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Abstract. A free electron description of spin-dependent tranport in magnetic tunnel

junctions with non collinear magnetizations is presented. We investigate the origin of

transverse spin density in tunnelling transport and the quantum interferences which

give rise to oscillatory torques on the local magnetization. Spin transfer torque is also

analyzed and an important bias asymmetry is found as well as a damped oscillatory

behaviour. Furthermore, we investigate the influence of the s-d exchange coupling on
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is due to interfacial spin-dependent reflections.
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1. Introduction

The theoretical demonstration of spin transfer torque in metallic spin valves (SV) ten

years ago [1] gave a new breath to giant magnetoresistance related studies [2], promising

exciting new applications in non-volatile memories technology [3] and radio-frequency

oscillators [4]. A number of fundamental studies in metallic spin valves revealed the

different properties of spin torque and led to a deep understanding of current-induced

magnetization dynamics [5, 6, 7, 8, 9]. Particularly, several theoretical studies described

the structure of the torque in metallic magnetic multilayers and showed the important

role of averaging due to quantum interference, spin diffusion and spin accumulation

[10, 11, 12].

Since the first experimental evidence of spin-dependent tunnelling [13], magnetic

tunnel junctions (MTJs) have attracted much attention because of the possibility to

obtain large tunnelling magnetoresistance (TMR) at room temperature [14]. The

possibility to use MTJs as sensing elements in magnetoresistive heads, as non-volatile

memory elements or in reprogrammable logic gates has also stimulated a lot of

technological developments aiming at the optimization of MTJs’ transport properties

and their implementation in silicon-based circuitry [3, 15]. Because of these applications,

MTJs have been intensively studied and the role of interfaces [16], barrier [17], disorder

[18] and impurities [19] have been addressed in many publications [21]. The recent

achievement of current-induced magnetic excitations and reversal in MTJs [20] has

renewed the already very important interest of the scientific community in MTJs.

The observation of spin transfer torque in low RA (resistance area product) MTJ

using amorphous [20] or cristalline barriers [15, 22] opened new questions about the

transport mechanism in MTJ with non collinear magnetizations orientations. As a

matter of fact, whereas the current-perpendicular-to-plane (CPP) transport in SV is

mostly diffusive and governed by spin accumulation and relaxation phenomena [11, 12],

spin transport in magnetic tunnel junctions is mainly ballistic and governed by the

coupling between spin-dependent interfacial densities of states: all the potential drop

occurs within the tunnel barrier. J. C. Slonczewski first proposed a free electron

model of spin transport in a MTJ with an amorphous barrier [24], deriving TMR, spin

transfer torque (STT) and zero bias interlayer exchange coupling (IEC). This first model

only considered electrons at Fermi energy, neglecting all non-linear tunnel behaviour

(consequently, current-induced IEC was found to be zero). More recently, the author

proposed a more general model based on Bardeen’s Transfer Matrix (BTM) method [25].
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Another group presented at tight-binding model (TB) of a MTJ, giving more realistic

band structures than the usual free electron model [26, 27]. These studies showed that

spin torque should present an important bias asymmetry and the dissipative part of IEC

(also called current-induced effective field) should be of the same order of magnitude

than STT with a quadratic dependence on the bias voltage [26]. Finally, we note that

in the same spirit as Ref. [28], Levy and Fert studied the role of hot electrons-induced

magnons on STT in MTJ [29]. In recent experiments, the important relative amplitude

of current-induced effective field compared to the spin torque term has been verified

[30, 31, 32] but the role of magnons is still under investigation (in the first experiment

the current-induced magnetization reversal occured while the TMR was quenched by

magnons emissions [20]). These specific features show that tunnelling transport has a

strong influence on spin transfer torque characteristics.

We recently presented [12] a description of spin-dependent transport in a MTJ

treated in a free-electron assumption, based on Keldysh non-equilibrium technique [33]

applied to a MTJs with an amorphous barrier (such as AlOx). This method is close to

Ref. [24], although more general since we consider the contribution of all electrons lying

below the Fermi energy. In the present article, we focus on the anatomy of spin transfer

torque in such a MTJ, paying attention to the origin of the specific characteristics of

this torque in the particular case of MTJ. The paper is organized as follows. In section

2, we give a reminder of the origin of spin transfer torque, and the way to calculate it.

In section 3, the formulation of spin-dependent currents and torques in non-equilibrium

Green function formalism (Keldysh formalism) is developed. Section 4 presents the

results of the model and describe the anatomy of spin torque in a magnetic tunnel

junction, underlying the role of tunnelling process.

2. Current-induced torques

All along this paper, we consider the s-d model in which s-electrons are itinerant and

d-electrons are localized and give rise to the local magnetization of the ferromagnet. We

also assume that the d local moments remain stationnary. This model applies to the

electron structures of ferromagnetic electrodes whose compositions lie on the negative

slope side of the Slater-Néel-Pauling curve [34] (Ni, Co, NiFe, CoFe). No spin flip is taken

into account. In a magnetic tunnel junction composed of two semi-infinite ferromagnets

separated by a tunnel barrier (see Fig. 1), majority spins and minority spins refer to the

electron spin projection in the left ferromagnet respectively parallel or antiparallel to the



Description of current-driven torques in magnetic tunnel junctions 4

local magnetization. In this framework, the motion of s-like electrons in a ferromagnet

is represented by the non-relativistic Hamiltonian including s-d coupling:

H =
p2

2m
+ U(r) + Jsd

(

−→σ .
−→
S d

)

(1)

where the first and second terms are the kinetic and potential energies, the third term

is the s-d exchange energy,
−→
S d being a unit vector collinear to the local magnetization

due to the localized d-electrons, Jsd the s-d exchange constant and −→σ is the vector of

Pauli matrices in spin space. After some algebra [12, 35], it is possible to derive the

equation of continuity of the spin density :

d

dt
−→s (r, t) =

~

2
{ d

dt
Ψ∗−→σ Ψ + Ψ∗−→σ d

dt
Ψ} (2)

where Ψ =
(

Ψ↑, Ψ↓) is an arbitrary 2-dimension Hartree-Fock wavefunction. The two

dimensions refer to majority (↑)and minority (↓) spin projections of the Hartree-Fock

wavefunction. Here, −→s (r, t) refers to the local spin density (namely the local out-of-

equilibrium magnetization due to the itinerant polarized electrons):

−→s (r, t) = Ψ∗ (r, t)
~

2
−→σ Ψ (r, t) (3)

Defining

J
s = − ~

2

2m
ℑ{Ψ∗ (r, t)−→σ ⊗∇rΨ (r, t)} (4)

where J
s refers to the spin-current density, we obtain, in steady states:

∇rJ
s (r, t) =

2Jsd

~

−→
Sd ×−→s (r, t) (5)

Eq. 5 implies that the spatial transfer of spin momentum from the itinerant s-

electrons to the localized d-electrons (left-hand side of Eq. 5) is equivalent to a torque

exerted by the transverse spin density on the local magnetization (right-hand side of

Eq. 5). This equivalence has been demonstrated by Kalitsov et al. [27] in magnetic

tunnel junctions using Keldysh formalism and TB description.

