, for any M ′ /∈ CutM0
∪ {M0}, a Taylor expansion leads to

g̃
(

M ′
)

= lim
ε→0+

ε−1g̃ε
(

M ′
)

= −
g′(d(M0,M

′))〈Π
M0

(M ′),
∑k

j=1 λjvj〉
∥

∥

∥ΠM0
(M ′)

∥

∥

∥

.

Moreover applying the mean value Theorem to the function g and noting that

d
(

M0 + εvj ,M
′
)

≥ d
(

M0,M
′
)

− ε‖vj‖ ≥
d(M0,M

′)

2

for d(M0,M
′) ≥ εK, one finds G̃ ∈ Lα(M, dσ

M
) such that supε∈(0,1]

∣

∣ε−1g̃ε
∣

∣ ≤ G̃. Since
σ

M
(CutM0

∪ {M0}) = 0, the dominated convergence theorem then leads to

lim
ε→0+

ε−α

∫

M

|g̃ε|
αdσ

M
=

∫

M

|g̃|αdσ
M
.

Combining this with (4) and (11), one obtains that

lim
ε→0+

(XH,α,M(M0 + εv)−XH,α,M(M0))v∈B(0,δ) = (−〈v, Sα〉)v∈B(0,δ)

with Sα defined by (9). Since Sα
(d)
= −Sα, the proof of Proposition 4.2 is then complete.
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4.3 Moving average multifractional random fields

As done for Euclidean random fields, to obtain some fields whose index of lass property vary with
M0 ∈ M, we replace the index H by a function h(·) in the integral representation (5). Hence, let us
consider a function h : M −→ (0,+∞) such that h(M) 6= n/α for every M ∈ M. Then, as soon as

Xh,α,M(M) =

∫

M

d(M,M ′)h(M)−n/αf
(

d(M,M ′)
)

dWα,M(M ′), M ∈ M (12)

is well-defined, Xh,α is called moving average multifractional α-stable random field with multifrac-
tional function h. Then, replacing H by h(M0) and assuming h sufficiently smooth, we can state the
analoguous of proposition 4.2 for the random field Xh,α,M.

Proposition 4.3. Assume that M = Sn or Hn. If M = Hn, we assume that f(x) = e−γx with
γ > (n − 1)/α. Then, Xh,α,M is well-defined. Moreover, if h and f are C1 and if h(M0) < 1 for
M0 ∈ M, then,

lim
ε→0+

(

Xh,α,M(M0 + εv)−X(M0)

εh(M0)

)

v∈B(0,δ)

(d)
=

(

Bh(M0),α(v)
)

v∈B(0,δ)
,

where Bh(M0),α is defined by (8).

Proof of proposition 4.3. By Proposition 4.2, the random field

Y (M,H) =

∫

M

d(M,M ′)H−n/αf
(

d
(

M,M ′
))

dWα,M(M ′), M ∈ M, H > 0

is well-defined. For every v ∈ B(0, δ) and every ε ∈ (0, 1), let us write that

Xh,α,M(M0 + εv)−Xh,α,M(M0) = Y (M0 + εv, h(M0))− Y (M0, h(M0)) +RM0
(M0 + εv)

with RM0
(M) = Yα,M(M,h(M))− Yα,M(M,h(M0)). Then, by (4),

E(exp (iuRM0
(M0 + εv))) = exp (−|u|αI(ε))

with

I(ε) =
2πn/2

Γ(n/2)

∫ δ

0

∣

∣

∣
rh(M0+εv)−n/α − rh(M0)−n/α

∣

∣

∣

α
|f(r)|αdr.

Let ε0 > 0. Then, by continuity of h there exists a, b ∈ (0,+∞) such that for ε ∈ [0, ε0), a ≤
h(M0 + εv) ≤ b. Hence, applying the Taylor-Lagrange inequality, one obtains that for ε ∈ (0, ε0),

I(ε) ≤
2πn/2

Γ(n/2)
|h(M0 + εv)− h(M0)|

α
∫ δ

0
|ln r|

(

ra−n/α + rb−n/α
)α

|f(r)|αdr.

Since h is a C1 function and h(M0) < 1, limε→0+ ε−h(M0)RM0
(M0 + εv)

(d)
= 0. Then, one concludes

the proof applying Proposition 4.2 to the moving average fractional α-stable field Y (·, h(M0)), whose
index is h(M0) < 1.

5 Classical properties of the tangent field

We give in this section some general properties of fractional fields, especially properties of the tangent
fields and range of permissible fractional index. These properties are indeed more or less expected.

The self-similarity, stated in next proposition, of the tangent field as small scales is a direct
consequence of the definition of tangent fields.
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Proposition 5.1. If the random field X = (X(M))M∈M is locally asymptotically self-similar random
field at point M0 with index H and tangent field ZM0

, then ZM0
(0) = 0 almost surely and

∀λ ∈ (0, 1], (ZM0
(λv))v∈B(0,δ)

(d)
= λH(ZM0

(v))v∈B(0,δ). (13)

Under a weak stationary property, defined below, the range of permissible indices H depends on
the existence of moments, with a break for moments higher that one. In the case of fields indexed
by whole R

n, this property has already been established in [11].

