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On locally self-similar fractional random fields

indexed by a manifold

Jacques Istas∗and Céline Lacaux†

November 25, 2007

Abstract

Local self-similarity for Euclidean random fields has been introduced since a while. In this
paper, we define local self-similarity for manifold indexed random fields. We study the properties of
the tangent field. In the Gaussian (α = 2) and α-stable (0 < α < 2) cases, we obtain the expected
relations between the fractional index H and the stability index α. We then give examples.
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1 Introduction

Self-similar random fields are widely used to model natural phenomena. Let us recall that a random
field X = (X(x))x∈Rn is self-similar with index H iff

∀c > 0, (X(cx))x∈Rn

(d)
= cH(X(x))x∈Rn , (1)

where
(d)
= stands for equality of finite dimensional distributions. For instance, persistent phenomena

in Internet traffic, hydrology, geophysics or financial markets, e.g. [1, 19, 25, 28], are known to be
self-similar. The most famous and classical self-similar model is provided by the fractional Brownian
motion BH = (BH(x))x∈Rn , in short FBM, with Hurst index H ∈ (0, 1). The FBM BH , introduced
in [16] and developed in [21], is a Gaussian centered random field with stationary increments. Self-
similar α-stable random fields, see [25] for an introduction, have been proposed to model some
natural phenomena with heavy tails.

Self-similarity is a global property and is then too restrictive for some applications, see [27] and
references therein. Therefore, it has been weakened since a while in [9, 22]. More precisely, [9, 22]
introduce the so-called locally asymptotically self-similar property for random fields indexed by Rn.
Roughly speaking, a field X = (X(x))x∈Rn is locally asymptotically self-similar (in short lass) at
point x0 if its increments around x0, suitably normalized, converge to a non degenerate random
field, called tangent field to X at point x0. The properties of this tangent field have been studied
in [11, 12]. The most famous lass random fields are multifractional Brownian motions, introduced
in [9, 22]. However, many other examples have been studied, e.g. [2, 5, 6, 7, 8, 17, 18].

Self-similarity and lass property have been defined for random fields indexed by the Euclidean
space Rn. In order to avoid confusion, we will call random fields indexed by the Euclidean space Rn

Euclidean random fields.
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Nevertheless, various spatial data (e.g. [10, 24]) are indexed by a manifold and not by the
Euclidean space Rn. For instance, geostatistical Earth data or cosmic microwave background are
indexed by a sphere. Fractional random fields indexed by a sphere or an hyperbolic space have
recently been introduced in [14, 15]. Let us recall that [14, 15] propose to define fractional manifold
indexed fields as follows : a distance d, for instance the geodesic one, is defined on the manifold M;
then one says that the field X = (X(M))M∈M is fractional with index H > 0 iff there exists a
random variable Z such that for all M,N ∈M,

X(M)−X(N)

d(M,N)H
(d)
= Z,

i.e. iff its normalized increments with respect to the distance are constant in distribution. This
fractional property is of course a global one, as is the global self-similarity property (1). In this
paper, we consider random fields whose increments satisfy a localized fractional property. In other
words, we extend the lass property to the framework of manifold indexed random fields.

Then, we investigate the properties of the tangent field at a given point M0 ∈ M. This field
will be indexed by a subspace of the tangent space to the manifold M at point M0. In general, it
can not be defined on whole the tangent space. As expected, the tangent field is self-similar but
not at any scale: (1) may not be fulfilled for any c > 0. Moreover, if the manifold indexed field has
weak stationary increments, so has the tangent field. Some expected consequences are derived. In
particular, if the tangent field is Gaussian, then it is a restriction of an Euclidean fractional Brownian
motion. If the tangent field is α-stable with lass index H, then 0 < H ≤ max (1, 1/α).

We then describe examples of manifold indexed fields, Gaussian and stable. Gaussian and stable
random fields are of common use for modelling spatial data. We prove that the tangent field of
a manifold indexed fractional Brownian motion, field defined in [14], is an Euclidean fractional
Brownian motion. We then focus on spherical examples. Plenty of Gaussian or stable random
fields indexed by spheres can be considered. Moving average fractional fields are on common use
for modelling purpose, see [25]. Therefore, we focus on spherical moving average fractional fields,
defined by an integration of a spherical moving average fractional kernel against a Gaussian or stable
random measure. We prove that the tangent field of a spherical moving average fractional field is
an Euclidean moving average fractional field. We then extend these constructions to multifractional
fields.

In Section 2, notation in the framework of manifold indexed lass random fields are given. Section 3
is devoted to the definition of weak stationarity and lass property. Then, some properties of the
tangent field of a lass field are studied in Section 4. Examples are developed in Section 5.

2 Preliminaries and Notation

In this paper, we consider (X(M))M∈M a real valued random field indexed by a C∞-complete Rie-
mannian manifold (M, g) of dimension n. The distance d(x, y) is defined as the length of the shortest
curve between x and y.

