
HAL Id: hal-00192811
https://hal.science/hal-00192811

Submitted on 17 Jul 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Towards virtual control of mobile manipulators
Arnaud Lelevé, Philippe Fraisse, André Crosnier, Pierre Dauchez, François

Pierrot

To cite this version:
Arnaud Lelevé, Philippe Fraisse, André Crosnier, Pierre Dauchez, François Pierrot. Towards virtual
control of mobile manipulators. WAC: World Automation Congress, May 1998, Anchorage, United
States. �hal-00192811�

https://hal.science/hal-00192811
https://hal.archives-ouvertes.fr

TOWARDS VIRTUAL CONTROL OF MOBILE MANIPULATORS

A.LELEVE, P.FRAISSE, A.CROSNIER, P.DAUCHEZ, F.PIERROT
LIRMM UMR 5506 CNRS / Université Montpellier II
161 rue Ada 34392 Montpellier Cedex 5 - France -

ABSTRACT

This paper introduces the realisation of a setup platform for the study of teleoperation through Internet.
The platform is a vehicle including a PUMA manipulator. The communication uses an Ethernet radio
network, a PC laptop located on the vehicle and a Silicon Graphics Indigo for the base man-machine
interface. This platform will permit us to study control laws to cope with variable delays.

KEYWORDS : Teleoperation, Internet.

INTRODUCTION

The teleoperation of any remote system raises at one and the same time some difficulties about technics,
logistic and cost. Indeed, the long distance command of a remote system requires the use of different media of
communication. (computer networks, satellites, relay broadcasting stations, ...) that may introduce variable delays
in the command loop that may be then instable.

A first approach [1] consists in designing two overlapped loops. The first one, restricted to the vehicle, locally
controls it to fit the reference values sent by the base and it resolves critical situations as obstacle avoidance for
instance. The second loop, which dynamics are slower than the first one, includes the first loop and the base. This
one will be the victim of probable delays. In this way, the dialogue between the base and the vehicle consists in
sending (only when the operator modifies the configuration of the remote system) desired state values.

However, the operator usually has a vision of the operation site limited in terms of quality by the bandwidth of
the transmission channel. He may be quickly disturbed by the presence of consequent (on and after one second)
and varying delays. It is possible [2] to bypass to a great extent, these transmission delays, by graphically
simulating (at least in 2D), in advance, the desired action ; yet, even if we know the model of the manipulator, we
have to cope with the interaction with an unstructured environment. The superposition of the simulated system
with a picture from a CCD camera can help in a great extent the operator’s task.

A third approach to the issue consists in taking the variable delays into account and in directly controlling the
teleopered system. This involves a structure bringing a dynamic simulation of the remote system and a predictor
of the current and future state of it [3].

Our study aims to teleoperate a land vehicle including a manipulator. We have taken the different observations
and conclusions of the articles [1], [2] and [3] into account in order to work out, at first, a control strategy that we
will comment out in the next chapter and next, to create a setup platform combining a maximum number of the
advantages out of these previous three techniques. Then, we will precisely describe this platform and we will
eventually comment the setups we have made as yet.

GLOBAL CONTROL ARCHITECTURE

For the moment, we have implemented on the base computer a virtual environment set up with the kinematics
models of the vehicle, including its manipulator and its environment. The operator interface consists in a 3D
perspective representation (on a Silicon Graphics Indigo), of the vehicle simulated in a structured environment.
The operator handles a 6 degree-of-freedom mouse (« a space mouse ») to move either the vehicle or the
manipulator. The movements are transmitted to the client which sends them, as orders, to the server through the
local network. This client also receives some information about the vehicle (positions, speeds). Figure 1a
represents this structure.

In the other hand, the mobile manipulator is fit out with encoders of the manipulator, on the steering wheel and
on one wheel (we assume it doesn’t skid). Its server transmits the base orders to the controller and sends data from
it to the base client. It also signals to the controller whether it has lost contact with the base. The controller locally

controls (position or speed) the system in accordance to the desired values sent by the server. When the client
signals it a communication rupture, the controller stops the vehicle.

The drawbacks of this simple architecture are that we are victims of transmission delays through the network.
Still, we can now measure them and use it as a first approach to a more complete system.

