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Keywords: Additive hazards, competing risks, counting processes, missing failure cause, reliability, survival analysis

We consider a nonparametric and a semiparametric (in presence of covariates) additive hazards rate competing risks model with censoring and failure cause possibly missing completely at random. Estimators of the unknown parameters are proposed in order to satisfy some optimality criteria. Large sample results are given for all the estimators. Our nonparametric method is applied to a real data set and the behavior of the semiparametric estimators are analyzed through a Monte Carlo study.

Introduction

We consider p ≥ 2 independent competing failure causes. We assume that to each failure time T j is associated a hazard rate function (risk function) λ j with 1 ≤ j ≤ p. The failure time T is the minimum of the p failure times associated to the p failure causes (this can be seen as a 1-out-of-p system in reliability), then we have T = T 1 ∧ • • • ∧ T p . The failure time T can be censored by a censoring time C, then we observe X = T ∧ C and δ = 1(T ≤ C) where 1(•) is the indicator function. Generally, when T is uncensored, that is for δ = 1, the failure cause is known, which means that p j=1 j1(T j = T ) is observed, but from times to times, it may happen that the failure cause is unknown and no partial information about the failure cause is available. In addition, a vector of explanatory variables denoted by Z and having potentially significant effects on the p failure times may be observed. In this paper we propose a model that allows to analyze such lifetime data from a semiparametric point of view in presence of covariates, and from a nonparametric point of view otherwise. We need to emphasize that our model extends some existing models in the semi-/non-parametric direction, however, the missingness mechanism is accounted here in the simplest way.

The problem of competing risks is not new and during the last two decades many models have been proposed in order to account that a system or an individual may fail or dead from several causes (see [START_REF] Crowder | Classical Competing Risks[END_REF], for a large overview on the topic). In a number of real applications of competing risks models the authors have to face the problem of missing information (e.g. [START_REF] Miyakawa | Analysis of incomplete data in competing risks model[END_REF]; [START_REF] Usher | Maximum likelihood analysis of component reliability using masked system life-test data[END_REF][START_REF] Lin | Exact maximum likelihood estimation under masked system data[END_REF][START_REF] Schabe | Nonparametric estimation of component lifetime based on masked system life test data[END_REF][START_REF] Goetghebeur | Analysis of competing risks survival data when some failure types are missing[END_REF][START_REF] Guttman | Dependent masking and system life data analysis: Bayesian inference for two-component systems[END_REF][START_REF] Reiser | Estimating component-defect probability from masked system success/failure data[END_REF][START_REF] Basu | Bayesian analysis for masked system failure data using non-identical Weibull models[END_REF][START_REF] Flehinger | Parametric modeling for survival with competing risks and masked failure causes[END_REF][START_REF] Craiu | Inference based on the EM algorithm for the competing risks model with masked causes of failure[END_REF][START_REF] Craiu | Inference for the dependent competing risks model with masked causes of failure, Lifetime Data Analysis[END_REF].

Among the great amount of paper dealing with competing risks model some of them focus on nonparametric estimation methods (see e.g. [START_REF] Lo | Estimating a survival function with incomplete cause-of-death data[END_REF][START_REF] Schabe | Nonparametric estimation of component lifetime based on masked system life test data[END_REF]. Because in many case partial information about the failure cause can only be obtained (e.g. masked cause of failure), a large number of works developed some specific methods with accurate modeling of the missingness mechanism. Most of these models are parametric and when a latent variable represents the missingness mechanism an EM-type algorithm can be proposed to estimate the model parameters. In [START_REF] Craiu | Inference based on the EM algorithm for the competing risks model with masked causes of failure[END_REF] such estimation procedure is proposed and the missingness may depend both on the failure cause and the failure time. Recently, [START_REF] Craiu | Inference for the dependent competing risks model with masked causes of failure, Lifetime Data Analysis[END_REF] considered a very complete parametric model including dependence of failure causes.

Some authors developed estimation procedures in the semi-/non-parametric framework for two or more failure causes (see e.g. Myakawa, 1984;[START_REF] Dinse | Nonparametric prevalence and mortality estimators for animal experiments with incomplete cause-of-death data[END_REF][START_REF] Lo | Estimating a survival function with incomplete cause-of-death data[END_REF][START_REF] Schabe | Nonparametric estimation of component lifetime based on masked system life test data[END_REF]. The special case of a possibly censored single failure cause differs from the competing risks model only be the fact that in this case the censoring time is not an event of interest. However, when the censoring information is missing, we are close to the competing risks situation where failure causes are possibly missing. Some specific methods has been derived in [START_REF] Gijbels | Non-and semi-parametric analysis of failure time data with missing failure indicators[END_REF], [START_REF] Mckeague | Product-limit estimators and Cox regression with missing censoring information[END_REF], van der Laan and McKeague (1998), Sun and [START_REF] Zhou | Additive hazards regression with missing censoring information[END_REF] and [START_REF] Subramanian | Asymptotically efficient estimation of a survival function in the missing censoring indicator model[END_REF] for various models including or not covariates, and several missingness mechanisms. [START_REF] Goetghebeur | Analysis of competing risks survival data when some failure types are missing[END_REF] proposed a competing risks model with proportional hazards assumption for the different failure causes. In their model the mechanism of missingness may depend on the failure time (this is the missing at random assumption) while in the model we propose it is independent of everything (this is the missing completely at random assumption). In our model each failure type has its own semiparametric additive hazards rate model and at the contrary to Goetghebeur and Ryan (1995), these failure rates are not linked.

The paper is organized as follows. In Section 2 we describe the model and we point out that each data resulting from the model can be seen as the realization of a nonhomogeneous Markov process. In Section 3 the estimators are defined. Because data for which the failure cause is missing are informative for the whole parameters of the model, we develop a method that allows to account this information in an optimal way with respect to an efficiency criterium. In Section 4, for the Euclidean parameters, and in Section 5 for the functional parameters, the corresponding estimators are shown to be consistent and asymptotically Gaussian. For each estimator, a consistent estimator of the asymptotic variance is provided. Section 6 is devoted to numerical examples. A Monte Carlo study is performed for the case including covariates whereas our estimation method is applied to a real data set that does not include covariates. Some concluding remarks are given in the last Section.

A semiparametric additive hazards model

The complete data are as follows.