Let M0 ∈M. TM0M is the tangent space toM at M0. Then, there exists a neighborhood V(M0)
of M0 and δ > 0, see for example [13], such that

1. for all M ∈ V(M0), there exists an unique minimal geodesic between M and M0,

2. the exponential map expM0
at point M0 is a diffeomorphism between the open ball B(0, δ) ⊂

TM0M and V(M0).
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3 Definitions

Weak stationarity and local asymptotically self-similarity (in short lass) are well known properties
for fields indexed by the Euclidean space Rn (e.g. [9, 22, 25]). We extend them in framework of
manifold indexed fields.

3.1 Weak stationarity

Definition 3.1. The increments of the field X = (X(M))M∈M are weakly stationary if for
all (M,N) ∈M2, the distribution of X(M)−X(N) only depends on the geodesic distance d(M,N),
i.e. if there exists a function ψ such that for all (M,N) ∈M2 and all λ ∈ R,

E
[
eiλ(X(M)−X(N))

]
= ψ(λ, d(M,N)).

3.2 Local asymptotically self-similarity

Let us recall that a random field (X(x))x∈Rn is locally asymptotically self-similar (in the sense
of [9, 22]) at point x0 with index H if

lim
ε→0+

(
X(x0 + εx)−X(x0)

εH

)
x∈Rn

(d)
= (Zx0(x))x∈Rn (2)

where
(d)
= stands for equality of finite dimensional distributions and Zx0 is a non degenerate field,

that is for almost ω, there exists x, such that

Zx0(x, ω) 6= 0.

The random field Zx0 is called tangent field at point x0 of X.
We extend this notion to fields indexed by a manifold which is not in general a vector space.

Hence, we first have to interpret x0 + εx as a point of the manifold Rn without the help of the
addition on Rn. Note that the tangent space to Rn at any point is identified to Rn. On one hand, x0

is a point of Rn, which correspond to the point M0 for the manifoldM. On the other hand, x0 + εx
is the shift of M0 by the vector εx ∈ Tx0Rn ≈ Rn. Also, since the geodesics in Rn are the segments,
we have

x0 + εx = expx0
(εx).

Then, we propose to replace in (2) the point x0 by M0 and its translate x0 + εx by

M0 + εv
def
= expM0

(εv). (3)

Note that M0 + εv is well defined as soon as v ∈ B(0, δ) and ε ∈ [0, 1]. Let us fix M ∈ V(M0). Then,
there exists an unique v ∈ B(0, δ) such that expM0

(v) = M so that M0 + v = M . Moreover, M0 + εv
is the only point of the geodesic between M0 and M such that

d(M0,M0 + εM) = εd(M0,M).

M0 + εv describes the geodesic between M0 and M as ε varies in [0, 1]. In addition, as ε tends to
zero, M0 + εv tends to M0 in the direction given by this geodesic.

Definition 3.2. X = (X(M))M∈M is locally asymptotically self-similar (lass in short) at point M0

with index H > 0 if

lim
ε→0+

(
X(M0 + εv)−X(M0)

εH

)
v∈B(0,δ)

(d)
= (ZM0(v))v∈B(0,δ)

where ZM0 is a non degenerate field and
(d)
= stands for equality of finite dimensional distributions.

ZM0 is called the tangent field at point M0 of X.
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As one could expect, the definition of a lass random field at point M0 and the definition of its
tangent field coincide with the definitions of [9, 22] in the framework of random fields indexed by Rn.
In particular, if X = (X(x))x∈Rn is a self-similar random field with index H > 0 then X(0) = 0
almost surely and X is lass at point M0 = 0 with index H and with itself as tangent field.

The most classical examples of such fields are the Euclidean fractional Brownian motions [16, 21].
Many examples of lass random fields indexed by Rn at any point have been introduced, e.g. [2, 5, 6,
7, 8, 9, 17, 18, 22].

4 Properties of the tangent field

Theorem 4.1. If X is lass at point M0 with index H and tangent field ZM0, then ZM0(0) = 0 almost
surely and

∀λ ∈ (0, 1], (ZM0(λv))v∈B(0,δ)

(d)
= λH(ZM0(v))v∈B(0,δ). (4)

Moreover, if X has weakly stationary increments so has ZM0.

Corollary 4.2. Let X be a lass random field at point M0 with index H and tangent field ZM0.
Assume that X has weakly stationary increments and that for some u ∈ B(0, δ)\{0} and some γ > 0,

P(ZM0(u) 6= 0) = 1 and E|ZM0(u)|γ < +∞.

1. If 0 < γ < 1, then 0 < H < 1
γ .

2. If γ ≥ 1, then 0 < H ≤ 1.

Corollary 4.3. Assume that X has weakly stationary increments and is lass at point M0 with
index H and tangent field ZM0.

1. If ZM0 is a centered Gaussian random field, then

(a) H ∈ (0, 1]

(b) there exists a constant C > 0 such that the covariance function of ZM0 is given by

∀v, w ∈ B(0, δ), E(ZM0(v)ZM0(w)) =
C2

2

(
‖v‖2H + ‖w‖2H − ‖v − w‖2H

)
.