In the following, we calculate spin transfer torque from the torque exerted by the

transverse spin density on the local magnetization. The spirit of our calculation is

depicted in the top panel of Fig. 1. The out-of-equilibrium magnetic tunnel junction

is modelled by a ”conductor” (in the sense that the tunnel barrier is not infinite)

linking two magnetic reservoirs (FL and FR) with non collinear magnetizations and with

different chemical potentials µL and µR [36] (µL > µR). A bias voltage V = (µL−µR)/e

is applied across this ”conductor”. One should consider all electrons with majority

spins (solid arrows) and minority spins (dotted arrows), originated from left (rightward
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Figure 1. Schematics of the magnetic tunnel junction with non collinear

magnetizations orientation. Top panel: spin-dependent out-of-equilibrium transport

in a conductor linking two reservoirs FL and FR (whose electrochemical potentials

are respectively µL and µR) with non collinear magnetizations orientations. The solid

arrows represent the majority spins and the dotted arrows represent the minority

spins. Middle panel: MTJ with non collinear magnetization orientations. Bottom

panel: Corresponding energy profile of the MTJ. In free-electron approximation, the

local density of states are parabolic for majority (solid line) and minority (dotted

line) electrons with a splitting between the two spin subbands equals to the exchange

interaction Jsd.

arrows) and right electrodes (leftward arrows). In low bias limit (µL ≈ µR), the charge

transport can be approximately determined by the electrons originated only from the

left electrode at the Fermi energy.

In our case (middle panel of Fig. 1), the magnetic tunnel junction is composed

of two ferromagnetic layers, FL and FR (made of the same material, for simplicity),

respectively connected to the left and right reservoirs and separated by an amorphous

tunnel barrier. The x-axis is perpendicular to the plane of the layers and the

magnetization of FL is oriented following z:
−→
ML = ML

−→z . The magnetization
−→
MR

of FR is in the (x,z) plane and tilted from
−→
ML by an angle θ. In this configuration, the

spin density in a ferromagnetic layer possesses three components : −→m = (mx, my, mz).

In FL (we obtain the same results considering FR), the transverse components are

mx =< σx > and my =< σy >, where σi are the Pauli spin matrices and ¡¿ denotes
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averaging over orbital states and spin states, i.e. averaging over electrons energy E,

transverse momentum −→κ and spin states. Thus, the transverse spin density exerts a

torque
−→
T on the background magnetization

−→
ML following two axes:

−→
T =

Jsd

µB

−→
ML ×−→m =

Jsd

µB

[

mx
−→
ML ×−→

MR − my
−→
ML ×

(−→
ML ×−→

MR

)]

(6)

One should introduce the previous formula in the usual Landau-Lifshitz-Gilbert equation

to describe the modified dynamics of the magnetization
−→
ML:

d
−→
ML

dt
= α

−→
ML × d

−→
ML

dt
− γ

(−→
ML ×−−→

Heff +
−→
T
)

(7)

where α is the Gilbert damping, γ is the gyromagnetic ratio and µB is the Bohr

magnetron. The two terms in the right hand side of Eq. 6 stand for two types of

torques: −my
−→
ML ×

(−→
ML ×−→

MR

)

is the usual STT term (also called in-plane or parallel

torque[26]) whereas mx
−→
ML×

−→
MR is the current-driven interlayer exchange coupling (also

called field-like torque, out-of-plane or perpendicular torque[26]). The former vanishes

at zero bias, whereas the latter exists even without current [24, 26, 27]. An explanation

of the physical nature and origin of these two terms will be given in section 4. The

transverse spin density in the left layer is then given by < σ+ >=< σx + iσy > :

mx + imy =< σ+ >=<
(

Ψ∗↑ Ψ∗↓
)

(

0 2

0 0

)(

Ψ↑

Ψ↓

)

>= 2 < Ψ∗↑Ψ↓ > (8)

In other words, STT is given by the imaginary part of < σ+ >, while IEC is given

by its real part. One can understand the product < Ψ∗↑Ψ↓ > as a correlation

function between the two projections of the spin of the impinging electron. In ballistic

regime, an electron impinging on a ferromagnet with a spin polarization tilted from the

background magnetization will precess around this magnetization [10, 27]. Locally, its

two projections ↑ and ↓ following the quantization axis (defined by the background

magnetization) will be non-zero. Then, the electron will contribute locally to the

transverse spin density mx and my. If the electron spin is fully polarized parallel or

antiparallel to this magnetization, no precession will occur and its contribution to the

transverse spin density will be zero.

We remind that we defined majority (minority) states as the spin projection parallel

(antiparallel) to the magnetization of the left electrode. Then, < Ψ∗↑Ψ↓ > will be the

fraction of electrons whose spin is following x (real part) and y (imaginary part) in spin

space.
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3. Formulation of currents and torques

3.1. Keldysh Green functions

As explained previously, in Keldysh out-of-equilibrium formalism [33, 36], any physical

quantity should be calculated considering the contribution of the electrons originated

from the left reservoir and from the right reservoir (top panel of Fig. 1). Then, an

out-of-equilibrium Green function G(r, t, r′, t′) (or Keldysh Green function) is defined

as a superposition of these two contributions:

G (r, t, r′, t′) = fLΨL (r, t)Ψ∗
L (r′, t′) + fRΨR (r, t) Ψ∗

R (r′, t′) (9)

where ΨL(R) (r, t) are the electron wavefunctions originated from the left (right) reservoir

at the location r and time t and fL(R) are the Fermi distribution functions in the left

and right reservoirs.

Thus, the Schrödinger equation of the magnetic tunnel junction is:

HΨ =

(

p2

2m
+ U + Jsd

(

−→σ .
−→
Sd

)

)

(

Ψ↑

Ψ↓

)

= E

(

Ψ↑

Ψ↓

)

(10)

where −→σ the vector in Pauli matrices space : −→σ = (σx, σy, σz)T , E is the electron

energy, U is the spin-independent potential along the junction:

Jsd

(

−→σ .
−→
Sd

)

= Jsdσ
z and U = EF for x < x1

Jsd

(

−→σ .
−→
Sd

)

= 0 and U(x) = U0 −
x − x1

x2 − x1
eV for x1 < x < x2

Jsd

(

−→σ .
−→
Sd

)

= Jsd (σz cos θ + σx sin θ) and U = EF − eV for x > x2

We consider that the potential drop occurs essentially within the barrier and we

apply a low bias voltage compared to the barrier height (V << U/e). This allows to use

WKB approximation to determine the wavefunctions inside the barrier. Furthermore,

the free electron approximation implies parabolic dispersion laws which also restricts

our study to low bias voltage.

To describe the spin-dependent transport within the MTJ, we define the

wavefunctions Ψ
σ′(σ)
i (r, ǫ), where ǫ = EF − E and E is the tunnelling electron energy.

|Ψσ′(σ)
i (r, ǫ)|2 is the probability that an electron originated from electrode i, at the

energy ǫ, initially in spin state σ, possesses a spin projection σ′ at the location r. For

example, an electron initially in majority state, originated from FL, is described by six

wavefunctions along the structure:
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Ψ
↑(↑)
L =

1√
k1

eik1x + bLe−ik1x

Ψ
↓(↑)
L = dLe−ik2x

in the left electrode FL (x < x1),

Ψ
↑(↑)
L =

a′
LE(x1, x) + b′LE(x, x1)

q(x)

Ψ
↓(↑)
L =

c′LE(x1, x) + d′
LE(x, x1)

q(x)

where E(xi, xj) = exp
(

∫ xj

xi
q(x)dx

)

, in the tunnel barrier (x1 < x < x2),

Ψ
↑(↑)
L = a′′

Leik3x + b′′Leik4x

Ψ
↓(↑)
L = c′′Leik3x + d′′

Leik4x

in the right electrode FR (x > x2). k1(2) and k3(4) are the wavevectors for majority

(minority) spin projection in the left and right electrodes, whereas q(x) is the spin-

independent wavevector inside the tunnel barrier. Connecting the wavefunctions and

their derivatives at the interfaces, we obtain the 24 wavefunctions (two spin projections

and two reservoirs). These wavefunctions are given in Appendix.