• T j is the duration associated to the jth cause (j ∈ {1, . . . , p}).

• The law of T j , conditional on the vector of covariates Z ∈ R k , is defined by the hazard rate function λ j (t|Z) = λ 0j (t) + β T j Z, t ≥ 0, where λ 0j is the baseline hazard rate function of the jth cause, and β j ∈ R k is the regression parameter associated to the jth cause. • The censoring variable C either has a hazard rate function λ C or is deterministic; it is independent of the T j 's conditionally on Z.

• The binary variable δ = 1(T ≤ C), where

T = T 1 ∧ • • • ∧ T p , is the censoring indicator.
• The binary variable M is equal to 1 when the failure cause is known (thus is is equal to 0 when δ = 0).

• The variable D = δM p j=1 j1(T j ≤ T ) reveals the failure cause when the failure time is uncensored and M = 1.

The observation coming from one indiviual is therefore (X, δ, D, Z) where X is the observed duration. Denoting

P (M = 1|X, Z, δ = 1) = P (M = 1|δ = 1) = α ∈ [0, 1] and P (M = 0|X, Z, δ = 0) = P (M = 0|δ = 0) = 1,
the observation (X, δ, D), conditional on Z, may be seen as the realization of a (p + 3)state nonhomogeneous Markov process (see Fig. 1). Writing λ0x (•|Z) the transition rate, conditional on Z, for the transition 0 → x (x ∈ {1, . . . , p, m, c}) we obtain:

   λ0j (t) = αλ j (t|Z) for j ∈ {1, . . . , p}, λ0m (t) = (1 -α) p j=1 λ j (t|Z), λ0c (t) = λ C (t).
The independence of T 1 , . . . , T p , C, conditional on Z, is a sufficient condition to obtain the above transition rates.

Remark Up to the parameter α (or 1-α), the transition rates (excepted for the transition 0 → c) are additive hazards functions. This is obvious for the transition λ0j with 1 ≤ j ≤ p but it remains true for the transition 0 → m, indeed:

λ0m (t) = (1 -α) λ m (t) + β T m Z ,
where

λ 0m = p j=1 λ 0j et β m = p j=1 β j .
3 Regression parameters estimation

Data and notations

We denote by (X i , δ i , D i , Z i ) 1≤i≤n n independent and identically distributed copies of (X, δ, D, Z). For j ∈ {1, . . . , p, m} we define the counting processes:

N ij (t) = 1(X i ≤ t, D i = j) for j = m, N im (t) = 1(X i ≤ t, δ i = 1, D i = 0).
Hereafter, in order to simplify our notations, we write m ≡ p + 1. Let Y i be the risk process defined by Y i (t) = 1(X i ≥ t). Then, by [START_REF] Andersen | Statistical Models Based on Counting Processes[END_REF] or [START_REF] Fleming | Counting Processes and Survival Analysis[END_REF], for 1 ≤ i ≤ n and j ∈ {1, . . . , p + 1} the M ij processes defined by

M ij (t) = N ij (t) - t 0 Y i (s) λ0j (s)ds, t ≥ 0,
are F-martingales with respect to the filtration F = (F t ) t≥0 defined by

F t = σ{N ij (s), Y i (s); s ≤ t; 1 ≤ i ≤ n, j ∈ {1, . . . , p + 1}}.

Estimation of the Euclidean parameters

We denote by τ < +∞ the upper bound of the interval of study. It means that individuals are observed on the time interval [0, τ ]. The particular case where the censoring variable C is deterministic corresponds to a Type-I censored sampling plan with C = τ . With the assumption made on M the parameter α is naturally estimated by

α = α(τ ) = n i=1 1(D i > 0; X i ≤ τ ) n i=1 1(δ i = 1; X i ≤ τ ) = p j=1 N •j (τ ) N •• (τ ) ,
where any point in the subscripts corresponds to summation over all the possible values of the subscript. The estimator α of α is natural since it reveals, among the individuals doing an uncensored transition, the proportion of individuals having a known cause of failure. Individuals doing the transition 0 → j (1 ≤ j ≤ p) allow to estimate β j . Indeed, it is straightforward to extend the estimating function of [START_REF] Lin | Semiparametric estimation of the additive risk model[END_REF]. Therefore β j is estimated by βj which is the solution of U j (β, α, τ ) = 0 where

U j (β, α, τ ) = n i=1 τ 0 Z i -Z(s) dN ij (s) -αβ T Z i Y i (s)ds , with Z(s) = n i=1 Y i (s)Z i n i=1 Y i (s)
.

We ever saw that the transition rate 0 → m follows an additive risk model ; using data from this transition allows to estimate β m by βm solution of U m (β, α, τ ) = 0 where

U m (β, α, τ ) = n i=1 τ 0 Z i -Z(s) dN im (s) -(1 -α)β T Z i Y i (s)ds .
At this stage, each β j has its estimator βj for j = 1, . . . , p, p + 1. Because βm is an estimator of

β m = β 1 + • • • + β p ,
it is natural to use this available information in order to improve estimates of the β j 's. We adopt the following strategy. First we consider the block matrix H defined by

H =      H 11 H 12 • • • H 1p+1 H 21 H 22 • • • H 2p+1 . . . . . . . . . H p1 H p2 • • • H pp+1      ,
where for 1 ≤ i ≤ p and 1 ≤ j ≤ p + 1 H ij is a k × k-real valued matrix. The matrix H has to satisfy

H      β 1 . . . β p β m      =    β 1 . . . β p   
for all 1 ≤ i ≤ p and β i ∈ R k . Moreover, we want H to minimize the function q(H) defined by q(H) = trace(H ΣH T ),

where Σ is an estimator of the asymptotic variance matrix of ( βT 1 , . . . , βT p , βT m ) T . In other words, we are looking for a linear transformation of ( βT 1 , . . . , βT p , βT m ) T that remains an estimator of the β j 's for j = 1, . . . , p but that has a smaller variance (in some particular sense) than the initial one. Thus, denoting by Ĥ the matrix minimizing q(H), we denote by βi = p+1 j=1 Ĥij βj (with βp+1 ≡ βm ) the final estimator of β i for i = 1, . . . , p. Later we refer this estimators as "minimal variance estimators" (in the above sense).

