
HAL Id: hal-00192869
https://hal.science/hal-00192869

Preprint submitted on 29 Nov 2007

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

An Optimistic Approach for the Specification of more
Flexible Roles Behavioural Compatibility Relations in

MAS
Nabil Hameurlain

To cite this version:
Nabil Hameurlain. An Optimistic Approach for the Specification of more Flexible Roles Behavioural
Compatibility Relations in MAS. 2007. �hal-00192869�

https://hal.science/hal-00192869
https://hal.archives-ouvertes.fr

An Optimistic Approach for the Specification of more
Flexible Roles Behavioural Compatibility Relations in MAS

Nabil Hameurlain
nabil.hameurlain@univ-pau.fr

Laboratoire LIUPPA, Université de Pau

Avenue de l’Université 64012 Pau – FRANCE

Résumé :
Dans cet article, nous nous focalisons sur une
nouvelle approche de définition d’une
compatibilité plus flexible des rôles dans les
SMA. Nous proposons une architecture formelle
pour la spécification des rôles et leur composition,
prenant en compte la préservation de propriétés
comme la complétion et la terminaison propre des
rôles. Nous mettons en évidence le lien existant
entre la compatibilité et la substitutabilité des
rôles, et plus particulièrement, nous montrons que
les relations de compatibilité ainsi définies sont
préservées par la substitutabilité.
Mots-clés : Rôles, interaction, compatibilité
optimiste, substitutabilité.

Abstract :
In this paper we focus on a new approach to the
definition of more flexible roles compatibility in
MAS. We provide a formal framework for
modeling roles together with their composition,
taking into account the property preservation such
as the completion and the proper termination of
roles. We show the existing link between roles
compatibility and substitutability, namely the
preservation of the proposed compatibility
relations by substitutability.
Keywords: Roles, interaction, components,
optimistic compatibility, substitutability.

1 Introduction
Roles are basic buildings blocks for
defining the organization of multi-agent
systems (MAS), together with the
behaviour of agents and the requirements

on their interactions. Usually, it is
valuable to reuse roles previously defined
for similar applications, especially when
the structure of interaction is complex. To
this end, roles must be specified in an
appropriate way, since the composition of
independently developed roles can lead to
the emergence of unexpected interaction
among the agents.
Although the concept of role has been
exploited in several approaches [2, 3, 9]
in the development of agent-based
applications, no consensus has been
reached about what is a role and how it
should be specified and implemented. In
our previous work [4], we have shown
that the facilities brought by the
Component Based Development (CBD)
approach [8] fit well the issues raised by
the use of roles in MAS. In this context,
we have proposed RICO (Role-based
Interactions COmponents) model for
specifying complex interactions, and
study the compatibility semantics of
roles. The RICO model is based on the
Component-nets formalism which
combines Petri nets and the component-
based approach.
In this paper, we focus on a new approach
to the definition of role-components
compatibility, and provide a formal
framework for modelling roles and their

317

composition. The contributions of this
paper are: (1) to provide a new approach
to the definition of more flexible role-
components compatibility and
substitutability relations, (2) to show the
existing link between compatibility and
substitutability relations, namely the
preservation of the compatibility by
substitutability.

2 Roles modelling

2.1 The Component-nets formalism
Backgrounds on Labelled Petri nets. A
marked Petri net N = (P, T, W, MN)
consists of a finite set P of places, a finite
set T of transitions where P ∩ T = ∅, a
weighting function W : P × T ∪ T × P →
N, and M : P ⎯→ N N is an initial
marking. A transition t ∈ T is enabled
under a marking M, noted M (t >, if W(p,
t) ≤ M(p), for each place p. In this case t
may occur, and its occurrence yields the
follower marking M', where M'(p) = M(p)
- W(p, t) + W(t, p), noted M(t> M'. The
enabling and the occurrence of a
sequence of transitions σ ∈ T* are
defined inductively. The preset of a node
x ∈ P ∪ T is defined as ●x = {y ∈ P ∪ T,
W(y, x) ≠ 0}, and the postset of x ∈ P ∪
T is defined as x● = {y ∈ P ∪ T, W(x, y)
≠ 0}. We denote as LN = (P, T, W, MN, l)
the (marked, labelled) Petri net in which
the events represent actions, which can be
observable. It consists of a marked Petri
net N = (P, T, W, MN) with a labelling
function l: T ⎯→ A ∪ {λ}. Let ε be the
empty sequence of transitions, l is
extended to an homomorphism l*: T*
⎯→ A* ∪ {λ} in the following way: l(ε)
= λ where ε is the empty string of T*, and

