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Abstract

Propagation of transient mechanical waves in porous media is numerically investi-
gated in 1D. The framework is the linear Biot’s model with frequency-independant
coefficients. The coexistence of a propagating fast wave and a diffusive slow wave
makes numerical modeling tricky. A method combining three numerical tools is
proposed: a fourth-order ADER scheme with time-splitting to deal with the time-
marching, a space-time mesh refinement to account for the small-scale evolution of
the slow wave, and an interface method to incorporate the jump conditions at inter-
faces. Comparisons with analytical solutions confirm the validity of this approach.

Key words: Elastic waves; Porous media; Biot’s model; Time-splitting; ADER
schemes; Space-time mesh refinement; Immersed interface method.

1 Introduction

The propagation of mechanical waves in porous media is of interest in many
areas in applied mechanics, including industrial foams, spongious bones and
petroleum rocks. The most-widely-used model describing the evolution of
small mechanical perturbations in a saturated porous medium is that proposed
by Biot in 1956. Two regimes were distinguished by Biot: one corresponding
to a low-frequency range [3], and one to a high-frequency range, where some
of the physical parameters depend on the frequency [4]. We focus on transient
mechanical waves whose frequency content lies in the low-frequency range.
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URL: http://w3lma.cnrs-mrs.fr/∼MI/ (Bruno Lombardb).

Preprint submitted to Elsevier Science 30 November 2007



Up to the 95’s, Biot’s equations were mainly studied in the harmonic regime.
Various time-domain methods have been proposed since, based on finite-
differences [9,22], finite-elements [10,23], boundary-elements [19], and spectral
methods [6]. Since non-realistic values of the physical parameters were used,
the real difficulties arising when performing time-domain simulations were of-
ten overlooked [7,11]. These difficulties are induced by the coexistence of two
solutions with radically different dynamics: a propagating ”fast wave” and a
diffusive ”slow wave” [8]. The latter is highly dispersed and attenuated, and
remains localized near sources and interfaces.

The aim of the present study is to develop an efficient numerical method to
compute the solution made up of these two waves. A time-splitting is used
together with a fourth-order ADER scheme [17]. A flux-conserving space-time
mesh refinement is implemented at the places where the diffusive mode is
localized [2]. Lastly, an immersed interface method gives a subcell resolution
of the interfaces and accurately models the jump conditions between various
materials [18]. The numerical tools used are described and tested in 1D.

The paper is organized as follows. The Biot’s model is briefly recalled in section
2. The numerical tools used are described in section 3. Section 4 presents
numerical experiments confirming the validity of this approach. In section 5,
conclusions are drawn and some future perspectives are suggested.

2 Problem statement

2.1 Biot’s model

Biot’s theory describes the propagation of mechanical waves in a porous medium
consisting of a solid matrix saturated with fluids circulating freely through the
pores. The underlying hypotheses in the low-frequency range are as follows:

• the wavelength of the perturbations is large in comparison with the diameter
of the pores, as well as with the representative macroscopic volumes;

• the amplitudes of the perturbations are small;
• the elastic and isotropic matrix is fully saturated by a single fluid phase.

Biot’s model is based on 10 physical parameters: the density ρf and the dy-
namic viscosity η of the fluid; the density ρs and the shear modulus µ of
the solid; the porosity 0 < φ < 1, the tortuosity a ≥ 1, the absolute per-
meability κ, the Lamé coefficient λf , and the two Biot coefficients β and m
of the saturated matrix. The following notations are introduced: ρw = a

φ
ρf ,

ρ = φ ρf + (1 − φ) ρs, and χ = ρ ρw − ρ2
f > 0. From the previous parameters,
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a critical frequency fc is defined

fc =
η φ

2 π a κ ρf
. (1)

With a harmonic wave of frequency f , the viscous effects are greater than
the inertial effects if f < fc. In the low-frequency range f < 0.15 fc [5], the
dynamic permeability κ/η does not depend on f . Lastly, the unknowns are the
elastic velocity vs, the elastic stress σ, the filtration velocity w = φ (vf − vs),
where vf denotes the fluid velocity, and the acoustic pressure p.