Moreover, ZM0 is an Euclidean fractional Brownian motion restricted to B(0, δ).

2. If ZM0 is an α-stable random field, then 0 < H ≤ max
(
1, 1

α

)
.

Proof of Theorem 4.1. Since for v = 0, M0 + εv = M0, it is straightforward that ZM0(0) = 0 almost
surely. Let λ ∈ (0, 1]. Then, by definition

(ZM0(λv))v∈B(0,δ)

(d)
= lim

ε→0+

(
X(M0 + ελv)−X(M0)

εH

)
v∈B(0,δ)

(d)
= λH lim

ε→0+

(
X(M0 + ελv)−X(M0)

(λε)H

)
v∈B(0,δ)

(d)
= λH(ZM0(λv))v∈B(0,δ).

Let us now assume that X has weakly stationary increments. Let v, w ∈ B(0, δ). Then, by the lass
property

ZM0(v)− ZM0(w)
(d)
= lim

ε→0+

X(M0 + εv)−X(M0 + εw)
εH

. (5)
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Let us fix u ∈ B(0, δ) such that u 6= 0. We recall that M0 + εv = expM0
(v) and that M0 + εw =

expM0
(w). Then, by continuity of the distance and of the exponential map expM0

, there exists ε0 > 0
such that

∀ε ≤ ε0, d(M0 + εv,M0 + εw) < ‖u‖.

Therefore, the point

M0 +
d(M0 + εv,M0 + εw)

‖u‖
u = expM0

(
d(M0 + εv,M0 + εw)

‖u‖
u

)
is well defined. By construction,

d

(
M0,M0 +

d(M0 + εv,M0 + εw)
‖u‖

u

)
= d(M0 + εv,M0 + εw).

Hence, by (5) and by the weakly stationarity of the increments of X,

ZM0(v)− ZM0(w)
(d)
= lim

ε→0+

X
(
M0 + d(M0+εv,M0+εv)

‖u‖ u
)
−X(M0)

εH
.

Applying the lass property, we then have that

ZM0(v)− ZM0(w)
(d)
= ‖u‖−HZM0(u) lim

ε→0+

d(M0 + εv,M0 + εw)H

εH
.

The following Lemma, see [23, Chapter 5], establishes the behaviour of d(M0 + εv,M0 + εw) as ε
tends to 0.

Lemma 4.4. For any v, w ∈ B(0, δ),

lim
ε→0+

d(M0 + εv,M0 + εw)
ε

= ‖v − w‖.

This Lemma leads to

ZM0(v)− ZM0(w)
(d)
= ‖u‖−H‖v − w‖HZM0(u)

for any v, w ∈ B(0, δ), which establishes that the increments of ZM0 are weakly stationary.

Proof of Corollary 4.2. By the proof of Theorem 4.1,

∀v ∈ B(0, δ), ZM0(v)
(d)
= ‖v‖H‖u‖−HZM0(u). (6)

Since ZM0(u) 6= 0 almost surely,
E|ZM0(u)|γ 6= 0.

Moreover, by (6), for every v ∈ B(0, δ)\{0}

ZM0(v) 6= 0 almost surely.

Furthermore, let us remark that u/2 ∈ B(0, δ) and then that ZM0(u/2) is well defined.

1. Assume that 0 < γ < 1. Since 0 < γ < 1,

|ZM0(u)|γ ≤
∣∣∣ZM0

(u
2

)∣∣∣γ +
∣∣∣ZM0(u)− ZM0

(u
2

)∣∣∣γ . (7)
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By Theorem 4.1, ZM0 has weakly stationary increments and ZM0(0) = 0 almost surely. In
particular,

ZM0(u)− ZM0

(u
2

)
(d)
= ZM0

(u
2

)
. (8)

Hence, since P(ZM0(u/2) 6= 0) = 1,

P
(
ZM0

(u
2

)
6= 0, ZM0(u) 6= ZM0

(u
2

))
= P

(
ZM0(u) 6= ZM0

(u
2

))
= 1 > 0.

Therefore,
E|ZM0(u)|γ < E

∣∣∣ZM0

(u
2

)∣∣∣γ + E
∣∣∣ZM0(u)− ZM0

(u
2

)∣∣∣γ
since the inequality (7) is strict on {ZM0(u) 6= 0, ZM0(u) 6= ZM0(u/2)}. Furthermore, by (8),

E
∣∣∣ZM0(u)− ZM0

(u
2

)∣∣∣γ = E
∣∣∣ZM0

(u
2

)∣∣∣γ .
Therefore,

E|ZM0(u)|γ < 2E
∣∣∣ZM0

(u
2

)∣∣∣γ .
Moreover, by Theorem 4.1, ZM0 satisfies the self-similarity property (4). This property applied
with λ = 1/2 leads to

E|ZM0(u)|γ < 21−γHE|ZM0(u)|γ .

Then, since E|ZM0(u)|γ 6= 0, 1 < 21−γH which means that H < 1/γ.