l*(σ.t) = l*(σ) if l(t) ∈ {λ}, l*(σ.t) =
l*(σ).l(t) if l(t) ∉ {λ}. In the following,
we denote l* by l, LN by (N, l), and if LN
= (P, T, W, MN, l) is a Petri net and l' is
another labelling function of N, (N, l')
denotes the Petri net (P, T, W, MN, l'),
that is N provided with the labelling l'. A
sequence of actions w ∈ A* ∪ {λ} is
enabled under the marking M and its
occurrence yields a marking M', noted
M(w>> M', iff either M = M' and w = λ
or there exists some sequence σ ∈ T*
such that l(σ) = w and M(σ> M'. The first
condition accounts for the fact that λ is
the label image of the empty sequence of
transitions. For a marking M, Reach (N,
M) = {M'; ∃ σ ∈ T*; M(σ> M'} is the set
of reachable markings of the net N from
the marking M.
Components nets (C-nets). A
Component-net involves two special
places: the first one is the input place for
instance creation of the component, and
the second one is the output place for
instance completion of the component. A
C-net (as a server) makes some services
available to the nets and is capable of
rendering these services. Each offered
service is associated to one or several
transitions, which may be requested by C-
nets, and the service is available when
one of these transitions, called accept-
transitions, is enabled. On the other hand
it can request (as a client) services from
other C-net transitions, called request-
transitions, and needs these requests to be
fulfilled. These requirements allow
focusing either upon the server side of a
C-net or its client side.

An optimistic approach for the specification of more flexible roles [...]___

318

Definition 2.1 (C-net) Let CN = (P ∪ {I,
O}, T, W, MN, lProv, lReq) be a labelled
Petri net. CN is a Component-net (C-net)
if and only if:
l. The labelling of transitions consists of
two labelling functions lProv and lReq, such
that: lProv : T ⎯→ Prov ∪ {λ}, where
Prov ⊆ A is the set of provided services,
and lReq : T ⎯→ Req ∪ {λ}, where Req
⊆ A is the set of required services.
2. Instance creation: the set of places
contains a specific Input place I, such that
●I = ∅,
3. Instance completion: the set of places
contains a specific Output place O, such
that O● = ∅.
Notation. We denote by [I] and [O],
which are considered as bags, the
markings of the Input and the Output
place of CN, and by Reach (CN, [I]), the
set of reachable markings of the
component-net CN obtained from its
initial marking MN within one token in its
Input place I. Besides, when we deal with
the graphical representation of the C-nets,
we use ! and ? keywords for the usual
sending (required) and receiving
(provided) services together with the
labeling function l instead of the two
labeling functions lProv and lReq.
Definition 2.2 (soundness) Let CN = (P
∪ {I, O}, T, W, MN, l) be a Component-
net (C-net). CN is said to be sound iff the
following conditions are satisfied:

1. Completion option: ∀ M ∈ Reach(CN,
[I]), [O] ∈ Reach(CN, M).

2. Reliability option: ∀ M ∈ Reach(CN,
[I]), M ≥ [O] implies M = [O].

The Completion option states that, if
starting from the initial state, i.e.
activation of the C-net , it is always
possible to reach the marking with one
token in the output place O. Reliability
option states that the moment a token is
put in the output place O corresponds to
the termination of a C-net without leaving
dangling references.
Composition of C-nets. The parallel
composition of C-nets, noted ⊕ : C-net ×
C-net → C-net, is made by
communication places allowing
interaction through observable services in
asynchronous way. Given a client C-net
and a server C-net, it consists in
connecting, through the communication
places, the request and the accept
transitions having the same service
names: for each service name, we add one
communication-place for receiving the
requests/replies of this service. Then, all
the accept-transitions labelled with the
same service name are provided with the
same communication-place, and the client
C-net is connected with the server C-net
through these communication places by
an arc from each request-transition
towards the suitable communication-
place and an arc from the suitable
communication-place towards each
accept-transition.

2.2 Specification of roles
In our RICO model [4], a role component
is considered as a component providing a
set of interface elements (either attributes
or operations, which are provided or
required features necessary to accomplish
the role’s tasks), a behaviour (interface
elements semantics), and properties
(proved to be satisfied by the behaviour).

__Annales du LAMSADE N°8

319

In this paper, we only consider
behavioural interface of roles that is their
behaviour specified by the C-nets
together with the set of (provided and
required) services.
Definition 2.3 (Role Component) A
Role Component for a role ℜ, noted RC,
is a 2-tuple RC = (Behav, Serv), where,

• Behav is a C-net describing the life-
cycle of the role ℜ.