In the 2-dimensionnal Hartree-Fock representation, spin-dependent current and spin

density are defined using the out-of-equilibrium lesser Keldysh Green function:

G−+
σσ′ (r, r′) =

∫

dǫ
(

fL

[

Ψ
σ′(↑)∗
L (r′)Ψ

σ(↑)
L (r) + Ψ

σ′(↓)∗
L (r′)Ψ

σ(↓)
L (r)

]

+fR

[

Ψ
σ′(↑)∗
R (r′)Ψ

σ(↑)
R (r) + Ψ

σ′(↓)∗
R (r′)Ψ

σ(↓)
R (r)

])

(11)

where fL = f 0(ǫ) and fR = f 0(ǫ + eV ), and f 0(ǫ) is the Fermi distribution at

0 K. For conveniency, we use the mixed-coordinate system (x,−→κ ), where −→κ is the

momentum parallel to the plane and x is the coordinate perpendicular to the plane.

With r = (x,−→ρ ), we get:

G−+
σσ′ (r, r′) =

a0

2
√

π

∫ 2
√

π/a0

0

e
i
−→κ
(

−→ρ −
−→
ρ′
)

G−+
σσ′ (x, x′)d−→κ (12)

where a0 is the lattice parameter of the electrodes [37]. Spin transfer torque (STT, T||)

and interlayer exchange coupling (IEC, T⊥) can now be determined from Eq. 8, whereas
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spin-dependent electrical current densities are calculated from the usual local definition:

T⊥ + iT|| =
Jsd

µB

< σ+ >= 2
Jsd

µB

a3
0

(2π)2

∫ ∫

G−+
↑↓ (x, x, ǫ)κdκdǫ (13)

mz =
Jsd

µB

a3
0

(2π)2

∫ ∫

[

G−+
↑↑ (x, x, ǫ) − G−+

↓↓ (x, x, ǫ)
]

κdκdǫ (14)

J↑(↓) =
~e

4πme

∫ ∫
[

∂

∂x
− ∂

∂x′

]

G−+
↑↑(↓↓)(x, x′, ǫ)|x=x′κdκdǫ (15)

J = J↑ + J↓ (16)

G−+
↑↑ (x, x, ǫ) and G−+

↓↓ (x, x, ǫ) are the energy-resolved local density-of-states (LDOS) for

up- and down-spins respectively, whereas
∫

G−+
↑↑ (x, x, ǫ)dǫ and

∫

G−+
↓↓ (x, x, ǫ)dǫ give the

number of up- and down-electrons at the location x along the structure.

3.2. Calculation of spin transfer torque

As demonstrated in Eq. 5, it is possible to calculate spin transfer torque from the

divergency of spin current density or from the spin density itself. We now demonstrate

that this relation holds in our model. Spin current densities and spin density are defined

as [10]:

mx =
[

Ψ↓Ψ∗↑ + Ψ↑Ψ∗↓] (17)

my = −i
[

Ψ↓Ψ∗↑ − Ψ↑Ψ∗↓] (18)

Js
x = − ~

2

2m
ℑ{Ψ∗↑∂Ψ↓

∂x
+ Ψ∗↓∂Ψ↑

∂x
} (19)

Js
y = − ~

2

2m
ℜ{Ψ∗↓∂Ψ↑

∂x
− Ψ∗↑∂Ψ↓

∂x
} (20)

We evaluate these quantities for electrons originating from the left reservoir in the

left electrode (x < x1). The equations are given in Appendix. The spin densities for

majority (↑) and minority (↓) electrons are:

m↑
x = 8q1q2(k3 − k4) sin θ

(

e−i(k1+k2)(x−x1) − r∗↑1 ei(k1−k2)(x−x1)

den
+ c.c.

)

(21)

m↓
x = 8q1q2(k3 − k4) sin θ

(

e−i(k1+k2)(x−x1) − r∗↓1 e−i(k1−k2)(x−x1)

den
+ c.c.

)

(22)

m↑
y = −8iq1q2(k3 − k4) sin θ

(

e−i(k1+k2)(x−x1) − r∗↑1 ei(k1−k2)(x−x1)

den
− c.c.

)

(23)

m↓
y = −8iq1q2(k3 − k4) sin θ

(

e−i(k1+k2)(x−x1) − r∗↓1 e−i(k1−k2)(x−x1)

den
− c.c.

)

(24)
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Finally we obtain:

mx = m↑
x + m↓

x = 8q1q2(k3 − k4) sin θ (25)

×
(

2

[

e−i(k1+k2)(x−x1)

den
+ c.c.

]

−
([

r∗↑1

den
+

r↓1
den∗

]

ei(k1−k2)(x−x1) + c.c.

))

my = m↑
y + m↓

y = − 8iq1q2(k3 − k4) sin θ

([

r↑1
den∗ +

r∗↓1

den

]

e−i(k1−k2)(x−x1) − c.c.

)

(26)

By the same way, we evaluate the spin current density for majority and minority

spins:

Js↑
x = −8q1q2

~
2

2m
(k3 − k4) sin θ

(

−ik2
e−i(k1+k2)(x−x1)

den
+ ik2

r∗↑1 ei(k1−k2)(x−x1)

den

+ik1
ei(k1+k2)(x−x1)

den∗ + ik1
r↑1e

−i(k1−k2)(x−x1)

den∗

)

(27)

Js↓
x = −8q1q2

~
2

2m
(k3 − k4) sin θ

(

ik2
ei(k1+k2)(x−x1)

den∗ + ik2
r↓1e

i(k1−k2)(x−x1)

den∗

−ik1
e−i(k1+k2)(x−x1)

den
+ ik1

r∗↓1 e−i(k1−k2)(x−x1)

den

)

(28)

Js↑
y = −8q1q2

~
2

2m
(k3 − k4) sin θ

(

ik2
e−i(k1+k2)(x−x1)

den
− ik2

r∗↑1 ei(k1−k2)(x−x1)

den

+ik1
ei(k1+k2)(x−x1)

den∗ + ik1
r↑1e

−i(k1−k2)(x−x1)

den∗

)

(29)

Js↓
y = −8q1q2

~
2

2m
(k3 − k4) sin θ

(

−ik2
ei(k1+k2)(x−x1)

den∗ − ik2
r↓1e

i(k1−k2)(x−x1)

den∗

−ik1
e−i(k1+k2)(x−x1)

den
+ ik1

r∗↓1 e−i(k1−k2)(x−x1)

den

)

(30)

Taking the imaginary (and real) part of the right-hand-side of the above equations,

we obtain, similarly to Eqs. 25 and 26:

Js
x = −8q1q2

~
2

2m
(k3 − k4)

(k1 + k2)

2
sin θ

([

r∗↑1

den
+

r↓1
den∗

]

ei(k1−k2)(x−x1) + c.c.