2. Assume now that γ ≥ 1. Furthermore, for any 0 < η < 1, E|ZM0(u)|η < +∞. The first part
of this proof implies that H < 1/η for every η ∈ (0, 1). Also, taking the asymptotics as η → 1,
H ≤ 1.

Proof of Corollary 4.3.

1. Assume that ZM0 is a centered Gaussian random field. By (4), since the Gaussian field ZM0 is
non degenerate, for every u ∈ B(0, δ),

P(ZM0(u) 6= 0) = 1.

Moreover, for any u ∈ B(0, δ),
EZM0(u)2 < +∞.

Then by Corollary 4.2, H ≤ 1.

Let us consider u ∈ B(0, δ)\{0} and recall (see proof of Theorem 4.1) that

ZM0(v1)− ZM0(v2)
(d)
= ‖u‖−H‖v1 − v2‖HZM0(u)

for every v1, v2 ∈ B(0, δ). As a consequence, for every v1, v2 ∈ B(0, δ),

Var(ZM0(v1)− ZM0(v2)) = C2‖v1 − v2‖2H

with C = ‖u‖−H
√

Var(ZM0(u)). Since ZM0(0) = 0 almost surely, we then have that

Cov(ZM0(v), ZM0(w)) =
1
2

[VarZM0(v) + VarZM0(w)−Var(ZM0(v)− ZM0(w))]

=
C2

2

(
‖v‖2H + ‖w‖2H − ‖v − w‖2H

)
6



for every v, w ∈ B(0, δ).
This covariance is the covariance of an Euclidean fractional Brownian motion restricted to
B(0, δ). So that, in this case, if ZM0 is a Gaussian random field, it is an Euclidean fractional
Brownian motion restricted to B(0, δ).

2. Assume that ZM0 is an α-stable random field. Hence, by (4) and since the α-stable random
field ZM0 is non degenerate, for every u ∈ B(0, δ),

P(ZM0(u) 6= 0) = 1.

Hence, for any γ < α and any u ∈ B(0, δ),

E|ZM0(u)|γ < +∞.

Assertion 2 is then a consequence of Corollary 4.2.

5 Examples

5.1 Fractional Brownian motion indexed by a manifold

The Euclidean fractional Brownian motions are Gaussian centered random fields. Then they can
be characterized by their covariance function. Replacing in this covariance function the Euclidean
distance by the distance d of the manifold M, [14] extends the fractional Brownian motion in the
indexed manifold fields realm. Indeed, a random field XH = (XH(M))M∈M is a fractional Brownian
motion with index H iff X is a Gaussian centered random field such that

∃O ∈M, ∀(M,N) ∈M2, E(XH(M)XH(N)) =
1
2
(
d2H(O,M) + d2H(O,N)− d2H(M,N)

)
. (9)

Note that (9) is equivalent to{
∃O ∈M, XH(O) = 0 almost surely,
∀(M,N) ∈M2, E(XH(M)−XH(N))2 = d2H(M,N).

(10)

[14, 15] prove that the fractional Brownian motion exists for H ∈ (0, βM], where βM is a constant
depending on the manifold. For instance, βM is equal to 1 for Euclidean space, and is equal to 1/2
for spheres and hyperbolic spaces.

Since a fractional Brownian motion XH is a Gaussian centered random field, by (10), XH has
weakly stationary increments. Let us now fix M0 ∈ M and u, v ∈ B(0, δ) ⊂ TM0M. Then, for every
ε ∈ (0, 1], let

R(M0 + εv,M0 + εw) = Cov
(
XH(M0 + εv)−XH(M0)

εH
,
XH(M0 + εw)−XH(M0)

εH

)
.

By definition of XH ,

R(M0 + εv,M0 + εw) =
1

2ε2H
(
d2H(M0 + εv,M0) + d2H(M0 + εw,M0)− d2H(M0 + εv,M0 + εw)

)
=

1
2

(
‖v‖2H + ‖w‖2H − d2H(M0 + εv,M0 + εw)

ε2H

)
Hence, by Lemma 4.4,

lim
ε→0+

R(M0 + εv,M0 + εw) =
1
2

(
‖v‖2H + ‖w‖2H − ‖v − w‖2H

)
(11)
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for every v, w ∈ B(0, δ). Since XH is a Gaussian centered random field, (11) implies that XH is lass
at point M0 with index H. Note that (11) also characterizes the tangent field at XH at point M0.
As expected, it is an Euclidean fractional Brownian motion BH with index H restricted to B(0, δ).
Since the Euclidean fractional Brownian motion BH exists iff H ∈ (0, 1], we get a bound for βM.

Corollary 5.1. There is no fractional Brownian motion indexed by a manifoldM with index H > 1:
βM ≤ 1.

Especially, fractional Brownian motions indexed by a sphere or an hyperbolic space are examples
of Gaussian lass fields with index H ∈ (0, 1/2]. The following section gives examples of lass Gaussian
or stable fields with index H ∈ (0, 1].

