Nabil Hameurlain
email: nabil.hameurlain@univ-pau.fr

An Optimistic Approach for the Specification of more Flexible Roles Behavioural Compatibility Relations in MAS

Keywords: Rôles, interaction, compatibilité optimiste, substitutabilité Roles, interaction, components, optimistic compatibility, substitutability

Dans cet article, nous nous focalisons sur une nouvelle approche de définition d'une compatibilité plus flexible des rôles dans les SMA. Nous proposons une architecture formelle pour la spécification des rôles et leur composition, prenant en compte la préservation de propriétés comme la complétion et la terminaison propre des rôles. Nous mettons en évidence le lien existant entre la compatibilité et la substitutabilité des rôles, et plus particulièrement, nous montrons que les relations de compatibilité ainsi définies sont préservées par la substitutabilité.

Introduction

Roles are basic buildings blocks for defining the organization of multi-agent systems (MAS), together with the behaviour of agents and the requirements on their interactions. Usually, it is valuable to reuse roles previously defined for similar applications, especially when the structure of interaction is complex. To this end, roles must be specified in an appropriate way, since the composition of independently developed roles can lead to the emergence of unexpected interaction among the agents.

Although the concept of role has been exploited in several approaches [START_REF] Dastani | Role Assignment in Open Agent Societies[END_REF][START_REF] Cabri | BRAIN: a Framework for Flexible Role-based Interactions in Multi-agent Systems[END_REF][START_REF] Zambonelli | Developing Multiagent Systems : The Gaia Methodology[END_REF] in the development of agent-based applications, no consensus has been reached about what is a role and how it should be specified and implemented. In our previous work [START_REF] Hameurlain | Specification of Role-based Interactions Components in MAS[END_REF], we have shown that the facilities brought by the Component Based Development (CBD) approach [START_REF] Szyperski | Component Software-Beyond Object-Oriented Programming[END_REF] fit well the issues raised by the use of roles in MAS. In this context, we have proposed RICO (Role-based Interactions COmponents) model for specifying complex interactions, and study the compatibility semantics of roles. The RICO model is based on the Component-nets formalism which combines Petri nets and the componentbased approach.

In this paper, we focus on a new approach to the definition of role-components compatibility, and provide a formal framework for modelling roles and their composition. The contributions of this paper are: [START_REF] Alfaro | Interface Automata[END_REF] to provide a new approach to the definition of more flexible rolecomponents compatibility and substitutability relations, [START_REF] Dastani | Role Assignment in Open Agent Societies[END_REF] to show the existing link between compatibility and substitutability relations, namely the preservation of the compatibility by substitutability.

Roles modelling 2.1 The Component-nets formalism

Backgrounds on Labelled Petri nets. A marked Petri net N = (P, T, W, M N) consists of a finite set P of places, a finite set T of transitions where P ∩ T = ∅, a weighting function W : P × T ∪ T × P → N, and M : P ⎯→ N N is an initial marking. A transition t ∈ T is enabled under a marking M, noted M (t >, if W(p, t) ≤ M(p), for each place p. In this case t may occur, and its occurrence yields the follower marking M', where M'(p) = M(p) -W(p, t) + W(t, p), noted M(t> M'. The enabling and the occurrence of a sequence of transitions σ ∈ T * are defined inductively. The preset of a node x ∈ P ∪ T is defined as • x = {y ∈ P ∪ T, W(y, x) ≠ 0}, and the postset of x ∈ P ∪ T is defined as x • = {y ∈ P ∪ T, W(x, y) ≠ 0}. We denote as LN = (P, T, W, M N , l) the (marked, labelled) Petri net in which the events represent actions, which can be observable. It consists of a marked Petri net N = (P, T, W, M N) with a labelling function l: T ⎯→ A ∪ {λ}. Let ε be the empty sequence of transitions, l is extended to an homomorphism l * : T * ⎯→ A * ∪ {λ} in the following way: l(ε) = λ where ε is the empty string of T * , and l * (σ.t) = l * (σ) if l(t) ∈ {λ}, l * (σ.t) = l * (σ).l(t) if l(t) ∉ {λ}. In the following, we denote l * by l, LN by (N, l), and if LN = (P, T, W, M N , l) is a Petri net and l' is another labelling function of N, (N, l') denotes the Petri net (P, T, W, M N , l'), that is N provided with the labelling l'. A sequence of actions w ∈ A * ∪ {λ} is enabled under the marking M and its occurrence yields a marking M', noted M(w>> M', iff either M = M' and w = λ or there exists some sequence σ ∈ T * such that l(σ) = w and M(σ> M'. The first condition accounts for the fact that λ is the label image of the empty sequence of transitions. For a marking M, Reach (N, M) = {M'; ∃ σ ∈ T * ; M(σ> M'} is the set of reachable markings of the net N from the marking M.

