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Nonlinear free surface motions close to a vertical wall.

Influence of a local varying bathymetry
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∗∗ IRPHE, 13383 Marseille cedex 13, France,

1) Introduction

We are concerned with breaking waves at a vertical wall. Particularly we examine the influence of the local
varying bathymetry just below the vertical wall as described on the following figure.

The modelling is not a big challenge since many numerical wave tanks nowadays can tackle this problem. It
could be a solver of Euler’s equations coupled with a interface tracking algorithm like a VOF technique or
a Level-Set technique. It could be more classically a solver based on potential theory. In any case it is well
known that such models may suffer from instabilities; these spurious instabilities are usually smoothed out
at the price of a loss of mass or energy. Another drawback of these models is the important computational
resources required to carry out time simulations.

It is not our intention here to carry out another survey on all the possible methods by listing their
advantages or drawbacks. Tuck (1998) already carried out such a detailed survey. In particular he pointed
out the efficiency and robustness of algorithms like the so-called desingularized Integral Equation initially
introduced by Krasny (1986) and further developed by Cao et al. (1991).

We use here the same method of solution. The tank is basically rectangular. Tuck (1998) proposed a way
to derive Green function adapted to this geometry. For a rectangle, this is straightforward since a simple
conformal mapping exists. When the bathymetry is not horizontal, a more complicated conformal mapping
must be derived. In the present abstract, we expose the main outlines of the used conformal mappings.
Applications are done for various shapes of the bathymetry.

In effect there are many situations where we meet this kind of configurations: it could be either the
mild slope along the jetty or the chamfrein in the tanks of LNG carriers with however a much higher slope.
Comparisons with available experimental data show the efficiency of the elaborated algorithms.

1) Conformal mapping

A succession of conformal transformations is used to turn the original physical fluid domain into a half
space. The sketch below sums up these transformations.
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From the z-plane (plus its symmetric part with respect to the left vertical wall), we arrive at the ζ-plane
by ’flattening’ the two vertical walls. For that we use the transformation ζ = sin πz

2L
. Then the symmetric

domain with respect to the horizontal axis is introduced. The local bathymetry is now a closed contour which
is transformed by using successively a Karman-Trefftz (KT) transformation and a Theodorsen-Garrick (TG)
transformation; we arrive at a unit circle in the t-plane. Finally we use the transformation w = 1
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to end up with the whole plane where the first quarter bounded by the positive real and imaginary axes
corresponds to the image of the original fluid domain. It is not our intention to further develop these
transformations. We shall rather focus on the Green function calculation.

2) Adapted Green function

We place a source at the origin of w-plane and we easily check that the boundary condition (imperme-
ability) is satisfied on the solid walls, including the segment DH. The desingularized technique can be then
implemented. The sources are introduced along a curve at a small distance from the actual position of the
free surface. The velocity potential reads

φ(x, y, t) =
N

�

j=1

qj(t)G(x, y,Xj(t), Yj(t)) (1)

where (Xj , Yj) are the source location and qj is the strength of source j. For sake of simplicity the time
dependency is now omitted. The Green function G is calculated in the w-plane as follows

G = ℜ [F (w,ωj)] = ℜ [log(w − ωj) + log(w + ωj) + log(w − ωj) + log(w + ωj)] (2)

where w and ωj are the images of z = x+ iy and Zj = Xj + iYj respectively, through the whole conformal
mapping. The overline denotes the complex conjugate. The corresponding complex velocity is
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where J = dz
dw
denotes the Jacobian of the transformation. Knowing that J is real on the real axis and on

the segment DH, it is worth noticing that dF
dw
is real on the real axis and is purely imaginary on the segment

DH. We can conclude that the normal velocity on the solid boundaries is identically zero there.

3) Nonlinear free surface equations

The time stepping is achieved by using a Runge-Kutta algorithm (fourth order) for the following time
differential system

dΦ

dt
=
1

2
(U2 + V 2)− g(y − h),

dX

dt
= U,

dY

dt
= V (4)

where (X,Y ) are the cartesian coordinates of the lagrangian nodes at the free surface and (U, V ) are the
cartesian coordinates of the velocity. They are obtained from the spatial derivatives of the potential

U = φ,x =
N
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4) Applications

There is an easy way to simulate an overturning crest. That only depends on suitable initial conditions.
Furthermore these initial conditions can be parametrized by a few parameters. Here we first defined the
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initial free surface by y = h + A tanh(R(x − L/2)) hence starting from rest with a given potential energy
and a zero kinetic energy. Given the length L of the tank and the mean water depth h, varying the couple
of parameters (A,R) allows to simulate a large range of wave shapes at the vertical wall. We can get an
overturning crest at any given point of the tank or alternatively we can reproduce, by simply varying the
mean depth, the overturning crest up to a focusing wave front, including the initiation of an entrapped air
cavity. That is illustrated on the figures below

L=2 m, A=0.16m, h=0.19m, R=5
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There is no hope to validate the present approach since the initial free surface deformation cannot be
reproduced experimentally. However, thanks to the very fast algorithms (few seconds of CPU time on a
standard PC for each run), we can cover a large space of parameters (A,R) and then identifications with
available experimental data can be done. To this end, we use the results obtained within a PATOM project.
These results consist of snapshots of the free surface and the corresponding velocity patterns obtained by a
PIV device. These experiments were carried out in the wave flume of Ecole Centrale Marseille. This flume
is described below