)

(31)
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Js
y = −i8q1q2

~
2

2m
(k3 − k4) sin θ

([

ei(k1+k2)(x−x1)

den∗ − c.c.

]

(k1 − k2)

−(k1 + k2)

2

([

r∗↑1

den
+

r↓1
den∗

]

ei(k1−k2)(x−x1) − c.c.

))

(32)

The divergency then gives:

∂Js
x

∂x
= −8iq1q2

~
2

2m
(k3−k4) sin θ

k2
1 − k2

2

2

([

r∗↑1

den
+

r↓1
den∗

]

ei(k1−k2)(x−x1) − c.c.

)

(33)

∂Js
y

∂x
= 8q1q2

~
2

2m
(k3 − k4) sin θ

k2
1 − k2

2

2

(

2

[

e−i(k1+k2)(x−x1)

den∗ + c.c.

]

−
([

r∗↑1

den
+

r↓1
den∗

]

ei(k1−k2)(x−x1) + c.c.

))

(34)

Setting Jsd = ~2

2m

k2

1
−k2

2

2
, Eqs. 25, 26, 33 and 34 give the following relation:

∂Js
x

∂x
= −Jsdmy

∂Js
y

∂x
= Jsdmx

⇒ ∇Js = JsdM× m (35)

Then, the relation 5 can be derived analytically in the free electron approach. This

relation does not depend on the particular description adopted (Tight-binding or free

electron approximation) but emerges from the definition of the considered Hamiltonian

itself.

4. Results and discussion

To illustrate the above calculation, we use material parameters adapted to the case

of Co/Al2O3/Co structure: the Fermi wavevectors for majority and minority spins

are respectively k↑
F = 1.1 Å−1, k↓

F = 0.6 Å−1, the barrier height is U − EF = 1.6

eV, the effective electron mass within the insulator is meff=0.4 [38] and the barrier

thickness is d=0.6 nm. These parameters have been choosen to fit the experimental I-V

characteristics of the magnetic tunnel junctions studied in Ref. [31]. In all this section,

the magnetizations form an angle θ=90◦ between them. We will justify this choice in

the following.
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4.1. Anatomy of spin transport

Although spin-dependent tunnelling is a well known process, the description we give

here is of great importance to understand the specific characteristics of spin transfer

torques in tunnelling transport. In this part, we will consider the linear approximation

in which the bias voltage Vb is low enough so that the current is due to Fermi electrons

injected from the left electrode. When the electrodes magnetizations are non collinear,

the electrons are no more described as pure spin states, but as a mixing between majority

and minority states. For example, let us consider one electron from the left reservoir,

initially in majority spin state, impinging on the right electrode (see Fig. 2 - step 1).

The first reflection (step 2) at the FL/I interface do not introduce any mixing since

the insulator is non magnetic. However, when (the transmitted part of) this electron is

reflected or transmitted by the second interface I/FR (step 3), the resulting state in the

right electrode is a mixing between majority and minority states since the quantization

axis in the right electrode is different from the quantization axis in the left electrode.

Then, the transmitted spin is reoriented and precesses (step 4) around the magnetization

of the right electrode. Furthermore, the reflected electron (step 5) is also in a mixed

spin state and precesses around the left electrode magnetization. In other words, after

transport through the barrier, the electron spin is reflected/transmitted with an angle.

This reorientation gives rise to spin transfer torque.

Note that there is not reason why the electron spin should remain in the plane of

the electrodes magnetizations. We will see that after the reorientation, the electron spin

possesses three components in spin space (and so two transverse components).

4.1.1. Tunnelling transport We are first interested in the spin-dependent reflectivity

Rσ(σ′) and transmittivity T σ(σ′) for electrons at the Fermi energy from the left electrode.

Let us consider an electron initially in majority spin state (↑). Its wavefunction will be

described by a plane wave in the left electrode :

eik1(x−x1)

√
k1

The mixing between majority and minority spin states can be expressed through

mixing reflectivities R↑↑ and R↓↑ and transmitivities T ↑↑ et T ↑↓, so that:

R↑↑ + R↓↑ + T ↑↑ + T ↓↑ = 1

where:
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FL FR
1

2

3 4

5

Tunnel Barrier (I)

Figure 2. Schematics of the principle of spin transport in a magnetic trilayer with non

collinear electrodes magnetizations. Step 1: the electron spin is polarized along the

magnetization of the left electrode. Step 2: After the first reflection/transmission by

FL/I interface the reflected and transmitted parts remain in a pure spin state. Step

3: The reflection/transmission by the second interface I/FR reorientes the electron

spin. Step 4 and 5: The transmitted and reflected spins precess around the local

magnetization.

R↑↑ = |r↑1|2 (36)

R↓↑ = 16|q1q2(k3 − k4)

m2
effden

sin θ|2 (37)

T ↑↑ = |Ψ↑(↑)
L

dΨ
∗↑(↑)
L

dx
− Ψ

∗↑(↑)
L

dΨ
↑(↑)
L

dx
| (38)

T ↓↑ = |Ψ↓(↑)
L

dΨ
∗↓(↑)
L

dx
− Ψ

∗↓(↑)
L

dΨ
↓(↑)
L

dx
| (39)

Ψ
σ(σ′)
L is evaluated in the right electrode and given in Appendix. By the same

way, we can define the transmittivity and reflectivity of an electron initially in minority

spin state. Fig. 3 displays the κ-dependence of R and T (we omit the superscripts for

simplicity), where κ is the wavevector component in the plane of the layers.

More than 97% of the majority and minority spins are reflected conserving

their spin projection, whereas less than 3% are transmitted without spin flip. This

reflectivity (transmittivity) reaches a minimum (maximum) at perpendicular incidence

and increases (decreases) quickly with κ. Note that T ↑↓ and T ↓↑ are equal due to

the particular configuration of the electrodes magnetizations (θ=90◦). Thus, after

interaction with the barrier, only a very small part of the spin is flipped (the flipped

spins have to tunnel through the barrier twice) : less than 2.7 × 10−3% of the reflected
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Figure 3. Reflectivity (top panel) and transmittivity (bottom panel) as a function

of κ. The solid and dotted lines represent the spin conserving reflectivity and

transmittivity for initially majority and minority spins respectively (left axes); the

dashed and dotted-dashed lines represent the mixing reflectivity and transmittivity

for initially majority and minority spins respectively (right axes). The applied bias

voltage is Vb = 0.1 V and θ=90◦.

wave has flipped its initial spin. 1.6×10−3% of the electron spins initially in minority

states reverses its spin during reflection.

Thus only a very small part of the injected polarized wave is flipped during the

tunneling process. However, this does not mean that spin transfer torque is small in

MTJ; as a matter of fact, only coherent mixing states will contribute to transverse spin

density, generating spin transfer torque.