Remark It is worth to note that constraints imposed to H does not link its lines. Indeed, denoting by I k the identity matrix of order k, these constraints may be written

H ii + H ip+1 = I k H ij + H ip+1 = 0 for 1 ≤ i ≤ p et j ∈ {1, . . . , p}\{i}.
On the other hand we have

q(H) = p i=1 trace(H i• ΣH T i• ) = p i=1 qi (H)
where qi (H) = trace(H i• ΣH T i• ) and H i• is the ith line block of H. Because the constraints are linear and does not link the lines of H it is sufficient to solve for each i ∈ {1, . . . , p} the following problem (P i ): Looking for matrices H i1 , . . . , H ip+1 satisfying:

(P i )    H ii + H ip+1 = I k , H ij + H ip+1 = 0 for j = i, trace(H i• ΣH T i• ) is minimal.

Example for p = k = 2

We have to solve problems (P 1 ) and (P 2 ) which are identical. As a consequence we consider only (P 1 ). Let us write H (j) = H 1j for j = 1, 2, 3 and introduce the following notations:

H (j) = h (j) 11 h (j) 12 h (j) 21 h (j) 22 and Q = Σ 0 and L = h (1) 11 , h (1) 12 , h (2) 
11 , h

12 , h

21 , h

= (l 1 , . . . , l 12 ). Then

q1 (H) = trace H (1) H (2) H (3) Σ H (1) H (2) H (3) T = L QL T .
The constraints are

H (1) + H (3) = I 2 H (2) + H (3) = 0 ⇔ h (1) ij + h (3) ij = 1 for 1 ≤ i, j ≤ 2, h (2) ij + h (3) ij = 0 for 1 ≤ i, j ≤ 2. ⇔ CL = d,
where

C =            
1 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 1 0 1

            and d =             1 0 0 0 0 1 0 0             .
Let λ be the Lagrange parameter associated to the optimization problem with linear constraints. The Lagrange function can be written

(L, λ) = 1 2 L T QL + (CL -d) T λ.
At the optimum L it satisfies

   ∂ ∂L ( L, λ) = 0 = Q L + C T λ, C L = d, so we obtain λ = -[C Q-1 C T ] -1 d, and hence L = Q-1 C T [C Q-1 C T ] -1 d.
Remark Note that Q is invertible whenever Σ is.

Asymptotic behavior of the regression parameters estimators 4.1 Asymptotics for the βj

First we need some notations. Let z be a column vector in R k , we note

x ⊗l =    1 if l = 0, z if l = 1, zz T if l = 2.
For 0 ≤ l ≤ 2 and 0 ≤ s ≤ τ we define

S l (s) = 1 n n i=1 Y i (s)Z ⊗l i ,
and for b ∈ R k we define

S 3 (s; b) = 1 n n i=1 Y i (s)Z ⊗2 i b T Z i .
Hereafter asymptotic results are given with respect to n tending to infinity. Let us introduce the following assumptions.

A1. The probability α of a known cause is strictly positive.

A2. The upper bound of the study interval satisfies 0 < τ 0 λ 0j (s)ds < +∞ for 1 ≤ j ≤ p and the vectors of covariates Z i are uniformly bounded with respect to i ≥ 1.

A3. For 0 ≤ l ≤ 2 there exist functions

s k defined on [0, τ ] such that max 0≤l≤2 sup s∈[0,τ ] S l (s) -s l (s) P -→ 0.
Moreover, s 0 is bounded by above by a strictly positive real number.

A4. Denoting by a(u) = s 2 (u) -s ⊗2 1 (u)/s 0 (u), the matrix

A(τ ) = τ 0 a(u)du
is positive definite, and A6. Functions a, aλ 0j , s 0 λ 0j , s 1 , s ⊗2 1 /s 2 0 , s 3 (•; β j ) and s 4 (•;

θ(τ ) = τ 0 s 0 (u)λ 0p+1 (u)du + β T p+1 s 1 (u) du > 0. A5. Let us consider b ∈ R k and S 4 (s; b) = n -1 n i=1 (b T Z i )Y i (s)(s 1 (s)Z T i /s 0 (s)).
β j ) (for 1 ≤ j ≤ p) are integrable on [0, τ ].
Remark Assumption A1 is clearly necessary to obtain the identifiability of the whole model parameters. Assumption A2 insures that data can be observed everywhere on [0, τ ] for each failure cause in an homogeneous way; the fact that the Z i are uniformly bounded could be relaxed, and they could also be time dependent but it would add some unimportant technicalities with respect to the main objective of this work. Assumption A3 is a simple consequence of the strong law of large numbers for i.i.d. (independent and identically distributed) processes. It is satisfied in particular when the covariates are i.i.d. with third order moment. Assumption A4 is necessary to identify β j using the transition 0 → j (1 ≤ j ≤ p + 1), whereas A5 and A6 are technical conditions. Now we introduce the vectors β = ( βT 1 , . . . , βT p+1 ) T and β = (β T 1 , . . . , β T p+1 ) T .

Theorem 4.1 Under Assumptions A1-A5, the random vector √ n( β -β) is asymptotically gaussian, centered, with positive definite covariance matrix Σ(τ ) defined hereafter.

Proof. First we denote by

U j (b, α j , τ ) = n i=1 τ 0 Z i -Z(s) dN ij (s) -α j b T Z i Y i (s)ds , for 1 ≤ j ≤ p + 1 with b ∈ R k and α j = α if 1 ≤ j ≤ p, 1 -α if j = p + 1. If we note αj = α if 1 ≤ j ≤ p, 1 -α if j = p + 1,
we have U j ( βj , αj , τ ) = 0 for 1 ≤ j ≤ p. First let us remark that for 1 ≤ j ≤ p + 1 the following equality holds

1 √ n U j (β j , α j , τ ) = Â(τ ) βj √ n( αj -α j ) + α j √ n( βj -β j ) , (1) 
where 

