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Abstract

We consider a nonparametric and a semiparametric (in presence of covariates) ad-
ditive hazards rate competing risks model with censoring and failure cause possibly
missing completely at random. Estimators of the unknown parameters are proposed
in order to satisfy some optimality criteria. Large sample results are given for all the
estimators. Our nonparametric method is applied to a real data set and the behavior
of the semiparametric estimators are analyzed through a Monte Carlo study.
Key words: Additive hazards, competing risks, counting processes, missing failure
cause, reliability, survival analysis.

1 Introduction

We consider p ≥ 2 independent competing failure causes. We assume that to each failure
time Tj is associated a hazard rate function (risk function) λj with 1 ≤ j ≤ p. The failure
time T is the minimum of the p failure times associated to the p failure causes (this can be
seen as a 1-out-of-p system in reliability), then we have T = T1 ∧ · · · ∧ Tp. The failure time
T can be censored by a censoring time C, then we observe X = T ∧ C and δ = 1(T ≤ C)
where 1(·) is the indicator function. Generally, when T is uncensored, that is for δ = 1, the
failure cause is known, which means that

∑p
j=1 j1(Tj = T ) is observed, but from times to

times, it may happen that the failure cause is unknown and no partial information about the
failure cause is available. In addition, a vector of explanatory variables denoted by Z and
having potentially significant effects on the p failure times may be observed. In this paper
we propose a model that allows to analyze such lifetime data from a semiparametric point
of view in presence of covariates, and from a nonparametric point of view otherwise. We
need to emphasize that our model extends some existing models in the semi-/non-parametric
direction, however, the missingness mechanism is accounted here in the simplest way.

The problem of competing risks is not new and during the last two decades many models
have been proposed in order to account that a system or an individual may fail or dead
from several causes (see Crowder, 2001, for a large overview on the topic). In a number of
real applications of competing risks models the authors have to face the problem of missing
information (e.g. Miyakawa, 1984; Usher and Hodgson, 1988; Lin et al., 1993; Schabe, 1994;
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Goetghebeur and Ryan, 1995; Guttman et al., 1995; Reiser et al., 1996; Basu et al., 1999;
Flehinger et al., 2002; Craiu and Duchesne, 2004; Craiu and Reiser, 2007).

Among the great amount of paper dealing with competing risks model some of them
focus on nonparametric estimation methods (see e.g. Lo, 1991 and Schabe, 1994). Because
in many case partial information about the failure cause can only be obtained (e.g. masked
cause of failure), a large number of works developed some specific methods with accurate
modeling of the missingness mechanism. Most of these models are parametric and when a
latent variable represents the missingness mechanism an EM-type algorithm can be proposed
to estimate the model parameters. In Craiu and Duchesne (2004) such estimation procedure
is proposed and the missingness may depend both on the failure cause and the failure time.
Recently, Craiu and Reiser (2007) considered a very complete parametric model including
dependence of failure causes.

Some authors developed estimation procedures in the semi-/non-parametric framework
for two or more failure causes (see e.g. Myakawa, 1984; Dinse, 1986; Lo, 1991, Schabe,
1994). The special case of a possibly censored single failure cause differs from the competing
risks model only be the fact that in this case the censoring time is not an event of interest.
However, when the censoring information is missing, we are close to the competing risks
situation where failure causes are possibly missing. Some specific methods has been derived
in Gijbels et al. (1993), McKeague and Subramanian (1998), van der Laan and McKeague
(1998), Sun and Zhou (2003) and Subramanian (2004) for various models including or not
covariates, and several missingness mechanisms.

Goetghebeur and Ryan (1995) proposed a competing risks model with proportional haz-
ards assumption for the different failure causes. In their model the mechanism of missing-
ness may depend on the failure time (this is the missing at random assumption) while in the
model we propose it is independent of everything (this is the missing completely at random
assumption). In our model each failure type has its own semiparametric additive hazards
rate model and at the contrary to Goetghebeur and Ryan (1995), these failure rates are not
linked.

The paper is organized as follows. In Section 2 we describe the model and we point out
that each data resulting from the model can be seen as the realization of a nonhomogeneous
Markov process. In Section 3 the estimators are defined. Because data for which the failure
cause is missing are informative for the whole parameters of the model, we develop a method
that allows to account this information in an optimal way with respect to an efficiency
criterium. In Section 4, for the Euclidean parameters, and in Section 5 for the functional
parameters, the corresponding estimators are shown to be consistent and asymptotically
Gaussian. For each estimator, a consistent estimator of the asymptotic variance is provided.
Section 6 is devoted to numerical examples. A Monte Carlo study is performed for the case
including covariates whereas our estimation method is applied to a real data set that does
not include covariates. Some concluding remarks are given in the last Section.

2 A semiparametric additive hazards model

The complete data are as follows.

• Tj is the duration associated to the jth cause (j ∈ {1, . . . , p}).

• The law of Tj , conditional on the vector of covariates Z ∈ Rk, is defined by the hazard
rate function

λj(t|Z) = λ0j(t) + βTj Z, t ≥ 0,

where λ0j is the baseline hazard rate function of the jth cause, and βj ∈ Rk is the
regression parameter associated to the jth cause.
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Figure 1: Markov graph associated to (X,M,D,Z)

• The censoring variable C either has a hazard rate function λC or is deterministic; it
is independent of the Tj ’s conditionally on Z.

• The binary variable δ = 1(T ≤ C), where T = T1 ∧ · · · ∧Tp, is the censoring indicator.

• The binary variable M is equal to 1 when the failure cause is known (thus is is equal
to 0 when δ = 0).

• The variable D = δM
∑p
j=1 j1(Tj ≤ T ) reveals the failure cause when the failure time

is uncensored and M = 1.

The observation coming from one indiviual is therefore (X, δ,D,Z) where X is the observed
duration. Denoting

P (M = 1|X,Z, δ = 1) = P (M = 1|δ = 1) = α ∈ [0, 1]

and
P (M = 0|X,Z, δ = 0) = P (M = 0|δ = 0) = 1,

the observation (X, δ,D), conditional on Z, may be seen as the realization of a (p + 3)-
state nonhomogeneous Markov process (see Fig. 1). Writing λ̄0x(·|Z) the transition rate,
conditional on Z, for the transition 0→ x (x ∈ {1, . . . , p,m, c}) we obtain:

λ̄0j(t) = αλj(t|Z) for j ∈ {1, . . . , p},
λ̄0m(t) = (1− α)

∑p
j=1 λj(t|Z),

λ̄0c(t) = λC(t).

The independence of T1, . . . , Tp, C, conditional on Z, is a sufficient condition to obtain the
above transition rates.

Remark Up to the parameter α (or 1−α), the transition rates (excepted for the transition
0→ c) are additive hazards functions. This is obvious for the transition λ̄0j with 1 ≤ j ≤ p
but it remains true for the transition 0→ m, indeed:

λ̄0m(t) = (1− α)
(
λm(t) + βTmZ

)
,

where λ0m =
∑p
j=1 λ0j et βm =

∑p
j=1 βj .
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3 Regression parameters estimation

3.1 Data and notations

We denote by (Xi, δi, Di, Zi)1≤i≤n n independent and identically distributed copies of (X, δ,D,Z).
For j ∈ {1, . . . , p,m} we define the counting processes:

Nij(t) = 1(Xi ≤ t,Di = j) for j 6= m,

Nim(t) = 1(Xi ≤ t, δi = 1, Di = 0).

Hereafter, in order to simplify our notations, we write m ≡ p+ 1. Let Yi be the risk process
defined by Yi(t) = 1(Xi ≥ t). Then, by Andersen et al. (1993) or Fleming and Harrington
(1991), for 1 ≤ i ≤ n and j ∈ {1, . . . , p+ 1} the Mij processes defined by

Mij(t) = Nij(t)−
∫ t

0

Yi(s)λ̄0j(s)ds, t ≥ 0,

are F-martingales with respect to the filtration F = (Ft)t≥0 defined by

Ft = σ{Nij(s), Yi(s); s ≤ t; 1 ≤ i ≤ n, j ∈ {1, . . . , p+ 1}}.

3.2 Estimation of the Euclidean parameters

We denote by τ < +∞ the upper bound of the interval of study. It means that individuals
are observed on the time interval [0, τ ]. The particular case where the censoring variable
C is deterministic corresponds to a Type-I censored sampling plan with C = τ . With the
assumption made on M the parameter α is naturally estimated by

α̂ = α̂(τ) =
∑n
i=1 1(Di > 0;Xi ≤ τ)∑n
i=1 1(δi = 1;Xi ≤ τ)

=

∑p
j=1N·j(τ)
N··(τ)

,

where any point in the subscripts corresponds to summation over all the possible values of
the subscript. The estimator α̂ of α is natural since it reveals, among the individuals doing
an uncensored transition, the proportion of individuals having a known cause of failure.
Individuals doing the transition 0 → j (1 ≤ j ≤ p) allow to estimate βj . Indeed, it is
straightforward to extend the estimating function of Lin et Ying (1994). Therefore βj is
estimated by β̂j which is the solution of Uj(β, α̂, τ) = 0 where

Uj(β, α̂, τ) =
n∑
i=1

∫ τ

0

[
Zi − Z̄(s)

] [
dNij(s)− α̂βTZiYi(s)ds

]
,

with

Z̄(s) =
∑n
i=1 Yi(s)Zi∑n
i=1 Yi(s)

.

We ever saw that the transition rate 0→ m follows an additive risk model ; using data from
this transition allows to estimate βm by β̂m solution of Um(β, α̂, τ) = 0 where

Um(β, α̂, τ) =
n∑
i=1

∫ τ

0

[
Zi − Z̄(s)

] [
dNim(s)− (1− α̂)βTZiYi(s)ds

]
.

At this stage, each βj has its estimator β̂j for j = 1, . . . , p, p+1. Because β̂m is an estimator
of βm = β1 + · · · + βp, it is natural to use this available information in order to improve
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estimates of the βj ’s. We adopt the following strategy. First we consider the block matrix
H defined by

H =


H11 H12 · · · H1p+1

H21 H22 · · · H2p+1

...
...

...
Hp1 Hp2 · · · Hpp+1

 ,

where for 1 ≤ i ≤ p and 1 ≤ j ≤ p+ 1 Hij is a k × k-real valued matrix. The matrix H has
to satisfy

H


β1

...
βp
βm

 =

 β1

...
βp


for all 1 ≤ i ≤ p and βi ∈ Rk. Moreover, we want H to minimize the function q̂(H) defined
by

q̂(H) = trace(HΣ̂HT ),

where Σ̂ is an estimator of the asymptotic variance matrix of (β̂T1 , . . . , β̂
T
p , β̂

T
m)T . In other

words, we are looking for a linear transformation of (β̂T1 , . . . , β̂
T
p , β̂

T
m)T that remains an

estimator of the βj ’s for j = 1, . . . , p but that has a smaller variance (in some particular
sense) than the initial one. Thus, denoting by Ĥ the matrix minimizing q̂(H), we denote
by β̃i =

∑p+1
j=1 Ĥij β̂j (with β̂p+1 ≡ β̂m) the final estimator of βi for i = 1, . . . , p. Later we

refer this estimators as ”minimal variance estimators” (in the above sense).
Remark It is worth to note that constraints imposed to H does not link its lines. Indeed,

denoting by Ik the identity matrix of order k, these constraints may be written{
Hii +Hip+1 = Ik
Hij +Hip+1 = 0

for 1 ≤ i ≤ p et j ∈ {1, . . . , p}\{i}.
On the other hand we have

q̂(H) =
p∑
i=1

trace(Hi•Σ̂HT
i•) =

p∑
i=1

q̂i(H)

where q̂i(H) = trace(Hi•ΣHT
i•) and Hi• is the ith line block of H. Because the constraints

are linear and does not link the lines of H it is sufficient to solve for each i ∈ {1, . . . , p} the
following problem (Pi):
Looking for matrices Hi1, . . . ,Hip+1 satisfying:

(Pi)


Hii +Hip+1 = Ik,
Hij +Hip+1 = 0 for j 6= i,

trace(Hi•Σ̂HT
i•) is minimal.

3.3 Example for p = k = 2

We have to solve problems (P1) and (P2) which are identical. As a consequence we consider
only (P1). Let us write H(j) = H1j for j = 1, 2, 3 and introduce the following notations:

H(j) =

(
h

(j)
11 h

(j)
12

h
(j)
21 h

(j)
22

)
and Q̂ =

(
Σ̂ 0
0 Σ̂

)
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and L =
(
h

(1)
11 , h

(1)
12 , h

(2)
11 , h

(2)
12 , h

(3)
11 , h

(3)
12 , h

(1)
21 , h

(1)
22 , h

2)
21, h

(2)
22 , h

(3)
21 , h

(3)
22

)
= (l1, . . . , l12).

Then

q̂1(H) = trace
((

H(1) H(2) H(3)
)

Σ̂
(
H(1) H(2) H(3)

)T)
= LQ̂LT .

The constraints are{
H(1) +H(3) = I2
H(2) +H(3) = 0

⇔

{
h

(1)
ij + h

(3)
ij = 1 for 1 ≤ i, j ≤ 2,

h
(2)
ij + h

(3)
ij = 0 for 1 ≤ i, j ≤ 2.

⇔ CL = d,

where

C =



1 0 0 0 1 0 0 0 0 0 0 0
0 1 0 0 0 1 0 0 0 0 0 0
0 0 1 0 1 0 0 0 0 0 0 0
0 0 0 1 0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 1 0
0 0 0 0 0 0 0 1 0 0 0 1
0 0 0 0 0 0 0 0 1 0 1 0
0 0 0 0 0 0 0 0 0 1 0 1


and d =



1
0
0
0
0
1
0
0


.

Let λ be the Lagrange parameter associated to the optimization problem with linear con-
straints. The Lagrange function ` can be written

`(L, λ) =
1
2
LT Q̂L+ (CL− d)Tλ.

At the optimum L̂ it satisfies
∂`

∂L
(L̂, λ) = 0 = Q̂L̂+ CTλ,

CL̂ = d,

so we obtain
λ = −[CQ̂−1CT ]−1d,

and hence
L̂ = Q̂−1CT [CQ̂−1CT ]−1d.

Remark Note that Q̂ is invertible whenever Σ̂ is.

4 Asymptotic behavior of the regression parameters es-
timators

4.1 Asymptotics for the β̂j

First we need some notations. Let z be a column vector in Rk, we note

x⊗l =

 1 if l = 0,
z if l = 1,
zzT if l = 2.

For 0 ≤ l ≤ 2 and 0 ≤ s ≤ τ we define

Sl(s) =
1
n

n∑
i=1

Yi(s)Z⊗li ,
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and for b ∈ Rk we define

S3(s; b) =
1
n

n∑
i=1

Yi(s)Z⊗2
i bTZi.

Hereafter asymptotic results are given with respect to n tending to infinity. Let us
introduce the following assumptions.

A1. The probability α of a known cause is strictly positive.

A2. The upper bound of the study interval satisfies 0 <
∫ τ

0
λ0j(s)ds < +∞ for 1 ≤ j ≤ p

and the vectors of covariates Zi are uniformly bounded with respect to i ≥ 1.

A3. For 0 ≤ l ≤ 2 there exist functions sk defined on [0, τ ] such that

max
0≤l≤2

sup
s∈[0,τ ]

‖Sl(s)− sl(s)‖
P−→ 0.

Moreover, s0 is bounded by above by a strictly positive real number.

A4. Denoting by a(u) = s2(u)− s⊗2
1 (u)/s0(u), the matrix

A(τ) =
∫ τ

0

a(u)du

is positive definite, and

θ(τ) =
∫ τ

0

[
s0(u)λ0p+1(u)du+ βTp+1s1(u)

]
du > 0.

A5. Let us consider b ∈ Rk and S4(s; b) = n−1
∑n
i=1(bTZi)Yi(s)(s1(s)ZTi /s0(s)). For all

b ∈ Rk, there exist functions s3(s; b) and s4(s; b) such that

max
3≤l≤4

sup
s∈[0,τ ]

‖Sl(s; b)− sl(s; b)‖
P−→ 0.

A6. Functions a, aλ0j , s0λ0j , s1, s⊗2
1 /s2

0, s3(·;βj) and s4(·;βj) (for 1 ≤ j ≤ p) are integrable
on [0, τ ].

Remark Assumption A1 is clearly necessary to obtain the identifiability of the whole model
parameters. Assumption A2 insures that data can be observed everywhere on [0, τ ] for
each failure cause in an homogeneous way; the fact that the Zi are uniformly bounded
could be relaxed, and they could also be time dependent but it would add some unimpor-
tant technicalities with respect to the main objective of this work. Assumption A3 is a
simple consequence of the strong law of large numbers for i.i.d. (independent and identi-
cally distributed) processes. It is satisfied in particular when the covariates are i.i.d. with
third order moment. Assumption A4 is necessary to identify βj using the transition 0 → j
(1 ≤ j ≤ p+ 1), whereas A5 and A6 are technical conditions.

Now we introduce the vectors

β̂ = (β̂T1 , . . . , β̂
T
p+1)T and β = (βT1 , . . . , β

T
p+1)T .

Theorem 4.1 Under Assumptions A1-A5, the random vector
√
n(β̂ − β) is asymptotically

gaussian, centered, with positive definite covariance matrix Σ(τ) defined hereafter.
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Proof. First we denote by

Uj(b, αj , τ) =
n∑
i=1

∫ τ

0

(
Zi − Z̄(s)

) (
dNij(s)− αjbTZiYi(s)ds

)
,

for 1 ≤ j ≤ p+ 1 with b ∈ Rk and

αj =
{
α if 1 ≤ j ≤ p,
1− α if j = p+ 1.

If we note

α̂j =
{
α̂ if 1 ≤ j ≤ p,
1− α̂ if j = p+ 1,

we have Uj(β̂j , α̂j , τ) = 0 for 1 ≤ j ≤ p. First let us remark that for 1 ≤ j ≤ p + 1 the
following equality holds

1√
n
Uj(βj , αj , τ) = Â(τ)

[
β̂j
√
n(α̂j − αj) + αj

√
n(β̂j − βj)

]
, (1)

where
Â(τ) =

∫ τ

0

[
S2(s)− S⊗2

1 (s)/S0(s)
]
ds.

Now, using the definition of α̂ we have

α̂(τ) =

n∑
i=1

p∑
j=1

∫ τ

0

dNij(s)

n∑
i=1

p+1∑
j=1

∫ τ

0

dNij(s)

=

n∑
i=1

p∑
j=1

∫ τ

0

dMij(s) +
n∑
i=1

p∑
j=1

∫ τ

0

Yi(s)λ̄0j(s|Zi)ds

n∑
i=1

p+1∑
j=1

∫ τ

0

dMij(s) +
n∑
i=1

p+1∑
j=1

∫ τ

0

Yi(s)λ̄0j(s|Zi)ds

=

p∑
j=1

M·j(τ) + α

n∑
i=1

p∑
j=1

∫ τ

0

Yi(s)λj(s|Zi)ds

M··(τ) +
n∑
i=1

p∑
j=1

∫ τ

0

Yi(s)λj(s|Zi)ds

=

p∑
j=1

M·j(τ) + αn

∫ τ

0

[
S0(u)λ0p+1(u) + βTp+1S1(u)

]
du

M··(τ) + n

∫ τ

0

[
S0(u)λ0p+1(u) + βTp+1S1(u)

]
du

.
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It follows that

√
n(α̂(τ)− α) =

1− α√
n

p∑
j=1

M·j(τ)− α√
n
M·p+1(τ)

1
n
M··(τ) +

∫ τ

0

[
S0(u)λ0p+1(u) + βTp+1S1(u)

]
du

1(N··(τ) > 0)

−
√
nα1(N··(τ) = 0)

=

1− α√
n

p∑
j=1

M·j(τ)− α√
n
M·p+1(τ)

1
n
M··(τ) +

∫ τ

0

[
S0(u)λ0p+1(u) + βTp+1S1(u)

]
du

+ oP (1).

Using the Lenglart inequality we show that

1
n
M··(τ) P−→ 0.

Therefore, A3 and A4 yield

√
n(α̂(τ)− α) =

p+1∑
j=1

α∗j
θ(τ)

1√
n
M·j(τ) + oP (1), (2)

where α∗j = 1 − α for 1 ≤ j ≤ p and α∗p+1 = −α. By applying the Rebolledo theorem and
using (2) it is easy to prove that α̂ is

√
n-consistent.

Because the processes Uj(βj , αj , ·) are Ft-martingales, and proving by using the Lenglart
inequality that divided by n these processes converge to 0 uniformly in probability on [0, τ ],
we obtain the convergence in probability of β̂ to β by using additionally the consistency
of α̂, equality (1), and Assumptions A3 and A4. Once this convergence is established, we
obtain by (1) the equality

√
n(β̂j − βj) =

1
αj

(
A−1(τ)

Uj(βj , αj , τ)√
n

− βj
√
n(α̂j − αj)

)
+

1
αj

((
Â−1(τ)−A−1(τ)

) Uj(βj , αj , τ)√
n

−
√
n(α̂j − αj)(β̂j − βj)

)
,

where the second term of the right hand side is an oP (1) since A−1
n (τ) converges in proba-

bility to A−1(τ) from Assumptions A3 and A4, Uj(βj , αj , τ)/
√
n is a OP (1) (because it is

asymptotically gaussian by the Rebolledo theorem), α̂ is
√
n-consistent and β̂ converges to

β. Finally the following approximation is obtained

√
n(β̂j − βj) =

1
α

(
A−1(τ)

Uj(βj , αj , τ)√
n

− βj
√
n(α̂− α)

)
+ oP (1), (3)

for 1 ≤ j ≤ p, and
√
n(β̂p+1 − βp+1)

=
1

1− α

(
A−1(τ)

Up+1(βp+1, αp+1, τ)√
n

+ βp+1

√
n(α̂− α)

)
+ oP (1). (4)

Hence, by (2), (3), and (4) we obtain
√
n(β̂ − β) = Σ1(τ)Un(τ) + oP (1), (5)
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where

Σ1(τ) =


A−1(τ)
α 0 · · · 0 −β1

α

0
. . .

...
...

... A−1(τ)
α 0 −βp

α

0 · · · 0 A−1(τ)
1−α

βp+1
1−α

 ,

and

Un(τ) =
1√
n



U1(β1, α1, τ)
...

Up+1(βp+1, αp+1, τ)
p+1∑
j=1

α∗j
θ(τ)

M·j(τ)

 .

As a consequence, study the asymptotic behavior of
√
n(β̂−β) leads to study the asymptotic

behavior of the process Un which is an Ft-martingale. As in Andersen and Gill (1982), we
apply the Rebolledo theorem (see Rebolledo, 1980, and an adapted version in Andersen et al.,
1993, p. 83–84). This theorem allows to show that Un converges weakly in (D[0, τ ])k(p+1)+1

to a gaussian martingale. Thus, the random vector Un(τ) is asymptotically gaussian and
centered. Because this theorem is now of classical use we only derive the limit of the
predictible variation process of Un that gives the asymptotic variance matrix of Un(τ). On
one hand we have for 1 ≤ j ≤ p+ 1〈

n−1/2U j(βj , α, ·)
〉

(t)

= αj

∫ t

0

[
S2(s)− S⊗2

1 (s)/S0(s)
]
λ0j(s)ds

+ αj

∫ t

0

[
S3(s;βj)− S4(s;βj)− ST4 (s;βj) + (βTj S1(s))S⊗2

1 (s)/S2
0(s)

]
ds+ oP (1),

which by Assumptions A2-A6 converges to

Θj(t) =

αj

∫ t

0

[
a(s)λ0j(s) + s3(s;βj)βj − s4(s;βj)− sT4 (s;βj) + (βTj s1(s))s⊗2

1 (s)/s2
0(s)

]
ds.

On the other hand, for 1 ≤ j 6= j′ ≤ p+ 1, we have

〈Uj(·),Uj′(·)〉 (t) = 0,

where we note Uj(t) = Uj(βj , αj , t) for 1 ≤ j ≤ p + 1. Thus the asymptotic covariance of
terms Uj and Uj′ is null. It remains to calculate the asymptotic covariance of

√
n(α̂ − α)

with the n−1/2Uj ’s, and with itself. It is easy to show that for 1 ≤ k ≤ p+ 1 we have

1
n

〈
Uk(·),

p+1∑
j=1

α∗jM·j(·)
θ(τ)

〉
(t) P−→ κk

α(1− α)
θ(τ)

A(t)βk ≡ ξk(t),

where κk = 1 if 1 ≤ k ≤ p and κp+1 = −1, and

1
n

〈
p+1∑
j=1

α∗jM·j(·)
θ(τ)

〉
(t) P−→ α(1− α)

θ(τ)
≡ ξα(t).
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Then, setting

Σ2(τ) =


Θ1(τ) 0 0 ξ1(τ)

0
. . . 0

...
0 0 Θp+1(τ) ξp+1(τ)

ξT1 (τ) · · · ξTp+1(τ) ξα(τ)


we obtain by (5) that

√
n(β̂ − β) is asymptotically gaussian with asymptotic covariance

matrix Σ(τ) = Σ1(τ)Σ2(τ)ΣT1 (τ). The matrix Σ2(τ) being positive definite, the same holds
for Σ(τ). �

4.2 The optimal estimator

Giving the asymptotic behavior of β̃ requires to propose an estimator Σ̂ of the asymp-
totic covariance matrix Σ(τ). In this paragraph, when it is possible, we avoid to indicate
dependence in τ , for exemple Σ(τ) will be denoted by Σ.

It is easy to check that for 1 ≤ j ≤ p+ 1 we have

β̂j =
1
α̂j
Â−1 1

n

n∑
i=1

∫ τ

0

(
Zi − Z̄(s)

)
dNij(s)

Then, for 1 ≤ j ≤ p+ 1 we note

Θ̂j =
1
n

n∑
i=1

∫ τ

0

(
Zi − Z̄(s)

)⊗2
dNij(s),

and

ξ̂j = κj
α̂(1− α̂)

θ̂
Âβ̂j ,

where θ̂ = N··(τ)/n, and finally

ξ̂α =
α̂(1− α̂)

θ̂
.

Therefore we set

Σ̂1 =


Â−1

α̂ 0 · · · 0 − β̂1
α̂

0
. . .

...
...

... Â−1

α̂ 0 − β̂p

α̂

0 · · · 0 Â−1

1−α̂
β̂p+1
1−α̂


and

Σ̂2 =


Θ̂1 0 0 ξ̂1

0
. . . 0

...
0 0 Θ̂p+1 ξ̂p+1

ξ̂T1 · · · ξ̂Tp+1 ξ̂α

 .

Let Ĥ be the matrix defined at Section 3, β̃ = Ĥβ̂ and β∗ = (βT1 , . . . , β
T
p )T .

Theorem 4.2 Under Assumptions A1-A5, the matrix Σ̂ = Σ̂1Σ̂2Σ̂T1 converges in probability
to the matrix Σ. If Σ is invertible, then

√
n(β̃−β∗) has an asymptotically centered gaussian

distribution, whose the covariance matrix trace is less or equal to trace(HΣHT ) for all
H ∈ H. Such an estimator is said asymptotically T–optimal.
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Proof. The convergence of Â to A is straightforward using Assumptions A3 and A4. Other-
wise, we ever proved the convergence in probability of α̂ and β̂j to α and βj , respectively (for
1 ≤ j ≤ p+ 1) in the proof of Theorem 4.1. As a consequence, we obtain the convergence
in probability of Σ̂1 to Σ1.

The convergence in probability of θ̂ to θ(τ) is a consequence of the Lenglart inequality.
These convergences yield the convergence in probability of the ξ̂j ’s to the ξj(τ)’s (for 1 ≤
j ≤ p+1). Using repeatedly the Lenglart inequality allows to prove that ξ̂α and Θ̂j converge
in probability to ξα and Θj , respectively (for 1 ≤ j ≤ p+ 1). It follows that Σ̂2 converges in
probability to Σ2, and thus, that Σ̂ converges in probability to Σ.

Finally, as we discussed in Sections 3.2 and 3.3, the matrix Ĥ depends continuously
on Σ̂, then when n tends to infinity, Ĥ converges in probability to the matrix HΣ ∈ H
that minimizes trace(HΣHT ) whose the existency follows from the positive definiteness of
Σ. Moreover, because Ĥβ = β∗, by the Slutsky lemma

√
n(β̃ − β∗) = Ĥ

√
n(β̂ − β) has

a centered asymptotic gaussian distribution whose the covariance matrix HΣΣHT
Σ satisfies

trace(HΣΣHT
Σ ) ≤ trace(HΣHT ) for all H such that Hβ = β∗. This finishes the proof. �

5 Estimation of functional parameters

5.1 Without covariate: nonparameteric case

This is the simplest case but the model is interesting for application. Indeed the unknown
parameters of the model are the failure rates λj associated to each failure cause. The
transition rates of the Markov graph (see Fig. 1) satisfy for t ≥ 0,

λ̄0j(t) = αλj(t) pour j ∈ {1, . . . , p},
λ̄0m(t) = (1− α)

∑p
j=1 λj(t) ≡ (1− α)λm(t),

λ̄0c(t) = λC(t).

At the contrary to the model by Goetghebeur and Ryan (1995), when there is no covariate
in the data, the model is still of interest because it allows different failure rates for failure
causes.

5.1.1 Principle of an optimal estimator of the cumulative hazard rate functions

Let Λj be the cumulative hazard rate function associated to the jth failure cause (1 ≤ j ≤ p).
By standard arguments it is natural to estimate Λj by

Λ̂j(t) =
1
α̂

n∑
i=1

∫ t

0

dNij(s)
Y (s)

and Λm(t) =
∑p
j=1 Λj(t) by

Λ̂m(t) =
1

1− α̂

n∑
i=1

∫ t

0

dNim(s)
Y (s)

,

where Y (s) =
∑n
i=1 1(Xi ≥ s) and α̂ is defined in Section 3. Again we have an estimator of

each Λj (1 ≤ j ≤ p) and an estimator of their sum. Let us denote by Ĥ(t) the p × (p + 1)
time dependent matrix, that will be specified later, and Λ̂(t) = (Λ̂1(t), . . . , Λ̂p(t), Λ̂m(t))T

one estimator of Λ(t) = (Λ1(t), . . . ,Λp(t),Λm(t))T . We define Λ̃(t) = Ĥ(t)Λ̂(t) as one
estimator of Λ∗(t) = (Λ1(t), . . . ,Λp(t))T . If the family of matrices {Ĥ(t); t ∈ [0, τ ]} satisfies
Ĥ(t)a = a∗ for all t ∈ [0, τ ], a∗ = (a1, . . . , ap)T ∈ Rp and a = (a∗T ,

∑p
j=1 aj)

T . Then if Ĥ(t)



Semiparametric competing risks 13

converges in probability to H(t) and if the sequence of processes (
√
n(Λ̂(t)−Λ(t)); t ∈ [0, τ ])

converges weakly in (D[0, τ ])p+1 to a centered gaussian process with covariance function Γ(t),
then the sequence of processes (

√
n(Λ̃(t) − Λ∗(t)); t ∈ [0, τ ]) converges weakly in (D[0, τ ])p

to a gaussian process having variance function H(t)Γ(t)HT (t).
Let Γ̂(t) be a consistent estimator of Γ(t), and Ĥ(t) be defined by

Ĥ(t) = arg min
H∈H

trace(HΓ̂(t)HT ), (6)

where H is the set of p× (p+ 1) matrices satisfying Ha = a∗ for all a∗ = (a1, . . . , ap)T ∈ Rp
and a = (a∗T ,

∑p
j=1 aj)

T . We denote by L the column vector in Rp(p+1) defined by L =
(H1, . . . ,Hp) where Hi is the ith line of H ∈ H. The link between L = (li)1≤i≤p(p+1) and
H = (hij)1≤i≤p;1≤j≤p+1 is therefore hij = l(i−1)(p+1)+j . Because linear constraints on H are
transmitted to L we have{

hii + hi,p+1 = 1, for 1 ≤ i ≤ p,
hij + hi,p+1 = 0, for 1 ≤ i ≤ p, 1 ≤ j ≤ p+ 1 and i 6= j,

⇔
{
l(i−1)(p+1)+i + li(p+1) = 1, for 1 ≤ i ≤ p,
l(i−1)(p+1)+j + l(i+1)p = 0, for 1 ≤ i ≤ p, 1 ≤ j ≤ p+ 1 and i 6= j,

⇔ CL = d.

Denoting by Q̂(t) the block diagonal matrix defined by

Q̂(t) =

 Γ̂(t)
. . .

Γ̂(t)


 p-times,

we show that q̂(L) ≡ trace(HΓ̂(t)HT ) = LT Q̂(t)L. Following the method of Section 3.3,
with the linear constraint CL = d, q̂(L) reaches it minimum at

L̂(t) = Q̂−1(t)CT (CQ̂−1(t)CT )−1d.