When dealing with heterogeneous media, all the parameters are assumed to
be piecewise constant and discontinuous across the interfaces. Taking x = α
to denote the location of an interface, the jump conditions are [12]:

[vs(α, t)] = 0, [w(α, t)] = 0, [σ(α, t)] = 0, [p(α, t)] = −
1

ξ
w(α−, t),

(2)
where ξ is the hydraulic permeability of the interface. If ξ → +∞, we obtain
the classical open-pore conditions, with a perfect hydraulic contact [5]. If ξ →

0+, no motion of the fluid relative to the matrix occurs: the pores are closed.

2.2 Initial boundary-value problem

Setting U = T (vs, w, σ, p),

A =





















0 0 −ρw/χ −ρf/χ

0 0 ρf/χ ρ/χ

−(λf + 2 µ) −β m 0 0

β m m 0 0





















, S =
η

κ

ρ

χ





















0 −ρf/ρ 0 0

0 1 0 0

0 0 0 0

0 0 0 0





















,

(3)
the Biot’s evolution equations [3] are written together with the jump condi-
tions (2) in the form of a first-order linear system with a source term







































∂

∂ t
U +

∂

∂ x
AU = −S U if x 6= α, t ≥ 0,

[C U(α, t)] = 0,

U(x, 0) = U 0(x),

(4)

where the 4 × 4 matrices C are deduced from (2). A detailed mathematical
analysis of the solution to (4) in a homogeneous medium can be found in [10].
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Here we restrict the discussion to basic properties that are directly useful for
numerical modeling purposes [5]. The spectral radius of S is R(S) = η

κ
ρ
χ
. A

dispersion analysis of (4) shows the existence of two waves with phase velocities
c1(f) ≤ c1 and c2(f) ≤ c2, where ±c1 and ±c2 are the eigenvalues of A (c1 >
c2 > 0). These waves are called the fast wave and the slow wave, respectively.
If η = 0, which is physically irrelevant with usual media, the waves are purely
propagated and the mechanical energy is constant. If η 6= 0, the fast wave
is almost non-dispersive and non-diffusive. On the contrary, the slow wave
becomes highly dispersive and diffusive. If f ≪ fc, then c2(f) ≪ c2: the slow
wave tends towards a non-propagating mode [8]. The direct contribution of
the slow wave to the overall wave propagation processes is therefore negligible.
However, the accurate computation of the fast wave depends crucially on the
effects of the slow wave on the balance equations at interfaces [5].

3 Numerical tools

3.1 Numerical scheme

This subsection deals with the numerical resolution of (4) far from α. A uni-
form grid is considered here, with the spatial mesh size ∆ x and the time step
∆ t. An approximation U

n
i of U(xi = i ∆ x, tn = n ∆ t) is sought. The numeri-

cal methods recalled in section 1 usually consist in simultaneously discretizing
the propagating part and the source term in (4). If η 6= 0, a Von-Neumann
analysis of stability typically yields

∆ t ≤ min

(

∆ x

c1

,
2

R(S)

)

, (5)

which is highly restrictive since R(S) may be large. For instance, CFL =
c1 ∆ t/∆ x ≈ 10−2 with the media considered in section (4.2), and CFL ≈

10−12 can be reached with highly dissipative fluids such as bitumen. A much
more efficient approach is to split (4) and to successively solve the propagating
part and the source term part by Strang’s splitting:



















∂

∂ t
U +

∂

∂ x
A U = 0,

∂

∂ t
U = −S U .

(6)

The first equation in (6) can be solved by applying any explicit two time step
spatially-centered flux-conserving scheme which can be written abstractly

U i = H

(

U
n
i−s, ..., U

n
i+s

)

, (7)
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where s is the width of the stencil. In the present numerical experiments, a
temporally and spatially fourth-order accurate ADER scheme was used [17,20],
with s = 2. This scheme accounts for waves over long distances with small
dispersion and diffusion errors, even on coarse grids. The second equation in
(6) is solved exactly: p and σ are unchanged, whereas the velocities become

vn+1
i = vi +

ρf

ρ

(

1 − e−
η

κ

ρ

χ

∆ t

2

)

wi, wn+1
i = e−

η

κ

ρ

χ

∆ t

2 wi. (8)

The splitting (6) with (8) yields the optimal stability condition CFL ≤ 1,
but it decreases the theoretical order of convergence to 2. In practice, the
convergence rate measured was close to 3 in our experiments.

