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1. Introduction

A lot of research studies are devoted to the problem of estimating a regression
function and specially a function belonging to a Holder class. In this direction it
is known from [1] that the linear minimax estimator is a kernel estimator in the
case of a quasi-Holder regression function estimated at a single point with squared
error loss. This estimator is within 17 percent of asymptotically minimax over all
procedures (see [2]). Furthermore it is proved in [3, 4] that a kernel estimator is
asymptotically efficient when the Holder regression function or its kth derivative
is estimated with the sup-norm global loss. The reader is referred for instance to
[5—7] for other regression works.
Our regression problem is the following. Suppose we observe data from:

yk:S(xk)+g(xkvs)§kv ke {L"'vn}a (1)

where z = k/n, ({k)ref1,..ny are independent identically distributed standard
Gaussian random variables. We are interested in the estimation of the regression
function S at a given point zp €]0;1[. We point out the fact that in this het-
eroscedastic regression model the variance of the noises depends on the unknown
function S and on the regressors xx. This kind of model is used in financial analysis
or in medical research (see, e.g., [8]). More recently we can find such a model in
[9] where the authors reduce their classical regression model with variance V' de-
pending only on the regressors to a specific regression model where the regression
function is nearly V' and the noise term depends on V.

We assume that the regression function belongs to a Holder class but its smooth-
ness parameter § remains unknown. We consider the absolute error loss and for the
corresponding risk for which we aim at constructing an adaptive estimator which
attains the minimax rate. Because of the adaptation, this rate differs from the one
in the case where (8 is known. Many papers deal with adaptive problems, see for
instance [10-14]. Our construction is based on those one can find in [12, 15] for
adaptive estimation of the drift coeflicient in diffusion processes. We propose an
adaptive kernel estimator which attains the minimax rate, that is to say that its risk
has an asymptotic finite upper bound whereas the minimax risk is bounded away
from zero. If these two bounds coincide we say that the estimator is asymptotically
efficient.

We proceed with the method developed in [16] in the homoscedastic and non
adaptive case. In this paper the risk of an estimator is defined as the supremum
of the absolute error loss taken over a neighborhood (called weak Holder class)
of functions that allows an arbitrary large derivative but has an additional weak
Holder condition (see (2)). It has led to the heteroscedastic case studied in [17]. In
these cases it is shown that a kernel estimator is asymptotically efficient, with the
minimax rate n%/(2+1) Here we found the same asymptotic lower bound for the
minimax risk as in the non adaptive case with the minimax rate (ﬁ)’g / (%H), but
unfortunately not the same asymptotic upper bound for the risk of the adaptive
kernel estimator.

The paper is laid out as follows. Section 2 gives the description of the problem
with all assumptions needed and all definitions of necessary mathematical objects.
In section 3 we construct an adaptive estimator for which an upper bound of the
risk is found. The lower bound of the minimax risk is given in section 4. Appendix
A contains technical results for our proofs.
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2. Statement of the problem

Consider model (1) where S € C1([0;1],R) and g : [0;1] x C1([0;1],R) — R*. are
unknown functions. We want to estimate the regression function S at a fixed point
zp €]0; 1. The problem assuming that

se |J MMM K, p) where § € [6,;67] C]1:2],
M,K>0

1N
HOMLK,B) = 1S e C'0:1]: 1] < M, sup DD =@ gl
x,y€[0;1] |z -y

with 8 =14« and ||f|| = sup |f(x)|, remains open.
z€[0;1]

As we can find in [17] and [16] where non adaptive problems of asymptotically
efficient estimation for nonparametric regression models are solved, we define the
local weak Holder class U, s at the point zg for the true value of the parameter 3
as:

{S e CH[0;1),R) ;|| 8" |< 671 VA >0, /1 (S(z0 + hu) — S(zo))du‘ < W} ,

-1
(2)
where § €]0;1[.
The smoothness parameter 8 is supposed to be unknown whereas the interval

[Bx; 5*] is considered as known.
Notice that

/1 (S(20 + hu) — S(20))du = /1 (/Z:O+uh(5’(t) — S/(zo))dt> du, (3)

-1 -1
so we have for all S € H(M, K, 3),

2K

B8
Sﬂ(ﬁﬂ)h'

‘ /_ 11 (S(z0 + hu) — S(z0))du

That is why the class U, 5 is called a weak Holder class.
The risk of an estimator S of S(zg) is defined over the neighborhood U, 5 by

5 n \A8/(28+1)
Es|S—S(z0)|, where N(3)= <—) .