The Ĥ(t) matrix is therefore defined by ĥij(t) = l̂(i−1)(p+1)+j(t) for 1 ≤ i ≤ p and 1 ≤ j ≤
p+ 1.

5.1.2 Asymptotics for Λ̂ and Λ̃

Let us introduce two assumptions that allow to obtain the asymptotic behavior of estimators
Λ̂ and Λ̃.

B1. τ satisfies 0 < Λj(τ) < +∞ for 1 ≤ j ≤ p.

B2. There exists a function y, defined on [0, τ ], and bounded away from 0, such that

sup
s∈[0,τ ]

|Y (s)/n− y(s)| P−→ 0.

Note that functions yλj and λj/y are integrable on [0, τ ] and we define

ηj(t) = αj

∫ t

0

λj(s)/y(s)ds

for 1 ≤ j ≤ m and ηm =
∑m
j=1 ηj . Assumption B2 is fulfilled whenever

∫ τ
0
λC(s)ds < +∞.
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Theorem 5.1 Under Assumption A1, B1, and B2, the sequence (
√
n(Λ̂(t)−Λ(t)); t ∈ [0, τ ])

converges weakly on (D[0, τ ])p+1 to a centered gaussian process with variance function Γ(t)
defined subsequently.

Proof. The arguments we need here are close to those we used in the proof of Theorem 4.1,
as a consequence we only give the main lines of this proof. We begin with α̂. Following the
proof of Theorem 4.1, the equality (2) becomes

√
n(α̂− α) =

p+1∑
j=1

α∗j
θ0(τ)

1√
n
M·j(τ) + oP (1), (7)

where θ0(τ) =
∫ τ

0
y(s)λm(s)ds > 0 by B1 and B2. The Rebolledo theorem insures that α̂(τ)

converges to α at
√
n-rate. With this result and the Lenglart inequality we show that the

Λ̂j ’s converge in probability to the Λj ’s, uniformly on [0, τ ] for 1 ≤ j ≤ p + 1 (p + 1 ≡ m).
In consequence we obtain the following uniform (in t ∈ [0, τ ]) approximation results

√
n(Λ̂j(t)− Λj(t)) = −Λj(t)

αj

√
n(α̂j − αj) +

1
αj

√
n

∫ t

0

dM·j(s)
Y (s)

+ oP (1) (8)

for 1 ≤ j ≤ p+ 1. By the approximations (7) and (8) we obtain
√
n(Λ̂(t)− Λ(t)) = Σ3(t)Vn(t) + oP (1), (9)

where

Σ3(t) =


1
α 0 · · · 0 −Λ1(t)

α

0
. . .

...
...

... 1
α 0 −Λp(t)

α

0 · · · 0 1
1−α

Λm(t)
1−α


and

Vn(t) =
√
n


∫ t

0
dM·1(s)
Y (s)

...∫ t
0
dM·p+1(s)
Y (s)

1
n

∑p+1
j=1

1−αj

θ0(τ)M·j(τ)

 .

The Rebolledo theorem allows to prove that Vn converges weakly in (D[0, τ ])p+2 to a centered
gaussian process. It remains to specify the variance function Σ4 of this process. First we
can write Vn(t) = V1,n(t) + V2,n(t) where

V1,n(t) =
√
n


∫ t

0
dM·1(s)
Y (s)

...∫ t
0
dM·p+1(s)
Y (s)

1
n

∑p+1
j=1

1−αj

θ0(τ)M·j(t)


and

V2,n(t) =
1√
n


0
...
0∑p+1

j=1
1−αj

θ0(τ) (M·j(τ)−M·j(t))

 .



Semiparametric competing risks 15

Because the M·j ’s are martingales, we have

E
[
V⊗2
n (t)

]
= E

[
V⊗2

1,n(t)
]

+ E
[
V⊗2

2,n(t)
]
.

We are thus looking for

Σ4(t) = lim
n→∞

E
[
V⊗2

1,n(t)
]

+ lim
n→∞

E
[
V⊗2

2,n(t)
]
.

Setting ρj(t) = κjα(1− α)Λj(t)/θ0(τ) for 1 ≤ j ≤ p + 1 = m and ρα(τ) = α(1− α)/θ0(τ),
it is straightforwardly established that

Σ4(t) =


η1(t) 0 0 ρ1(t)

0
. . . 0

...
0 0 ηp+1(t) ρp+1(t)

ρ1(t) · · · ρp+1(t) ρα(τ)

 .

Then by (9) we obtain Γ(t) = Σ3(t)Σ4(t)ΣT3 (t), which finishes the proof. �

For t ∈]0, τ ] we define

Σ̂3(t) =


1
α̂ 0 · · · 0 − Λ̂1(t)

α̂

0
. . .

...
...

... 1
α̂ 0 − Λ̂p(t)

α̂

0 · · · 0 1
1−α̂

Λ̂m(t)
1−α̂


and

Σ̂4(t) =


η̂1(t) 0 0 ρ̂1(t)

0
. . . 0

...
0 0 η̂p+1(t) ρ̂p+1(t)

ρ̂1(t) · · · ρ̂p+1(t) ρ̂α


where for 1 ≤ j ≤ p+ 1 we note

η̂j(t) = n

∫ t

0

dN·j(s)
Y 2(s)

,

and for 1 ≤ j ≤ p we note

ρ̂j(t) = κj
α̂(1− α̂)Λ̂j(t)

θ̂0

with θ̂0 = N··(τ)/n and ρ̂α = α̂(1− α̂)/θ̂0. Thus we define Γ̂(t) = Σ̂3(t)Σ̂4(t)Σ̂T3 (t).

Theorem 5.2 Under Assumptions A1, B1 and B2, for all t ∈ [0, τ ], the matrix Γ̂(t) con-
verges in probability to the matrix Γ(t). Let us assume moreover that for all t ∈]0, τ ] the
matrix Γ(t) is invertible. If Ĥ(t) is the unique solution of (6), then

√
n(Λ̃ − Λ) converges

weakly in (D[0, τ ])p to a centered gaussian process, and is asymptotically T -optimal with
variance function equal to H(t)Γ(t)HT (t) (see (6)).

Proof. Since the proof follows the lines of Theorem 4.2 proof, it is omitted. �
textitRemark Quantities Λ̂(t) and Γ̂(t) are piecewise constant, therefore it is sufficient to
calculate the matrix Ĥ(t) at points t ∈ [0, τ ] where N·· has jumps, that is at points Xi ∈ [0, τ ]
such that δi = 1.
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5.1.3 Survival functions estimation

One purpose of this paper is to improve the estimators of p parameters when in addition
we are able to estimate their sum. Our model is especially well adapted to this problem for
estimation of both regression parameters and cumulative hazard rate functions. Because the
survival function coming from transition 0→ m has not the additive property of the above
mentioned parameters it is desirable to estimate the survival functions using the T -optimal
estimates of the cumulative hazard functions. As a consequence, the Kaplan-Meier type
estimator of Sj is defined by

S̃j(t) =
∏
s≤t

(1−∆Λ̃j(s)), t ≥ 0,

for 1 ≤ j ≤ p, with ∆F (t) = F (t) − F (t−) for any F : R → Rk. Because estimates Λ̃j are
piecewise constant with jumps at points Xi for which δi = 1, we have

S̃j(t) =
∏

{1≤i≤n;Xi≤t,δi=1}

(1−∆Λ̃j(Xi)), t ≥ 0,

which are easily computed. Now let us define 1p = (1, . . . , 1)T ∈ Rp and for t ∈ [0, τ ],

S̃(t) = (S̃1(t), . . . , S̃p(t))T and S(t) = (S1(t), . . . , Sp(t))T .

Then we have
S̃(t) =

∏
s≤t

[
1p −∆Λ̃(s)

]
,

or equivalently, S̃ = Φ(Λ̃) where the operator Φ from (D[0, τ ])p to (D[0, τ ])p is defined from
its p identical components product–integral φ from D[0, τ ] to D[0, τ ]. As φ is Hadamard
differentiable on EK ⊂ D[0, τ ] the set of functions with variations bounded by K < +∞ (see
Andersen et al., 1993, p. 114) the same result holds for Φ on EpK with Hadamard derivative

(dΦ(X).H)(t) = Φ(X)(t)�H(t),

where for a, b ∈ Rp, a � b ∈ Rp is the component-wise product of a and b. From Theorem
II.8.2 in Andersen et al. (1993, p. 112),

√
n(S̃ − S) is asymptotically equivalent to dΦ(Λ)�√

n(Λ̃ − Λ∗) = S �
√
n(Λ̃ − Λ∗). The next theorem follows from the preceding result and

Theorem 5.2.

Theorem 5.3 Under Assumptions A1, B1 and B2, the process (
√
n(S̃(t)−S(t)); t ∈ [0, τ ])

converges weakly in (D[0, τ ])p to a centered Gaussian process with covariance function Ω(t) =
(ωij(t))1≤i,j≤p defined by

ωij(t) = Si(t)Sj(t)(H(t)Γ(t)HT (t))ij .

Then Ω̂(t) = (ω̂ij(t))1≤i,j≤p defined by

ω̂ij(t) = S̃i(t)S̃j(t)(Ĥ(t)Γ̂(t)ĤT (t))ij ,

converges in probability to Ω(t) for t ∈]0, τ ].

5.2 With explanatory variables

Let us consider j ∈ {1, . . . , p}. For simplicity we only base our estimator of the conditional
cumulative hazard function Λj(·|Z) for cause j, on transition 0 → j (see Figure 1). Let us
recall that Λj(·|Z) is defined by

Λj(t|Z) = Λ0j(t) + βTj Zt, t ≥ 0.
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The conditional survival function Sj(·|Z) associated to the jth cause is therefore defined by

Sj(t|Z) = exp(−βTj Zt)φ(Λ0j)(t), t ≥ 0,

where φ is still the product-integral operator.
First let us propose an estimator of Λ0j . Using

dN·j(s) = dM·j(s) + αS0(s)λ0j(s)ds+ αST1 (s)βjds,

we obtain the following estimator of Λ0j(t) defined by

Λ̂0j(t) =
1
α̂

∫ t

0

dN·j(s)
S0(s)

− β̂Tj
∫ t

0

S1(s)
S0(s)

ds, t ≥ 0,

where we recall that β̂j satisfies Uj(β̂j , αj , τ) = 0 (see Section 3.2). Then we propose to
estimate Λj(·|Z) by Λ̂j(·|Z) defined for t ≥ 0 by

Λ̂j(t|Z) =
1
α̂

∫ t

0

dN·j(s)
S0(s)

+ β̂Tj

(
tZ −

∫ t

0

S1(s)
S0(s)

ds

)
,

=
∑

{1≤i≤n;Xi≤t,Di=j}

1
α̂S0(Xi)

+ β̂Tj

(
tZ −

∫ t

0

S1(s)
S0(s)

ds

)
.

The survival function Sj(·|Z) is therefore estimated by Ŝj(·|Z) defined by

Ŝj(t|Z) = exp
(
−tβ̂Tj Z + β̂Tj

∫ t

0

S1(s)
S0(s)

ds

) ∏
1≤i≤n;Xi≤t,Di=j

(
1− 1

α̂S0(Xi)

)
.

Let Lj(t) be the (p + 2) × 1-matrix and Ξj(t) be the (p + 1) × (p + 2)-matrix respectively
defined by

Lj(t) =
1
α

 1
Λj(t|Z)− 2(k(t) + tZ)Tβj

A−1(τ)(k(t) + tZ)

 ,

and

Ξj(t) =

 µ1j(t) µ2j(t) µT3j(t)
µ2j(t) ξα(τ) ξTj (τ)
µ3j(t) ξj(τ) Θj(τ)

 ,

where ξα(τ), ξj(τ) and Θj(τ) are defined in Section 4 and for 1 ≤ j ≤ p

k(t) =
∫ t

0

s1(s)
s0(s)

ds,

µ1j(t) = α

∫ t

0

(
s0(s)λ0j(s) + βTj s1(s)

s2
0(s)

)
ds,

µ2j(t) =
α

θ(τ)

∫ t

0

(
s0(s)λ0j(s) + βTj s1(s)

s0(s)

)
ds,

and

µ3j(t) = α

∫ t

0

a(s)
s0(s)

dsβj .
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Let us define L̂j and Ξ̂j the empirical versions of Lj and Ξj , by

L̂j(t) =
1
α̂

 1
Λ̂j(t|Z)− 2(K̂(t) + tZ)T β̂j

Â−1(τ)(K̂(t) + tZ)

 ,

with

K(t) =
∫ t

0

S1(s)
S0(s)

ds,

and

Ξ̂j(t) =

 µ̂1j(t) µ̂2j(t) µ̂T3j(t)
µ̂2j(t) ξ̂α ξ̂Tj
µ̂3j(t) ξ̂j Θ̂j

 ,

where ξ̂α, ξ̂j and Θ̂j are defined in Section 4 and

µ̂1j(t) = nα̂

∫ t

0

dN·j
S2

0(s)
,

µ̂2j(t) =
α̂

θ̂

∫ t

0

dN·j(s)
S0(s)

,

and
µ̂3j(t) = α̂Â(t)β̂j .