• Serv is an interface, a set of public
elements, through which RC interacts
with other role components. Serv =
(Req, Prov), where Req is a set of
required services, and Prov is the set
of provided services by RC.

Since the life-cycle of roles is specified
by C-nets, we say that a component role
satisfies the completion (resp. terminates
successfully) if and only if its behaviour
that is its underlying C-net satisfies the
completion option (resp. terminates
successfully). The composition of two
role-components is also a role-
component, and this composition is
associative.
Definition 2.4 (Roles composition) A
Role RC = (Behav, Serv) can be
composed from a set of (primitive) Roles,
RCi = (Behavi, Servi), i = 1, …, n, noted
RC = RC1 ⊗… ⊗RCn, as follows:

• Behav = Behav1⊕ …⊕ Behavn.

• Serv = (Req, Prov), Req = ∪ Reqi, and
Prov = ∪Provi, i=1, …, n.

3 Compatibility of roles
In component-based software
engineering, classical approaches for
components compatibility deal with

components composition together with
their property preservation [1]. In our
previous work, we have used this
approach for role-based interaction
components and study some compatibility
relations [5]. In this paper, the basic idea
behind the optimistic approach for role-
components compatibility is to consider
explicitly the context of use of roles
(environment) in the definition of roles
compatibility relations. First, let define
the notion of role’s environment.
Definition 3.1 (Environment) Let RC1 =
(Behav1, Serv1) and RC2 = (Behav2,
Serv2), be two roles such that Servi =
(Reqi, Provi), i=1, 2.
CP2 is called an environment-role (or
environment) of CR1, and vice versa, iff
Req1 = Prov2, Req2 = Prov1.
We let ENV(RC), the set of the
environments of the role component RC.
The role component RC1 is considered an
environment of RC2 iff both their sets of
interfaces completely match.
Given a role-component and its
environment, it is possible to reason
about the completion and the proper
termination of their composition. Based
on that, we define two notions of
usability:
Definition 3.2 (usability)

1. RC is weakly usable iff ∃ Env ∈
ENV(RC), Env ⊗ RC satisfies the
completion option. We say that Env
weakly utilizes RC.

2. RC is strongly usable iff ∃ Env ∈
ENV(RC), Env ⊗ RC terminates
successfully. We say that Env strongly
utilizes RC.

An optimistic approach for the specification of more flexible roles [...]___

320

a !

b ? c ?

2
a ?

b ! c !

2

 RC1 RC2

Fig 1. RC1 weakly utilizes RC2, where
l(a)= Ticket, l(b) = Visa, l(c) = eCash.1

a ?

c !

a ?

b !

a ?

b ! c !

a !

b ? c ?

RC3 RC4 RC5

Fig 2. RC3 strongly utilizes RC5, RC4
strongly utilizes RC5.

a !

c ?

a !

b ?

 RC’
Fig 3. RC’ is not weakly usable.

1 The names of transitions are drawn into the box.

Example 1: Let’s take the example of the
ticket service and the customer. Figure 1
shows RC1 representing the behaviour of
the customer, and RC2 the behaviour of
the Ticket-service. The Ticket service
initiates the communication by sending
(two) Tickets and waits of their
payment (VISA and/or eCash). By
receiving the Tickets, the customer
determines the kind of payment of these
two tickets. It is easy to prove that roles
RC1 and RC2 are weakly usable, since
RC1 weakly utilizes RC2 and vice versa.
The role RC1 is not strongly usable, since
the unique (weakly usable) environment
of RC1 is the role RC2, and RC1 ⊗ RC2
satisfies the completion option but does
not terminate successfully. In figure 2, the
ticket service RC5 initiates de
communication by sending one Ticket
and waits of the payment (either Visa
or eCash). The role components RC3
and RC4 are two examples of the
customer’s behaviour. By receiving the
Ticket, they solve an internal conflict
and determine the kind of payment. The
roles RC3 and RC5 (resp. RC4 and RC5)
are strongly usable, since for instance
RC3 strongly utilizes RC5 (resp. RC4
strongly utilizes RC5) and vice versa. Last
but not least, let us take the ticket service
RC’ shown in figure 3. RC’ is not weakly
usable since there is no environment
which can weakly utilize it. Indeed, roles
RC3 and RC4 are the two possible role-
environments of RC’ (according to the
behaviour of RC’ described by the
language {Ticket!.Visa?,
Ticket!.eCash?}), nevertheless, for
instance the occurrence of the sequence
{Ticket!.Ticket?.eCash!} in RC3 ⊗

RC’ (as well as in RC4 ⊗ RC’) yields a

__Annales du LAMSADE N°8

321

deadlock- marking that is a marking
where no transition is enabled. This is
because of an error in role-component
RC’: an internal decision is made (either
Visa? or eCash?), when sending the
Ticket, and not communicated properly
to the environment [1].

We are finally ready to give adequate
definitions for roles behavioural
optimistic compatibility relations, which
are based on the weak and the strong
usability.
Definition 3.3 (compatibility) Let RC1
and RC2 be two weakly (resp. strongly)
usable roles.
RC1 and RC2 are Weakly (resp. Strongly)
Optimistic Compatible, noted RC1 ≈WOC
RC2 (resp. RC1 ≈SOC RC2), iff RC1 ⊗ RC2
is weakly (resp. strongly) usable.
Example 2: As an example, it is easy to
prove that roles RC1 and RC2, shown in
figure 1, are weakly optimistic
compatible that is RC1 ≈WC RC2 holds
since RC1 ⊗ RC2 is weakly usable.
Indeed, RC1 ⊗ RC2 satisfies the
completion option. Besides, the two roles
RC3 and RC5 shown in figure 2 are
strongly optimistic compatible that is RC3
≈SOC RC5 holds since RC3 ⊗ RC5 is
strongly usable. Indeed, RC3 ⊗ RC5
terminates successfully.
Property 3.1 (Hierarchy of
compatibility) Compatibility relations
form a hierarchy: ≈SOC ⇒ ≈WOC

4 Substitutability of roles
We show the existing link between
compatibility and substitutability

concepts, and namely their combination,
which seems necessary, when we deal
with incremental design of usable
components-role. Our main interest is to
define behavioural subtyping relations
(reflexive and transitive) capturing the
principle of substitutability [7]. We define
two subtyping relations based upon the
preservation of the (weakly and strongly)
utilizing of the former role by any role of
its environment.
Definition 4.1 (behavioural subtyping)
Let RCi = (Behavi, Servi), Servi = (Reqi,
Provi), i=1,2, be two roles, such that:
Prov1 ⊆ Prov2 and Req1 ⊆ Req22.
1. RC2 is less equal to RC1 w.r.t Weak
Substitutability, denoted RC2 ≤WS RC1, iff
∀ Env ∈ ENV(RC1), Env weakly utilizes
RC1 ⇒ Env weakly utilizes RC2.
2. RC2 is less equal to RC1 w.r.t Weak
Substitutability, denoted RC2 ≤SS RC1, iff
∀ Env ∈ ENV(RC1), Env strongly
utilizes RC1 ⇒ Env strongly utilizes RC2.
Weak (resp. Strong) Substitutability
guarantees the transparency of changes of
roles to their environment. In both weak
and strong subtyping relations, the
(super-) role component RC1 can be
substituted by a (sub-) role component
RC2 and the environment of the former
role RC1 will not be able to notice the
difference since: (a) the sub-role has a
larger set of required and provided
services (Req1 ⊆ Req2 and Prov1 ⊆ Prov2)
than the super-role, and (b) any
environment that weakly (resp. strongly)

2 The sub-role component has a larger set of (required

and provided) services (Req1 ⊆ Req2and Prov1 ⊆
Prov2) than the super-role component.

An optimistic approach for the specification of more flexible roles [...]___

322

utilizes the former role is also able to
weakly (resp. strongly) utilize the new
role.
Example 3: As an example, consider the
roles RC4 and RC1. RC1 ≤WS RC4 holds
since the unique environment that weakly
utilizes RC4 is the role RC5, and RC5 ⊗
RC1 satisfies the completion option.
These two roles RC1 and RC4 are not
related by the strong subtyping relation
that is RC1 ≤SS RC4 does not hold, since
RC5 ⊗ RC1 does not terminate
successfully. Last but not least, consider
the roles RC4 and RC3; RC3 ≤SS RC4
holds since the role RC5 (which is the
unique environment) that strongly utilizes
RC4 also strongly utilizes RC3. Indeed
RC5 ⊗ RC3 terminates successfully.
Property 4.1 (Hierarchy of subtyping)
The relations ≤H, H ∈ {WS, SS}, are
preorder (reflexive and transitive) and
form a hierarchy: ≤SS ⇒ ≤WS.

The following core theorem of this paper
states two fundamental properties of roles
compatibility and substitutability
relations. First, substitutability relations
are compositional: in order to check if
Env ⊗ RC2 ≤H Env ⊗ RC1, H ∈{WS,
SS}, it suffices to check RC2 ≤H RC1,
since the latter check involves smaller
roles and it is more efficient. Second,
substitutability and compatibility
relations are related as follows: we can
always substitute a role CR1 with a sub-
role CR2, provided that RC1 and RC2 are
connected to the environment Env =
(Behav, Serv) by the same provided
services that is: Req ∩ Prov2 ⊆ Req ∩
Prov1. This condition is due to the fact

that if the environment utilizes services
provided by CR2 that are not provided by
CR1, then it would be possible that new
incompatibilities arise in the processing
of these provided services.
Theorem 4.1 (compositionality and
compatibility preservation) Let RC1 =
(Behav1, Serv1), RC2 = (Behav2, Serv2) be
two roles where Servi = (Reqi, Provi), i =
1, 2. Let Env = (Behav, Serv) such that
Req ∩ Prov2 ⊆ Req ∩ Prov1.

1. Env ≈WOC RC1 and RC2 ≤WS RC1 ⇒
Env ≈WOC RC2 and Env ⊗ RC2 ≤WS Env
⊗ RC1.

2. Env ≈SOC RC1 and RC2 ≤SS RC1 ⇒ Env
≈SOC RC2 and Env ⊗ RC2 ≤SS Env ⊗ RC1.

5 Conclusion and related work
The aim of this paper is to present a new
and optimistic approach to the definition
of role-components behavioural
compatibility and substitutability
relations. The paper provides a
framework for modelling usable role-
components together with their
composition. This framework is discussed
in terms of roles compatibility and
substitutability relations. We furthermore
investigated the link between
compatibility and substitutability
relations by showing that substitutability
is compositional and the compatibility is
preserved by the substitutability.

Related work. The optimistic approach
to the definition of components
compatibility has been originally
introduced in [1] for interface automata.
Unlike traditional uses of automata, the
authors proposed an optimistic approach

__Annales du LAMSADE N°8

323

to automata composition. Two interface
automata are (optimistic) compatible, if
there exists a legal environment for these
two automata, i.e. an environment such
that no deadlock state is reachable in the
automata obtained by the composition of
the two interface automata and that
environment. This work is close to ours,
since our weak optimistic compatibility
relation for role-components is related to
the optimistic compatibility relation
defined for automata composition. Our
approach can be seen as an extension of
this work, since it deals in addition with
strong optimistic compatibility, which is
related to the proper termination property.
In [6], the concept of usability is used for
analyzing web service based business
processes. The authors defined the notion
of usability of workflow modules, and
studied the soundness of a given web
service, considering the actual
environment it will by used in. Based on
this formalism together with the notion of
usability, the authors present
compatibility and equivalence definitions
of web services. This approach is close to
ours, since the compatibility of two
workflow modules is related to our strong
optimistic compatibility of role-
components. Our approach can be seen as
an extension of this work, since we define
in addition the notion of weak optimistic
compatibility and study the existing link
between compatibility and
substitutability.

References
[1] L. De Alfaro, T.A. Henzinger.

Interface Automata. In Proc. of
ESEC/FSE, Vol. 26, 5 of Software
Engineering Notes, ACM (2001).

[2] M. Dastani, V. Dignum, F. Dignum.
Role Assignment in Open Agent
Societies. AAMAS’03, ACM 2003.

[3] G. Cabri, L. Leonardi, F.
Zambonelli. BRAIN: a Framework
for Flexible Role-based Interactions
in Multi-agent Systems. CoopIS
2003.

[4] N. Hameurlain, C. Sibertin-Blanc.
Specification of Role-based
Interactions Components in MAS.
In Software Engineering for Multi-
Agent Systems III. LNCS, pp 180-
197, Vol. 3390, Springer, 2005.

[5] N. Hameurlain. Formalizing
Compatibility and Substitutability
of Role-based Interactions
Components in MAS.
CEEMAS’05, LNAI/LNCS Vol.
3690, pp 153-162, 2005.

[6] A. Martens. Analyzing Web
Service Based Business.
FASE’2005, pp 19-33, Vol. 3442,
LNCS, Springer, 2005.

[7] B. H. Liskov, J. M. Wing. A
Behavioral Notion of Subtyping. In
ACM TPLS, Vol 16, n° 6, Nov.
1994.

[8] C. Szyperski. Component Software-
Beyond Object-Oriented
Programming. Addison-Wesley,
2002.

[9] F. Zambonelli, N. Jennings, M.
Wooldridge. Developing
Multiagent Systems : The Gaia
Methodology. ACM TSEM, Vol
12, N° 3, July 2003, pp317-370.

An optimistic approach for the specification of more flexible roles [...]___

324

