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methods

Benjamin Jourdain∗, Pierre Etoré†

28th November 2007

Abstract

In this paper, we propose a stratified sampling algorithm in which the

random drawings made in the strata to compute the expectation of interest

are also used to adaptively modify the proportion of further drawings in

each stratum. These proportions converge to the optimal allocation in

terms of variance reduction. And our stratified estimator is asymptotically

normal with asymptotic variance equal to the minimal one. Numerical

experiments confirm the efficiency of our algorithm.

Introduction

Let X be a R
d-valued random variable and f : R

d → R a measurable function
such that E(f2(X)) < ∞. We are interested in the computation of c = E(f(X))
using a stratified sampling Monte-Carlo estimator. We suppose that (Ai)1≤i≤I

is a partition of R
d into I strata such that pi = P[X ∈ Ai] is known explicitely

for i ∈ {1, . . . , I}. Up to removing some strata, we assume from now on that pi

is positive for all i ∈ {1, . . . , I}. The stratified Monte-Carlo estimator of c (see
[G04] p.209-235 and the references therein for a presentation more detailed than

the current introduction) is based on the equality E(f(X)) =
∑I

i=1 piE(f(Xi))
where Xi denotes a random variable distributed according to the conditional law
of X given X ∈ Ai. Indeed, when the variables Xi are simulable, it is possible
to estimate each expectation in the right-hand-side using Ni i.i.d drawings of
Xi. Let N =

∑I
i=1 Ni be the total number of drawings (in all the strata) and

qi = Ni/N denote the proportion of drawings made in stratum i.
Then ĉ is defined by

ĉ =

I∑

i=1

pi

Ni

Ni∑

j=1

f(Xj
i ) =

1

N

I∑

i=1

pi

qi

qiN∑

j=1

f(Xj
i ),

where for each i the Xj
i ’s, 1 ≤ j ≤ Ni, are distributed as Xi, and all the

Xj
i ’s, for 1 ≤ i ≤ I, 1 ≤ j ≤ Ni are drawn independently. This stratified
∗project team Mathfi, CERMICS, Université Paris Est, 6-8 avenue Blaise Pascal,
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sampling estimator can be implemented for instance when X is distributed
according to the Normal law on R

d, Ai = {x ∈ R
d : yi−1 < u′x ≤ yi} where

−∞ = y0 < y1 < . . . < yI−1 < yI = +∞ and u ∈ R
d is such that |u| = 1.

Indeed, then one has pi = N(yi) − N(yi−1) with N(.) denoting the cumulative
distribution function of the one dimensional normal law and it is easy to simulate
according to the conditional law of X given yi−1 < u′X ≤ yi (see section 3.2 for
a numerical example in the context of options pricing). We have E(ĉ) = c and

V(ĉ) =

I∑

i=1

p2
i σ

2
i

Ni
=

1

N

I∑

i=1

p2
i σ

2
i

qi
=

1

N

I∑

i=1

(piσi

qi

)2

qi ≥
1

N

( I∑

i=1

piσi

qi
qi

)2

, (0.1)

where σ2
i = V(f(Xi)) = V(f(X)|X ∈ Ai) for all 1 ≤ i ≤ I.

During all the sequel we consider that

(H) σi > 0 for at least one index i.

The brute force Monte Carlo estimator of Ef(X) is 1
N

∑N
j=1 f(Xj), with the

Xj’s i.i.d. drawings of X . Its variance is

1

N




I∑

i=1

pi(σ
2
i + E

2(f(Xi))) −
(

I∑

i=1

piE(f(Xi))

)2


 ≥ 1

N

I∑

i=1

piσ
2
i .