Finally, we note that only electrons close to the perpendicular incidence contribute

significantly to the current. This has important consequences on the impact of quantum

interferences on spin transfer.
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4.1.2. Spin density and spin transfer torque In the linear regime under consideration,

the three components of spin density in the left electrode can be described as follows:

m↑
+L = Ψ

↑(↑)
L Ψ

∗↓(↑)
L =

8q1q2(k3 − k4) sin θ

m2
effden∗

(

ei(k1+k2)(x−x1) − r↑1e
−i(k1−k2)(x−x1)

)

(40)

m↓
+L = Ψ

↑(↓)
L Ψ

∗↓(↓)
L =

8q1q2(k3 − k4) sin θ

m2
effden

(

e−i(k1+k2)(x−x1) − r↓∗1 e−i(k1−k2)(x−x1)
)

(41)

m↑
zL = Ψ

↑(↑)
L Ψ

∗↑(↑)
L − Ψ

↓(↑)
L Ψ

∗↓(↑)
L (42)

=
(1 + |r↑1|2)

k1
−
∣

∣

∣

∣

∣

8q1q2

√
k1(k3 − k4) sin θ

m2
effden

∣

∣

∣

∣

∣

2

− 1

k1

(

r∗↑1 e2ik1(x−x1) + r↑1e
−2ik1(x−x1)

)

m↓
zL = Ψ

↑(↓)
L Ψ

∗↓(↑)
L − Ψ

↓(↓)
L Ψ

∗↓(↓)
L (43)

= − (1 + |r↓1|2)
k2

+

∣

∣

∣

∣

∣

8q1q2

√
k2(k3 − k4) sin θ

m2
effden

∣

∣

∣

∣

∣

2

+
1

k2

(

r∗↓1 e2ik2(x−x1) + r↓1e
−2ik2(x−x1)

)

Observing m
↑(↓)
+L in Eq. 40, one can distinguish two components: the first one

is proportional to e±i(k1+k2)(x−x1), and due to the interference between the incident

wave with majority (resp. minority) spin and the reflected wave with minority (resp.

majority) spin; the second one is proportional to e−i(k1−k2)(x−x1) and due to the

interference between the reflected waves with majority and minority spins. We note

that the first components of m↑
+L and m↓

+L are complex conjugated so that their sum

is real. Then, the interference between the incident wave with majority spin and the

reflected wave with minority spin does not contribute to STT but only to IEC. STT is

then generated by the coherent interferences between reflected electrons with opposite

spin projection (∝ e−i(k1−k2)(x−x1)).

Concerning mzL, it is composed of one component proportionnal to e2ik1(x−x1), one

component proportionnal to e2ik2(x−x1) and one constant as a function of x. The two

formers are due to the interference between wavefunctions in the same spin projection

but with opposite propagation direction while the latter is due to interference between

wavefunctions in the same spin projection and the same propagation direction.

Fig. 4 displays the details of the spin density components mx, my et mz (described

in Eq. 40) in the left electrode as a function of x, when Vb = 0.1 V. mx possesses a quite

complex behaviour with two periods of oscillation (the dashed lines show the enveloppe

of the curve), whereas my is reduced to a single oscillation (The oscillation period k1+k2

vanishes when suming the contribution of majority and minority spins); mz oscillates

around mean values represented by horizontal dashed lines.
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Figure 4. Projections of spin density due to Fermi electrons in perpendicular incidence

from the left electrode, as a function of the distance from the interface. Top panel:

mx component of spin density (solid line); the dashed lines are the enveloppes of the

curve. Middle panel: my component of spin density. Bottom panel: mz component

of spin density due to initially majority (solid line) and minority (dotted line) spin

projection; the dashed lines are the mean values of the oscillations. The applied bias

voltage is Vb = 0.1 V. The vertical line on the right is the interface between the left

electrode and the tunnel barrier.

Note that the conservative part of IEC is only proprotionnal to e−i(k1+k2)(x−x1). But

at non zero bias, the dissipative part of IEC is proportionnal to both e−i(k1+k2)(x−x1) and

e−i(k1−k2)(x−x1). Then, at non zero bias, the electrons will not precess circularly around

the background magnetization, but will present a more complex structure.

Following the previous discussion about spin reorientation (see Fig. 2), it is possible

to deduce the angles at which the electron spin is reflected by the barrier. We define

the azimuthal angle azimuthal η and the polar angle φ as indicated in the insert of Fig.

5:
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η = arctan
mc

y

mc
x

(44)

φ = arccos
mc

z
√

mc2
x + mc2

y + mc2
z

(45)

In definition of the vector −→mc, we only considered the coherent interferences between

plane wave propagating in opposite direction (∝ e±i(k1−k2) and constant component

of mz), as discussed above. Fig. 5 shows the κ-dependence of these angles at the

interface FL/I (x=-3 Å) for an electron spin initially in majority state and for different

barrier thicknesses (top panel) and heights (bottom panel). The azimuthal angle η varies

between -64◦ to +77◦ while the polar angle φ remains very small (less than 0.2◦), which

means that the electron spin stays very close to the quantization axis, as discussed above.

At κ = 0.6 Å−1 (corresponding to k↓
F ), η = 0 which indicates that the effective spin

density lies in the plane of the magnetizations
(−→
ML,

−→
MR

)

. Finally, the polar angle does

not vary with the distance, which means that the reflected electron spin precesses around

Oz with a small angle φ. A ”Bulk” spin transfer only occurs under the interferences of

all the reflected electrons.

The strong dependence of η as a function of the in-plane wavevector κ, together

with the dominant contribution of nearly perpendicularly incident electrons (see Fig. 3),

implies that the effective electron spin, resulting from the averaging over all the incident

electrons, possesses an important out-of-plane component. In other words, the effect of

the spin-dependent tunneling is to strongly enhance the dissipative IEC component of

the spin torque, compared to metallic spin valves. As a matter of fact, in SV the whole

Fermi surface contributes to the spin transport so that the effective angle η is very small

[10]: the dissipative IEC is thus negligible.

Note that increasing the thickness of the barrier only weak influence on η and

strongly decreases the amplitude of φ (the mixing reflection decreases since the barrier

thickness increases, then reducing the transverse spin density). Furthermore, when

increasing the barrier height, both amplitudes of the angles φ and η decreases near the

perpendicular incidence. These results are consistent with the reduction of spin mixing

when decreasing the barrier transmittivity.

Fig. 6 shows the dependence of the angles as a function of the s-d exchange

constant Jsd for perpendicular incidence κ = 0. Quite intuitively, the precession angle

φ increases with Jsd whereas the initial azimuthal angle η decreases in absolute value

with Jsd. The spin-filtering effect (the selection between majority and minority spin
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Figure 5. κ-dependence of the reflection angles for an electron spin at Fermi energy,

initially in majority spin state. Top panel: the barrier thickness is set to d=0.6 nm

(solid line), d=0.8 nm (dashed line) and d=1 nm (dotted line); U−EF =1.6 eV. Bottom

panel: the barrier height is set to U − EF =1.6 eV (solid line), U − EF =2 eV (dashed

line) and U − EF =3 eV (dotted line); d=0.6 nm. Insert: Definition of the angles φ

and η. The applied bias voltage is Vb = 0.1 V and θ=90◦.

during the reflection process) increases with Jsd so that −→mc gets closer to the plane of

the magnetizations.

4.2. Spin Transfer Torques

We now take into account all the electrons in the calculations (from the left and the

right electrodes). Fig. 7 shows STT and IEC as a function of the angle θ between

the electrodes magnetizations, at Vb = 0 and Vb = 0.1 V. It clearly appears that

IEC and STT are proportionnal to sin θ (the deviation from sin θ is minor than 10−4).