Â(τ ) = τ 0 S 2 (s) -S ⊗2 1 (s)/S 0 (s) ds.
Y i (s) λ0j (s|Z i )ds = p j=1 M •j (τ ) + α n i=1 p j=1 τ 0 Y i (s)λ j (s|Z i )ds M •• (τ ) + n i=1 p j=1 τ 0 Y i (s)λ j (s|Z i )ds = p j=1 M •j (τ ) + αn τ 0 S 0 (u)λ 0p+1 (u) + β T p+1 S 1 (u) du M •• (τ ) + n τ 0 S 0 (u)λ 0p+1 (u) + β T p+1 S 1 (u) du . It follows that √ n(α(τ ) -α) = 1 -α √ n p j=1 M •j (τ ) - α √ n M •p+1 (τ ) 1 n M •• (τ ) + τ 0 S 0 (u)λ 0p+1 (u) + β T p+1 S 1 (u) du 1(N •• (τ ) > 0) - √ nα1(N •• (τ ) = 0) = 1 -α √ n p j=1 M •j (τ ) - α √ n M •p+1 (τ ) 1 n M •• (τ ) + τ 0 S 0 (u)λ 0p+1 (u) + β T p+1 S 1 (u) du + o P (1).
Using the Lenglart inequality we show that

1 n M •• (τ ) P -→ 0.
Therefore, A3 and A4 yield

√ n(α(τ ) -α) = p+1 j=1 α * j θ(τ ) 1 √ n M •j (τ ) + o P (1), (2) 
where α * j = 1 -α for 1 ≤ j ≤ p and α * p+1 = -α. By applying the Rebolledo theorem and using (2) it is easy to prove that α is √ n-consistent. Because the processes U j (β j , α j , •) are F t -martingales, and proving by using the Lenglart inequality that divided by n these processes converge to 0 uniformly in probability on [0, τ ], we obtain the convergence in probability of β to β by using additionally the consistency of α, equality (1), and Assumptions A3 and A4. Once this convergence is established, we obtain by (1) the equality

√ n( βj -β j ) = 1 α j A -1 (τ ) U j (β j , α j , τ ) √ n -β j √ n(α j -α j ) + 1 α j Â-1 (τ ) -A -1 (τ ) U j (β j , α j , τ ) √ n - √ n( αj -α j )( βj -β j ) ,
where the second term of the right hand side is an o P (1) since A -1 n (τ ) converges in probability to A -1 (τ ) from Assumptions A3 and A4, U j (β j , α j , τ )/ √ n is a O P (1) (because it is asymptotically gaussian by the Rebolledo theorem), α is √ n-consistent and β converges to β. Finally the following approximation is obtained

√ n( βj -β j ) = 1 α A -1 (τ ) U j (β j , α j , τ ) √ n -β j √ n(α -α) + o P (1), (3) 
for 1 ≤ j ≤ p, and

√ n( βp+1 -β p+1 ) = 1 1 -α A -1 (τ ) U p+1 (β p+1 , α p+1 , τ ) √ n + β p+1 √ n( α -α) + o P (1). (4) 
Hence, by ( 2), (3), and (4) we obtain

√ n( β -β) = Σ 1 (τ )U n (τ ) + o P (1), (5) 
where

Σ 1 (τ ) =        A -1 (τ ) α 0 • • • 0 -β1 α 0 . . . . . . . . . . . . A -1 (τ ) α 0 - βp α 0 • • • 0 A -1 (τ ) 1-α βp+1 1-α        , and 
U n (τ ) = 1 √ n         U 1 (β 1 , α 1 , τ ) . . . U p+1 (β p+1 , α p+1 , τ ) p+1 j=1 α * j θ(τ ) M •j (τ )        
.

As a consequence, study the asymptotic behavior of √ n( β -β) leads to study the asymptotic behavior of the process U n which is an F t -martingale. As in [START_REF] Andersen | Cox's regression model for counting processes: A large sample study[END_REF], we apply the Rebolledo theorem (see [START_REF] Rebolledo | Central limit theorems for local martingales[END_REF], and an adapted version in Andersen et al., 1993, p. 83-84). This theorem allows to show that U n converges weakly in (D[0, τ ]) k(p+1)+1 to a gaussian martingale. Thus, the random vector U n (τ ) is asymptotically gaussian and centered. Because this theorem is now of classical use we only derive the limit of the predictible variation process of U n that gives the asymptotic variance matrix of U n (τ ). On one hand we have for 1

≤ j ≤ p + 1 n -1/2 U j (β j , α, •) (t) = α j t 0 S 2 (s) -S ⊗2
1 (s)/S 0 (s) λ 0j (s)ds + α j t 0 S 3 (s; β j ) -S 4 (s; β j ) -S T 4 (s; β j ) + (β T j S 1 (s))S ⊗2 1 (s)/S 2 0 (s) ds + o P (1), which by Assumptions A2-A6 converges to

Θ j (t) = α j t 0 a(s)λ 0j (s) + s 3 (s; β j )β j -s 4 (s; β j ) -s T 4 (s; β j ) + (β T j s 1 (s))s ⊗2 1 (s)/s 2 0 (s) ds.
On the other hand, for 1 ≤ j = j ≤ p + 1, we have

U j (•), U j (•) (t) = 0,
where we note U j (t) = U j (β j , α j , t) for 1 ≤ j ≤ p + 1. Thus the asymptotic covariance of terms U j and U j is null. It remains to calculate the asymptotic covariance of √ n(α -α) with the n -1/2 U j 's, and with itself. It is easy to show that for 1 ≤ k ≤ p + 1 we have

1 n U k (•), p+1 j=1 α * j M •j (•) θ(τ ) (t) P -→ κ k α(1 -α) θ(τ ) A(t)β k ≡ ξ k (t),
where κ k = 1 if 1 ≤ k ≤ p and κ p+1 = -1, and

1 n p+1 j=1 α * j M •j (•) θ(τ ) (t) P -→ α(1 -α) θ(τ ) ≡ ξ α (t).
Then, setting

Σ 2 (τ ) =      Θ 1 (τ ) 0 0 ξ 1 (τ ) 0 . . . 0 . . . 0 0 Θ p+1 (τ ) ξ p+1 (τ ) ξ T 1 (τ ) • • • ξ T p+1 (τ ) ξ α (τ )     
we obtain by ( 5) that √ n( β -β) is asymptotically gaussian with asymptotic covariance matrix Σ(τ ) = Σ 1 (τ )Σ 2 (τ )Σ T 1 (τ ). The matrix Σ 2 (τ ) being positive definite, the same holds for Σ(τ ).