3.2 Mesh refinement

If η 6= 0 and f ≪ fc, the slow wave has much smaller spatial scales of evolution
than the wavelength of the fast wave. A very fine grid is consequently required
to account for its evolution. Since the use of a fine uniform grid on the whole
computational domain is out of reach in view of 2-D simulations, the grid
refinement procedure provides a good alternative. In addition, since the slow
wave remains localized near the sources and the interfaces, grid refinement is
necessary only around these places.

To limit the numerical dispersion on the coarse grid, it is preferable to also
perform temporal refinement using a local CFL stability condition. Many al-
gorithms for space-time mesh refinement have been recently developed in a
variational framework, which ensure the stability of the coupling between grids
by conserving the discrete energy [16]. Here we adopt another approach based
on flux conservation [2], which is more naturally coupled to the flux-conserving
scheme (7). The extrapolated values required to couple coarse and fine grids
are obtained by performing linear interpolation in space and time on the nu-
merical values at the surrounding nodes. In the case of the Lax-Wendroff
scheme applied to the advection equation, the stability of the coupling has
been proved in [1], whatever the refinement factor.

3.3 Interface method

x xx x xJ−s+1 J−1 J J+1 J+2 xJ+s

Ω Ω0 1
α− +

Fig. 1. Interface between media Ω0 and Ω1 and the irregular nodes around α.
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This subsection deals with the time-marching at the grid nodes where the
stencil of (7) crosses α. The grid is assumed to be uniform around α, and
we define J by xJ ≤ α < xJ+1 (figure 1). At the so-called irregular nodes
xJ−s+1, ..., xJ+s, the scheme (7) must not be applied näively, for three reasons.
First, the spatial derivatives of the solution are not smooth across α, hence the
order of convergence of the scheme decreases. Secondly, the subcell position of
α inside the mesh is ignored, which leads to a O(∆ x) error. Thirdly, the jump
conditions (2) are not included in the scheme. The numerical waves diffracted
by the interface may therefore not tend towards the exact waves.

At the irregular nodes, we adapt an immersed interface method [18]. This
method requires knowing the jump conditions satisfied by the spatial deriva-
tives of U . We deduce these conditions from (4) for all m ≥ 1

∂m

∂ tm
[C U(α, t)] =

[

(−1)m
C

(

A
∂

∂ x
+ S

)m

U(α, t)

]

= 0,

⇒

(

U , ...,
∂m

∂ xm U

)

(α+, t) = Dm

(

U , ...,
∂m

∂ xm U

)

(α−, t),

(9)
where Dm is a 4 (m + 1) × 4 (m + 1) matrix depending on the permeability ξ
and on the physical parameters around α. Let k be a positive integer. At the
2 k grid nodes surrounding α, 2 k-th order Taylor expansions of U(xi, tn) on
α±, together with the jump conditions (9), are written in the matrix form















U(xJ−k+1, tn)
...

U(xJ+k, tn)















= M















U (α−, tn)
...

∂2 k−1

∂ x2 k−1
U(α−, tn)















+















O(∆ x2 k)
...

O(∆ x2 k)















, (10)

where M is a 8 k × 8 k matrix. The Taylor rests are removed from (10), and
the exact values are replaced by numerical ones. The values of the spatial
derivatives obtained by performing inversion of (10) are used to build smooth
extensions of the solution, called modified values, on the right of α:

i = J + 1, ..., J + s, U
∗

i =

(

I4, ...,
(xi − α)2 k−1

(2 k − 1) !
I4

)

M
−1















U
n
J−k+1

...