Definition 5.2. The increments of the field X = (X(M))M∈M are weakly stationary if for
all (M,N) ∈ M2, the distribution of X(M)−X(N) only depends on the geodesic distance d(M,N).

The fractional fields defined in Sections 4.1 and 4.2 are examples of fields with weakly stationary
increments. Then, they illustrate the following proposition.

Proposition 5.3. Let X be a locally asymptotically self-similar random field at point M0 with index
H and tangent field ZM0

. Assume that X has weakly stationary increments.

1. Then, ZM0
has weakly stationary increments.

2. If for some u ∈ B(0, δ)\{0} and some γ > 0, P(ZM0
(u) 6= 0) = 1 and E|ZM0

(u)|γ < +∞, then

0 < H < max
(

1
γ , 1

)

.

3. Assume ZM0
is a Gaussian random field. Then H ∈ (0, 1] and there exists a finite constant

C > 0 such

∀v, w ∈ B(0, δ), E(ZM0
(v)ZM0

(w)) =
C2

2

(

‖v‖2H + ‖w‖2H − ‖v − w‖2H
)

. (14)

Moreover, if H < 1, ZM0
is centered and is then an Euclidean fractional Brownian motion

restricted to B(0, δ).

4. If ZM0
is an α-stable random field, then 0 < H ≤ max

(

1, 1
α

)

.

These properties are already known for Euclidean random fields (see [11]) and then were expected
in the manifold indexed realm. As regards Assertions 2-4, we provide a proof to emphasize where
the manifold realm plays a role, and refer to [11] for some details (see proof of Proposition 7.1.10,
Corollary 7.1.11 and Lemma 7.2.1).

Proof of Proposition 5.3.

1. Let v, w ∈ B(0, δ). Then, by the lass property

ZM0
(v)− ZM0

(w)
(d)
= lim

ε→0+

X(M0 + εv)−X(M0 + εw)

εH
. (15)

Let us fix u ∈ B(0, δ) such that u 6= 0. Then, by continuity of the distance and of the exponential
map exp

M0
, there exists ε0 > 0 such that

∀ε ≤ ε0, d(M0 + εv,M0 + εw) = d
(

exp
M0

(εv), exp
M0

(εw)
)

< ‖u‖.

Therefore, for every ε ≤ ε0, the point

Mε = M0 +
d(M0 + εv,M0 + εw)

‖u‖
u = exp

M0

(

d(M0 + εv,M0 + εw)

‖u‖
u

)
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is well-defined and such that d(M0,Mε) = d(M0 + εv,M0 + εw). Hence, by (15) and by the
weakly stationarity of the increments of X,

ZM0
(v)− ZM0

(w)
(d)
= lim

ε→0+

X(Mε)−X(M0)

εH
.

Observe that Mε = M0 + ε′u where ε′ = d(M0 + εv,M0 + εw) → 0+ as ε → 0+. Hence,
applying again the lass property and Lemma 4.1, we obtain that

ZM0
(v)− ZM0

(w)
(d)
= ‖u‖−H‖v − w‖HZM0

(u). (16)

Since this equality holds for any v, w ∈ B(0, δ), the increments of ZM0
are weakly stationary.

2. Let us remark that u/2 ∈ B(0, δ) and then that ZM0
(u/2) is well-defined. Then, since ZM0

(0) =
0, by Equation (16) (applied (v, w) = (u/2, 0)), ZM0

(u/2) 6= 0 almost surely and by weak
stationarity of the increments of ZM0

,

ZM0
(u)− ZM0

(u

2

)

(d)
= ZM0

(u

2

)

.

Therefore, P
(

ZM0

(

u
2

)

6= 0, ZM0
(u) 6= ZM0

(

u
2

))

= P
(

ZM0
(u) 6= ZM0

(

u
2

))

= 1 > 0. Then, one can
now follow the proof of Proposition 7.1.10 in [11] to establish Assertion 2 (replacing X(2)−X(1)
by ZM0

(u)− ZM0

(

u
2

)

).

3. Assume that ZM0
is a centered Gaussian random field. We can not directly proceed as in the

proof of Lemma 7.2.1 of [11] since ZM0
is not defined on whole R

n. However, the idea stills be
the same.

Let us first remark that since ZM0
is a non degenerate Gaussian random field, it fulfills the

assumptions of Assertion 2 with γ = 2, which implies that H ≤ 1. Moreover, by Equation (16)
(where we recall that u 6= 0 is a fix chosen point of B(0, δ)), for every v, w ∈ B(0, δ),

E(ZM0
(v)− ZM0

(w))2 = C2‖v − w‖2H

with C = ‖u‖−H
√

E(ZM0
(u))2 ∈ (0,+∞). Since ZM0

(0) = 0 almost surely, this is equivalent to

(14). If H < 1, using the self-similarity property (13) with λ = 1/2 and the weak stationarity
property, one checks, as in the proof of Lemma 7.2.1 in [11], that

E(ZM0
(u/2)) = (2−H − 1)E(ZM0

(u)).

This implies that E(ZM0
(u)) = 0 and then by (16) that ZM0

is centered.

4. Since ZM0
is an α-stable random field, it fullfils the assumptions of Assertion 2 for any γ < α

and then H ≤ max(1/α, 1).
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