The optimal estimator

Giving the asymptotic behavior of β requires to propose an estimator Σ of the asymptotic covariance matrix Σ(τ ). In this paragraph, when it is possible, we avoid to indicate dependence in τ , for exemple Σ(τ ) will be denoted by Σ.

It is easy to check that for 1 ≤ j ≤ p + 1 we have Therefore we set

βj = 1 αj Â-1 1 n n i=1 τ 0 Z i -Z(s) dN ij (s) Then, for 1 ≤ j ≤ p + 1 we note Θj = 1 n n i=1 τ 0 Z i -Z(s) ⊗2 dN ij (s),
Σ1 =        Â-1 α 0 • • • 0 -β1 α 0 . . . . . . . . . . . . Â-1 α 0 -βp α 0 • • • 0 Â-1 1-α βp+1 1-α        and Σ2 =      Θ1 0 0 ξ1 0 . . . 0 . . . 0 0 Θp+1 ξp+1 ξT 1 • • • ξT p+1 ξα      .
Let Ĥ be the matrix defined at Section 3, β = Ĥ β and β * = (β T 1 , . . . , β T p ) T .

Theorem 4.2 Under Assumptions A1-A5, the matrix Σ = Σ1 Σ2 ΣT 1 converges in probability to the matrix Σ. If Σ is invertible, then √ n( β -β * ) has an asymptotically centered gaussian distribution, whose the covariance matrix trace is less or equal to trace(HΣH T ) for all H ∈ H. Such an estimator is said asymptotically T -optimal.

Proof. The convergence of  to A is straightforward using Assumptions A3 and A4. Otherwise, we ever proved the convergence in probability of α and βj to α and β j , respectively (for 1 ≤ j ≤ p + 1) in the proof of Theorem 4.1. As a consequence, we obtain the convergence in probability of Σ1 to Σ 1 .

The convergence in probability of θ to θ(τ ) is a consequence of the Lenglart inequality. These convergences yield the convergence in probability of the ξj 's to the ξ j (τ )'s (for 1 ≤ j ≤ p+1). Using repeatedly the Lenglart inequality allows to prove that ξα and Θj converge in probability to ξ α and Θ j , respectively (for 1 ≤ j ≤ p + 1). It follows that Σ2 converges in probability to Σ 2 , and thus, that Σ converges in probability to Σ.

Finally, as we discussed in Sections 3.2 and 3.3, the matrix Ĥ depends continuously on Σ, then when n tends to infinity, Ĥ converges in probability to the matrix H Σ ∈ H that minimizes trace(HΣH T ) whose the existency follows from the positive definiteness of Σ. Moreover, because Ĥβ = β * , by the Slutsky lemma √ n( β -β * ) = Ĥ√ n( β -β) has a centered asymptotic gaussian distribution whose the covariance matrix H Σ ΣH T Σ satisfies trace(H Σ ΣH T Σ ) ≤ trace(HΣH T ) for all H such that Hβ = β * . This finishes the proof.

5 Estimation of functional parameters

Without covariate: nonparameteric case

This is the simplest case but the model is interesting for application. Indeed the unknown parameters of the model are the failure rates λ j associated to each failure cause. The transition rates of the Markov graph (see Fig. 1) satisfy for t ≥ 0,

   λ0j (t) = αλ j (t) pour j ∈ {1, . . . , p}, λ0m (t) = (1 -α) p j=1 λ j (t) ≡ (1 -α)λ m (t), λ0c (t) = λ C (t).
At the contrary to the model by [START_REF] Goetghebeur | Analysis of competing risks survival data when some failure types are missing[END_REF], when there is no covariate in the data, the model is still of interest because it allows different failure rates for failure causes.

Principle of an optimal estimator of the cumulative hazard rate functions

Let Λ j be the cumulative hazard rate function associated to the jth failure cause (1 ≤ j ≤ p). By standard arguments it is natural to estimate Λ j by

Λj (t) = 1 α n i=1 t 0 dN ij (s) Y (s) and Λ m (t) = p j=1 Λ j (t) by Λm (t) = 1 1 - α n i=1 t 0 dN im (s) Y (s) ,
where Y (s) = n i=1 1(X i ≥ s) and α is defined in Section 3. Again we have an estimator of each Λ j (1 ≤ j ≤ p) and an estimator of their sum. Let us denote by Ĥ(t) the p × (p + 1) time dependent matrix, that will be specified later, and Λ(t) = ( Λ1 (t), . . . , Λp (t), Λm (t)) T one estimator of Λ(t) = (Λ 1 (t), . . . , Λ p (t), Λ m (t)) T . We define Λ(t) = Ĥ(t) Λ(t) as one estimator of Λ * (t) = (Λ 1 (t), . . . , Λ p (t)) T . If the family of matrices { Ĥ(t); t ∈ [0, τ ]} satisfies Ĥ(t)a = a * for all t ∈ [0, τ ], a * = (a 1 , . . . , a p ) T ∈ R p and a = (a * T , p j=1 a j ) T . Then if Ĥ(t) converges in probability to H(t) and if the sequence of processes ( √ n( Λ(t) -Λ(t)); t ∈ [0, τ ]) converges weakly in (D[0, τ ]) p+1 to a centered gaussian process with covariance function Γ(t), then the sequence of processes ( √ n( Λ(t) -Λ * (t)); t ∈ [0, τ ]) converges weakly in (D[0, τ ]) p to a gaussian process having variance function H(t)Γ(t)H T (t).

Let Γ(t) be a consistent estimator of Γ(t), and Ĥ(t) be defined by

Ĥ(t) = arg min H∈H trace(H Γ(t)H T ), ( 6 
)
where H is the set of p × (p + 1) matrices satisfying Ha = a * for all a * = (a 1 , . . . , a p ) T ∈ R p and a = (a * T , p j=1 a j ) T . We denote by L the column vector in R p(p+1) defined by L = (H 1 , . . . , H p ) where H i is the ith line of H ∈ H. The link between L = (l i ) 1≤i≤p(p+1) and H = (h ij ) 1≤i≤p;1≤j≤p+1 is therefore h ij = l (i-1)(p+1)+j . Because linear constraints on H are transmitted to L we have

h ii + h i,p+1 = 1, for 1 ≤ i ≤ p, h ij + h i,p+1 = 0, for 1 ≤ i ≤ p, 1 ≤ j ≤ p + 1 and i = j, ⇔ l (i-1)(p+1)+i + l i(p+1) = 1, for 1 ≤ i ≤ p, l (i-1)(p+1)+j + l (i+1)p = 0, for 1 ≤ i ≤ p, 1 ≤ j ≤ p + 1 and i = j, ⇔ CL = d.
Denoting by Q(t) the block diagonal matrix defined by

Q(t) =    Γ(t) . . . Γ(t)         p-times,
we show that q(L) ≡ trace(H Γ(t)H T ) = L T Q(t)L. Following the method of Section 3.3, with the linear constraint CL = d, q(L) reaches it minimum at

L(t) = Q-1 (t)C T (C Q-1 (t)C T ) -1 d.
The Ĥ(t) matrix is therefore defined by ĥij (t) = l(i-1)(p+1)+j (t) for 1 ≤ i ≤ p and 1 ≤ j ≤ p + 1.