Inn

Reysm(S) = sup  sup N(B)
BelB.:8+] Selt., 5 (20, S)

We assume that there exists two known constants g, > 0 and ¢g* < oo such that

< inf inf z,5) < su su z,5) < g*.
g*_oéxﬁlseCl([O;ll)g( ) 0§£15€Cl(%;1])g( ) =4

Moreover we suppose that the function g is uniformly continuous with respect to
both variables x and S.
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3. Upper bound

The paper [16] handles the homoscedastic non adaptive case, considering the kernel
estimator

where Q =y 1), h = —1/B+1) and ¢,,( Z Q( xk ). Taking into account

the fact that § is unknown we can not use such an estlmator because the bandwidth
h depends on (3. That is the reason why we create a partition of the interval [3y; 5*]
in the following way:

ﬁ*_ﬁ*

Inn

O1 = By +1 1=0,...,[lnn],

where [a] denotes the integral part of a number a, and we define the corresponding

—1/(26:+1)
bandwidths iy = h(8;) = (L)

. Then we set
Inn

- A
l= max{O <l<[lnn]: max <’S};(zo) — Szj(zo)‘ — N) < 0},

g 8.\
26 +1 2ﬁ*+1> '

Notice that [ really exists because the set above contains the index 0.

The adaptive estimator is now defined as S, = S;';[(zo). Furthermore we associate

where N; = N(8;) and A = 2 + 21/2g* <

with the unknown parameter 3 the unique integer I(3) € {0,...,[lnn] — 1} such

that B3 < B < Byps)+1-
The following result gives an upper bound for the risk of the adaptive estimator.

Theorem 3.1 One has

6/8 B*

lim sup lim sup Rzo,g,n(g )< A

§—0 n—o00 g«

Proof: Fix 0 €]0;1[ and write
Sy — S(20)| = [Sn — S(ZO)‘”{[ZI(@} + |Sn - S(%)’”{k[(g)} =:I1 + Iy,

[Inn] [Inn]

where [} = Z |S {l i Z \S}tj(zo)—S(ZO)‘”{[:j}-
3=l(B) )
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For all j =0,...,[Inn], we note S} (20) — S(20) = _onlls)_ + B, (0;), with
! QH(ﬁj)
Qn(ﬁj) = QN(h(ﬁj))v
1 & Tp — 2
Gu(8y) = Q (") glon )6
Qn(ﬂj) k=1 J
1 - Tr — 20
B, (3;) = 0 ( ) S(ap) — S(z
(8;) 0 (5)) h; (S(zk) — S(20))
1 -
The variance of (,(3;) is then 02(8;,5) := Z Q <xk ZO) 7 (xr, S).
an(Bj) = h;
One has _nlBi) = |Zn(ﬁj)\an(ﬁj’s), with Z,(8;) ~ N(0,1).
Qn(/ﬁj) Qn(/gj)
In addition, taking the decomposition used in [16, §4]:
nh; ! nh;
B,(3;) = ]/Sz—i—h'u—Sz du + J_Rn(55),
n(65) () _1( (20 + hju) — S(20)) () (8;)
where
60!
[ Bn(8))] < :
Using the weak Holder condition we obtain | B, (3;)| < ¢ h}+ﬁ + 661 i and
7T () 0 (B;)’
then
1+
ni; — h Jn(ﬂ', S)
S (20) — S(20)] < 0—L~ + 65 ' —L— +|Z,(8;)| —=L=L. 4
|Sh, (20 o)l PR (5] |12 (55)] (5 (4)
Hence
[Inn]
J=U(B)
[Inn] A\
< fu{l;j} + |SZL<6>(ZO) — 5(20)]
=B
<2 48 s
< Ny + 15 (20) = o)l
h . nh 1+5 h On S
< o=y sPMO@) s MBg) ) (Bug): 5)
(B) an(By(a)) an(By(3)) an(Bus))
Let us show that
) eﬂ*fﬁ*
limsuplimsup sup  su Esl; < A . (5)

