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Abstract. The emergence of real-time 3D ultrasound (US) makes it plestd
consider image-based tracking of subcutaneous soft ttssgets for computer
guided diagnosis and therapy. We propose a 3D transrectdldd&d tracking
system for precise prostate biopsy sample localisatioe. dim is to improve
sample distribution, to enable targeting of unsampledoregfor repeated biop-
sies, and to make post-interventional quality controlsjiis. Since the patient is
not immobilized, since the prostate is mobile and due todhethat probe move-
ments are only constrained by the rectum during biopsy aiten, the tracking
system must be able to estimate rigid transformations tiegdb@yond the capture
range of common image similarity measures. We propose affiaistobust multi-
resolution attribute-vector registration approach trahbines global and local
optimization methods to solve this problem. Global optiatian is performed
on a probe movement model that reduces the dimensionalityeadearch space
and thus renders optimization efficient. The method wagdesh 237 prostate
volumes acquired from 14 different patients for 3D to 3D aidt8 orthogonal
2D slices registration. The 3D-3D version of the algorithomeerged correctly
in 96.7% of all cases in 6.5s with an accuracy of 1.41mm (r)rassd 3.84mm
(max). The 3D to slices method yielded a success rate of 8812/@3s with an
accuracy of 1.37mm (r.m.s.) and 4.3mm (max).

1 Introduction

Computer-guidance for medical interventions on subcutaseoft tissue targets is a
challenging subject, since the target tracking problentilisn®t satisfactorily solved.
The main difficulties are caused by the elasticity, mobidityd inaccessibility of soft
tissues. With 3D US a real-time volume imaging technologyelnee available that pro-
vides enough spatial tissue information to make image¢b#iaeking possible. Image-
based tracking is essentially a mono-modal image registratoblem with a real-time
constraint. The primary task is to find the physical transfation7" in a transforma-
tion spacel between two images of the same object. The choicE depends on the
underlying physical transformation (e.g. rigid, affine tastic) and the requirements of
the target application. An extensive review on registratieethods is given irJ1].
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Nowadays, research on mono-modal 3D US registration oftssfiie images fo-
cusses on rapid deformation estimation. Most studies & dbimain, however make
the implicit assumption that the rigid part of the transfation to estimate is either
small or known. Confronted with combinations of large rigi@nsformations and elas-
tic deformations, the proposed solutions fail without digire-registration. For many
clinical applications large rigid transformations can beided by immobilizing both
the patient and the US probe. In the case of interventiortsowtttotal anesthesia this
however causes considerable patient discomfort. Moretigsisometimes impossible
to fix the US probe, e.g. when the probe serves as a guide fgicalinstruments. The
respiratory and the cardiac cycle can be additional sowt#ssue displacements. In
all these cases it is necessary to identify the rigid parhefitansformation before car-
rying out image-based deformation estimation.

Estimation of large rigid transformations is basically algfl optimization problem
since common similarity measures exhibit search-frietigracteristics (e.g. convex-
ity) only in a small region near the global solution. The cartgional burden of global
optimization in a 6-D rigid transformation space is protiita for tracking tasks.|]2ﬂ 3]
propose to reduce the intra-interventional computatime tof global searches by pre-
computing a feature-based index hash table. During inteiwe, similarity evaluation
is replaced by computation of the geometric index followgdhtfast data-base look-
up. In the context of US image tracking, this approach haslibedvantage of relying
on feature extraction, which often lacks robustness whefronted with partial target
images, speckle and US shadows. Also, it cannot reduce tinglerity of the opti-
mization problem and pre-computation time is not negligibl

Relatively few investigations involving 3D US image basextking of soft tissues
have been reported. In the context of respiratory gatecdtiadi treatment,[[4] acquire
a localized 3D US reference image of the liver or the pandrebseath-hold state and
register it rigidly with the treatment planning CT volumeuiihg therapy, localized US
slices of the organ are continuously compared with the eefe volume using image
correlation to retrieve the planning position of the orgar[ﬁ] real-time 3D US images
of the beating heart are registered multimodally with a $6:tD MR images covering
the entire cardiac cycle. A localizer is used to initialihe spatial registration process
while the ECG signal serves for temporal alignment. The@nsthchieve precise rigid
registration in an overall computation time of 1 second withutual information based
rigid registration algorithm. In both studies relativeidgnovements between probe and
target organ are limited to movements caused by the respjrat cardiac cycles, which
are predictable and repeatable to a certain extent.

The target application of this work is 3D transrectal ultnasd (TRUS) prostate
biopsy trajectory tracking. Today, prostate biopsies aneied out using 2D TRUS
probes equipped with a guide for spring needle guns. Witlttineent standard biopsy
protocol, consisting typically of 12 regularly distribdtsamples, it is impossible to
know the exact biopsy locations after acquisition, whictkesaprecise biopsy-based
tumor localization, quality control and targeted repedtiegsies impossible. A TRUS-
based prostate tracking system would make it possible tegrall sample locations
into a reference image of the prostate and thus to identifye#tact sampling locations.