Operator
Interface

Client Server

Controller

Vehicle +
Manipulator

Base Vehicle

Operator
Interface

Dynamic
Model

Prediction

Client Server

Controller

Vehicle +
Manipulator

Base

Vehicle

Figure 1a. Current architecture Figure 1b. Future architecture

Future architecture

As in [3], our control will involve a dynamic model of the system (manipulator + vehicle) and a predictive
algorithm, so that we ought to cope with statistical delays. The use of the dynamic model, coupled to the
prediction block, will allow us, in one hand, to simulate on a computer screen the effects of the orders sent by the
operator and, in the other hand, to anticipate the vehicle movements according to the estimated delay (the last
delays are measured by the client) of the transmission channel so that the final result will be the one wanted by the
operator. The data got from the vehicle will permit to adjust the estimated state of the remote system. In a first
approach, the prediction block will simply consist in a Kalman filter. We can consider using neuronic networks
afterwards.

If needed, we will be able to simulate varying delays with a virtual queue in order to study the behaviour of
our control law versus strong delays.

Moreover, the information from the vehicle can be improved by the adjunction of different transducers as
accelerometers, magnetic compass, effort transducers, a CCD camera set on the wrist of the manipulator, a laser
telemeter and an ultrasound detector in front of the vehicle. The simulator will then be more accurate since it
receives richer information and the operator will be able to view simultaneously both the simulation and the reality
on his screen.

At this time, when the server signals a communication rupture, the vehicle controller just engages the brakes.
An interesting strategy on a loss of contact, may consist in executing a simple procedure that the operator had
supplied before starting moving (for instance, « make a U turn », « go 10 m backward », ...). In the future, the
controller will also be able to anticipate a collision thanks to the additional transducers (telemeter, ultrasound
barrier, CCD camera, ...) and it will be eventually able to manoeuvre as to avoid the obstacles.

THE TELEOPERED VEHICLE

Originally, the vehicle is an electric one dedicated to many tasks on golf grass. It is manufactured by Andruet S.A..
It has 6 directing and propulsive wheels It is aimed at some studies in the laboratory (as the generation of
coordinated movements for a manipulator on a vehicle, obstacle avoidance with a laser telemeter coupled to a
CCD camera, ...)

We have added an automatic mode that makes the wheel converter supervised by the dSpace block. We have
also added an optic encoder on the left front wheel, that delivers its position to the DSP. Concerning the steering,
we have coupled a motor and an optic encoder to the steering axle. The motor converter is supervised by the
dSpace block and the encoder is plugged to the same block. We have modified the wiring of the drive (stop,
forward or reverse) so that we can remotely change it.

We have also mounted, at the rear of the vehicle, a platform holding a 6 degrees of freedom manipulator
PUMA 560. It is now controlled by a structure we have assembled by ourselves :
• 6 converters for the motors of the Puma,
• a dSpace DS1003 block that includes a TMS320C40 DSP by Texas Instruments and analogic in/out

cards.

The whole is supervised by the DSP in the dSpace block. A program simultaneously acts (with a PID corrector),
in an infinite loop, on every state variable of the system : the position of the 6 axles of the manipulator, the speed
or the position of the vehicle and its steering. A second order lowpass filter smoothes the movements by filtering
the desired state values of the system.

A PC-486-DX laptop is linked to the dSpace block. It uploads the program to be executed in the DSP and it
can download some real-time measured values. This PC is also including an Ethernet radio network card. This
card communicates with a transmitter-receiver linked to the Ethernet network of the laboratory. Once the card is
correctly set up, the radio link is transparent for the rest of the computer and the user. Figure 2 represents the
whole vehicle.

Figure 2. Picture of the vehicle and its manipulator

Figure 3 shows the interactions between the diverse control elements of the whole system.

Interface Card

Converter

MotorEncoder Motor Encoder

Converter

Wheels Steering

Joints

Converters

Puma

DSP and its in/out cards

Interface CardTerminal PC laptop

Figure 3 The set of control blocks for the teleoperation

THE TELEOPERATION

Our teleoperation chain consists of :
• a fixed base : a Silicon Graphics Indigo computer, which a simulation and control software is executed on. It

simulates the vehicle in a predefined environment (for the moment, the parking of the laboratory). This
software implements a network communication interface (the client).