5.2 Spherical moving average fractional fields

Let n ∈ N\{0} and Sn = {x1, x2, . . . , xn+1 ∈ R,
n+1∑
i=1

x2
i = 1} is the n-dimensional unit sphere. The

distance d on Sn is its geodesic distance. By convention, S0 = {−1, 1}.

In this part, we introduce some fields indexed by Sn owing a moving average representation. Let
us recall this representation for the Euclidean fractional α-stable motion (see [20, 25]) with index
H ∈ (0, 1) and α ∈ (0, 2]:

BH,α(M) =
∫

Rn

(
||MM ′||H−n/α − ||ÕM ′||H−n/α

)
dWα(M ′) (12)

where Õ is the origin of Rn and where Wα is a symmetric α-stable random measure on Rn with
Lebesgue measure as control measure (see [25, ch.3] for general results on random measures). In
the case α = 2, W2 is a Brownian measure and up to a normalizing constant, BH,2 is the standard
Euclidean fractional Brownian motion.

In order to define spherical moving average α-stable fields, we will replace Wα by a random mea-
sure on Sn and the Euclidean norm by the distance d on Sn. Let dx be the Lebesgue measure on Rn.
Then, in (12), the term ||ÕM ′||H−n/α implies that the kernel M ′ 7→ ||MM ′||H−n/α − ||ÕM ′||H−n/α
is in Lα(Rn, dx) for any H ∈ (0, 1) and then that BH,α is well-defined. Without this compensative
term, the kernel will not be in Lα(Rn, dx) in view of its behaviour as ||MM ′|| → +∞. Since the
sphere is compact, we don’t need to reproduce this term in our framework.

Let σn be the uniform measure on Sn, α ∈ (0, 2]. Let Wα be a symmetric α-stable random measure
on Sn with σn as control measure when 0 < α < 2 and let W2 be the Brownian random measure
on Sn with σn as control measure. Let us precise that

∫
Sn
f(M)dWα(M) exists iff f ∈ Lα(Sn, σn).

Furthermore, if f ∈ Lα(Sn, σn), then
∫

Sn
f(M)dWα(M) is an α-stable symmetric random variable

and

∀u ∈ R, E
[
exp

(
iu

∫
Sn

f(M)dWα(M)
)]

= exp
[
−|u|α

∫
Sn

|f(M)|αdσn(M)
]
.

Let H ∈ R such that H 6= n/α. As soon as

XH,α(M) =
∫

Sn

d(M,M ′)H−n/αdWα(M ′), M ∈ Sn (13)

is well-defined, with convention 0β = +∞ for β < 0, XH,α is called spherical moving average fractional
α-stable random field. Note that XH,2 is a Gaussian field.
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Proposition 5.2. Let H ∈ R such that H 6= n/α. Then, the spherical moving average fractional
α-stable random field XH,α is well-defined if and only if H > 0.

Proof of Proposition 5.2. Let us recall that XH,α(M) exits iff the function M ′ 7→ d(M,M ′)H−n/α

belongs to Lα(Sn, σn). Let

I(M) =
∫

Sn

d(M,M ′)αH−ndσn
(
M ′
)
.

Using the exponential map expM at point M , I(M) can be rewritten as follows

I(M) =
∫∫

[0,π]×Sn−1

d(M, expM (ru))αH−n sinn−1 (r)drdσn−1(u),

where by convention if n = 1, σ0 = δ−1 + δ1. Hence,

I(M) = σn−1(Sn−1)
∫

[0,π]
rαH−n sinn−1 (r)dr.

Then,
I(M) < +∞ ⇐⇒ αH − 1 > −1 ⇐⇒ H > 0

since α > 0.

Proposition 5.3. Let H > 0 such that H 6= n/α.

1. Then XH,α has weakly stationary increments.

2. (a) Assume H ∈ (0, 1). Then XH,α is lass at each point with index H. Furthermore, the tan-
gent field at point M0 is an Euclidean moving average α-stable random field with index H.
More precisely, for every M0 ∈ Sn,

lim
ε→0+

(
XH,α(M0 + εv)−X(M0)

εH

)
v∈B(0,π)

(d)
= (BH,α(v))v∈B(0,π),

where BH,α is defined by (12).

(b) Assume H > 1. Then XH,α is lass at each point with index 1. More precisely, for every
M0 ∈ Sn,

lim
ε→0+

(
XH,α(M0 + εv)−X(M0)

ε

)
v∈B(0,π)

(d)
= (ZM0,α(v))v∈B(0,π),

where for every v ∈ B(0, π),

ZM0,α(v) =
(n
α
−H

)∫
Sn

< v,ΠM0(M ′) >
‖ΠM0(M ′)‖

d
(
M0,M

′)H−1−n/α
dWα

(
M ′
)
,

with ΠM0 the inverse of the exponential map expM0
at point M0.

Proof of Proposition 5.3.