For given strata the stratified estimator achieves variance reduction if the
allocations Ni or equivalently the proportions qi are properly chosen. For in-
stance, for the so-called proportional allocation qi = pi, ∀i, the variance of the
stratified estimator is equal to the previous lower bound of the variance of the
brute force Monte Carlo estimator. For the choice

qi =
piσi∑I

j=1 pjσj

=: q∗i , ∀ 1 ≤ i ≤ I,

the lower-bound in (0.1) is attained. We speak of optimal allocation. We then
have

V(ĉ) =
1

N

( I∑

i=1

piσi

)2

=:
σ2
∗

N
,

and no choice of the qi’s can achieve a smaller variance of ĉ.
In general when the conditional expectations E(f(X)|X ∈ Ai) = E(f(Xi))

are unknown, then so are the conditional variance σ2
i . Therefore optimal al-

location of the drawings is not feasible at once. One can of course estimate
the conditional variances and the optimal proportions by a first Monte Carlo
algorithm and run a second Monte Carlo procedure with drawings independent
from the first one to compute the stratified estimator corresponding to these
estimated proportions. But, as suggested in [A04] in the different context of
importance sampling methods, it is a pity not to use the drawings made in the
first Monte Carlo procedure also for the final computation of the conditional
expectations.

Instead of running two successive Monte Carlo procedures, we can think to
get a first estimation of the σi’s, using the first drawings of the Xi’s made to

2



compute the stratified estimator. We could then estimate the optimal alloca-
tions before making further drawings allocated in the strata according to these
estimated proportions. We can next get another estimation of the σi’s, com-
pute again the allocations and so on. Our goal is thus to design and study such
an adaptive stratified estimator. The estimator is described in Section 1. In
particular, we propose a version of the algorithm such that at each step, the
allocation of the new drawings in the strata is not simply proportional to the
current estimation of the optimal proportions but chosen in order to minimize
the variance of the stratified estimator at the end of the step. A Central Limit
Theorem for this estimator is shown in Section 2. The asymptotic variance is
equal to the optimal variance σ2

∗ and our estimator is asymptotically optimal. In
Section 3, we confirm the efficiency of our algorithm by numerical experiments.
We first deal with a toy example before considering the pricing of an arithmetic
average Asian option in the Black-Scholes model.

Another stratified sampling algorithm in which the optimal proportions and
the conditional expectations are estimated using the same drawings has been
very recently proposed in [CGL07] for quantile estimation. More precisely, for
a total number of drawings equal to N , the authors suggest to allocate the Nγ

with 0 < γ < 1 first ones proportionally to the probabilities of the strata and
then use the estimation of the optimal proportions obtained from these first
drawings to allocate the N − Nγ remaining ones. Their stratified estimator is
also asymptotically normal with asymptotic variance equal to the optimal one.
In practice, N is finite and it is better to take advantage of all the drawings
and not only the Nγ first ones to modify adaptively the allocation between the
strata. Our algorithm works in this spirit.

1 The algorithm

The construction of the adaptive stratified estimator relies on steps at which we
estimate the conditional variances and compute the allocations. We denote by
Nk the total number of drawings made in all the strata up to the end of step k.
By convention, we set N0 = 0. In order to be able to make one drawing in each
stratum at each step we assume that Nk − Nk−1 ≥ I for all k ≥ 1.

For all 1 ≤ i ≤ I we denote by Nk
i the number of drawings in stratum i till

the end of step k with convention N0
i = 0. The increments Mk

i = Nk
i −Nk−1

i ’s
are computed at the beginning of step k using the information contained in the
Nk−1 first drawings.

STEP k ≥ 1.

Computation of the empirical variances.
If k > 1, for all 1 ≤ i ≤ I compute

σ̂k−1
i =

√√√√√ 1

Nk−1
i

(Nk−1
i∑

j=1

(f(Xj
i ))2 −

( 1

Nk−1
i

Nk−1
i∑

j=1

f(Xj
i )
)2)

.

If k = 1, set σ̂0
i = 1 for 1 ≤ i ≤ I.

Computation of the allocations Mk
i = Nk

i − Nk−1
i .
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We make at least one drawing in each stratum. This ensures the convergence
of the estimator and of the σ̂k

i ’s (see the proof of Proposition 1.1 below).
That is to say we have,

∀ 1 ≤ i ≤ I, Mk
i = 1 + m̃k

i , with m̃k
i ∈ N, (1.1)

and we now seek the m̃k
i ’s. We have

∑I
i=1 m̃k

i = Nk − Nk−1 − I, and possibly
m̃k

i = 0 for some indexes.

We present two possible ways to compute the m̃k
i ’s.

a) We know that the optimal proportion of total drawings in stratum i for
the stratified estimator is q∗i = piσi∑

I
j=1 pjσj

, so we may want to choose the vector

(m̃k
1 , . . . , m̃k

I ) ∈ N
I close to (mk

1 , . . . , mk
I ) ∈ R

I
+ defined by

mk
i =

piσ̂
k−1
i∑I

j=1 pjσ̂
k−1
j

(Nk − Nk−1 − I) for 1 ≤ i ≤ I.

This can be achieved by setting

m̃k
i = ⌊mk

1 + . . . + mk
i ⌋ − ⌊mk

1 + . . . + mk
i−1⌋,

with the convention that the second term is zero for i = 1. This systematic
sampling procedure ensures that

∑I
i=1 m̃k

i = Nk − Nk−1 − I and mk
i − 1 <

m̃k
i < mk

i + 1 for all 1 ≤ i ≤ I. In case σ̂k−1
i = 0 for all 1 ≤ i ≤ I, the above

definition of mk
i does not make sense and we set mk

i = pi(N
k − Nk−1 − I)

for 1 ≤ i ≤ I before applying the systematic sampling procedure. Note that
thanks to (H) and the convergence of the σ̂k

i (see Proposition 1.1 below), this
asymptotically will never be the case.

b) In case σ̂k−1
i = 0 for all 1 ≤ i ≤ I, we do as before. Otherwise, we may

think to the expression of the variance of the stratified estimator with allocation
Ni for all i, which is given by (0.1), and find (mk

1 , . . . , mk
I ) ∈ R

I
+ that minimizes

I∑

i=1

p2
i (σ̂

k−1
i )2

Nk−1
i + 1 + mk

i

,

under the constraint
∑I

i=1 mk
i = Nk − Nk−1 − I.

This can be done in the following manner (see in the Appendix Proposi-
tion 4.1):

For the indexes i such that σ̂k−1
i = 0, we set mk

i = 0.
We denote Ik the number of indexes such that σ̂k−1

i > 0. We renumber

the corresponding strata from 1 to Ik. We now find (mk
1 , . . . , mk

Ik) ∈ R
Ik

+ that

minimizes
∑Ik

i=1
p2

i (σ̂k−1
i

)2

Nk−1
i

+1+mk
i

, under the constraint
∑Ik

i=1 mk
i = Nk − Nk−1 − I,

by applying the three following points:

i) Compute the quantities
Nk−1

i
+1

piσ̂
k−1
i

and sort them in decreasing order. Denote

by
Nk−1

(i)
+1

p(i)σ̂
k−1
(i)

the ordered quantities.
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ii) For i = 1, . . . , Ik compute the quantities

Nk − Nk−1 − I +

Ik∑

j=i+1

(Nk−1
(j) + 1)

Ik∑

j=i+1

p(j)σ̂
k−1
(j)

.

Denote by i∗ the last i such that

Nk−1
(i) + 1

p(i)σ̂
k−1
(i)

≥
Nk − Nk−1 − I +

Ik∑

j=i+1

(Nk−1
(j) + 1)

Ik∑

j=i+1

p(j)σ̂
k−1
(j)

.

If this inequality is false for all i, then by convention i∗ = 0.
iii) Then for i ≤ i∗ set mk

(i) = 0 and for i > i∗,

mk
(i) = p(i)σ̂

k−1
(i) .

Nk − Nk−1 − I +

Ik∑

j=i∗+1

(Nk−1
(j) + 1)

Ik∑

j=i∗+1

p(j)σ̂
k−1
(j)

− Nk−1
(i) − 1.