U
n
J+k















,

(11)
where I4 is the 4×4 identity matrix. Modified values on the left of α are defined
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similarly. They are then injected into the scheme at the irregular nodes:

i = J − s + 1, ..., J, U i = HΩ0

(

U
n
i−s, ..., U

n
J , U

∗

J+1, ..., U
∗

i+s

)

,

i = J + 1, ..., J + s, U i = HΩ1

(

U
∗

i−s, ..., U
∗

J , U
n
J+1, ..., U

n
i+s

)

,

(12)

where HΩ0
and HΩ1

denote the operator H with physical parameters of
media Ω0 and Ω1, respectively. Some comments about the interface method:

• since the jump conditions are linear, the work is mainly carried out during
a preprocessing step. At each time step, only small matrix-vector products
(11) are required to compute the modified values. The computational cost
is therefore negligible in comparison with that of time-marching;

• the matrix M in (10) depends on the jump conditions and on the position of
α inside the mesh. Using the modified values (12) introduces into the scheme
a subcell resolution of the interface, which removes the O(∆ x) error [18];

• in the limit case where the parameters are the same on both sides of α and
the hydraulic contact is perfect, U

∗

i = U
n
i if k ≥ s. Consequently, we again

obtain the scheme applied in homogeneous medium;
• with a r-th order accurate scheme, the local truncation error of (12) at

irregular nodes is r-th order if 2 k − 1 ≥ r [18]. The fourth-order ADER
scheme therefore requires k = 3. As deduced from [13], k = 2 suffices to
ensure fourth-order overall accuracy if no splitting is required;

• GKS analysis [14] was performed in the case of inviscid fluids on a uniform
grid to determine the stability of the hybrid scheme made up of (7) and (12).
This analysis is based on the possible existence of discrete increasing modes
emitted solely by the interface without any incident field [21]. A parametric
study showed that the hybrid scheme was stable in tests 1 and 2 presented
below, whatever the position of the interface, with k = 1, 2, 3.

4 Numerical experiments

A 400-m domain with an interface at α = 200.67 m is studied. Incident,
reflected and transmitted waves are denoted by I, R and T. Fast and slow waves
are denoted by F and S. Analytical and numerical solutions are shown in solid
lines and circles. Vertical dotted lines denote the position of mesh refinement.
If η = 0 in both media, computing the analytical solution is straightforward.
Otherwise, it follows from a Fourier analysis. The source is a C4 truncated
sinusoid with a central frequency f = 30 Hz, as shown in Figure 2-a. On the
main grid, ∆ x = 1 m, and the computations are performed with CFL = 0.9.

Two sets of physical parameters are used (table 1). In tests 1 and 2, they
model sandstone saturated with water (Ω0) and schist saturated with water
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Parameters Ω0 Ω1 Ω0 Ω1

ρf (kg/m3) 1040 1040 1040 10

η (Pa.s) 0 0 10−3 2.2 10−5

ρs (kg/m3) 2650 2211 2650 2650

µ (Pa) 1.85 109 3.54 109 1.85 109 1.85 109

φ 0.3 0.01 0.3 0.3

a 2 2 2 2

κ (m2) 10−12 10−16 10−12 10−12

λf (Pa) 8.40 109 4.69 109 8.40 109 2.43 109

β 0.88 0.01 0.88 0.35

m (Pa) 7.05 109 2.46 1011 7.05 109 5.37 107

c1(f) (m/s) 2364.9 2314.1 2364.5 1817.8

c2(f) (m/s) 774.9 1087.7 38.1 30.3

fc (kHz) 0 0 23 52.5

Table 1
Physical parameters in tests 1-2 (central column) and tests 3-4 (right column).

(Ω1), except that η = 0 [9]. This is not physically realistic, but it sheds light
on the ADER scheme and on the interface method: S = 0 means that no
splitting (6) is required. Nor is mesh refinement required, since the slow wave
propagates. In tests 3 and 4, η 6= 0 and f ≪ fc: the slow wave is a static
mode, which puts the focus on the mesh refinement. The parameters model
sandstone saturated with water (Ω0) and with gas (Ω1).