This dependence is strongly different from what was predicted in metallic spin valves
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Figure 6. Reflection angles as a function of the s-d exchange constant, for a Fermi

electron initially in majority spin state. The parameters are the same as in Fig. 5.

[11, 12, 39] and has been attributed [25] to the single-electron nature of tunneling.

As a matter of fact, because of the important height of the tunnel barrier, all the

potential drop occurs inside the insulator and spin accumulation (i.e. the feedback of

the current-induced longitudinal spin density on the spin current) is negligible. In this

case, the angular dependence of torque is determined by the angular dependence of the

transmition matrix, as discussed in Ref. [25] and yields a sine shape. In the following,

we will estimate the spin density for θ = π/2.

Note that, at zero bias, interlayer exchange coupling is still non-zero, contrary to

spin transfer torque. The conservative part of IEC (IEC at zero bias) comes from the

contribution of electrons located under the Fermi level. At zero bias, the currents from

left and right electrodes are equal, but the electron propagation still corresponds to the

scheme shown in Fig. 2: the mixing between majority and minority states induces a

transverse component in the spin density.

Fig. 8 displays the two components of transverse spin density as a function of

the location in the left electrode. The interference process between polarized electrons

yields a damped oscillation of IEC as presented in Fig. 8(a). We can distinguish two

periods of oscillation T1 = 2π/
(

k↑
F − k↓

F

)

and T2 = 2π/
(

k↑
F + k↓

F

)

whereas at zero bias,

only T2 appears (see inset of Fig. 8(a)). This can be easily understood by considering

electrons from left and right electrodes. Transverse spin density in the left electrode due

to electrons from the right electrode is:
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Figure 7. Angular dependence of spin transfer (grey) and interlayer exchange coupling

(black): conservative part (at zero bias - solid lines) and dissipative parts (bias

dependent part - dashed lines). The dissipative parts are calculated at Vb = 0.1 V.

m↑
+R = Ψ

↑(↑)
R Ψ

∗↓(↑)
R (46)

=

∣

∣

∣

∣

∣

8
√

q1q2

m2
effden

∣

∣

∣

∣

∣

2
sin θ

2
k3Ψ(q1, k2, q2, k4)Ψ

∗(q1, k1, q2, k4)e
−i(k1−k2)(x−x1) (47)

m↓
+R = Ψ

↑(↓)
R Ψ

∗↓(↓)
R (48)

=

∣

∣

∣

∣

∣

8
√

q1q2

m2
effden

∣

∣

∣

∣

∣

2
sin θ

2
k4Ψ(q1, k2, q2, k3)Ψ

∗(q1, k1, q2, k3)e
−i(k1−k2)(x−x1) (49)

It is now possible to show that in the general expression of transverse spin density

m+ = m↑
+L + m↓

+L + m↑
+R + m↓

+R

the terms proportional to e−i(k1−k2)(x−x1) vanish at zero bias and m+ reduces to terms

proportional to e±i(k1+k2)(x−x1). Furthermore, these last terms only give a real component

since, as discussed above, the majority and minority components of my compensate

each other. Consequently, at zero bias, only the conservative part of interlayer exchange

coupling exists, due to the interference between incident and reflected electrons with

opposite spin projection. But when the bias voltage is non zero, the transport becomes

asymetric and the terms proportional to e−i(k1−k2)(x−x1) do not compensate each other

anymore and lead to two periods of oscillations as shown in Fig. 8(a).

Spin transfer torque, proportional to my, only exits at non zero bias and possesses

only one period of oscillation T1 (see Fig. 8(b)). It is worthy to note that the transverse

components of spin density is damped by 50% within the first nanometers, and that
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Figure 8. Total spin density as a function of the location in the left electrode: a)

Current-induced interlayer exchange coupling - inset: Interlayer exchange coupling at

zero bias voltage; b) Spin transfer torque. These quantities are calculated at Vb = 0.1

V.

the amplitude of IEC is of the same order than STT. This decay lenght is very large

compared to previous theoretical predictions [10, 39] and experimental investigations on

SV [40]. As a matter of fact, the ballistic assumption holds for distance smaller than the

mean free path (≈ 5 nm in Co). In realistic devices, spin diffusion should increase the

decay of STT and IEC. Another source of this difference compared to metallic SV is the

fact that we consider perfect interfaces and no defaults in the barrier. First principle

studies of realistic Co/Cu interfaces [41] showed that the mismatch of the electronic

structure at the interface strongly reduces the transverse component of spin density. In

MTJ, the non spherical nature of the spin-dependent Fermi surface [42, 43] should also

dramatically alter the transverse spin density. This could also explain the fact that the

amplitude of spin torque is two orders of magnitude higher than in experiments.

Another characteristic specific to MTJ is that in our calculation we find that

dissipative IEC is of the same order of magnitude than STT. This is coherent with
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Figure 9. Out-of-equilibrium longitudinal spin density along the magnetic tunnel

junction for majority (solid line) and minority (dotted line) electron spin projections.

The bias voltage is Vb = 0.1 V.

the theoretical results of Theodonnis et al. [26] as well as with the experimental studies

of Petit et al. [31]. This can be attributed to the high κ-selection due to the tunneling

transport. We previously found that the contribution to torque strongly decrease with κ

(see Figs. 3 and 5) so that only electrons with small κ strongly contribute to spin torque.

In this case, the averaging of torques (and specifically IEC) will be less destructive

than in metallic spin valves where all the Fermi surface is involved in the quantum

interferences.

Finally, Fig. 9 shows the out-of-equilibrium longitudinal spin density ∆n defined

as ∆n↑(↓) = n↑(↓)(Vb = 0.1) − n↑(↓)(Vb = 0). ∆n oscillates and asymptotically reaches a

non zero value. This means that when the bias voltage is turned on, a non equilibrium

spin accumulation builds up. However, this effective spin accumulation is very small

(∆n↑ − ∆n↓ ≈ 10−7 electron/atom) and cannot influence spin current building. Then,

neglecting the role of longitudinal spin accumulation (spin density) in MTJ is justified.

4.3. Bias dependence

The bias dependence of STT and IEC in MTJ also presents strong differences with SV.

We first calculate the total spin torque exerted on the left electrode. Following the

definition of Ref. [1] and Ref. [26], the total torque is:

−→
T total =

∫ −∞

x1

−∇J
sdx = J

s(x1) (50)
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Figure 10. Bias dependence of interlayer exchange coupling (a) and spin transfer

torque (b) for different values of s-d coupling: Jsd = 0.38 eV (open circles), Jsd = 0.76

eV (filled circles), Jsd = 1.62 eV (open squares), Jsd = 2.29 eV (open triangles),

Jsd = 2.97 eV (filled squares). Top inset: Bias dependence of STT for Jsd = 1.62 eV;

the solid line was calculated following the usual way and the symbols were calculated

using Eq. 51.

Fig. 10 displays the total interlayer exchange coupling (a) and spin transfer torque

(b) as a function of the applied bias voltage, for different values of the s-d exchange

parameter Jsd. Our results are consistent with Theodonnis et al. [26]. The dissipative

IEC is quadratic whereas STT is a combination between linear and quadratic bias

dependence. In Ref. [26], the authors proposed a general formula, derived from

Slonczewski circuit theory [39], linking total spin transfer torque with interfacial spin

current densities [26]:

T|| =
Js

AP − Js
P

2
(51)

where Js
AP (P ) are interfacial spin current densities when the electrodes

magnetizations are antiparallel and parallel respectively (see the definition in Ref. [26]).