1. Let H > 0 and (M1,M2) ∈ S2
n. Let us first notice that

E[exp (iu(XH,α(M1)−XH,α(M2)))] = exp
[
−|u|α

∫
Sn

∣∣∣d(M1,M
′)H−n/α − d(M2,M

′)H−n/α∣∣∣αdσn(M ′)]

9



for every u ∈ R. Then, we have to prove that

I(M1,M2) =
∫

Sn

∣∣∣d(M1,M
′)H−n/α − d(M2,M

′)H−n/α∣∣∣αdσn(M ′)
only depends on d(M1,M2). Let (N1, N2) ∈ S2

n such that

d(M1,M2) = d(N1, N2).

Then, there exists a rotation r such that r(N1) = M1 and r(N2) = M2. By invariance by
rotation of σn, the change of variable N ′ = r−1(M ′) leads to

I(M1,M2) =
∫

Sn

∣∣∣d(M1, r
(
N ′
))H−n/α − d(M2, r

(
N ′
))H−n/α∣∣∣αdσn(N ′).

Since d(Mi, r(N ′)) = d(r(Ni), r(N ′)) = d(Ni, N
′), i = 1, 2,

I(M1,M2) =
∫

Sn

∣∣∣d(N1,M
′)H−n/α − d(N2,M

′)H−n/α∣∣∣αdσn(M ′)
= I(N1, N2),

which establishes the weakly stationarity of the increments of XH,α.

2. Let M0 ∈ M and consider the open ball B(0, π) ⊂ TM0Sn. Then, let ε ∈ (0, 1], k ∈ N\{0},
λ = (λ1, . . . , λk) ∈ Rk and v = (v1, . . . , vk) ∈ B(0, π)k. Let us denote

I(λ, v, ε) =
∫

Sn

fε,λ,v
(
M ′
)
dσn

(
M ′
)

where

fε,λ,v
(
M ′
)

=

∣∣∣∣∣∣
k∑
j=1

λj

(
d
(
M0 + εvj ,M

′)H−n/α − d(M0,M
′)H−n/α)∣∣∣∣∣∣

α

(a) Assume now that H ∈ (0, 1). By definition of XH,α,

E

exp

i k∑
j=1

λj(XH,α(M0 + εvj)−XH,α(M0))
εH

 = exp
(
−ε−αHI(λ, v, ε)

)
.

Using the exponential map expM0
at point M0, I(λ, v, ε) can be rewritten as follows

I(λ, v, ε) =
∫

(0,π]×Sn−1

fε,λ,v
(
expM0

(ru)
)

sinn−1 (r)drdσn−1(u)

i.e.

I(λ, v, ε) =
∫

(0,π]×Sn−1

∣∣∣∣∣∣
k∑
j=1

λj

(
d(M0 + εvj ,M0 + ru)H−n/α − rH−n/α

)∣∣∣∣∣∣
α

sinn−1 (r)drdσn−1(u).

Then the change of variable ρ = r/ε leads to

I(λ, v, ε) =
∫

(0,π/ε]×Sn−1

f̃ε,λ,v(ρ, u)dρdσn−1(u)

10



with

f̃ε,λ,v(ρ, u) = ε

∣∣∣∣∣∣
k∑
j=1

λj

(
d(M0 + εvj ,M0 + ερu)H−n/α − (ερ)H−n/α

)∣∣∣∣∣∣
α

sinn−1 (ερ). (14)

By Lemma 4.4,

f̃λ,v(ρ, u) = lim
ε→0+

ε−αH f̃ε,λ,v(ρ, u) =

∣∣∣∣∣∣
k∑
j=1

λj

(
‖vj − ρu‖H−n/α − ρH−n/α

)∣∣∣∣∣∣
α

ρn−1.

Note that f̃λ,v is integrable iff H ∈ (0, 1). In order to conclude, we will use the dominated
convergence theorem. Let us remark that for ρ ∈ (0, π/ε) and u ∈ Sn−1,

|d(M0 + εvj ,M0)− d(M0,M0 + ερu)| ≤ d(M0 + εvj ,M0 + ερu)

and that
d(M0 + εvj ,M0 + ερu) ≤ d(M0 + εvj ,M0) + d(M0,M0 + ερu)

i.e.
ε|‖vj‖ − ρ| ≤ d(M0 + εvj ,M0 + ερu) ≤ ε(‖vj‖+ ρ)

since d(M0,M0 + εw) = d
(
M0, expM0

(εw)
)

= ε‖w‖ as soon as w ∈ B(0, π). Then, let

g̃λ,v(ρ, u) = ρn−1

 k∑
j=1

|λj |
∣∣∣|‖vj‖ − ρ|H−n/α − ρH−n/α∣∣∣

α

+ρn−1

 k∑
j=1

|λj |
∣∣∣|‖vj‖+ ρ|H−n/α − ρH−n/α

∣∣∣
α (15)

One easily proves that g̃λ,v ∈ L1((0,+∞[×Sn−1, dρdσn−1(u)) and that

sup
ε∈(0,1]

∣∣∣ε−αH f̃ε,λ,v∣∣∣ ≤ g̃λ,v almost surely.