Asymptotics for Λ and Λ

Let us introduce two assumptions that allow to obtain the asymptotic behavior of estimators Λ and Λ.

B1. τ satisfies 0 < Λ j (τ ) < +∞ for 1 ≤ j ≤ p.

B2. There exists a function y, defined on [0, τ ], and bounded away from 0, such that sup

s∈[0,τ ] |Y (s)/n -y(s)| P -→ 0.
Note that functions yλ j and λ j /y are integrable on [0, τ ] and we define Theorem 5.1 Under Assumption A1, B1, and B2, the sequence ( √ n( Λ(t)-Λ(t)); t ∈ [0, τ ]) converges weakly on (D[0, τ ]) p+1 to a centered gaussian process with variance function Γ(t) defined subsequently.

Proof. The arguments we need here are close to those we used in the proof of Theorem 4.1, as a consequence we only give the main lines of this proof. We begin with α. Following the proof of Theorem 4.1, the equality (2) becomes

√ n(α -α) = p+1 j=1 α * j θ 0 (τ ) 1 √ n M •j (τ ) + o P (1), (7) 
where θ 0 (τ ) = τ 0 y(s)λ m (s)ds > 0 by B1 and B2. The Rebolledo theorem insures that α(τ ) converges to α at √ n-rate. With this result and the Lenglart inequality we show that the Λj 's converge in probability to the Λ j 's, uniformly on [0, τ ] for 1 ≤ j ≤ p + 1 (p + 1 ≡ m). In consequence we obtain the following uniform (in t ∈ [0, τ ]) approximation results

√ n( Λj (t) -Λ j (t)) = - Λ j (t) α j √ n(α j -α j ) + 1 α j √ n t 0 dM •j (s) Y (s) + o P (1) (8) 
for 1 ≤ j ≤ p + 1. By the approximations ( 7) and ( 8) we obtain

√ n( Λ(t) -Λ(t)) = Σ 3 (t)V n (t) + o P (1), (9) 
where

Σ 3 (t) =        1 α 0 • • • 0 -Λ1(t) α 0 . . . . . . . . . . . . 1 α 0 - Λp(t) α 0 • • • 0 1 1-α Λm(t) 1-α        and V n (t) = √ n       t 0 dM•1(s) Y (s) 
. . .

t 0 dM•p+1(s) Y (s) 1 n p+1 j=1 1-αj θ0(τ ) M •j (τ )       .
The Rebolledo theorem allows to prove that V n converges weakly in (D[0, τ ]) p+2 to a centered gaussian process. It remains to specify the variance function Σ 4 of this process. First we can write

V n (t) = V 1,n (t) + V 2,n (t) where V 1,n (t) = √ n       t 0 dM•1(s) Y (s) 
. . .

t 0 dM•p+1(s) Y (s) 1 n p+1 j=1 1-αj θ0(τ ) M •j (t)       and V 2,n (t) = 1 √ n      0 . . . 0 p+1 j=1 1-αj θ0(τ ) (M •j (τ ) -M •j (t))     
.

Because the M •j 's are martingales, we have

E V ⊗2 n (t) = E V ⊗2 1,n (t) + E V ⊗2 2,n (t) .
We are thus looking for

Σ 4 (t) = lim n→∞ E V ⊗2 1,n (t) + lim n→∞ E V ⊗2 2,n (t) . Setting ρ j (t) = κ j α(1 -α)Λ j (t)/θ 0 (τ ) for 1 ≤ j ≤ p + 1 = m and ρ α (τ ) = α(1 -α)/θ 0 (τ ), it is straightforwardly established that Σ 4 (t) =      η 1 (t) 0 0 ρ 1 (t) 0 . . . 0 . . . 0 0 η p+1 (t) ρ p+1 (t) ρ 1 (t) • • • ρ p+1 (t) ρ α (τ )      .
Then by ( 9) we obtain Γ(t) = Σ 3 (t)Σ 4 (t)Σ T 3 (t), which finishes the proof.

For t ∈]0, τ ] we define

Σ3 (t) =        1 α 0 • • • 0 -Λ1(t) α 0 . . . . . . . . . . . . 1 α 0 -Λp(t) α 0 • • • 0 1 1-α Λm(t) 1-α        and Σ4 (t) =      η1 (t) 0 0 ρ1 (t) 0 . . . 0 . . . 0 0 ηp+1 (t) ρp+1 (t) ρ1 (t) • • • ρp+1 (t) ρα     
where for 1 ≤ j ≤ p + 1 we note

ηj (t) = n t 0 dN •j (s) Y 2 (s) ,
and for 1 ≤ j ≤ p we note

ρj (t) = κ j α(1 -α) Λj (t) θ0 with θ0 = N •• (τ )/n and ρα = α(1 -α)/ θ0 . Thus we define Γ(t) = Σ3 (t) Σ4 (t) ΣT 3 (t).
Theorem 5.2 Under Assumptions A1, B1 and B2, for all t ∈ [0, τ ], the matrix Γ(t) converges in probability to the matrix Γ(t). Let us assume moreover that for all t ∈]0, τ ] the matrix Γ(t) is invertible. If Ĥ(t) is the unique solution of (6), then √ n( Λ -Λ) converges weakly in (D[0, τ ]) p to a centered gaussian process, and is asymptotically T -optimal with variance function equal to H(t)Γ(t)H T (t) (see ( 6)).