• the Ethernet network of the laboratory, and its equipment : hubs, gateways, ...
• the radio transmitter-receiver that interfaces the laboratory network with our radio network,
• our radio network that can handle several computer hosts, relays and Ethernet interfaces.
• and the PC laptop located on the vehicle which. a (server) software handles the communication between the

base and the DSP on.
As the radio aspect of the communication is transparent to the programmer, the task has consisted in making two
softwares communicate over a network, these two softwares being executed in a different environment..
The protocols

Our goal was to control the vehicle through the Internet, so we have been constrained to use a protocol in the
TCP/IP family (TCP or UDP). [4] and [5] comment out these Internet protocols and the ways to make two
softwares communicate across a network. We will note that UDP, unlike TCP, isn’t a reliable protocol because
one hasn’t any mean to be sure that all the sent data has been correctly received by the addressee. Given the nature
of our application, it is important that we use a reliable protocol. We have, naturally chosen the TCP protocol.

The client-server model goes on a par with the TCP protocol. In our case, the server is the software running
on the PC laptop of the vehicle. It provides the ability to drive the vehicle and its manipulator. Our client is the part
of the simulation and control software that manages the sending of the orders and the reception of the data from
the vehicle.

The server

Our server is iterative : a single client can teleoperate the vehicle at any time. On the other hand, several clients can
teleoperate it, each in turn. It is coded for Windows 3.11 and we have included some items that allow a pilote to
drive the vehicle by means of a mouse and the keyboard of his laptop.

If there is a loss of communication, the TCP protocol doesn’t detect the breakdown in every case. So we have
added a watchdog for this purpose. When no orders need to be sent to the server (the operator doesn’t gave any
order), the client sends, all the same, a message which goal is to verify that the communication isn’t broken. In the
future, it will also be used to evaluate the delays of transmission between the client and the server. Whenever the
server detects no message after an arbitrary time, it stops the vehicle in emergency.

The data

For compatibility reasons, the orders are sent as strings of characters. The drawback is that these strings may have
variable lengths and the addressee doesn’t know in advance the length of the string it is supposed to get.
Moreover, a string is likely to be divided in small packets when the network is very busy.

We have programmed two functions « sendString » and « receiveString » which respectively manage the
sending and the reception of the strings in the format of figure 4a. The checksum is redundant with the CRC check
operated by the TCP layer, but it doesn’t use much time to compute and it makes the whole system a little more
reliable. A sample of communication is given in figure 4b.

14 20 20 Variable

Ethernet IP TCP Application data

Number of bytes

content

14243
complete header

Figure 4a. Format of a data frame

Header Length Checksum MG 0.0 0.0 -2.0 5.0 -7.11 -3.0 0.5 -2.0 3.0Base ⇒ Vehicle

Header Length Checksum ARBase ⇒ Vehicle

Header Length Checksum Ok !Vehicle ⇒ Base Ack

Header Length Checksum Reset ... Ok !Vehicle ⇒ Base Ack

Header Length Checksum LMJFJ F JDSZERBase ⇒ Vehicle

Header Length Checksum Unknown order !Vhicle ⇒ Base Ack

Figure 4b. Sample of communication between the server and the client

The dialogues
The communication takes place in a mode called « handshake » : every order from the client is syntactically
analysed by the server which then sends back a reception acknowledgement to the client. For the moment, the
syntax is very simple ; common orders are AR (Arm Reset), ST (stop), GA (go ahead), GR (go reverse), GM
(global movement) that is followed with 6 increments of position for the manipulator, and by the increment of
speed and steering for the vehicle.

SETUPS

Vehicle setups

We have observed the behaviour of the vehicle to some steps of speed (figures 5a). The output voltage of the
converter is displayed in figure 5c. The gray curb represents the speed wanted by the operator. The one in dotted
lines shows the speed référence after the lowpass filter.

For reasons of security, we have electronically limited the input voltage of the wheel converter to 5V max.
This explains that the real speed doesn’t fit to the desired speed while the voltage is greater than 5V.

Figure 5b represents the response of the steering. The shape of the voltage applied to the steering converter
(figure 5d) tells us that the gain is a little too high. In every case, we can remark a small vertical translation ; it is
obviously due to an offset of some CNAs.