The authors claimed that this relation should hold for any electronic structure, so any

transport description. As a matter of fact, the top inset of Fig. 10(b) shows STT

calculated using Eq. 50 (solid line) and Eq. 51 (symbols). It shows very good agreement

between the two members of Eq. 51.

Experimental studies by Cornell’s group [32, 44] demonstrated a linear variation of

spin transfer torque as a function of the applied bias voltage. This linear variation is also
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Figure 11. Bias dependence of interlayer exchange coupling (a) and spin transfer

torque (b) for Jsd = 1.62 eV and different values integration depth: t = 0 Å(open

squares), t = 4 Å(filled triangles), t = 10 Å(filled circles), t = ∞ Å(open circles).

usually assumed in interpreting excitations studies [30, 31]. Moreover, the very recent

article of Sankey et al. [32] seems to confirm the fact that the dissipative exchange

coupling is quadratic as a function of the bias voltage. Finally, note that a change of

sign of spin transfer torque at high positive bias voltage is expected, consistently with

Ref. [26]. The STT change of sign should be observed in MTJ with low enough barrier

height and high breakdown voltage (MgO seems a good candidate). Nevertheless, more

technological development is needed to fabricate such junctions.

Eq. 50 assumes that all the transverse spin density has been absorbed in the free

layer. However, in very thin free layer, one can expected that transverse spin density is

not fully absorbed when leaving the free layer. In this case, one should consider that the

free layer is finite. Fig. 11 displays the bias dependence of IEC and STT for different

integration depths t (namely, different layer thicknesses):

−→
T partial =

∫ x1−t

x1

−∇J
sdx = J

s(x1) − J
s(x1 − t) (52)

The dependence can change drastically and IEC can even change its sign (note that

STT keeps its general shape). These dependences are strongly affected by the tunnel

barrier characteristics and one should to be careful in the analysis of bias dependence.
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4.4. From weak ferromagnetic to half-metallic tunnel junction

To conclude this article, we study the dependence of the total spin transfer torque and

interlayer exchange coupling as a function of the energy of the bottom of the minority

electrons conduction band ǫ↓, as indicated in Fig. 11. This energy is defined from the

Fermi energy as:

ǫ↓ = EF − E↓
c = −~

2k↓2
F

2m
(53)

where E↓
c is the absolute energy of the bottom of the conduction band. In the present

study, we vary ǫ↓, keeping ǫ↑ and EF constant. When ǫ↓ is close to ǫ↑, k↑
F ≈ k↓

F , the

metallic electrodes loose their ferromagnetic nature. For ǫ↓ ≈ 0, the Fermi wavevector

for minority electrons becomes smaller and the current polarization is strongly enhanced.

In this case, we expect an important spin transfer torque. When ǫ↓ > 0, k↓
F becomes

imaginary and the electrodes behave like a tunnel barrier for minority spins. Increasing

ǫ↓ increases the evanescent decay of minority wavefunctions in the electrodes. Then, the

product < Ψ∗↑Ψ↓ > still exists so that spin torque is non zero and decrease exponentially

from the interface.

Fig. 12 shows the amplitude of total STT and current-induced IEC in the

three different regimes: weak ferromagnetic electrodes (WFM), strong ferromagnetic

electrodes (SFM) and half-metallic electrodes (HM). As expected, in ferromagnetic

regime, STT and dissipative IEC increase until ǫ↓ = 0 (vertical line). When ǫ↓ becomes

positive, the bottom of the conduction band of minority electrons lies above the Fermi

level: no minority electrons can propagate because only evanescent states exist near the

interfaces for this spin projection. However, STT and dissipative IEC do not vanish but

reach a plateau which slowly decreases to zero when increasing Jsd (not shown).

To understand this behaviour, we calculated the spatial dependence of the

transverse spin density in the free layer. Fig. 13 shows the transverse spin density in a

usual ferromagnet, ǫ↓ = −1.37 eV (which corresponds to Jsd = 1.62 eV), as a function of

the distance from the interface in the left electrode. The oscillation possesses the same

characterisics than discussed above and we observe that the transverse spin density is

damped far from the interface. When decreasing ǫ↓, the interfacial spin density increases,

due to strong spin filtering at the interface (strong spin-dependent selection), as shown

on Fig. 14.
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Figure 13. Transfer spin density (black line) as a function of the distance in the left

ferromagnetic electrode in a usual ferromagnetic regime. We set ǫ↓ = −1.37 eV and

Vb = 0.1 V.
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Figure 14. Transfer spin density (black line) as a function of the distance in the left

ferromagnetic electrode in a strong ferromagnetic regime. We set ǫ↓ = −0.38 eV and

Vb = 0.1 V.

But when ǫ↓ changes its sign, only majority electrons can propagate and the

transverse spin density is (see Eqs. 21-24):

m↑
x = 16q1q2 sin θ ℜ{(k3 − k4)

(

e−i(k1+k2)(x−x1) − r∗↑1 ei(k1−k2)(x−x1)

den

)

} (54)

m↑
y = −16q1q2 sin θ ℑ{(k3 − k4)

(

e−i(k1+k2)(x−x1) − r∗↑1 ei(k1−k2)(x−x1)

den

)

} (55)

Considering Fermi electrons at perpendicular indidence, very small bias voltage

(eV ≈ 0) and imaginary minority electron spin wavevector, k2(4) = ik, we obtain

straightforwardly:

m↑
x = 16q1q2e

k(x−x1) sin θ ℜ{(k3 − ik)

(

e−ik1(x−x1) − r∗↑1 eik1(x−x1)

den

)

} (56)

m↑
y = −16q1q2e

k(x−x1) sin θ ℑ{(k3 − ik)

(

e−ik1(x−x1) − r∗↑1 eik1(x−x1)

den

)

} (57)

The transverse spin density is a product between oscillating function of k1 and

exponentially decaying function of k. Fig. 15 shows the spatial evolution of the
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Figure 15. Transfer spin density (black line) as a function of the distance in the left

ferromagnetic electrode in half-metallic regime. We set ǫ↓ = 19 eV and Vb = 0.1 V.

transverse spin density in the case of a half-metallic tunnel junction. All the oscillations

are damped very quickly so that the only important contribution to torque comes

from the interface. Contrary to usual MTJ (where both bulk averaging due to spatial

interferences and interfacial spin reorientation contribute to spin torque), in a strong

half-metallic tunnel junction all the torque comes from spin reorientation due to spin-

dependent reflection. In this last case, the contribution of the spatial averaging between

all the impinging electrons (κ-summation) is reduced compared to interfacial spin

transfer.

5. Conclusion

A free-electron s-d model has been proposed to analyze spin transfer effects in magnetic

tunnel junctions with amorphous barrier and non collinear electrode magnetizations.