5—0 n—oo  Be[B,;B8*] SEU=, .5 9(20, S) Gx
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As N(ﬁ)h(ﬁl(m)ﬁ <1 and ¢n(By(g)) ~ 2nh(By(s)), we have

N h 145
limlimsup sup sup ¢ (8) nh(Byp)

=0. 6
00 n—oo BelB,;3] el s 9(20,5)  qn(Bis)) ©)

Moreover it is easy to see that

N(B) 1 h(ﬁl(ﬁ))

limsup sup  sup 60 =0. (7)
n—oo  BelB,i8] Selty s 9(20,5) an(By(3))

Since oy,(8y(g), S) is bounded by g* and

N(B)?  nh(Byg)) (i)2(5‘51(13))/(25"‘1)(261(6)+1) 1 < nh(ﬂl(ﬁ))e%ﬁ**ﬁ*)i

an(Bypy)  m(Byp) \Inn Inn = gu(Bya)) Inn’
one has
. N Un(/@ 75)
limsup sup  sup (ﬁ; [ESIZn(ﬂl(ﬁ))]¢ =0. (8)
n—co Be[f,ii+] Sell., s 9(20,5) a0 (Bys))
Finally from (6) — (8), we get (5).
Now recall that I = |S,, — S(zo)\[l{kl(ﬁ)} and let us prove that
N
lim sup sup (8) Eglo = 0. (9)

n—00 gc(3..3+] Sell., 5 9(%0,5)

1(B)—-1
We have {I < 1(3)} = U {I = j} and by definition of I,
7=0
A j+1 \
(=3 < U ([si.0) -, 0)| > 3 )
=0 7

Remark that for 0 < i <[ < [(f3), one has h; < hy < h(8) and ¢,(83:) < ¢.(5)-
Then denoting Z; = max |Z,,(5;)] and using (4) and lemma (A.1), we obtain for

0<i<I<Ip):
{‘S;;,(ZO) — S;;(ZO ]3} {‘Shl 20) (Zo)‘ + }S(Zo) — S;;(ZO)| > ]if\l}

c {25h(ﬁ)ﬂ 1207 1h( \ﬁ A }

c { P 126~ 1h(B%) } |

because nh; > N; and N; < h(B)~"
The precedent inclusions are true for a sufficiently large n and we will consider this
case from now to the end of the proof.
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7
As %Jfgz) = Qn(hﬁz) Inn, lemma A.1 brings us VInn < ,(]]7\1[([31) <v3lnn.
nh; i
Settlng A% =\ — 25 — 1267 Lh(B*%), we can write
A J+1 A\ A*
i=ncU (|8, a0) = 83,0 > ) © {22 > S viwaf = 4;
and
1B)-1
IQ< Z ’Sh ZO ZO)“]{A* .
To get (9) we write
(B)-1 148 _1
N(B) N(B) onh; 60" h; o (8, 5)
I, < E + + | Zn(B)|—F——== | lya-
9(20,5) 2 9(20,9) jz_% s an(B;)  an(B5) 12 (55)] an(B;) A
S NE) I e S NE) 6y
T a0 S wlB) T A g(0.8) @By T
1(B)—1

N(B) on(B;;5)
“ 9(20,5) \/4.(5;)

[ES <|Z (ﬁ])“](A* )

and study the asymptotic behavior of each term. Let Z ~ N(0,1) and A, :=
{\Z | > é\g" VIn n} For the first term one has

Up)—1 145 (81
N(IB) 5nhj Po (AX i N h’B[P A*
; 900, 5) an(y) 5 A = o ; (B)hIPs (A2)

. ( n >2ﬁ(ﬂj—ﬁ)/(2ﬂj+1)(2ﬂ+1)

@

5
< —

g Inn Ps (A7)
*

.
0«) (=]

22 (L)25(@(3)—1*5)/(2ﬁz<ﬁ)—1+1)(2ﬂ+1)
9%
0 1 n \280Bup-1-P)/(26+1) 2g* 1 _en?
< [lnn]?>— g 1z Inn
o) ( ) AzvVInn \/27‘(’

2
ey
n 49*?