0 1 2 3 4 5
0

0 . 2
0 . 4
0 . 6
0 . 8

1
1 . 2
1 . 4
1 . 6
1 . 8

2 ω (t r / s)

t (s)

f i l t e r e d
r e a l

d e s ir e d

0 1 2 3 4 5
- 1

- 0 . 5

0

0 . 5

1
θ (t r)

t (s)

f i l t e r e d
r e a l

d e s ir e d

Figure 5a. Speed response Figure 5b. Steering response

0 1 2 3 4 5
0

2 . 5

5

t (s)

u (V)

s a tu r a t io n

0 1 2 3 4 5
- 0 . 0 5

0

0 . 0 5

0 . 1 0

0 . 1 5

0 . 2 0

t (s)

u (V)

Figure 5c. Voltage for the wheel converter Figure 5d. Voltage for the steering converter

Some other curbs have allowed us to measure the total time of passage from the stopped state to the forward
moving state. Its mean is equal to 1,6s. this number represents the time spent between the moment when the server
has received the order to go forward and the moment when it has begun to move.

Frame capture

We have captured Ethernet frames exchanged between both the machines PC and Indigo. The connection consists
in 3 frames that tell each other its length of buffer and initiate the communication.

The dialogue makes clearly appear the principle of acknowledgement of the TCP protocol ; every message is
followed back by a frame without data, dedicated to the validation of the last one. We have noted a different
behaviour in the way of sending messages, between the PC and the Indigo. In fact, the Indigo sends a message in
one piece (as in figure 4a) whereas the PC makes 2 or 3 attempts to send data frames (the 2 first attempts contain
truncated data). We suppose that the Indigo handles a heavy network traffic (NFS, mount, rlogin, ...) and the
unfruitful attempts of the PC client may be due to collisions. In the other way, the PC is just dedicated to this
application ; so it doesn’t send nor receive any network traffic during a teleoperation. That would explain why
every attempt from the Indigo is successful.

Timings

Figure 7 represents the distribution of two types of messages sent by the base software during one minute. We can
note that, when there is no sending of orders, the sending of test messages isn’t regular. It may be due to the
coding of this software not in a real-time environment.

0 10 20 30 40 50 60
t (s)

t (s)

Orders

Tests

Figure 7. Distribution of test messages and orders

Figure 8 represents the time elapsed between the sending of some data and the receiving of the according
acknowledge, in both ways between the PC and the Indigo. The mean value is located around 22 ms with a
standard deviation of 20 ms. This figure shows us the speed of communication of the network between the two
host computers.

0 20 40 60 80 100 180 200
0

10

20

30

40

50

60

t (s)

 (%)

Figure 8. Distribution of response time of the network for data frames

Figure 9a represents the speed orders sent to the vehicle. Figure 9b represents the estimated speed of the
vehicle (we have summed the values of figure 9a). This should be always positive because it corresponds to the
absolute value of the desired speed of the vehicle. In fact, the sum of the values of figure 9a gives negative values.
In the DSP program, there is a routine that filters negative values so that it remains null. We have had to do the
same thing for figure 9b. This phenomena tells us that the orders aren’t very reliable ; we’ll have to take care of it
in order to make the whole platform more reliable.

0

-1

-0.5

0

0.5

10 20 30 40 50
t (s)

∆ω (tr/s)

0 10 20 30 40 50
0

0.5

1

1.5

2
ω (tr/s)

t (s)

Figure 9a. Speed changement orders Figure 9b. Estimated speed

CONCLUSION

We have so achieved the building of a teleoperation system. It is quite perfectible but it raises some issues, we
couldn’t have thought in theory. For example, we will replace the relative values in the order messages by absolute
values.

This system now will give us the ability to study some control laws for a reliable teleoperation with variable
delays. In a first time, we will study the effects of these delays in a control loop. When we will have it correctly
modelled, we will be able to find the most appropriate control law using prediction technics. Figure 1 shows us the
final architecture for this project.

REFERENCES

1. P.K. Pool & D.H. Ballard "Remote Teleassistance", Univ. of Rochester, NY, USA
2. A.Rastogi & P.Migram "Augmented Telerobotic Control", University of Toronto, Canada
3. T-J. Tarn & K.Brady "A Framework for the control of Time-Delayed Telerobotic Systems", Washington

Univ.
4. R.T. Braden "Requirements for Internet Hosts-Communication Layers" RFC 1122.
5. D.E.Comer & D.L.Stevens . "Internetworking with TCP/IP", Prentice Hall, Englewood Cliffs, NJ