Furthermore, using polar coordinates, one easily sees that

∫
(0,+∞[×Sn−1

f̃λ,v(ρ, v)dρdσn−1(u) =
∫

Rn

∣∣∣∣∣∣
k∑
j=1

λj

(
‖vj − ξ‖H−n/α − ‖ξ‖H−n/α

)∣∣∣∣∣∣
α

dξ.

Hence,

lim
ε→0+

E

exp

i k∑
j=1

λj(XH,α(M0 + εvj)−XH,α(M0))
εH

 = E

exp

i k∑
j=1

λjBH,α(vj)

,
which concludes the proof of the lass property when H ∈ (0, 1).

(b) Assume that H > 1. Then, by definition of XH,α,

E

exp

i k∑
j=1

λj(XH,α(M0 + εvj)−XH,α(M0))
εH

 = exp
(
−ε−αI(λ, v, ε)

)
.
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Let us split I(λ, v, ε) into I(λ, v, ε) = I1(λ, v, ε) + I2(λ, v, ε) with

I1(λ, v, ε) =
∫

Sn

fε,λ,v
(
M ′
)
1d(M0,M ′)≤2πε dσn

(
M ′
)

and
I2(λ, v, ε) =

∫
Sn

fε,λ,v
(
M ′
)
1d(M0,M ′)>2πε dσn

(
M ′
)
.

Then, proceeding as in the proof of the lass property when H < 1, one establishes that
for every ε ∈ (0, 1/2],

I1(λ, v, ε) =
∫

[0,2π]×Sn−1

f̃ε,λ,v(ρ, u)dρdσn−1(u)

where f̃ε,λ,v is defined by (14). Hence, for every ε ∈ (0, 1/2],

I1(λ, v, ε) ≤ εαH
∫

(0,2π]×Sn−1

g̃λ,v(ρ, u)dρdσn−1(u)

where gλ,v is defined by (15). Remark that g̃λ,v ∈ L1((0, 2π]× Sn−1, dρdσn−1(u)). Hence,
since H > 1,

lim
ε→0+

ε−αI1(λ, v, ε) = 0. (16)

Let us now study the asymptotics of I2(λ, v, ε) as ε tends to 0+. Let SP (M0) ∈ Sn be the
antipodal point of M0. If M ′ /∈ {M0, SP (M0)},

lim
ε→0+

d(M0 + εvj ,M
′)− d(M0,M

′)
ε

= −< ΠM0(M ′), vj >
‖ΠM0(M ′)‖

where ΠM0 is the inverse of the exponential map expM0
at point M0.

Then, a Taylor expansion leads to

fλ,v(M) = lim
ε→0+

ε−αfε,λ,v
(
M ′
)

=
|n−Hα|αd(M0,M

′)Hα−α−n
∣∣∣< ΠM0(M ′),

∑k
j=1 λjvj >

∣∣∣α
αα‖ΠM0(M ′)‖α

.

Since for every x ≥ 0 and y ≥ 0,∣∣∣xH−n/α − yH−n/α∣∣∣ ≤ ∣∣∣H − n

α

∣∣∣(xH−1−n/α + yH−1−n/α
)
|x− y|,

and since ∣∣d(M0 + εvj ,M
′)− d(M0,M

′)∣∣ ≤ d(M0 + εvj ,M0) = ε‖vj‖,

we have that

∣∣fε,α,v(M ′)∣∣ ≤ ∣∣∣H − n

α

∣∣∣αεα
∣∣∣∣∣∣
k∑
j=1

|λj |‖vj‖
(
d
(
M0 + εvj ,M

′)H−1−n/α + d
(
M0,M

′)H−1−n/α
)∣∣∣∣∣∣
α

If d(M0,M
′) ≥ 2πε ≥ 2ε‖vj‖,

d
(
M0 + εvj ,M

′) ≥ d(M0,M
′)− ε‖vj‖ ≥ d(M0,M

′)
2

since ε‖vj‖ = d(M0 + εvj ,M0). Then, if d(M0,M
′) ≥ 2πε,∣∣ε−αfε,α,v(M ′)∣∣ ≤ gλ,v(M ′)
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with

gλ,v
(
M ′
)

=


2απHα−α−n

∣∣∣H − n

α

∣∣∣α
∣∣∣∣∣∣
k∑
j=1

|λj |‖vj‖

∣∣∣∣∣∣
α

if H ≥ 1 + n/α,

2n+2α−Hα
∣∣∣H − n

α

∣∣∣α
∣∣∣∣∣∣
k∑
j=1

|λj |‖vj‖

∣∣∣∣∣∣
α

d
(
M0,M

′)αH−α−n if H < 1 + n/α.

Note that gλ,v ∈ L1(Sn, dσn(u)) since H > 1. Therefore, the dominated convergence
theorem and (16) yield that

lim
ε→0+

ε−αI(ε, λ, v) = lim
ε→0+

ε−αI(ε, λ, v)

=
∣∣∣n
α
−H

∣∣∣α ∫
Sn

d
(
M0,M

′)Hα−α−n∣∣∣∣∣∣< ΠM0(M ′)
‖ΠM0(M ′)‖

,
k∑
j=1

λjvj >

∣∣∣∣∣∣
α

dσn
(
M ′
)
,

which establishes the lass property when H > 1 and concludes the proof.