Proof. Since the proof follows the lines of Theorem 4.2 proof, it is omitted. textitRemark Quantities Λ(t) and Γ(t) are piecewise constant, therefore it is sufficient to calculate the matrix Ĥ(t) at points t ∈ [0, τ ] where N •• has jumps, that is at points X i ∈ [0, τ ] such that δ i = 1.

Survival functions estimation

One purpose of this paper is to improve the estimators of p parameters when in addition we are able to estimate their sum. Our model is especially well adapted to this problem for estimation of both regression parameters and cumulative hazard rate functions. Because the survival function coming from transition 0 → m has not the additive property of the above mentioned parameters it is desirable to estimate the survival functions using the T -optimal estimates of the cumulative hazard functions. As a consequence, the Kaplan-Meier type estimator of S j is defined by Sj (t) = s≤t (1 -∆ Λj (s)), t ≥ 0, for 1 ≤ j ≤ p, with ∆F (t) = F (t) -F (t-) for any F : R → R k . Because estimates Λj are piecewise constant with jumps at points X i for which δ i = 1, we have

Sj (t) = {1≤i≤n;Xi≤t,δi=1}
(1 -∆ Λj (X i )), t ≥ 0, which are easily computed. Now let us define 1 p = (1, . . . , 1) T ∈ R p and for t ∈ [0, τ ], S(t) = ( S1 (t), . . . , Sp (t)) T and S(t) = (S 1 (t), . . . , S p (t)) T . Theorem 5.3 Under Assumptions A1, B1 and B2, the process ( √ n( S(t) -S(t)); t ∈ [0, τ ]) converges weakly in (D[0, τ ]) p to a centered Gaussian process with covariance function Ω(t) = (ω ij (t)) 1≤i,j≤p defined by

Then we have S(t) =

ω ij (t) = S i (t)S j (t)(H(t)Γ(t)H T (t)) ij .
Then Ω(t) = (ω ij (t)) 1≤i,j≤p defined by

ωij (t) = Si (t) Sj (t)( Ĥ(t) Γ(t) ĤT (t)) ij ,
converges in probability to Ω(t) for t ∈]0, τ ].

With explanatory variables

Let us consider j ∈ {1, . . . , p}. For simplicity we only base our estimator of the conditional cumulative hazard function Λ j (•|Z) for cause j, on transition 0 → j (see Figure 1). Let us recall that Λ j (•|Z) is defined by

Λ j (t|Z) = Λ 0j (t) + β T j Zt, t ≥ 0.
The conditional survival function S j (•|Z) associated to the jth cause is therefore defined by .

S j (t|Z) = exp(-β T j Zt)φ(Λ 0j )(t
Let L j (t) be the (p + 2) × 1-matrix and Ξ j (t) be the (p + 1) × (p + 2)-matrix respectively defined by

L j (t) = 1 α   1 Λ j (t|Z) -2(k(t) + tZ) T β j A -1 (τ )(k(t) + tZ)   , and 
Ξ j (t) =   µ 1j (t) µ 2j (t) µ T 3j (t) µ 2j (t) ξ α (τ ) ξ T j (τ ) µ 3j (t) ξ j (τ ) Θ j (τ )   ,
where ξ α (τ ), ξ j (τ ) and Θ j (τ ) are defined in Section 4 and for 1

≤ j ≤ p k(t) = t 0 s 1 (s) s 0 (s) ds, µ 1j (t) = α t 0 s 0 (s)λ 0j (s) + β T j s 1 (s) s 2 0 (s) ds, µ 2j (t) = α θ(τ ) t 0 s 0 (s)λ 0j (s) + β T j s 1 (s) s 0 (s) ds, and 
µ 3j (t) = α t 0 a(s) s 0 (s) dsβ j .
Let us define Lj and Ξj the empirical versions of L j and Ξ j , by The proof of the next theorem is basically the same as the preceding ones then it is omitted.

Lj (t) = 1 α   1 Λj (t|Z) -2( K(t) + tZ) T βj Â-1 (τ )( K(t) + tZ)   , with K(t) = t 0 S 1 (s) S 0 (s) ds, and 
Ξj (t) =   μ1j ( 
Theorem 5.4 Under Assumptions A1-A5 and if for all t ∈ [0, τ ] the matrices L(t) and Ξ(t) are well defined, then for 1 ≤ j ≤ p, the sequence of processes ( √ n( Λj (t|Z) -Λ j (t|Z)); t ∈ [0, τ ]) converges weakly in D[0, τ ] to a centered Gaussian process with variance function γ j defined by γ j (t) = L T j (t)Ξ j (t)L j (t). Moreover γj (t) = LT j (t) Ξj (t) Lj (t) converges in probability to γ j (t) for all t ∈ [0, τ ]. The sequence of processes ( √ n( Ŝj (t|Z) -S j (t|Z)); t ∈ [0, τ ]) converges weakly in D[0, τ ] to a centered Gaussian process with variance function π j defined by π j (t) = S 2 j (t|Z)γ j (t) and πj (t) = Ŝ2 j (t|Z)γ j (t) converges in probability to π j (t) for all t ∈ [0, τ ].

Numerical study 6.1 A simulated example with covariates

In this section we give an example where we have two competing risks with a single covariate Z. We assume that Z is 1 or 2 with equal probabilities. Conditional on Z, we suppose that the hazard rate functions of T 1 and T 2 are respectively given by λ 1 (t|Z) = t/2 + 2Z and λ 2 (t|Z) = 2t/9 + 3Z, therefore we have β 1 = 2 and β 2 = 3. The censoring time C is exponentially distributed with mean 1 whereas the rate of missingness α is equal to 0.5. As a consequence, on the whole simulated data the rate of censored data is about 12%, the rates of observed failures from cause 1 and 2 are respectively about 15% and 28%, and the rate of missingness is about 45%.

In Table 1 we compare the performances of estimators ( βi ) i=1,2 based on transitions 0 → i with T -optimal estimators ( βi ) i=1,2 that use observations coming from the three informative transitions. We computed the mean and standard errors of 1000 estimates of β 1 and β 2 . We can see in Table 1 that from the bias point of view the T -optimal estimators are generally better (except for β 1 when n = 100) whereas the standard errors of T -optimal estimates are always smaller than the standard errors of estimates based on transitions 1 and 2. 