Components nets (C-nets).

A Component-net involves two special places: the first one is the input place for instance creation of the component, and the second one is the output place for instance completion of the component. A C-net (as a server) makes some services available to the nets and is capable of rendering these services. Each offered service is associated to one or several transitions, which may be requested by Cnets, and the service is available when one of these transitions, called accepttransitions, is enabled. On the other hand it can request (as a client) services from other C-net transitions, called requesttransitions, and needs these requests to be fulfilled. These requirements allow focusing either upon the server side of a C-net or its client side.

Notation. We denote by [I] and [O],

which are considered as bags, the markings of the Input and the Output place of CN, and by Reach (CN, [I]), the set of reachable markings of the component-net CN obtained from its initial marking M N within one token in its Input place I. Besides, when we deal with the graphical representation of the C-nets, we use ! and ? keywords for the usual sending (required) and receiving (provided) services together with the labeling function l instead of the two labeling functions l Prov and l Req .

Definition 2.2 (soundness)

Let CN = (P ∪ {I, O}, T, W, M N , l) be a Component- net (C-net).
CN is said to be sound iff the following conditions are satisfied:

1. Completion option: ∀ M ∈ Reach(CN, [I]), [O] ∈ Reach(CN, M).

Reliability option

: ∀ M ∈ Reach(CN, [I]), M ≥ [O] implies M = [O].
The Completion option states that, if starting from the initial state, i.e. activation of the C-net , it is always possible to reach the marking with one token in the output place O. Reliability option states that the moment a token is put in the output place O corresponds to the termination of a C-net without leaving dangling references.

Composition of C-nets. The parallel composition

of C-nets, noted ⊕ : C-net × C-net → C-net,
is made by communication places allowing interaction through observable services in asynchronous way. Given a client C-net and a server C-net, it consists in connecting, through the communication places, the request and the accept transitions having the same service names: for each service name, we add one communication-place for receiving the requests/replies of this service. Then, all the accept-transitions labelled with the same service name are provided with the same communication-place, and the client C-net is connected with the server C-net through these communication places by an arc from each request-transition towards the suitable communicationplace and an arc from the suitable communication-place towards each accept-transition.

Specification of roles

In our RICO model [START_REF] Hameurlain | Specification of Role-based Interactions Components in MAS[END_REF], a role component is considered as a component providing a set of interface elements (either attributes or operations, which are provided or required features necessary to accomplish the role's tasks), a behaviour (interface elements semantics), and properties (proved to be satisfied by the behaviour).

In this paper, we only consider behavioural interface of roles that is their behaviour specified by the C-nets together with the set of (provided and required) services. • Serv is an interface, a set of public elements, through which RC interacts with other role components. Serv = (Req, Prov), where Req is a set of required services, and Prov is the set of provided services by RC. Since the life-cycle of roles is specified by C-nets, we say that a component role satisfies the completion (resp. terminates successfully) if and only if its behaviour that is its underlying C-net satisfies the completion option (resp. terminates successfully). The composition of two role-components is also a rolecomponent, and this composition is associative.

Definition 2.4 (Roles composition)

A Role RC = (Behav, Serv) can be composed from a set of (primitive) Roles, RC i = (Behav i , Serv i), i = 1, …, n, noted RC = RC 1 ⊗… ⊗RC n , as follows:

• Behav = Behav 1 ⊕ …⊕ Behav n .
• Serv = (Req, Prov), Req = ∪ Req i , and Prov = ∪Prov i , i=1, …, n.

Compatibility of roles

In component-based software engineering, classical approaches for components compatibility deal with components composition together with their property preservation [START_REF] Alfaro | Interface Automata[END_REF]. In our previous work, we have used this approach for role-based interaction components and study some compatibility relations [START_REF] Hameurlain | Formalizing Compatibility and Substitutability of Role-based Interactions Components in MAS[END_REF]. In this paper, the basic idea behind the optimistic approach for rolecomponents compatibility is to consider explicitly the context of use of roles (environment) in the definition of roles compatibility relations. First, let define the notion of role's environment. We let ENV(RC), the set of the environments of the role component RC.

The role component RC 1 is considered an environment of RC 2 iff both their sets of interfaces completely match.

Given a role-component and its environment, it is possible to reason about the completion and the proper termination of their composition. Based on that, we define two notions of usability:

Definition 3.2 (usability)

1. RC is weakly usable iff ∃ Env ∈ ENV(RC), Env ⊗ RC satisfies the completion option. We say that Env weakly utilizes RC.

2. RC is strongly usable iff ∃ Env ∈ ENV(RC), Env ⊗ RC terminates successfully. We say that Env strongly utilizes RC. RC' is not weakly usable. 1 The names of transitions are drawn into the box.

Example 1: Let's take the example of the ticket service and the customer. Figure 1 shows RC 1 representing the behaviour of the customer, and RC 2 the behaviour of the Ticket-service. The Ticket service initiates the communication by sending (two) Tickets and waits of their payment (VISA and/or eCash). By receiving the Tickets, the customer determines the kind of payment of these two tickets. It is easy to prove that roles RC 1 and RC 3. RC' is not weakly usable since there is no environment which can weakly utilize it. Indeed, roles RC 3 and RC 4 are the two possible roleenvironments of RC' (according to the behaviour of RC' described by the language {Ticket!.Visa?, Ticket!.eCash?}), nevertheless, for instance the occurrence of the sequence {Ticket!.Ticket?.eCash!} in RC 3 ⊗ RC' (as well as in RC 4 ⊗ RC') yields a deadlock-marking that is a marking where no transition is enabled. This is because of an error in role-component RC': an internal decision is made (either Visa? or eCash?), when sending the Ticket, and not communicated properly to the environment [START_REF] Alfaro | Interface Automata[END_REF].

We are finally ready to give adequate definitions for roles behavioural optimistic compatibility relations, which are based on the weak and the strong usability.

Definition 3.3 (compatibility)

Let RC 1 and RC 2 be two weakly (resp. strongly) usable roles. RC 1 and RC 2 are Weakly (resp. Strongly) Optimistic Compatible, noted RC 1 ≈ WOC RC 2 (resp. RC 1 ≈ SOC RC 2), iff RC 1 ⊗ RC 2 is weakly (resp. strongly) usable.

Example 2:

As an example, it is easy to prove that roles RC 1 and RC 2 , shown in figure 1, are weakly optimistic compatible that is RC 1 ≈ WC RC 2 holds since RC 1 ⊗ RC 2 is weakly usable. Indeed, RC 1 ⊗ RC 2 satisfies the completion option. Besides, the two roles RC 3 and RC 5 shown in figure 2 are strongly optimistic compatible that is RC 3 ≈ SOC RC 5 holds since RC 3 ⊗ RC 5 is strongly usable. Indeed, RC 3 ⊗ RC 5 terminates successfully.

Substitutability of roles

We show the existing link between compatibility and substitutability concepts, and namely their combination, which seems necessary, when we deal with incremental design of usable components-role. Our main interest is to define behavioural subtyping relations (reflexive and transitive) capturing the principle of substitutability [START_REF] Liskov | A Behavioral Notion of Subtyping[END_REF]. We define two subtyping relations based upon the preservation of the (weakly and strongly) utilizing of the former role by any role of its environment.

Definition 4.1 (behavioural subtyping)

Let RC i = (Behav i , Serv i), Serv i = (Req i , Prov i), i=1

Conclusion and related work

The aim of this paper is to present a new and optimistic approach to the definition of role-components behavioural compatibility and substitutability relations. The paper provides a framework for modelling usable rolecomponents together with their composition. This framework is discussed in terms of roles compatibility and substitutability relations. We furthermore investigated the link between compatibility and substitutability relations by showing that substitutability is compositional and the compatibility is preserved by the substitutability.

Related work.

The optimistic approach to the definition of components compatibility has been originally introduced in [START_REF] Alfaro | Interface Automata[END_REF] for interface automata. Unlike traditional uses of automata, the authors proposed an optimistic approach to automata composition. Two interface automata are (optimistic) compatible, if there exists a legal environment for these two automata, i.e. an environment such that no deadlock state is reachable in the automata obtained by the composition of the two interface automata and that environment. This work is close to ours, since our weak optimistic compatibility relation for role-components is related to the optimistic compatibility relation defined for automata composition. Our approach can be seen as an extension of this work, since it deals in addition with strong optimistic compatibility, which is related to the proper termination property. In [START_REF] Martens | Analyzing Web Service Based Business[END_REF], the concept of usability is used for analyzing web service based business processes. The authors defined the notion of usability of workflow modules, and studied the soundness of a given web service, considering the actual environment it will by used in. Based on this formalism together with the notion of usability, the authors present compatibility and equivalence definitions of web services. This approach is close to ours, since the compatibility of two workflow modules is related to our strong optimistic compatibility of rolecomponents. Our approach can be seen as an extension of this work, since we define in addition the notion of weak optimistic compatibility and study the existing link between compatibility and substitutability.

Definition 2 . 1 (2 .

 212 C-net) Let CN = (P ∪ {I, O}, T, W, M N , l Prov , l Req) be a labelled Petri net. CN is a Component-net (C-net) if and only if: l. The labelling of transitions consists of two labelling functions l Prov and l Req , such that: l Prov : T ⎯→ Prov ∪ {λ}, where Prov ⊆ A is the set of provided services, and l Req : T ⎯→ Req ∪ {λ}, where Req ⊆ A is the set of required services. Instance creation: the set of places contains a specific Input place I, such that • I = ∅, 3. Instance completion: the set of places contains a specific Output place O, such that O • = ∅.

Definition 2 . 3 (

 23 Role Component) A Role Component for a role ℜ, noted RC, is a 2-tuple RC = (Behav, Serv), where, • Behav is a C-net describing the lifecycle of the role ℜ.

Definition 3 . 1 (

 31 Environment) Let RC 1 = (Behav 1 , Serv 1) and RC 2 = (Behav 2 , Serv 2), be two roles such that Serv i = (Req i , Prov i), i=1, 2.CP 2 is called an environment-role (or environment) of CR 1 , and vice versa, iff Req 1 = Prov 2 , Req 2 = Prov 1 .

Fig 1 .Fig 2 .

 12 Fig 1. RC 1 weakly utilizes RC 2 , where l(a)= Ticket, l(b) = Visa, l(c) = eCash. 1

 Compatibility relations form a hierarchy: ≈ SOC ⇒ ≈ WOC

 2 are weakly usable, since RC 1 weakly utilizes RC 2 and vice versa.

	The role RC 1 is not strongly usable, since
	the unique (weakly usable) environment
	of RC 1 is the role RC 2 , and RC 1 ⊗ RC 2
	satisfies the completion option but does
	not terminate successfully. In figure 2, the
	ticket service RC 5 initiates de
	communication by sending one Ticket
	and waits of the payment (either Visa
	or eCash). The role components RC 3
	and RC 4 are two examples of the
	customer's behaviour. By receiving the
	Ticket, they solve an internal conflict
	and determine the kind of payment. The
	roles RC 3 and RC 5 (resp. RC 4 and RC 5)
	are strongly usable, since for instance
	RC 3 strongly utilizes RC 5 (resp. RC 4
	strongly utilizes RC 5) and vice versa. Last
	but not least, let us take the ticket service
	RC' shown in figure

 ,2, be two roles, such that: Prov 1 ⊆ Prov 2 and Req 1 ⊆ Req 2 2 . 1. RC 2 is less equal to RC 1 w.r.t Weak Substitutability, denoted RC 2 ≤ WS RC 1 , iff ∀ Env ∈ ENV(RC 1), Env weakly utilizes RC 1 ⇒ Env weakly utilizes RC 2 . 2. RC 2 is less equal to RC 1 w.r.t Weak Substitutability, denoted RC 2 ≤ SS RC 1 , iff ∀ Env ∈ ENV(RC 1), Env strongly utilizes RC 1 ⇒ Env strongly utilizes RC 2 . As an example, consider the roles RC 4 and RC 1 . RC 1 ≤ WS RC 4 holds since the unique environment that weakly utilizes RC 4 is the role RC 5 , and RC 5 ⊗ RC 1 satisfies the completion option. These two roles RC 1 and RC 4 are not related by the strong subtyping relation that is RC 1 ≤ SS RC 4 does not hold, since RC 5 ⊗ RC 1 does not terminate successfully. Last but not least, consider the roles RC 4 and RC 3 ; RC 3 ≤ SS RC 4 holds since the role RC 5 (which is the unique environment) that strongly utilizes RC 4 also strongly utilizes RC 3 . Indeed RC 5 ⊗ RC 3 terminates successfully. Prov 2 ⊆ Req ∩ Prov 1 . This condition is due to the fact that if the environment utilizes services provided by CR 2 that are not provided by CR 1 , then it would be possible that new incompatibilities arise in the processing of these provided services. Serv 1), RC 2 = (Behav 2 , Serv 2) be two roles where Serv i = (Req i , Prov i), i = 1, 2. Let Env = (Behav, Serv) such that Req ∩ Prov 2 ⊆ Req ∩ Prov 1 . 1. Env ≈ WOC RC 1 and RC 2 ≤ WS RC 1 ⇒ Env ≈ WOC RC 2 and Env ⊗ RC 2 ≤ WS Env ⊗ RC 1 . 2. Env ≈ SOC RC 1 and RC 2 ≤ SS RC 1 ⇒ Env ≈ SOC RC 2 and Env ⊗ RC 2 ≤ SS Env ⊗ RC 1 .

	utilizes the former role is also able to
	weakly (resp. strongly) utilize the new
	role.
	Weak (resp. Strong) Substitutability guarantees the transparency of changes of roles to their environment. In both weak and strong subtyping relations, the (super-) role component RC 1 can be substituted by a (sub-) role component RC 2 and the environment of the former role RC 1 will not be able to notice the difference since: (a) the sub-role has a larger set of required and provided services (Req 1 ⊆ Req 2 and Prov 1 ⊆ Prov 2) than the super-role, and (b) any environment that weakly (resp. strongly) compatibility preservation) Let RC 1 = services that is: Req ∩ Theorem 4.1 (compositionality and Example 3: Property 4.1 (Hierarchy of subtyping) The relations ≤ H , H ∈ {WS, SS}, are preorder (reflexive and transitive) and form a hierarchy: ≤ SS ⇒ ≤ WS . The following core theorem of this paper states two fundamental properties of roles compatibility and substitutability relations. First, substitutability relations are compositional: in order to check if Env ⊗ RC 2 ≤ H Env ⊗ RC 1 , H ∈{WS, SS}, it suffices to check RC 2 ≤ H RC 1 , since the latter check involves smaller roles and it is more efficient. Second, substitutability and compatibility relations are related as follows: we can always substitute a role CR 1 with a sub-role CR 2 , provided that RC 1 and RC 2 are connected to the environment Env = (Behav, Serv) by the same provided (Behav 1 ,

The sub-role component has a larger set of (required and provided) services (Req 1 ⊆ Req 2 and Prov 1 ⊆ Prov 2) than the super-role component.