< [lnn o Ps (An)

Inn

T V2mg A Vinn

Since A > 2 the last term tends to zero as n goes to infinity. We handle the second
term as well.
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Using the Cauchy-Schwarz inequality for the third term, we obtain

1g)- W(B)-1
Nﬂ Un(ﬂ]a ) N(B) *\\1/2
Z e (12 ) < & o & Vil A

Inn]/? (Pg (An))"/?

IN

1(8)—1
T ()

* jZ::O Vi Qn(ﬁj)
< 2(9*)3/2 [lnn]3/2 (6*) (Ay)? /85]*2
a g*\/Affl\/% \/M\/ Qn(/@*

By definition of A this term tends to zero as n goes to infinity. Eventually we have
proved (9) which, connected to (5), completes the proof. O

4. Lower bound

In this section we give the lower bound for the minimax risk. We will con-
sider a family of functions in U, s defined with another bandwidth h(8) =

n~1/2641 (In n)—=26/2641 guch that nh(8) = N?(8) and h is a increasing function
of S.

Theorem 4.1 For all 6 €]0; 1] the following inequality holds

liminfinf R, 5n(§) > %»
n—oo g \/§

fNN(O,l),

where the infimum is taken over all estimators S of S(z).

Proof: For v € |0;1[, denote S, (z) = N(B)V (%) , where the function V,, is
defined by

v =2 [ guwm (*=F) du

14

Qu(u) = ljju<1—20) + 2020 <jui<1-1}

and m is a nonnegative function, infinitely differentiable on R, such that m(z) =0
1
for any |z| > 1 and / m(z)dz = 1. We can easily show that for all 0 < v < I,
~1
1
one has V,(0) = 1 and / Vi, (z)dx = 2.
-1

Now fix b > 0, v €]0;1/4[, § €]0; 1] and denote S, ,(z) = N?ﬁ) v, (xﬁz;o) for

xz,u € R. Thanks to lemma A.2 we can say that if |u| < b then there exists an
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integer ny s > 0 such that S, , € U, s for all n > ny 5. Hence for n > ny 5, we have

~ N
Rovsn(@) > sup sup —— )

[ESVu g %0) — SI/,u Z
Bel3u] [ul<b 9(20, Syu) " |5(20) (20)]

1" N
> sup / ———=—[Fg, ,va | S(20) — Svu(20) ) du = sup I,(a,b,p
BeE(B.;8%] 20 J_p g(20,Svu) 7" ( (=0) ( 0)) BE[Bx;8*] ( :

where vy(x) = |z| Aa,a > 0.
Let Pg, . be the law of (y{")e—1.. n, where y") = S, (2)+9 (2, Sy, and P the
(0) (0)

law of (y;. ' )k=1,....n, Where y.’ = g(xk, Syu)&k- These two measures are equivalent
and the corresponding Radon-Nikodym derivative at the point (y1,...,yy) is

-----

dP 2
pul.8) = “ o) = exp (s (B - 209
IR Ly Yl
where 309 = N203) 2 o, ) 0 = N5 2= P, Sl

Under the law P, n,(8) is a standard Gaussian random variable.
1

Setting 02 = 92(2100)/ V2(2)dz, lemma A.3 implies
’ -1

sup |sn(8) — oy —— 0. (10)
BelB.:6°] oo

u22

Rewrite pp(u,3) = exp {uaynn(ﬁ) — L +rn(ﬁ)}, where r,(3) is a Gaussian

u
random variable with expectation ?(05 —¢%(B)) and variance u*(s,(3) — 0,)%.

Then using (10) and Tchebychev inequality we get for e > 0

lim sup P(|ry(8)] >¢)=0. (11)
oo BE[B;67]

As a consequence we can show that p,(u, 3) _£, Poo(1) 1= exp (ua,,n - L;E)
n—oo

uniformly in § and

lim sup P (\er"(ﬁ) -1 > 5) =0.
O BelB., 5]

Denoting 1a.n(S, Syu) = va(N(B8)(S(20) — Svu(20))) and E the expectation for
the probability measure P, one has

, 8
- Yan(S: Svu)
2% J P g0, ) ol )t onfa 0.0 12)

=t Ju(a,b, B) + dnla, b, B), (13)

In(a,b,8) =
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where
By(3) = {|nn(B)| < d} and d=o,(b—Vb),b> 1,

2 2
on(.8) = exp (o (9) — 2.

_ 1 ¢a TL(S SV ’lL)
5n(a7b7 ﬁ) = 2b/ [E[IBd(ﬁ) (Z(],Sy,u) en(uaﬁ)duv
u?o?
B, 9) = 1. 8) = (1 5) = xp (wm(5) 57 ) (9 < 1),
Let us show that
inf sup d,(a,b,5) —— 0. (14)

S BeE(B.B] e

We can easily prove that Fpso(u) = 1 and Ep,(u,3) = 1. Then the sequence
{pn(u, B),n > 1} is uniformly integrable (see [18, p.32]). As g, (u, 3) is bounded on

B4(), we obtain the uniform integrability of {”Bd( )% On(u,B),n > 1}.

We remark that exp (uaynn(ﬂ) — “2705> is bounded by a constant independent of
B on By() and that @ba,n(g, Sy.u) is bounded by a. Then

3 ¢a n(‘§7 SI/ ’LL)
lim sup P |Ip, T vl g (u, B)| > e | = 0.
"0 BelB,:8+)] ( B g (20, Svu)

It follows from this and from the wuniform integrability of

2 (5.5
{”Bd( )%9 (u, B),n > 1} that

wa,n(‘§> Su,u)

lim su k1
P Ba(8) 9(207Su,u)

17700 Be[B.s87]

Hn(%ﬁ)‘ = 0.

Furthermore there exists a constant K > 0 such that

B,

[Ei
g(Zo, Sl/,u)

sup
BE[B.;8%]

¢a,n(g7 Syyu)ﬁn(u,ﬂ)‘ <K sup [E|er"(6) -1 < KewonV?
BE[Bx;6*]

By bounded convergence we obtain finally

1 b I5
sup 5n(a7b7ﬁ) < / sup [E‘wan(s SVU) n( ) du ? 07
Be[B.;8] —bBeiB..p] |9(20, Svu)

and then (14).

Now we are interested in the term J,(a,b, 3) in (13).
Firstly rewrite o, (u, 3) = Cu(3)e ™0 (4n( D2 where ¢, (8) = € 0)/2 and 7, (8) =
in(8) then

Oy

b ve(u — (t, o2 ~
nfa:0.8) = 5 [ Ennn(9) "2 ey (T -, (9)))
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with t, () = N(5)S (20)-
Further if £ ~ N(0,1) and if we set = ai’ ¢ =et"/2, By = {|¢| < d} and E the

v
expectation for the probability measure of £, we have

Jn(a,b, B) = [Euédg%/ Wexp (—“j@—éﬁ) du.

Since g is uniformly continuous and bounded away from zero, the following term

sup Elj S bv(u—t(ﬂ))ex <—012’(u—5)2>< L1 >du
BE[BPB] Ba2b ! P\ 9(20, Svu)  9(20,0)

tends toward zero as n goes to infinity.
It follows that

liminfinf sup J,(a,b,0) >

nmee s BE[B«;8*]

p— 2 ~
lim inf inf sup [E[I 5,€ / valtt = ta(B)) exp (—UV(u — 5)2) du.

Moreover we can write

[EHBdC b va(u—tn(,@))e_é(u_gzd > [EﬂédC/ ot — tn( )+é)6_§t2dt
2b )y 9(20,0) 9(20,0)
~|]~ 2
C exp <—U”t2> dt,
—vb 9(z 2

using Anderson’s lemma for the last inequality (see [19, Chapter II, Lemma 10.1
and Corollary 10.2]).

20, (b — V/b)

Noticing that EI 5,6 =
V2r

and limiting successively a — oo and b — oo,

we get
lim inf lim inf lim inf 1nf sup  Jn(a,b,5) > . exp (—’%t2> dt.
b—oo a—00 n—00 S BelB.:B*] V2 (Zo,O) 2

Eventually using the fact that 02 — —————
v—0 g (Zo, 0)
(14) finish the proof. O

and combining the result with

Appendix A.

Lemma A.1 There exists an integer N, such that if n > Ny, then

<3,

for alli=0,...,[Inn].
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Proof: Writing

qn(Bi) 1

how that 2 — < <2 .
Show tha nh; — nh; — +nhi

But there exists an integer N, such that if n > N,, then nh(f:) > 1. As h is an
increasing function of 3, we get for n > N* :

2T hBy S ahy =T am(ay

and then the desired result. O

Lemma A.2 For any v €]0; [ and § €]0; 1] there exists an integer n,s > 0 such
that S, € Uy, s for alln > n,s.

Proof: Firstly for all A > 0 one has f_ll (Su(z0 + uh) — S, (20)) du = 0. Moreover
we can write

2 1 2 r oan 1
Sh(@)| < ——2 / ()| du < 2100/ G5 (1 1) 397 /2641 / () ds
vN(B)h(B) /-1 v -1

since
_ +oo u— 20

g <x ZO)’: v [ Q| — ) du
h(B) o v

Hence for any fixed § €]0;1], there exists n, 5 € N* such that if n > n, s, then
1S (x)| <671 and S, € U, . O

9 1
<= "(u)|d
<> [ wldu

-1

Lemma A.3 The following limit holds

— .. (A1)

n—oo

sup

1
(0) = / V2(2)dz
BE[B*;ﬁ*]

92(20, O) -1

Proof: There exists an integer ng such that for all n > ng and all 8 € [B,; 5], we
have [z — h(83); z0 + h(B3)] C [0;1]. As a consequence for n > ng we get

7 2 [ xz—20 2 z—20
2(8) = ; /zO+h(ﬁ) Wﬂn(dx) _ /1 VV(h(ﬂ))V (@)
" h(B) Jeo-i(s)y 92(@Sv)

0 QQ(xuSV,u) "
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n o ~
with g, = }L;%/n and v, = Wﬂn-
As g is uniformly continuous, we have:
1 1 1
/o <g2(x,8y,u) - g2(x,o)> vn(dz)| T 0. (A2)

We easily prove that for a real function f defined on R and continuous at the point
Zp, one has

lim sup =0. (A3)

e BE[Bx;5*]

1
/0 F@)waldz) — 2/(z0)

Writing

/01 <92(:c,15w) - 92(210,())) v (da)

- /o1 <92(:c,15u,u) - 92(31:,0)> nlie) + /o1 <92(91370) - 92(210,0)> ol

and applying (A3) to the function z —

1
Z@.0) and using (A2), we obtain
9=\,

/01 (gg(x’lsyju) - 92(21070)> Vo (dz)

Now we want to show that

[ ()t [ a0 o

Let F be a function such that F' = V2 and denote uj, = x%(—ﬁzo again. For all

lim  sup
oo BE[B* ?/8*}

~0. (A4)

lim sup
o IBEW*?5*]

n > ng, one has

then

/ 2 (2{5‘)) valda) [ 11 Vf@)dy‘

= Flup) — F(up_1) — ——F'(u = = F' (v

,;( ) = ) = 7y B ’“)>‘ 2 ey @
1 2/

S%T(/g*)( v )m(ZSC7

with v €Jug_1;u[ and (V.?');mae the maximum of the function V¥, Limiting n —
oo yields (A5).
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Finally, as we have

1y 1 V2 (%2 1oy
gg(ﬁ)_/ ;/V(Z) dz‘— / g (h(ﬁ))l/n(dx)—/ ;/V(Z) dz
19 (2070) 0o 9 (xvsl/,u) -19 (ZO)O)
1
< Vumaac/
0

1 1
2 [ x—20
/1 Vy (E(ﬁ) ) l/n(d.CU) _ /1 VVQ(Z) dz
0

Up(dz)

92('%'7 Sl/,u) B 92(207 0)

9%(20,0) -1 9%(20,0)
(A4) and (A5) implies lemma A.3. O
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