5.3 Spherical moving average multifractional stable fields

All the previous examples, the index of the lass property at point M0 does not depend on M0.
However, for modelization purpose, it is sometime a constraining condition. We therefore introduce
some multifractional lass random fields: the index of the lass property will then vary. In the
case of Euclidean random fields, multifractional random fields have been defined by replacing
the index H by a function h(·) in some integral representations of fractional Euclidean fields,
e.g. [2, 3, 4, 8, 9, 17, 22, 26]. The most famous examples are multifractional Brownian fields,
introduced either by replacing the Hurst index H by a function in the moving average representation
of a fractional Brownian motion [22] and in its harmonizable representation [9]. Following this
approach, we define spherical moving average multifractional α-stable and Gaussian fields.

Let us recall that α ∈ (0, 2] and consider h : Sn −→ (0,+∞) such that h(M) 6= n/α for every
M ∈ Sn. Then,

Xh,α(M) =
∫

Sn

d(M,M ′)h(M)−n/αdWα(M ′), M ∈ Sn (17)

is well-defined and Xh,α is called spherical moving average multifractional α-stable random field
with multifractional function h. If α = 2, Xh,2 is a centered Gaussian random field.

Before we study the lass property for Xh,α, let us introduce

Yα(M,H) =
∫

Sn

d(M,M ′)H−n/αdWα(M ′), M ∈ Sn, H > 0

and notice that
Xh,α(M) = Yα(M,h(M)).

Then, let M0 ∈ Sn. The random field Xh,α will be split into Xh,α = Xh(M0),α +RM0 with

Xh(M0),α(M) = Yα(M,h(M0))

and
RM0(M) = Yα(M,h(M))− Yα(M,h(M0)). (18)

Remark that Xh(M0),α is a spherical moving average fractional α-stable random field. Then, Sec-
tion 5.2 gives the behaviour of its increments around M0.
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Lemma 5.4. Assume that the function h is C1. Then, for every M0 ∈ Sn and every γ ∈ (0, 1),

lim
M→M0

RM0(M)
d(M,M0)γ

(d)
= 0,

where RM0 is defined by (18).

Proposition 5.5. Let M0 ∈ Sn. Assume that the function h is C1 and that h(M0) < 1. Then, Xh,α

is lass at point M0 with index h(M0) and its tangent field at point M0 is an Euclidean moving average
α-stable random field with index h(M0). More precisely,

lim
ε→0+

(
Xh,α(M0 + εv)−X(M0)

εh(M0)

)
v∈B(0,π)

(d)
=
(
Bh(M0),α(v)

)
v∈B(0,π)

,

where Bh(M0),α is defined by (12).

Proof of Lemma 5.4.
Let M0 ∈ Sn and γ ∈ (0, 1). For every u ∈ R and M ∈ Sn,

E(exp (iuRM0(M))) = exp (−|u|αIM0(M))

with
IM0(M) =

∫
Sn

∣∣∣dh(M)−n/α(M,M ′
)
− dh(M0)−n/α(M,M ′

)∣∣∣αdσn(M ′) ≥ 0.

Using the exponential map expM at point M , one easily sees that

IM0(M) = σn−1(Sn−1)
∫ π

0

∣∣∣rh(M)−n/α − rh(M0)−n/α
∣∣∣αdr.

Let δ > 0. Then, by continuity of h there exists a, b ∈ (0,+∞) such that for d(M,M0) ≤ δ,
a ≤ h(M) ≤ b. Hence, applying the Taylor-Lagrange inequality, one proves that

IM0(M) ≤ |h(M)− h(M0)|ασn−1(Sn−1)
∫ π

0
|ln r|

(
ra−n/α + rb−n/α

)α
dr

as soon as d(M,M0) ≤ δ. Since h is a C1 function and γ ∈ (0, 1),

lim
M→M0

IM0(M)
d(M,M0)αγ

= 0,

which implies

lim
M→M0

E
(

exp
(
iuRM0(M)
d(M,M0)γ

))
= 0

for every u ∈ R. The proof of Lemma 5.4 is then complete.

Proof of Proposition 5.5. For every v ∈ B(0, π) and every ε ∈ (0, 1)

Xh,α(M0 + εv)−Xh,α(M0)
εh(M0)

=
Xh(M0),α(M0 + εv)−Xh(M0),α(M0)

εh(M0)
+
RM0(M0 + εv)

εh(M0)
.

Since h(M0) < 1, by Lemma 5.4,

lim
ε→0+

(
RM0(M0 + εv)

εh(M0)

)
v∈B(0,π)

(d)
= 0.

Let us recall that Xh(M0),α is a spherical moving average α-stable random fields with index h(M0) < 1.
Hence, Proposition 5.3 leads to the conclusion.
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Hermes, 2002.
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