Image-based prostate biopsy tracking is, however, chgitign (i) the gland moves



and gets deformed under the pressure of the TRUS probehg@ipatient is neither im-
mobilized nor under total anesthesia. Most patients mayréfgtantly during the biopsy
procedure. (iii) Since the probe serves also to guide thdlyigttached needle, probe
movements are important. Rotations around the principdig@axis of more than 180
and tilting of up to 40 are frequent. Also, the probe head wanders over the gland sur
face during needle placement, which leads to relative dégghents of up to 3cm. The
global search problem thus fully applies to prostate alignimtracking a reference on
a calibrated TRUS probe cannot solve the problem due to @Yi@nand it is not very
success promising to minimize similarity measures on hiopgges using only fast
down-hill optimizers because of (iii). In this study we poge a solution to the global
search problem for TRUS prostate image tracking, which istsis a search space re-
duction using a probe movement model. We further identifgffinient intensity-based
similarity measure for TRUS prostate images and descrilzstanfiulti-resolution op-
timization framework. Finally, the robustness, accurgcggcision and performance of
the method are evaluated on 237 prostate volumes from 1dnpsti

2 Methods

2.1 A framework for US image-based tracking

The purpose of a tracking system is to provide the transfoomdetween an object
in reference space and the same object in tracking space isem moment. In the
case of image-based tracking, the reference space is detety the choice of a
reference image to which all subsequently acquired imagkbevregistered. In the
case of 3D TRUS prostate biospies, it is convenient to aec@iBD US volume as
reference just some minutes before the intervention.

Unfortunately, most currently available 3D US systems dbprovide real-time
access to volume data. They can, however, visualize tworee thrthogonal 2D (02D)
slices inside the field of view of the probe in real-time. Tdalices can be captured
using a frame-grabber and used for registration with a presly acquired reference
volume @ﬂi] Note that compared to 2D US images, 02D plamdiset considerably
more spatial information, which potentially makes 3D to a2@istration more robust
than 3D to 2D registration. In this work we will evaluate b&b to 3D and 3D to
02D registration for image-based tracking.

Registration algorithms can be separated into two mairsetasntensity-based and
feature-based algorithms. As it is challenging to defineisténd fast feature extraction
algorithms for US images of the prostate, due to the low SNR$fimages and the
absence of clearly identifiable geometric features in tlostate, this study focuses on
intensity-based approaches. Intensity-based measwr&sawn for their robustness in
presence of noise and partial image overlﬂ)s [1].

Image registration can be modeled as a minimization pramfemsimage similarity
measure that depends on a transformafiofhere exist robust and fast algorithms for
local minimization of image similarity measures. The caiodi for convergency to the
target transformatiofd’ is that the optimizer starts from a point inside the captarge
of T [E]. However, the capture range of common intensity meas(gey. the Pear-
son correlation coefficient (CC) or normalized mutual infiation (NMI)) is relatively



small compared to the transformation space that can besséor TRUS prostate

biopsies. This problem can be attacked from two sides: thedpproach is to extend
the capture range by improving the similarity measure, evtiie second method con-
sists in finding a point inside the capture range using a igkitowledge on the probe

position.

Several parts of the registration approach require inftionaabout the prostate
location in the reference image. For our purpose it is sefficto set an axis-aligned
bounding box on the prostate boundaries in the referencganie bounding box has
to be defined by the clinician. No bounding box is needed fertithcking images.

2.2 Extending the Capture Range

Similarity Measure: We chose CC as similarity measure since it yields a larger cap
ture range than NMI for mono-modal US registration. Comgdoesums of squared
distances (SSD), it is insensitive to linear intensity sfanmations and is capable of
detecting inverse correlations. Intensity shifts can oatue to probe pressure varia-
tion, while inverse correlations can be observed when atialg transformations far
from the physical solution, in particular for gradient magde images.

Multi-resolution pyramid: Optimizing on coarse resolution levels of a gaussian
pyramid yields some important advantages: coarse levelstatistical aggregates of
the original image which are free of high-frequency noisgparticular speckle noise.
Once the optimization on the coarsest level is terminatesl solution will be refined
on denser levels, but from a considerably better startingtp®his approach not only
improves the characteristics of the similarity measureduucing noise, but also con-
siderably speeds up registration time, as most of the opditioin can be performed on
low-resolution images.

Attribute-vector approach: The capture range can be extended by combining mea-
sures of different aspects of the images to be comp{[eﬂj.[ﬁﬁc}e there is a strong
probability that the similarity measure produces for exaspect a significant minimum
near the correct solution, it is possible to amplify and widee capture range of the
solution by combining the measures. Also, it is less likalgttnoise-related local min-
ima are produced at identical locations, which makes itiptes$o flatten them out in
a combined measure. For this study we chose to evaluate #geimtensity and its
gradient magnitude/(and.J are the images to be compared):

Enp;(T):=(1-CC(I,JoT))- (1= CC(||VI]],[[VJ o Tl[)) (1)

To improve performance and since gradient intensitiesigitdyorandom on noisy high-
resolution images, attribute vectors are only used on Iaelmtion levels of the image
pyramid.

Panorama images:The pyramid-like form of the US beam and the fact that the
probe also serves to guide the biopsy needle makes it urahleidhat the gland is
often only partially imaged. Hence at least the referen@gershould contain the entire
prostate; otherwise the similarity measure may yield ramdesults when the image
overlap gets too small during registration. We thereforguére three partial prostate
volumes using the following protocol: the operator first @icgs one image where the



prostate is centered in the US beam, and then takes two@uallitmages with rotations
of 60° around the principal axis of the probe. Care is taken to atefdrmation and US
shadows. The panorama image resulting from compoundirsg thequisitions finally
serves as reference.

2.3 Finding a point in the capture range

Mechanical probe movement model: To estimate large transformations between im-
ages, it is necessary to find a point inside the capture rahthe cimilarity measure.
Regular sampling of a 6-D rigid transformation space usingrg sparse grid size of
10 already requires0® function evaluations, which results in an unacceptablemem
tational burden. The physical constraints exerted by th&une on probe movements,
and the fact that the probe head always remains in contalettiagt thin rectal wall at
the prostate location lead to the following assumptionghé&)probe head is always in
contact with the prostate membrane, 2) the most importdatioms occur around the
principal axis of the probe, and 3) all other rotations havetation point that can be
approximated by a unique fixed poiftP,..; in the rectum.

With these assumptions it is possible to define a probe movemedel based on
a prostate surface approximation, the probe position itJtBénage (which is known)
and a rotational fixed point in the rectum. As shown in @,Maae prostate surface
is approximated by a bounding-box aligned ellipsoid. THp®bid is modeled using
a 2D polar parameterizatioR R, f(a,)- The origin P Rg.,,.s(0,0) Of the parameter-
ization corresponds to the intersection of the line from pinestate cente€p,., to
F Ppect- As illustrated in Fig[1() PRs.. (a5 implements assumption 1) by de-
termining plausible US transducer positions on the prestatface. Assumption 3) is
satisfied by requiring that the principal probe axis mustatsvpass through' Prc.:.
Finally, a rotation about the principal probe axis impletsesssumption 2) and thus
adds a third DOF (See Fify. 1(c)).

Systematic Exploration The 3D subspace defined by the probe movement model is
systematically explored using equidistant steps. To nmizgrthe computational burden,
systematic exploration is performed on the coarsest résolievel. Since the explo-
ration grid points do not change during an interventionsipossible to precompute
and to store all resclices of the panoramic image neceseaithé evaluation of the
intensity measure. The rotational space around the pahaips of the probe is uncon-
strained (360), while tilting ranges are limited to the maximum value detmed on
test data, plus a security margin. The number of steps pegrdifon are also experi-
mentally determined. The five best results of the systeneatitoration are stored with
the constraint that all transformations respect a minimistadce between each other.
If two results are too close, only the best one is stored. Neldcal search using the
Powell-Brent algorithm is performed only on the coarsesapid level for each of the
five results. The best result of the five local searches islyineed as the start point
for a multi-level local optimization. The last level of th@dil search can be chosen in
function of the desired precision and computation time eNbat compared to a single
multi-level local search, five local optimizations on theacsest level are negligible in
terms of computation time.
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Fig. 1. Mechanical probe movement model in 2D(a) shows the computation of the
search model surface origiiR s, (0, 0) from the prostate cent&r’p,., and the (hy-
pothetical) rectal probe fixed poi#tPg..;. In (b), a 2D polar parameterization is used
to determine a surface poiftRg,.s(«, 3). The probe is then rotated and translated
such that its US origitDy s coincides withP Rg,. s (v, 3). In (c), the probe is rotated
around its principal axis by an angle

3 Experiments and Results

The presented method was validated on 237 3D images of tistapea@cquired during
biopsy of 14 different patients. The imaging device was a GEWS Voluson 730
equipped with a volume-swept transrectal probe (GE RICHB)Ymages, except the
images used for panorama image creation, were acquireddrately after a biopsy
shot. Both 3D to 3D and 3D to 02D registration were evaluaddidegistrations were
carried out in a post-processing step. The 02D images uded tests were not frame-
grabbed but reconstructed from 3D images. The image résolwas2003. The voxel
side lengths varied from 0.33mm to 0.47mm. A five-level re8oh pyramid was used
for 3D to 3D registration; for 3D to 02D only four levels wersad. The final multi-
level search was carried out from the coarsest to the thiesfilevel for 3D to 3D, and
to the second-finest level for 3D to 02D registration. A tatal 2960 grid points on the
movement model were explored during a search run. Reg@straias carried out on a
Pentium 4 with 3GHz.

To measure reproducibility and registration success, @&trations were carried
out for each volume pair from slightly perturbated startrg®iby adding noise of
2mm and 2. This yielded 10 transformatiori§ that approximate the unknown rigid
transformation between the prostate in both volumes. Theage transformatiof of
the T; was computed with the method presentedl]n [9]. The euclidiéstance error
€ = ||T; - C — T - C||, with C being the image center, and the angular erfgmwhich
corresponds to the rotation angle]fﬁ1 .T, were used to compute the root mean square
(r.m.s.) errorg g ande 4. A registration was considered successfulHf< 2.0mm and
€4 < 5 degrees, and if the resdlt was visually satisfactory when superimposing both
volumes in a composite image (See Fig.]2(c)).



Reconstruction accuracy evaluation was more difficult tplement since there is
no straight-forward gold standard. In some images, theladegjectories from previ-
ous biopsies were still visible. In these cases, the trajexst were manually segmented,
and the angular error between corresponding needle wajestwere used to evaluate
rotational accuracy. Also, some patients had significadtéearly visible calcifications
inside the prostate. The distances between segmenteficzdions were used to deter-
mine the translational accuracy. Tab. 1 and Fig. 2 show thalteeof the evaluations.

3D-3D 3D-02D
Registration success 96.7% (237) 87.7% (237)
Average computation time 6.5s (237) 2.3s (237)
Angular precision e 4 (reproducibility, r.m.s.) 1.75° (229) 1.7% (208)
Euclidean precisioneg (reproducibility, .m.s.)  0.62mm (229) 0.47mm (208)
Needle trajectory reconstruction (r.m.s.) 4.72 (10) 4.74 (9)
Needle trajectory reconstruction (max) 10.04 (10) 10.5 (9)
Calcification reconstruction (r.m.s.) 1.41mm (189) 1.37mm (181)
Calcification reconstruction (max) 3.84mm (189) 4.30mm (181)

Table 1. Test results Numbers in brackets indicate the number of evaluated tragis
tions.

The overhead introduced by the systematic model-basedmrtigin accounts for
about 25% of 3D-3D , and for 35% of 3D-02D registration timéeTive optimiza-
tions on the coarsest level account for about 10% in 3D-30,fan20% in 3D-02D.
Panorama image pre-processing and pre-computation ofrtageis for systematic ex-
ploration are performed before the intervention and regabout one minute of com-
putation time.

Panorama

Panorama

(@) (b) (©) (d)

Fig.2. Registration accuracy: (a) shows the target image, and (b) the aligned
panorama image. In (c) both volumes are superimposed ttrdlie registration ac-

curacy for the urethra (arrow), and (d) illustrates thestgtion accuracy in the upper
gland.



4 Discussion

This study presents a fast and robust rigid registratioméssork for TRUS prostate
images in the context of unconstrained patient movemehts|p anatomy-constrained
probe movements and of probe-induced prostate displadsnidre algorithm yields
reproducible results and acceptable accuracy for bothBR+81 3D-02D registration.

The success-rate of 3D-3D registration is very satisfgcgince all failures were
either due to significant US shadows caused by only partialact of the probe head
with the rectal wall or by air bubbles in the US contact getpoain insufficient US depth
with the result that parts of the gland membrane are notleisibthe images. In these
cases the similarity measure fails because of missingrimdition in the image, and an
algorithmic remedy probably does not exist. Additionalfegs can be observed for 3D-
02D registration, in particular for very small prostates,which the coronal plane does
not contain any prostatic tissue. 3D-02D registrationgs ahore sensible to poor image
quality (e.g. low contrast), to large deformations and taiipbprostate images (for
which often only one plane contains prostatic tissue). Nwdtthe presented algorithm
is not very sensible to bounding box placement precision.

Computation time of local searches could be accelerated)ulse GPU for image
reslicing (which corresponds to approximatively 95% of tbenputational burden of a
similarity measure evaluation), while further optimizatiof the systematic exploration
would require parallelization of the evaluations.

The presented algorithm in particular accurately regsstiee prostate membranes
that are distant to the probe head, and the urethra. Thévet§ahigh angular r.m.s.
error observed in the needle reconstruction study can blaiexgd with probe-related
local deformations that are particularly strong at the feedtry point. We are cur-
rently working on a biomechanical gland deformation modtat allows for estimation
of deformations to improve the accuracy of tissue registnatear the probe head.
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