We first studied the anatomy of spin transport in such MTJ, showing that only a small

part of the current undergoes spin-flipping due to the non collinearity of the electrode

magnetizations. This corresponds to only a small deviation of the reflected spin from

the local magnetization. Nevertheless, we showed that this small amount of precessing

spin gives rise to an important transverse spin density leading to spin torque.
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We also showed that the tunnel barrier acts like an incidence filter which increases

the contribution of the electrons impinging with angle close to the perpendicular

incidence. This κ-selection is at the origin of an important IEC, contrary to what

is observed experimentally in metallic spin valves. The ballistic transport dominating

the tunnel transport in MTJ is expected to induce large oscillations of STT and IEC as a

function of the distance from the interface. If the oscillation period is large compared to

the exchange length and one will observe a twist of the magnetization in the thickness of

the layer. Otherwise, if the oscillation period is short compared to the exchange length,

one will observe the torque integrated over the layer thickness.

The bias dependence of spin transfer torque shows a strong asymmetry and a change

of sign at positive bias voltage. This results is coherent with tight-binding calculations

[26]. However, we saw that this model is strongly limited to small bias voltage because

of the simplicity of the adopted band structure.

Finally, we analyzed STT and IEC when varying the s-d exchange coupling and we

demonstated that the torque still exists in MTJ composed of half-metallic electrodes,

due to spin-dependent reflections. However, for infinite half-metallic MTJ (for infinite

s-d coupling), it is shown that STT and dissipative IEC vanishes to zero.

Furthermore, several numerical studies have shown that, even in amorphous barrier,

the interfaces composition and specially the presence of interfacial oxygen have a

very deep influence on the spin polarization and thus on TMR and STT [42]. The

recent development of MgO-based MTJ in spin transfer studies reduced the interest

in amorphous barriers. However, amorphous barriers have the ability to present a

simple physical framework which can constitute a basis to understand spin transfer in

MTJ. Nevertheless, because of its more complex band structure and spin-filtering effect

associated with the symmetry of wavefunctions, microscopic analysis of spin transfer

in MgO-based MTJ would present exciting fundamental characteristics even on spin

transfer effects [43].
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Appendix: Spin-dependent wave-functions in a clean MTJ

In this appendix, we give the analytical formulae for the spin dependent wavefunctions

in the MTJ. Some functions which will be used in the description of this wavefunctions

are first defined:

q2
0 =

2m

~2
(U − EF )

q(x) =

√

q2
0 −

2m

~2

(

x − x1

x2 − x1
eV − ǫ

)

+ κ2

q1 = q(x1)

q2 = q(x2)

k1(2) =

√

(

k
↑(↓)
F

)2

− 2m

~2
ǫ − κ2

k3(4) =

√

(

k
↑(↓)
F

)2

− 2m

~2
(ǫ − eV ) − κ2

E(xi, xj) = exp

∫ xj

xi

q(x)dx

En = E(x1, x2)

where EF is the Fermi energy, U is the height of the barrier, V is the bias voltage and

ǫ = EF − E, E being the energy of tunnelling electron. We define:

Ψ(q1, ki, q2, kj) = En(q1 − iki)(q2 − ikj) − E−1
n (q1 + iki)(q2 + ikj)

φ(q1, ki, q2, kj) = En(q1 + iki)(q2 − ikj) − E−1
n (q1 − iki)(q2 + ikj)

den = Ψ(q1, k1, q2, k3)Ψ(q1, k2, q2, k4)(1 + cos θ) + Ψ(q1, k2, q2, k3)Ψ(q1, k1, q2, k4)(1 − cos θ)

r↑1 =
1

den
[φ(q1, k1, q2, k3)Ψ(q1, k2, q2, k4)(1 + cos θ) + φ(q1, k1, q2, k4)Ψ(q1, k2, q2, k3)(1 − cos θ)]

r↑3 =
1

den
[φ(q2, k3, q1, k1)Ψ(q1, k2, q2, k4)(1 + cos θ) + φ(q2, k3, q1, k2)Ψ(q1, k1, q2, k4)(1 − cos θ)]

Electrons initially in the left electrode have the following wavefunctions along the

structure :

Ψ
↑(↑)
L (−∞ < x < x1) =

1√
k1

[

eik1(x−x1) − r↑1e
−ik1(x−x1)

]

Ψ
↓(↑)
L (−∞ < x < x1) =

8q1q2

√
k1 (k3 − k4) sin θ

den
e−ik2(x−x1)
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Ψ
↑(↑)
L (x1 < x < x2) = − 2i

den

√

k1q1

q(x)
(E (x2, x) [Ψ (q1, k2, q2, k4) (q2 + ik3) (1 + cos θ)

+Ψ (q1, k2, q2, k3) (q2 + ik4) (1 − cos θ)]

+E−1 (x2, x) [Ψ (q1, k2, q2, k4) (q2 − ik3) (1 + cos θ)

+Ψ (q1, k2, q2, k3) (q2 − ik4) (1 − cos θ)])

Ψ
↓(↑)
L (x1 < x < x2) =

4q2

den

√

k1q1

q(x)
(k3 − k4) sin θ

[

E (x1, x) (q1 − ik2) + E−1 (x1, x) (q1 + ik2)
]

Ψ
↑(↑)
L (x2 < x < ∞) = − 4i

den

√

k1q1q2

[

eik3(x−x2)Ψ (q1, k2, q2, k4) (1 + cos θ)

+eik4(x−x2)Ψ (q1, k2, q2, k3) (1 − cos θ)
]

Ψ
↓(↑)
L (x2 < x < ∞) = − 4i

den

√

k1q1q2

[

eik3(x−x2)Ψ (q1, k2, q2, k4) − eik4(x−x2)Ψ (q1, k2, q2, k3)
]

sin θ

Electrons initially in the right electrode have the following wavefunctions along the

structure :

Ψ
↑(↑)
R (−∞ < x < x1) = − 8i

den

√

q1q2k3Ψ(q1, k2, q2, k4) cos
θ

2
e−ik1(x−x1)

Ψ
↓(↑)
R (−∞ < x < x1) = − 8i

den

√

q1q2k3Ψ(q1, k1, q2, k4) sin
θ

2
e−ik2(x−x1)

Ψ
↑(↑)
R (x1 < x < x2) = − 4i

den

√

k3q2

q(x)
Ψ(q1, k2, q2, k4) cos

θ

2

[

E(x1, x)(q1 − ik1) + E−1(x1, x)(q1 + ik1)
]

Ψ
↓(↑)
R (x1 < x < x2) = − 4i

den

√

k3q2

q(x)
Ψ(q1, k1, q2, k4) sin

θ

2

[

E(x1, x)(q1 − ik2) + E−1(x1, x)(q1 + ik2)
]

Ψ
↑(↑)
R (x2 < x < ∞) = cos

θ

2

1√
k3

[

e−ik3(x−x2) − r↑3e
ik3(x−x2)

]

+ sin
θ

2

sin θ√
k3

8q1q2k3(k1 − k2)

den
eik4(x−x2)

Ψ
↓(↑)
R (x2 < x < ∞) = sin

θ

2

1√
k3

[

e−ik3(x−x2) − r↑3e
ik3(x−x2)

]

− cos
θ

2

sin θ√
k3

8q1q2k3(k1 − k2)

den
eik4(x−x2)

To obtain Ψ↓(↓) and Ψ↑(↓) from Ψ↑(↑) and Ψ↓(↑), θ must be replaced by −θ and k1

(k3) by k2 (k4) in the above formulae.
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