The proof of the next theorem is basically the same as the preceding ones then it is omitted.

Theorem 5.4 Under Assumptions A1–A5 and if for all t ∈ [0, τ ] the matrices L(t) and Ξ(t)
are well defined, then for 1 ≤ j ≤ p, the sequence of processes (

√
n(Λ̂j(t|Z) − Λj(t|Z)); t ∈

[0, τ ]) converges weakly in D[0, τ ] to a centered Gaussian process with variance function
γj defined by γj(t) = LTj (t)Ξj(t)Lj(t). Moreover γ̂j(t) = L̂Tj (t)Ξ̂j(t)L̂j(t) converges in
probability to γj(t) for all t ∈ [0, τ ]. The sequence of processes (

√
n(Ŝj(t|Z) − Sj(t|Z)); t ∈

[0, τ ]) converges weakly in D[0, τ ] to a centered Gaussian process with variance function πj
defined by πj(t) = S2

j (t|Z)γj(t) and π̂j(t) = Ŝ2
j (t|Z)γ̂j(t) converges in probability to πj(t)

for all t ∈ [0, τ ].

6 Numerical study

6.1 A simulated example with covariates

In this section we give an example where we have two competing risks with a single covariate
Z. We assume that Z is 1 or 2 with equal probabilities. Conditional on Z, we suppose that
the hazard rate functions of T1 and T2 are respectively given by λ1(t|Z) = t/2 + 2Z and
λ2(t|Z) = 2t/9 + 3Z, therefore we have β1 = 2 and β2 = 3. The censoring time C is
exponentially distributed with mean 1 whereas the rate of missingness α is equal to 0.5. As
a consequence, on the whole simulated data the rate of censored data is about 12%, the
rates of observed failures from cause 1 and 2 are respectively about 15% and 28%, and the
rate of missingness is about 45%.

In Table 1 we compare the performances of estimators (β̂i)i=1,2 based on transitions
0 → i with T -optimal estimators (β̃i)i=1,2 that use observations coming from the three
informative transitions. We computed the mean and standard errors of 1000 estimates of
β1 and β2. We can see in Table 1 that from the bias point of view the T -optimal estimators
are generally better (except for β1 when n = 100) whereas the standard errors of T -optimal
estimates are always smaller than the standard errors of estimates based on transitions 1
and 2.
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n β̂1 β̃1 β̂2 β̃2

100 2.116 [1.583] 2.117 [1.438] 3.024 [1.923] 3.004 [1.610]
200 2.055 [1.111] 2.023 [1.000] 3.083 [1.367] 3.039 [1.146]
400 2.021 [0.768] 2.001 [0.687] 3.043 [0.919] 3.011 [0.784]
1000 1.998 [0.500] 2.001 [0.454] 2.989 [0.584] 2.993 [0.502]

Table 1: Comparison of means and standard errors (within brackets) of N = 1000 estimates
of β̂i and β̃i for i = 1, 2.

6.2 A reliability example without covariates

This example deals with the hard drives data sample that may be found in Flehinger et
al. (2002). These authors consider a scenario in which a company manufacturing hard
drives for computers tries to analyze causes of failures of a certain sub-assembly. Some of
these causes, such as ”defective head”, are related to components, but others (e.g., ”particle
contamination”) are not; in this example, there are three major causes of failures which,
without going into details, are denoted as causes 1, 2 and 3. We assume that these causes act
independently and in series. 10,000 drives were manufactured and then information about
failures was collected in a database during 4 years. The number of failures observed in
this period was 172. Some of the failures were masked and a selected number of those were
analyzed to complete resolution in the defect isolation laboratory. The only observed masked
groups were {1, 2, 3} and {1, 3}. Considering causes 1 and 3 as a single failure cause we
obtain data from a competing risks model with two failure modes. Mode 1 (corresponding to
causes 1 , 3 or masked group {1, 3} of the original data set) and mode 2 (that corresponds to
cause 2 in the original data set). The failure cause is missing when none of the three original
cause of failure is known (corresponding to the masking group {1, 2, 3} of the original
data set). Finally, we obtain a data set with 119 failures of type 1, 19 failures of type 2
and 34 failures for which the failure cause is unavailable. The lifetimes of the 9828 drives
still functioning at the end of the study are censored by the 4 years of the study duration.
Because no information is available after 4 years we fix τ to 4. The probability α that the
two failure causes are missing is estimated by α̂ = 0.802. Figure 2 shows, for each failure
cause, estimates of cumulative hazard rate functions with and without using the transition
0→ 3 and the corresponding 95% pointwize confidence intervals for each estimate. We can
see that there is a little gain to use transition 0 → 3. We can see also that the modified
Nelson-Aalen estimators that we propose are slightly more regular (smaller size jumps) than
the corresponding Nelson-Aalen estimators, in exchange of which our estimators can be non
legitimate (they can be locally decreasing). However this drawback disapears as the sample
size increases because of uniform convergence of our estimators. This is also true for for the
two causes reliability estimates that are given on Figure 3 with pointwize 95% confidence
intervals.

7 Conclusions

In this paper we consider a semiparametric competing risks model that accounts covariates
and the fact that information on failure cause can be missing completely at random. In
this paper the missingness mechanism is very simple because it is independent of everything
(time, failure causes, covariates, etc.). However, because of nonparametric assumptions for
baseline hazard rate function of every type of failure cause, this model is quite adaptable. It
is certainly possible to extend this model in several directions: dependent risks, missingness
mechanism dependent on failure cause, etc. This model can also be extended to the case
of masked cause of failure for which many sophisticated parametric models and inference



Semiparametric competing risks 20

0 1 2 3 4

0.
00

0
0.

00
5

0.
01

0
0.

01
5

First failure type

Time

C
um

ul
at

iv
e 

ha
za

rd
 ra

te

0 1 2 3 4

0.
00

0
0.

00
5

0.
01

0
0.

01
5

Second failure type

Time

C
um

ul
at

iv
e 

ha
za

rd
 ra

te

Figure 2: Cumulative hazard rate functions estimated without using the transition 0 → 3
(dotted lines) with 95% pointwize confidence intervals (long-dashed lines) and optimized
estimation of the cumulative hazard functions (solid lines) with 95% pointwize confidence
intervals (dashed lines) for the two failure causes.
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Figure 3: Estimated reliability functions (solid lines) with 95% pointwize confidence intervals
(dashed lines) for the two failure causes.
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methods have been developed over the two past decades. The estimation method that
consists in seeing data as realizations of a nonhomogeneous markov process is inspired by
McKeague and Subramanian (1998) while the estimators of the regression parameters of
each transition is inspired from the Lin and Ying (1994) method. In addition we propose
a linear transformation of these estimators which is shown to be asymptotically optimal in
the sense of variance reduction.
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