4.1 Inviscid media

First we consider identical media Ω0 linked by an imperfect hydraulic contact
ξ = 10−16 m.s−1.Pa−1. Wave conversions are shown in Figure 2-b, and a good
agreement is seen between the analytical and numerical values; on this scale,
the reflected fast wave is not visible. Since no contrast of Biot’s coefficients
occurs, the unmodified scheme (7) without the interface method (12) would
propagate the incident wave without diffraction.

Test 2 deals with media (Ω0, Ω1) linked by a perfect hydraulic contact 1/ξ = 0.
Without using the interface method, GKS analysis and direct simulations show
that the scheme is unstable and the solution blows up when crossing x = α.
Figure 3-a gives the analytical and numerical values obtained. The results of
convergence studies are presented in Figure 3-b. As mentioned in section 3.3,
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Fig. 2. Test 1: at initial instant (a) and after crossing the interface (b).
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Fig. 3. Test 2: after crossing the interface (a) and convergence measurements (b).

k = 2 or k = 3 maintain the fourth-order accuracy of the ADER scheme;
k = 1 does not suffice, since it leads to a rate of convergence of only 2.9.
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Fig. 4. Test 3: no refinement (a); zoom around xs, with and without refinement (b).
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4.2 Dissipative media

Test 3 focuses on the homogeneous dissipative medium Ω0 excited by a ponc-
tual stress source at xs = 200 m. A direct discretization with no splitting
would give CFL = 0.03 (5). A snapshot of p is shown in figure 4-a. Fast waves
are advected rightwards and leftwards while the slow waves remain localized
around xs, and vary considerably on small spatial scales. Their numerical val-
ues are highly smeared. In figure 4-b, the crude solution is compared with a
solution refined 64 times around xs. Good agreement is seen between the exact
and refined numerical values.

(a) (b)

120 140 160 180 200 220 240 260

0 

200 

400 

600 

800 

1000 

1200 

1400 

x (m)

p 
(P

a)

numerical

exact

IF+RF+RS

TS

TF

120 140 160 180 200 220 240 260

−300 

−200 

−100 

0 

100 

200 

300 

x (m)

p 
(P

a)

numerical

exact

RF

RS TS TF

(c) (d)

194 196 198 200 202 204 206 208

0 

200 

400 

600 

800 

1000 

1200 

1400 

x (m)

p 
(P

a)

numerical

exact
RS

TS

refinement:

1 8 64 64 8 1

194 196 198 200 202 204 206 208

−50 

−40 

−30 

−20 

−10 

0 

10 

x (m)

p 
(P

a)

numerical

exact

RS

TS

refinement:

1 8 64 64 8 1

Fig. 5. Test 4: snapshot of p at time t1 (a-c) and t2 (b-d). Zoom around α (c-d).

Test 4 is performed on (Ω0, Ω1), with 1/ξ = 0. Two successive mesh refine-
ments with factors 8 and 64 are used around α. Snapshots of p at t1 and t2 > t1
are shown in figure 5. During the interaction of the incident fast wave with
the interface (a-c), since the slow waves have a greater amplitude than that of
fast waves, they play a crucial role in the balance of momentum and mass: a
poor assessment of the slow waves would invalidate that of the other ones. At
t2 (b-d), the slow waves are greatly attenuated and remain localized near α.
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5 Conclusion

Numerical modeling of 1-D transient Biot’s equations was addressed here with
frequency-independant coefficients. Three numerical tools were combined to
obtain a method able to describe accurately the full process of wave propaga-
tion: a fourth-order scheme with time-splitting; a space-time mesh refinement;
and an immersed interface method. This method is required to account for the
properties of the slow wave whatever the frequency. Obviously, the applica-
tion of the method is limited to the validity domain of the Biot’s model in the
low-frequency range. Further research is suggested:

• studying the high-frequency range [4], where κ/η is proportional to f 1/2.
Fractional derivatives are therefore involved in the time-domain [15];

• accounting for dissipative effects in the solid skeleton;
• coupling Biot’s model with nonlinear boundary conditions, to model seismic

rupture;
• extending the method to two-dimensional configurations. The validity of

each of the numerical tools has already been established in 2D.
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