In these experiments a soliton is produced by a wavemaker. It propagates along a mild slope (1/15) up
to breaking. Instead of the previous initial free surface, we used the following one y = h + Ae−R(x−L)2

For L = 2m A = 0.31m, h = 0.122m and R = 4.3, we can reproduce quite accurately the final instant
(t = 0.8635s) of the breaking as illustrated below
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Then velocity patterns at three previous time instants are deduced. The velocity patterns are plotted above
and below for t = 0.54s, t = 0.663s and t = 0.81s. Due to the differences on the initial condition, the
global errors on the identification increases as we come back in time. However the velocity patterns (both
experimental and numerical ones) fits surprisingly well at any stage. It should be underlined the small
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discrepancies on the maximum of the velocity. This data is crucial since it sets the intensity of the velocity
throughout the studied pattern.
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There are different way to quantify a relative error; it is calculated relatively to either the highest velocity
or the local velocity. In the latter case obviously the relative error may be large, but in the former case the
error is very small (less that 0.2 %). The area where the discrepancy is the highest, is mainly along the
contour of the velocity pattern. The figures below zoom on the crest where the local error is calculated for
the intensity of the velocity and its direction
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The PIV measurements in the tip of the crest seem difficult, but the relative error, especially for the intensity
is quite reasonable that is to say in the range of the experimental error (about 5 %). It should be noted that
these results cannot be considered as a strict validation of the model, but it proves that the local kinematics
of an actual overturning crest can be easily simulated.

Other shapes of bathymetry are studied like elliptic or rectangular step. This will be shown during the
workshop.

5) Conclusion

Following the tracks of Tuck (1998), it is shown that fast algorithms can be elaborated to simulate
breaking waves. Here improvments have been brought to tackle varying bathymetry. To this end, conformal
mappings are used to derive an adapted Green function. The robustness of the whole algorithms follows
from the use of the desingularized Integral Equation developed by Cao et al. (1991).

Many types of bathymetry can be investigated. Here we focused on a mild slope for which experimen-
tal data are available. An identification procedure is performed since we solve the nonlinear free surface
equations starting from a given potential energy, and not by modelling a real wave tank equipped with a
wavemaker. The comparisons offer good confidence into the present approach. It also demonstrates that
the model is reliable enough to predict the initial data to study the impact of the wave on the vertical wall.
This is the next step of the present study.
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INTRODUCTION

Studies on the behavior of large floating structures have been motivated by the design of platforms
for various purposes. At present, there exists an extensive literature on hydroelastic analysis of the
floating platforms [1]. In mathematical modelling, such platforms are often treated as thin elastic
plates. Most authors assumed a flat seabed for their hydroelastic analysis of floating platforms. In
reality, the seabed is not uniform in depth.

To our knowledge, the consideration of a varying water depth was made only for diffraction prob-
lem, by solving the linear hydroelastic problem for a single frequency [2-4]. A floating thin elastic
plate on shallow water of variable depth is considered in this paper. This problem has been chosen
because the sea-bottom effects become more significant in shallow water, than that in deep water (see,
for example, [4)]. Proposed method may be used for any unsteady 2D problem of linear shallow-water
theory, but here the motion of the elastic beam plate is considered for a travelling localized wave.
The solution of this problem for a flat bottom was given in [5]. Unsteady response of an elastic beam
floating on a shallow water of uniform depth under external load was considered in [6].

MATHEMATICAL FORMULATION

An elastic beam of width 2L floats on the surface of an inviscid incompressible fluid layer. The
surface of the fluid that is not covered with the plate is free. The fluid region S is divided into three
parts: S1 (|x| < L), S2 (x < −L), S3 (x > L), where x is the horizontal coordinate. Without the
plate, the fluid depth is equal to H(x) in S1, and the fluid depths in the left and right hand domains
of constant depth S2 and S3 are equal to H1 and H2, respectively. The fluid depth is assumed to be
continuous, so that H(−L) = H1, and H(L) = H2. With the plate, the fluid depth in S1 is equal
to h(x) = H(x) − d, where d is the draft of the plate. It is assumed that the maximal depth of
the fluid is small in comparison with the horizontal dimension of the plate, and the shallow water
approximation is used. The velocity potentials describing the fluid motion in the regions Sj are
denoted by φj(x, t) (j = 1, 2, 3), where t is time.

A deflection of an elastic plate w(x, t) is described by the equation:

D
∂4w

∂x4
+m

∂2w

∂t2
+ gρw + ρ

∂φ1

∂t
= 0 (x ∈ S1), (1)

where D is the flexural rigidity of the plate; m is the mass per unit length of the plate; ρ is the fluid
density, and g is the gravity acceleration. The draft of the plate is equal d = m/ρ.

According to linear shallow-water theory, the following relation is valid:

∂w

∂t
= −

∂

∂x

�

h(x)
∂φ1

∂x

�

(x ∈ S1). (2)

In the free-water regions, the velocity potentials φ2(x, t) and φ3(x, t) satisfy the equations

∂2φ2

∂t2
= gH1

∂2φ2

∂x2
(x ∈ S2),

∂2φ3

∂t2
= gH2

∂2φ3

∂x2
(x ∈ S3). (3)

The displacements of the free surface η2(x, t) and η3(x, t) are determined in the regions S2 and S3

from the relations

ηj = −
1

g

∂φj

∂t
(x ∈ Sj), j = 2, 3.

If |x| = L, the matching conditions (continuity of pressure and mass) should be satisfied:
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=
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,
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∂x
(x = L), h1,2 = H1,2 − d. (4)
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