A reliability example without covariates

This example deals with the hard drives data sample that may be found in [START_REF] Flehinger | Parametric modeling for survival with competing risks and masked failure causes[END_REF]. These authors consider a scenario in which a company manufacturing hard drives for computers tries to analyze causes of failures of a certain sub-assembly. Some of these causes, such as "defective head", are related to components, but others (e.g., "particle contamination") are not; in this example, there are three major causes of failures which, without going into details, are denoted as causes 1, 2 and 3. We assume that these causes act independently and in series. 10,000 drives were manufactured and then information about failures was collected in a database during 4 years. The number of failures observed in this period was 172. Some of the failures were masked and a selected number of those were analyzed to complete resolution in the defect isolation laboratory. The only observed masked groups were {1, 2, 3} and {1, 3}. Considering causes 1 and 3 as a single failure cause we obtain data from a competing risks model with two failure modes. Mode 1 (corresponding to causes 1 , 3 or masked group {1, 3} of the original data set) and mode 2 (that corresponds to cause 2 in the original data set). The failure cause is missing when none of the three original cause of failure is known (corresponding to the masking group {1, 2, 3} of the original data set). Finally, we obtain a data set with 119 failures of type 1, 19 failures of type 2 and 34 failures for which the failure cause is unavailable. The lifetimes of the 9828 drives still functioning at the end of the study are censored by the 4 years of the study duration. Because no information is available after 4 years we fix τ to 4. The probability α that the two failure causes are missing is estimated by α = 0.802. Figure 2 shows, for each failure cause, estimates of cumulative hazard rate functions with and without using the transition 0 → 3 and the corresponding 95% pointwize confidence intervals for each estimate. We can see that there is a little gain to use transition 0 → 3. We can see also that the modified Nelson-Aalen estimators that we propose are slightly more regular (smaller size jumps) than the corresponding Nelson-Aalen estimators, in exchange of which our estimators can be non legitimate (they can be locally decreasing). However this drawback disapears as the sample size increases because of uniform convergence of our estimators. This is also true for for the two causes reliability estimates that are given on Figure 3 with pointwize 95% confidence intervals.

Conclusions

In this paper we consider a semiparametric competing risks model that accounts covariates and the fact that information on failure cause can be missing completely at random. In this paper the missingness mechanism is very simple because it is independent of everything (time, failure causes, covariates, etc.). However, because of nonparametric assumptions for baseline hazard rate function of every type of failure cause, this model is quite adaptable. It is certainly possible to extend this model in several directions: dependent risks, missingness mechanism dependent on failure cause, etc. This model can also be extended to the case of masked cause of failure for which many sophisticated parametric models and inference methods have been developed over the two past decades. The estimation method that consists in seeing data as realizations of a nonhomogeneous markov process is inspired by McKeague and Subramanian (1998) while the estimators of the regression parameters of each transition is inspired from the Lin and Ying (1994) method. In addition we propose a linear transformation of these estimators which is shown to be asymptotically optimal in the sense of variance reduction.
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 1 Figure 1: Markov graph associated to (X, M, D, Z)

  For all b ∈ R k , there exist functions s 3 (s; b) and s 4 (s; b) such that max 3≤l≤4 sup s∈[0,τ ] S l (s; b) -s l (s; b) P -→ 0.

η j (t) = α j t 0 λ

 0 j (s)/y(s)ds for 1 ≤ j ≤ m and η m = m j=1 η j . Assumption B2 is fulfilled whenever τ 0 λ C (s)ds < +∞.

s≤t 1 p

 1 -∆ Λ(s) , or equivalently, S = Φ( Λ) where the operator Φ from (D[0, τ ]) p to (D[0, τ ]) p is defined from its p identical components product-integral φ from D[0, τ ] to D[0, τ ]. As φ is Hadamard differentiable on E K ⊂ D[0, τ ] the set of functions with variations bounded by K < +∞ (see Andersen et al., 1993, p. 114) the same result holds for Φ on E p K with Hadamard derivative (dΦ(X).H)(t) = Φ(X)(t) H(t), where for a, b ∈ R p , a b ∈ R p is the component-wise product of a and b. From Theorem II.8.2 in Andersen et al. (1993, p. 112), √ n( S -S) is asymptotically equivalent to dΦ(Λ) √ n( Λ -Λ * ) = S √ n( Λ -Λ * ). The next theorem follows from the preceding result and Theorem 5.2.

  ), t ≥ 0, where φ is still the product-integral operator.First let us propose an estimator of Λ 0j . Using

	dN •j (s) = dM •j (s) + αS 0 (s)λ 0j (s)ds + αS T 1 (s)β j ds,
	we obtain the following estimator of Λ 0j (t) defined by
	Λ0j (t) =	1 α	0	t	dN •j (s) S 0 (s)	-βT j	0	t	S 1 (s) S 0 (s)	ds, t ≥ 0,
	where we recall that βj satisfies U j ( βj , α j , τ ) = 0 (see Section 3.2). Then we propose to
	estimate Λ j (•|Z) by Λj (•|Z) defined for t ≥ 0 by
	Λj (t|Z) =	1 α	0	t	dN •j (s) S 0 (s)		+ βT j	tZ -	0	t	S 1 (s) S 0 (s)	ds ,
	=	{1≤i≤n;Xi≤t,Di=j}	1 αS 0 (X i )	+ βT j	tZ -	0	t	S 1 (s) S 0 (s)	ds .
	The survival function S j (•|Z) is therefore estimated by Ŝj (•|Z) defined by
	Ŝj (t|Z) = exp -t βT j Z + βT j	0	t	S 1 (s) S 0 (s)	ds	1≤i≤n;Xi≤t,Di=j	1 -	1 αS 0 (X i )
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 1 Comparison of means and standard errors (within brackets) of N = 1000 estimates of βi and βi for i = 1, 2.

	n	β1	β1	β2	β2
	100 2.116 [1.583] 2.117 [1.438] 3.024 [1.923] 3.004 [1.610]
	200 2.055 [1.111] 2.023 [1.000] 3.083 [1.367] 3.039 [1.146]
	400 2.021 [0.768] 2.001 [0.687] 3.043 [0.919] 3.011 [0.784]
	1000 1.998 [0.500] 2.001 [0.454] 2.989 [0.584] 2.993 [0.502]