This quantity is non-negative according to the proof of Proposition 4.1.

We then build (mk
1 , . . . , mk

I ) by reincluding the I − Ik zero valued mk
i ’s

and using the initial indexation. Finally we deduce (m̃k
1 , . . . , m̃k

I ) ∈ N
I by the

systematic sampling procedure described in a).

Drawings of the Xi’s. Draw Mk
i i.i.d. realizations of Xi in each stratum i

and set Nk
i = Nk−1

i + Mk
i .

Computation of the estimator
Compute

ĉk :=

I∑

i=1

pi

Nk
i

Nk
i∑

j=1

f(Xj
i ). (1.2)

Square integrability of f(X) is not necessary in order to ensure that the
estimator ĉk is strongly consistent. Indeed thanks to (1.1), we have Nk

i → ∞ as
k → ∞ and the strong law of large numbers ensures the following Proposition.

Proposition 1.1 If E|f(X)| < +∞, then

ĉk −−−−→
k→∞

c a.s..

If moreover, E(f2(X)) < +∞, then a.s.,

∀1 ≤ i ≤ I, σ̂k
i −−−−→

k→∞
σi and

I∑

i=1

piσ̂
k
i −−−−→

k→∞
σ∗.
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2 Rate of convergence

In this section we prove the following result.

Theorem 2.1 Assume (H), E(f2(X)) < +∞ and k/Nk → 0 as k → ∞. Then,
using either procedure a) or procedure b) for the computation of allocations, one
has √

Nk
(
ĉk − c

) inlaw−−−−→
k→∞

N (0, σ2
∗).

With Proposition 1.1, one deduces that
√

Nk∑
I
i=1 piσ̂k

i

(
ĉk − c

) inlaw−−−−→
k→∞

N (0, 1), which

enables the easy construction of confidence intervals. The theorem is a direct
consequence of the two following propositions.

Proposition 2.1 If E(f2(X)) < +∞ and

∀1 ≤ i ≤ I,
Nk

i

Nk
−−−−→
k→∞

q∗i a.s., (2.1)

then √
Nk
(
ĉk − c

) inlaw−−−−→
k→∞

N (0, σ2
∗).

Proposition 2.2 Under the assumptions of Theorem 2.1, using either proce-
dure a) or procedure b) for the computation of allocations, (2.1) holds.

We prove Proposition 2.1 and 2.2 in the following subsections.

2.1 Proof of Proposition 2.1

The main tool of the proof of this proposition will be a CLT for martingales
that we recall below.

Theorem 2.2 (Central Limit Theorem) Let (µn)n∈N be a square-integrable
(Fn)n∈N-vector martingale. Suppose that for a deterministic sequence (γn) in-
creasing to +∞ we have,

i)
〈µ〉n
γn

P−−−−→
n→∞

Γ.

ii) The Lindeberg condition is satisfied, i.e. for all ε > 0

1

γn

n∑

k=1

E

[
||µk − µk−1||21{||µk−µk−1||≥ε

√
γn}|Fk−1

]
P−−−−→

n→∞
0.

Then
µn√
γn

inlaw−−−−→
n→∞

N (0, Γ).
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As we can write

√
Nk
(
ĉk − c

)
=




p1
Nk

Nk
1

...

pI
Nk

Nk
I


 .

1√
Nk




∑Nk
1

j=1(f(Xj
1) − Ef(X1))
...

∑Nk
I

j=1(f(Xj
I ) − Ef(XI))


 ,

we could think to set µk :=
(∑Nk

1

j=1(f(Xj
1) − Ef(X1)), . . . ,

∑Nk
I

j=1(f(Xj
I ) −

Ef(XI))
)′

and try to use Theorem 2.2. Indeed if we define the filtration (Gk)k∈N

by Gk = σ(1j≤Nk
i
Xj

i , 1 ≤ i ≤ I, 1 ≤ j), it can be shown that (µk) is a (Gk)-

martingale. This is thanks to the fact that the Nk
i ’s are Gk−1-measurable. Then

easy computations show that

1

Nk
〈µ〉k = diag

((Nk
1

Nk
σ2

1 , . . . ,
Nk

I

Nk
σ2

I

))

where diag(v) denotes the diagonal matrix with vector v on the diagonal.
Thanks to (2.1) we thus have

1

Nk
〈µ〉k a.s.−−−−→

k→∞
diag

((
q∗1σ2

1 , . . . , q∗Iσ2
I

))
,

and a use of Theorem 2.2 and Slutsky’s theorem could lead to the desired result.

The trouble is that Lindeberg’s condition cannot be verified in this context,
and we will not be able to apply Theorem 2.2. Indeed the quantity ||µk−µk−1||2
involves Nk − Nk−1 random variables of the type Xi and we cannot control it
without making some growth assumption on Nk − Nk−1.

In order to handle the problem, we are going to introduce a microscopic
scale. From the sequence of estimators (ĉk) we will build a sequence (c̃n) of

estimators of c, such that ĉk = c̃Nk

, and for which we will show a CLT using
Theorem 2.2. It will be possible because it involves a new martingale (µn) such
that µn −µn−1 is equal to a vector the only non zero coordinate of which is one
random variable f(Xj

i ). Then the Lindeberg condition will be easily verified,
but this time we will have to work a little more to check the bracket condition.
As the sequence (ĉk) is a subsequence of (c̃n), Proposition 2.1 will follow. This
is done in the following way.

Let n ∈ N
∗. In the setting of the Algorithm of Section 1 let k ∈ N such that

Nk−1 < n ≤ Nk. Given the allocations (N l
i )

I
i=1, for 0 ≤ l ≤ k, we define for

each 1 ≤ i ≤ I a quantity νn
i with the inductive rule below. Each νn

i is the
number of drawings in the i-th strata among the first n drawings and we have∑I

i=1 νn
i = n. We then define

c̃n :=

I∑

i=1

pi

νn
i

νn
i∑

j=1

f(Xj
i ).

7



Rule for the νn
i ’s

For n = 0, νn
i = 0, for all 1 ≤ i ≤ I.

1. For k > 0 set rk
i :=

Nk
i −Nk−1

i

Nk−Nk−1 for 1 ≤ i ≤ I.

2. For Nk−1 < n ≤ Nk, and given the νn−1
i ’s find

in = argmax
1≤i≤I

(
rk
i − νn−1

i − Nk−1
i

n − Nk−1

)
.

If several i realize the maximum choose in to be the one for which rk
i is

the greatest. If there are still ex aequo’s choose the greatest i.

3. Set νn
in

= νn−1
in

+ 1, and νn
i = νn−1

i if i 6= in.

There is always an index i for which rk
i − νn−1

i
−Nk−1

i

n−Nk−1 > 0, since

I∑

i=1

νn−1
i − Nk−1

i

n − Nk−1
=

n − 1 − Nk−1

n − Nk−1
< 1 =

I∑

i=1

rk
i .

Moreover, for the first n ∈ {Nk−1 + 1, . . . , Nk} such that νn−1
i = Nk

i in the

i-th strata, rk
i − νn−1

i
−Nk−1

i

n−Nk−1 ≤ 0 and νn′

i = νn
i = Nk

i for n ≤ n′ ≤ Nk.
This implies that

νNk

i = Nk
i , ∀1 ≤ i ≤ I, ∀k ∈ N,

and as a consequence,

ĉk = c̃Nk

. (2.2)

Therefore Proposition 2.1 is an easy consequence of the following one.

Proposition 2.3 Under the assumptions of Proposition 2.1,

√
n
(
c̃n − c

) inlaw−−−−→
n→∞

N (0, σ2
∗).

In the proof of Proposition 2.3, to verify the bracket condition of Theorem
2.2, we will need the following result.

Lemma 2.1 When (2.1) holds, then

∀1 ≤ i ≤ I,
νn

i

n
−−−−→
n→∞

q∗i a.s.

Proof. Let be 1 ≤ i ≤ I. During the sequel, for x ∈ R
∗
+ or n ∈ N

∗, the integer k
is implicitely such that Nk−1 < x, n ≤ Nk.

We notice that for any n ∈ N
∗

νn
i

n
=

n − Nk−1

n
.
νn

i − Nk−1
i

n − Nk−1
+

Nk−1

n
.
Nk−1

i

Nk−1
,

8



and define for x ∈ R
∗
+,

f(x) :=
x − Nk−1

x
.
Nk

i − Nk−1
i

Nk − Nk−1
+

Nk−1

x
.
Nk−1

i

Nk−1
.

We will see that, as n tends to infinity, f(n) tends to q∗i and f(n)− νn
i

n tends
to zero.

Computing the derivative of f on any interval (Nk−1, Nk] we find that this

function is monotonic on it. Besides f(Nk−1) =
Nk−1

i

Nk−1 and f(Nk) =
Nk

i

Nk . So if
Nk

i

Nk tends to q∗i as k tends to infinity, we can conclude that

f(n) −−−−→
n→∞

q∗i . (2.3)

As rk
i =

Nk
i −Nk−1

i

Nk−Nk−1 we now write

νn
i

n
− f(n) =

n − Nk−1

n

(νn
i − Nk−1

i

n − Nk−1
− rk

i

)
.

We conclude the proof by checking that

rk
i − I − 1

n − Nk−1
<

νn
i − Nk−1

i

n − Nk−1
< rk

i +
1

n − Nk−1
. (2.4)

Indeed, this inequality implies

−I − 1

n
<

νn
i

n
− f(n) <

1

n
,

which combined with (2.3) gives the desired conclusion. We first show

νn
i − Nk−1

i

n − Nk−1
< rk

i +
1

n − Nk−1
. (2.5)

We distinguish two cases. Either νn′

i = Nk−1
i for all Nk−1 < n′ ≤ n, that is to

say no drawing at all is made in stratum i between Nk−1 and n, then (2.5) is
trivially verified.

Either some drawing is made between Nk−1 and n. Let us denote by n′ the

index of the last one, i.e. we have νn
i = νn′

i = νn′−1
i + 1. As a drawing is made

at n′ we have
νn′

−1
i

−Nk−1
i

n′−Nk−1 < rk
i .

We thus have,

νn′−1
i − Nk−1

i

n − Nk−1
≤ νn′−1

i − Nk−1
i

n′ − Nk−1
< rk

i

and
νn

i − Nk−1
i

n − Nk−1
=

νn′−1
i + 1 − Nk−1

i

n − Nk−1
,

and thus we have again (2.5).

Using now the fact that 1 =
∑I

i=1 rk
i =

∑I
i=1

νn
i −Nk−1

i

n−Nk−1 we get

νn
i − Nk−1

i

n − Nk−1
= rk

i +
∑

i6=j

(
rk
j −

νn
j − Nk−1

i

n − Nk−1

)

Using this and (2.5) we get (2.4).
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Proof of Proposition 2.3. For n ≥ N1, νn
i ≥ 1 for all 1 ≤ i ≤ I and we can

write

√
n
(
c̃n − c

)
=




p1
n
νn
1

...
pI

n
νn

I


 .

1√
n

µn, (2.6)

with

µn =




∑νn
1

j=1(f(Xj
1) − Ef(X1))
...∑νn

I

j=1(f(Xj
I ) − Ef(XI))


 .

Note that if σi = 0 for a stratum i, then q∗i = 0 and by Lemma 2.1, n
νn

i

a.s.−−−−→
n→∞

+∞ which may cause some trouble in the convergence analysis. In compensa-
tion, σi = 0 means that f(Xi)−Ef(Xi) = 0 a.s. