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Introduction

A lot of research studies are devoted to the problem of estimating a regression function and specially a function belonging to a Hölder class. In this direction it is known from [START_REF] Sacks | Asymptotically optimum kernels for density estimation at a point[END_REF] that the linear minimax estimator is a kernel estimator in the case of a quasi-Hölder regression function estimated at a single point with squared error loss. This estimator is within 17 percent of asymptotically minimax over all procedures (see [START_REF] Donoho | Geometrizing rates of convergence[END_REF]). Furthermore it is proved in [START_REF] Donoho | Asymptotic minimax risk for sup-norm loss: solution via optimal recovery[END_REF][START_REF] Korostelev | Exact asymptotically minimax estimator for nonparametric regression in uniform norm[END_REF] that a kernel estimator is asymptotically efficient when the Hölder regression function or its k th derivative is estimated with the sup-norm global loss. The reader is referred for instance to [START_REF]Efromovich Nonparametric Curve Estimation[END_REF][START_REF] Golubev | Asymptotically minimax estimation of a regression function in an additive model[END_REF][START_REF] Donoho | Wavelet shrinkage: asymptopia?[END_REF] for other regression works.

Our regression problem is the following. Suppose we observe data from:

y k = S(x k ) + g(x k , S)ξ k , k ∈ {1, . . . , n}, (1) 
where x k = k/n, (ξ k ) k∈{1,...,n} are independent identically distributed standard Gaussian random variables. We are interested in the estimation of the regression function S at a given point z 0 ∈]0; 1[. We point out the fact that in this heteroscedastic regression model the variance of the noises depends on the unknown function S and on the regressors x k . This kind of model is used in financial analysis or in medical research (see, e.g., [START_REF] Goldfeld | Nonlinear Methods in Econometrics[END_REF]). More recently we can find such a model in [START_REF] Cai | Adaptive variance function estimation in heteroscedastic nonparametric regression[END_REF] where the authors reduce their classical regression model with variance V depending only on the regressors to a specific regression model where the regression function is nearly V and the noise term depends on V . We assume that the regression function belongs to a Hölder class but its smoothness parameter β remains unknown. We consider the absolute error loss and for the corresponding risk for which we aim at constructing an adaptive estimator which attains the minimax rate. Because of the adaptation, this rate differs from the one in the case where β is known. Many papers deal with adaptive problems, see for instance [START_REF] Barron | Risk bounds for model selection via penalization[END_REF][START_REF] Galtchouk | Efficient adaptive nonparametric estimation in heteroscedastic regression models[END_REF][START_REF] Lepskiȋ | A problem of adaptive estimation in Gaussian white noise[END_REF][START_REF] Lepskiȋ | Asymptotically minimax adaptive estimation. I. Upper bounds. Optimally adaptive estimates[END_REF][START_REF] Lepskiȋ | Asymptotically minimax adaptive estimation. II. Schemes without optimal adaptation. Adaptive estimates[END_REF]. Our construction is based on those one can find in [START_REF] Lepskiȋ | A problem of adaptive estimation in Gaussian white noise[END_REF][START_REF] Galtchouk | Sequential nonparametric adaptive estimation of the drift coefficient in diffusion processes[END_REF] for adaptive estimation of the drift coefficient in diffusion processes. We propose an adaptive kernel estimator which attains the minimax rate, that is to say that its risk has an asymptotic finite upper bound whereas the minimax risk is bounded away from zero. If these two bounds coincide we say that the estimator is asymptotically efficient.

We proceed with the method developed in [START_REF] Galtchouk | Asymptotically efficient estimates for nonparametric regression models[END_REF] in the homoscedastic and non adaptive case. In this paper the risk of an estimator is defined as the supremum of the absolute error loss taken over a neighborhood (called weak Hölder class) of functions that allows an arbitrary large derivative but has an additional weak Hölder condition (see [START_REF] Donoho | Geometrizing rates of convergence[END_REF]). It has led to the heteroscedastic case studied in [START_REF] Brua | Asymptotically efficient estimators for nonparametric heteroscedastic regression models[END_REF]. In these cases it is shown that a kernel estimator is asymptotically efficient, with the minimax rate n β/(2β+1) . Here we found the same asymptotic lower bound for the minimax risk as in the non adaptive case with the minimax rate n ln n β/(2β+1) , but unfortunately not the same asymptotic upper bound for the risk of the adaptive kernel estimator.

The paper is laid out as follows. Section 2 gives the description of the problem with all assumptions needed and all definitions of necessary mathematical objects. In section 3 we construct an adaptive estimator for which an upper bound of the risk is found. The lower bound of the minimax risk is given in section 4. Appendix A contains technical results for our proofs.

Statement of the problem

Consider model [START_REF] Sacks | Asymptotically optimum kernels for density estimation at a point[END_REF] where S ∈ C 1 ([0; 1], R) and g : [0; 1] × C 1 ([0; 1], R) -→ R * + are unknown functions. We want to estimate the regression function S at a fixed point z 0 ∈]0; 1[. The problem assuming that

S ∈ M,K>0 H(M, K, β), where β ∈ [β ; β ] ⊂]1; 2[, H(M, K, β) = S ∈ C 1 [0; 1] : ||S || ≤ M, sup x,y∈[0;1] |S (y) -S (x)| |x -y| α ≤ K , with β = 1 + α and ||f || = sup x∈[0;1] |f (x)|, remains open.
As we can find in [START_REF] Brua | Asymptotically efficient estimators for nonparametric heteroscedastic regression models[END_REF] and [START_REF] Galtchouk | Asymptotically efficient estimates for nonparametric regression models[END_REF] where non adaptive problems of asymptotically efficient estimation for nonparametric regression models are solved, we define the local weak Hölder class U z 0 ,δ at the point z 0 for the true value of the parameter β as:

S ∈ C 1 ([0; 1], R) : S ≤ δ -1 ; ∀h ≥ 0, 1 -1 S(z 0 + hu) -S(z 0 ) du ≤ δh β ,
(2) where δ ∈]0; 1[. The smoothness parameter β is supposed to be unknown whereas the interval [β ; β ] is considered as known. Notice that

1 -1 S(z 0 + hu) -S(z 0 ) du = 1 -1 z 0 +uh z 0 (S (t) -S (z 0 ))dt du, (3) 
so we have for all S ∈ H(M, K, β),

1 -1 S(z 0 + hu) -S(z 0 ) du ≤ 2K β(β + 1) h β .
That is why the class U z 0 ,δ is called a weak Hölder class. The risk of an estimator Ŝ of S(z 0 ) is defined over the neighborhood U z 0 ,δ by

R z 0 ,δ,n ( Ŝ) = sup β∈[β ;β ] sup S∈Uz 0 ,δ N (β) g(z 0 , S) E S | Ŝ-S(z 0 )|, where N (β) = n ln n β/(2β+1)
. We assume that there exists two known constants g > 0 and g < ∞ such that

g ≤ inf 0≤x≤1 inf S∈C 1 ([0;1]) g(x, S) ≤ sup 0≤x≤1 sup S∈C 1 ([0;1]) g(x, S) ≤ g .
Moreover we suppose that the function g is uniformly continuous with respect to both variables x and S.

Upper bound

The paper [START_REF] Galtchouk | Asymptotically efficient estimates for nonparametric regression models[END_REF] handles the homoscedastic non adaptive case, considering the kernel estimator

S * h (z 0 ) = 1 q n (h) n k=1 Q x k -z 0 h y k ,
where

Q = I [-1,1] , h = n -1/(2β+1) and q n (h) = n k=1 Q x k -z 0 h . Taking into account
the fact that β is unknown we can not use such an estimator because the bandwidth h depends on β. That is the reason why we create a partition of the interval [β ; β ] in the following way:

β l = β + l β -β ln n , l = 0, . . . , [ln n],
where [a] denotes the integral part of a number a, and we define the corresponding bandwidths

h l = h(β l ) = n ln n -1/(2β l +1) . Then we set l = max 0 ≤ l ≤ [ln n] : max 0≤j≤l S * h l (z 0 ) -S * h j (z 0 ) - λ N j ≤ 0 ,
where

N j = N (β j ) and λ = 2 + 2 √ 2g β 2β + 1 - β 2β + 1 1/2 .
Notice that l really exists because the set above contains the index 0. The adaptive estimator is now defined as Ŝn = S * hl (z 0 ). Furthermore we associate with the unknown parameter β the unique integer l(β) ∈ {0, . . . ,

[ln n] -1} such that β l(β) ≤ β < β l(β)+1 .
The following result gives an upper bound for the risk of the adaptive estimator.

Theorem 3.1 One has lim sup δ→0 lim sup n→∞ R z 0 ,δ,n ( Ŝn ) ≤ λ e β -β g . Proof : Fix δ ∈]0; 1[ and write | Ŝn -S(z 0 )| = | Ŝn -S(z 0 )|I { l≥l(β)} + | Ŝn -S(z 0 )|I { l<l(β)} =: I 1 + I 2 ,
where

I 1 = [ln n] j=l(β) | Ŝn -S(z 0 )|I { l=j} = [ln n] j=l(β) |S * hj (z 0 ) -S(z 0 )|I { l=j} .
For all j = 0, . . . , [ln n], we note

S * hj (z 0 ) -S(z 0 ) = ζ n (β j ) q n (β j ) + B n (β j ), with q n (β j ) = q n (h(β j )), ζ n (β j ) = 1 q n (β j ) n k=1 Q x k -z 0 h j g(x k , S)ξ k , B n (β j ) = 1 q n (β j ) n k=1 Q x k -z 0 h j (S(x k ) -S(z 0 )). The variance of ζ n (β j ) is then σ 2 n (β j , S) := 1 q n (β j ) n k=1 Q x k -z 0 h j g 2 (x k , S).
One has

ζ n (β j ) q n (β j ) = |Z n (β j )| σ n (β j , S) q n (β j ) , with Z n (β j ) ∼ N (0, 1).
In addition, taking the decomposition used in [16, §4]:

B n (β j ) = nh j q n (β j ) 1 -1 (S(z 0 + h j u) -S(z 0 )) du + nh j q n (β j ) R n (β j ),
where

|R n (β j )| ≤ 6δ -1 n .
Using the weak Hölder condition we obtain

|B n (β j )| ≤ δ nh 1+β j q n (β j ) + 6δ -1 h j q n (β j )
, and then

|S * h j (z 0 ) -S(z 0 )| ≤ δ nh 1+β j q n (β j ) + 6δ -1 h j q n (β j ) + |Z n (β j )| σ n (β j , S) q n (β j ) . ( 4 
)
Hence

I 1 ≤ [ln n] j=l(β) |S * h j (z 0 ) -S * h l(β) (z 0 )|I { l=j} + |S * h l(β) (z 0 ) -S(z 0 )|I { l≥l(β)} ≤ [ln n] j=l(β) λ N j I { l=j} + |S * hl(β) (z 0 ) -S(z 0 )| ≤ λ N l(β) + |S * hl(β) (z 0 ) -S(z 0 )| ≤ λ N (β) e β -β + δ nh(β l(β) ) 1+β q n (β l(β) ) + 6δ -1 h(β l(β) ) q n (β l(β) ) + |Z n (β l ( β) )| σ n (β l(β) , S) q n (β l(β) )
.

Let us show that lim sup

δ→0 lim sup n→∞ sup β∈[β ;β ] sup S∈U z 0 ,δ N (β) g(z 0 , S) E S I 1 ≤ λ e β -β g . ( 5 
)
As

N (β)h(β l(β) ) β ≤ 1 and q n (β l(β) ) ∼ 2nh(β l(β) ), we have lim δ→0 lim sup n→∞ sup β∈[β ;β ] sup S∈U z 0 ,δ δ N (β) g(z 0 , S) nh(β l(β) ) 1+β q n (β l(β) ) = 0. ( 6 
)
Moreover it is easy to see that lim sup

n→∞ sup β∈[β ;β ] sup S∈Uz 0 ,δ N (β) g(z 0 , S) 6δ -1 h(β l(β) ) q n (β l(β) ) = 0. ( 7 
)
Since σ n (β l(β) , S) is bounded by g and

N (β) 2 q n (β l(β) ) = nh(β l(β) ) q n (β l(β) ) n ln n 2(β-βl(β))/(2β+1)(2βl(β)+1) 1 ln n ≤ nh(β l(β) ) q n (β l(β) ) e 2(β -β ) 1 ln n , one has lim sup n→∞ sup β∈[β ;β ] sup S∈Uz 0 ,δ N (β) g(z 0 , S) E S |Z n (β l(β) )| σ n (β l(β) , S) q n (β l(β) ) = 0. ( 8 
)
Finally from ( 6) -( 8), we get [START_REF]Efromovich Nonparametric Curve Estimation[END_REF]. Now recall that

I 2 = | Ŝn -S(z 0 )|I { l<l(β)} and let us prove that lim n→∞ sup β∈[β ;β ] sup S∈Uz 0 ,δ N (β) g(z 0 , S) E S I 2 = 0. (9) We have { l < l(β)} = l(β)-1 j=0
{ l = j} and by definition of l,

{ l = j} ⊂ j+1 i=0 S * h i (z 0 ) -S * h j+1 (z 0 ) > λ N i . Remark that for 0 ≤ i ≤ l ≤ l(β), one has h i ≤ h l ≤ h(β) and q n (β i ) ≤ q n (β l ).
Then denoting Z * n = max l |Z n (β l )| and using (4) and lemma (A.1), we obtain for

0 ≤ i ≤ l ≤ l(β): S * h l (z 0 ) -S * h i (z 0 ) > λ N i ⊂ S * h l (z 0 ) -S(z 0 ) + S(z 0 ) -S * h i (z 0 ) > λ N i ⊂ 2δh(β) β + 12δ -1 nh i h(β) + 2g q n (β i ) Z * n > λ N i ⊂ 2g q n (β i ) Z * n > λ -2δ -12δ -1 h(β ) N i , because nh i > N i and N i < h(β) -β .
The precedent inclusions are true for a sufficiently large n and we will consider this case from now to the end of the proof.

As

q n (β i ) N 2 i = q n (β i ) nh i ln n, lemma A.1 brings us √ ln n ≤ q n (β i ) N i ≤ √ 3 ln n.
Setting Λ n := λ -2δ -12δ -1 h(β ), we can write

( l = j) ⊂ j+1 i=0 S * h i (z 0 ) -S * h j+1 (z 0 ) > λ N i ⊂ Z * n > Λ n 2g √ ln n =: A n and I 2 ≤ l(β)-1 j=0 |S * h j (z 0 ) -S(z 0 )|I {A n } .
To get (9) we write

N (β) g(z 0 , S) E S I 2 ≤ N (β) g(z 0 , S) l(β)-1 j=0 E S δnh 1+β j q n (β j ) + 6δ -1 h j q n (β j ) + |Z n (β j )| σ(β j , S) q n (β j ) I {A n } ≤ l(β)-1 j=0 N (β) g(z 0 , S) δnh 1+β j q n (β j ) P S (A n ) + l(β)-1 j=0 N (β) g(z 0 , S) 6δ -1 h j q n (β j ) P S (A n ) + l(β)-1 j=0 N (β) g(z 0 , S) σ n (β j , S) q n (β j ) E S |Z n (β j )|I (A n )
and study the asymptotic behavior of each term. Let Z ∼ N (0, 1) and

A n := |Z| > Λ n 2g √ ln n .
For the first term one has

l(β)-1 j=0 N (β) g(z 0 , S) δnh 1+β j q n (β j ) P S (A n ) ≤ δ g l(β)-1 j=0 N (β)h β j P S (A n ) ≤ δ g l(β)-1 j=0 n ln n 2β(β j -β)/(2β j +1)(2β+1) P S (A n ) ≤ [ln n] 2 δ g n ln n 2β(βl(β)-1-β)/(2βl(β)-1+1)(2β+1) P S (A n ) ≤ [ln n] 2 δ g n ln n 2β(β l(β)-1 -β)/(2β+1) 2 2 2g Λ n √ ln n 1 √ 2π e -(Λ n ) 2 4g 2 ln n ≤ 4δg √ 2πg Λ n e -2β /(2β +1) 2 e 2β /(2β +1) 2 [ln n] 2 √ ln n n -(Λ n ) 2 4g 2 .
Since λ > 2 the last term tends to zero as n goes to infinity. We handle the second term as well.

Using the Cauchy-Schwarz inequality for the third term, we obtain

N (β) g(z 0 , S) l(β)-1 j=0 E S |Z n (β j )| σ n (β j , S)
q n (β j )

I {A n } ≤ g g l(β)-1 j=0 N (β) q n (β j ) (P S (A n )) 1/2 ≤ g g l(β)-1 j=0 N (β) q n (β j ) [ln n] 1/2 (P S (A n )) 1/2 ≤ 2(g ) 3/2 g Λ n √ 2π [ln n] 3/2 √ ln n q n (β ) N (β )n -(Λ n ) 2 /8g 2 .
By definition of λ this term tends to zero as n goes to infinity. Eventually we have proved ( 9) which, connected to (5), completes the proof.

Lower bound

In this section we give the lower bound for the minimax risk. We will consider a family of functions in U z 0 ,δ defined with another bandwidth h(β) = n -1/2β+1 (ln n) -2β/2β+1 such that n h(β) = N 2 (β) and h is a increasing function of β.

Theorem 4.1 For all δ ∈]0; 1[ the following inequality holds

lim inf n→∞ inf S R z 0 ,δ,n ( S) ≥ E|ξ| √ 2 , ξ ∼ N (0, 1),
where the infimum is taken over all estimators S of S(z 0 ).

Proof : For ν ∈ 0; 1 4 , denote S ν (x) = 1 N (β) V ν x-z 0 h(β)
, where the function V ν is defined by

V ν (x) = 1 ν +∞ -∞ Qν (u)m u -x ν du, Qν (u) = I {|u|≤1-2ν} + 2I {1-2ν≤|u|≤1-ν}
and m is a nonnegative function, infinitely differentiable on R, such that m(z) = 0 for any |z| ≥ 1 and

1 -1 m(z)dz = 1.
We can easily show that for all 0 < ν < 1 4 , one has V ν (0) = 1 and

1 -1 V ν (x)dx = 2. Now fix b > 0, ν ∈]0; 1/4[, δ ∈]0; 1[ and denote S ν,u (x) = u N (β) V ν x -z 0 h(β) for
x, u ∈ R. Thanks to lemma A.2 we can say that if |u| ≤ b then there exists an integer n b,δ > 0 such that S ν,u ∈ U z 0 ,δ for all n ≥ n b,δ . Hence for n ≥ n b,δ , we have

R z0,δ,n ( S) ≥ sup β∈[β ;β ] sup |u|≤b N (β) g(z 0 , S ν,u ) E Sν,u | S(z 0 ) -S ν,u (z 0 )| ≥ sup β∈[β ;β ] 1 2b b -b N (β) g(z 0 , S ν,u ) E S ν,u v a S(z 0 ) -S ν,u (z 0 ) du =: sup β∈[β ;β ] I n (a, b, β)
where v a (x) = |x| ∧ a, a > 0.

Let P Sν,u be the law of (y (1) k ) k=1,...,n , where y (1) k = S ν,u (x k )+g(x k , S ν,u )ξ k , and P the law of (y (0) k ) k=1,...,n , where y (0) k = g(x k , S ν,u )ξ k . These two measures are equivalent and the corresponding Radon-Nikodym derivative at the point (y 1 , . . . , y n ) is

ρ n (u, β) = dP S ν,u dP (y 1 , . . . , y n ) = exp uς n (β)η n (β) - u 2 2 ς 2 n (β)
where

ς 2 n (β) = 1 N 2 (β) n k=1 V 2 ν x k -z 0 h(β) g 2 (x k , S ν,u ) and η n (β) = 1 N (β)ς n (β) n k=1 V ν x k -z 0 h(β) g 2 (x k , S ν,u ) y k .
Under the law P, η n (β) is a standard Gaussian random variable.

Setting

σ 2 ν = 1 g 2 (z 0 ,0) 1 -1 V 2 ν (z)dz, lemma A.3 implies sup β∈[β ;β ] |ς n (β) -σ ν | ---→ n→∞ 0. (10) 
Rewrite

ρ n (u, β) = exp uσ ν η n (β) -u 2 σ 2 ν 2 + r n (β) , where r n (β) is a Gaussian random variable with expectation u 2 2 (σ 2 ν -ς 2 n (β)
) and variance u 2 (ς n (β) -σ ν ) 2 . Then using [START_REF] Barron | Risk bounds for model selection via penalization[END_REF] and Tchebychev inequality we get for ε > 0

lim n→∞ sup β∈[β ;β ] P (|r n (β)| > ε) = 0. (11) 
As a consequence we can show that ρ n (u, β)

L ---→ n→∞ ρ ∞ (u) := exp uσ ν η -u 2 σ 2 ν 2 uniformly in β and lim n→∞ sup β∈[β ,β ] P |e rn(β) -1| > ε = 0. Denoting ψ a,n ( S, S ν,u ) = v a (N (β)( S(z 0 ) -S ν,u (z 0 ))
) and E the expectation for the probability measure P, one has

I n (a, b, β) ≥ 1 2b b -b EI B d (β) ψ a,n ( S, S ν,u ) g(z 0 , S ν,u ) n (u, β)du + δ n (a, b, β) (12) =: J n (a, b, β) + δ n (a, b, β), (13) 
where

B d (β) = {|η n (β)| ≤ d} and d = σ ν (b - √ b), b > 1, n (u, β) = exp uσ ν η n (β) - u 2 σ 2 ν 2 , δ n (a, b, β) = 1 2b b -b EI B d (β) ψ a,n ( S, S ν,u ) g(z 0 , S ν,u ) θ n (u, β)du, θ n (u, β) = ρ n (u, β) -n (u, β) = exp uσ ν η n (β) - u 2 σ 2 ν 2 (e r n (β) -1). Let us show that inf S sup β∈[β ;β ] δ n (a, b, β) ---→ n→∞ 0. ( 14 
)
We can easily prove that Eρ ∞ (u) = 1 and Eρ n (u, β) = 1. Then the sequence {ρ n (u, β), n ≥ 1} is uniformly integrable (see [18, p.32]). As n (u, β) is bounded on

B d (β)
, we obtain the uniform integrability of I Bd(β) ψa,n( S,Sν,u) 

g(z 0 ,S ν,u ) θ n (u, β), n ≥ 1 . We remark that exp uσ ν η n (β) -u 2 σ 2
E I B d g(z 0 , S ν,u ) ψ a,n ( S, S ν,u )θ n (u, β) ≤ K sup β∈[β ;β ] E|e r n (β) -1| ≤ Ke u 2 σ n ν 2 .
By bounded convergence we obtain finally sup

β∈[β ;β ] δ n (a, b, β) ≤ 1 2b b -b sup β∈[β ;β ] E I B d g(z 0 , S ν,u ) ψ a,n ( S, S ν,u )θ n (u) du ---→ n→∞ 0,
and then [START_REF] Lepskiȋ | Asymptotically minimax adaptive estimation. II. Schemes without optimal adaptation. Adaptive estimates[END_REF]. Now we are interested in the term J n (a, b, β) in [START_REF] Lepskiȋ | Asymptotically minimax adaptive estimation. I. Upper bounds. Optimally adaptive estimates[END_REF].

Firstly rewrite n (u, β) = ζ n (β)e -σ 2 ν (u-η n (β)) 2 /2 where ζ n (β) = e η 2 n (β)/2 and ηn (β) = η n (β) σ ν , then J n (a, b, β) = 1 2b b -b EI Bd(β) ζ n (β) v a (u -(t n (β)) g(z 0 , S ν,u ) exp - σ 2 ν 2 (u -ηn (β)) 2 du, with t n (β) = N (β) S(z 0 ).
Further if ξ ∼ N (0, 1) and if we set ξ = ξ σ ν , ζ = e ξ 2 /2 , Bd = {|ξ| ≤ d} and Ẽ the expectation for the probability measure of ξ, we have

J n (a, b, β) = ẼI Bd ζ 1 2b b -b v a (u -t n (β)) g(z 0 , S ν,u ) exp - σ 2 ν 2 (u -ξ) 2 du.
Since g is uniformly continuous and bounded away from zero, the following term 

sup β∈[β ;β ] ẼI Bd ζ 2b b -b v a (u -t n (β)) exp - σ 2 ν 2 (u -ξ) 2 1 g(z 0 , S ν,u ) - 1 g(z 0 ,
ẼI Bd ζ 1 2b b -b v a (u -t n (β)) g(z 0 , 0) exp - σ 2 ν 2 (u -ξ) 2 du.
Moreover we can write 

Ẽ I Bd ζ 2b b -b v a (u -t n (β)) g(z 0 , 0) e -σ 2 ν 2 (u-ξ) 2 du ≥ Ẽ I Bd ζ 2b √ b - √ b v a (t -t n (β) + ξ) g(z 0 , 0) e -σ 2 ν 2 t 2 dt ≥ Ẽ I Bd ζ 2b √ b - √ b v a (t) g(z 0 , 0) exp - σ 2 ν 2 t 2 dt
J n (a, b, β) ≥ σ ν √ 2π ∞ -∞ |t| g(z 0 , 0) exp - σ 2 ν 2 t 2 dt.
Eventually using the fact that σ

2 ν ---→ ν→0 2 g 2 (z 0 , 0)
and combining the result with ( 14) finish the proof.

Appendix A.

Lemma A.1 There exists an integer N such that if n ≥ N , then

1 ≤ q n (β i ) nh i ≤ 3,
for all i = 0, . . . , [ln n].

Proof : Writing

q n (β i ) nh i = 1 nh i n k=1 Q x k -z 0 h i = [n(z 0 + h i )] -[n(z 0 -h i )] nh i , the following inequalities [n(z 0 + h i )] ≤ n(z 0 + h i ) ≤ [n(z 0 + h i )] + 1, -1 -[n(z 0 -h i )] ≤ -n(z 0 -h i ) ≤ -[n(z 0 -h i )],
show that 2 -

1 nh i ≤ q n (β i ) nh i ≤ 2 + 1 nh i .
But there exists an integer N such that if n ≥ N , then nh(β ) ≥ 1. As h is an increasing function of β, we get for n ≥ N :

2 - 1 nh(β ) ≤ q n (β i ) nh i ≤ 2 + 1 nh(β ) ,
and then the desired result.

Lemma A.2 For any ν ∈]0; 1 4 [ and δ ∈]0; 1[ there exists an integer n ν,δ > 0 such that S ν ∈ U z0,δ for all n ≥ n ν,δ .

Proof : Firstly for all h ≥ 0 one has 

ν 2 isI

 2 bounded by a constant independent of β on B d (β) and that ψ a,n ( S, S ν,u ) is bounded by a. Then lim n→∞ sup β∈[β ;β ]P I B d (β) ψ a,n ( S, S ν,u ) g(z 0 , S ν,u ) |θ n (u, β)| > ε = 0. B d (β)ψa,n( S,Sν,u)g(z 0 ,S ν,u ) θ n (u, β), n ≥ 1 that lim n→∞ sup β∈[β ;β ] E I B d (β) ψ a,n ( S, S ν,u ) g(z 0 , S ν,u ) θ n (u, β) = 0.Furthermore there exists a constant K > 0 such that sup β∈[β ;β ] 

1 - 1 1 - 1 |m 1 - 1 |mg 2 g 2

 11111122 (S ν (z 0 + uh) -S ν (z 0 )) du = 0. Moreover we can write|S ν (x)| ≤ 2 νN (β) h(β) (u)|du ≤ 2 ν n (1-β )/(2β +1) (ln n) 3β /2β +1Hence for any fixed δ ∈]0; 1[, there exists n ν,δ ∈ N * such that if n ≥ n ν,δ , then|S ν (x)| ≤ δ -1 and S ν ∈ U z 0 ,δ .Lemma A.[START_REF] Donoho | Asymptotic minimax risk for sup-norm loss: solution via optimal recovery[END_REF] The following limit holds sup β∈[β ;β ] There exists an integer n 0 such that for all n ≥ n 0 and all β ∈ [β ; β ], we have [z 0 -h(β); z 0 + h(β)] ⊂ [0; 1]. As a consequence for n ≥ n 0 we getς 2 n (β) = 1 h(β) z0+ h(β) z0-h(β) (x, S ν,u )µ n (dx) = (x, S ν,u ) ν n (dx)

with µ n = 1 n n k=1 δ k/n and ν n =

As g is uniformly continuous, we have:

We easily prove that for a real function f defined on R and continuous at the point

and applying (A3) to the function x → 1 g 2 (x, 0) and using (A2), we obtain

Now we want to show that

Let F be a function such that F = V 2 ν and denote u k = x k -z 0 h(β) again. For all n ≥ n 0 , one has

Finally, as we have

g 2 (z 0 , 0) ν n (dx) -

V 2 ν (z) g 2 (z 0 , 0) dz , (A4) and (A5) implies lemma A.3.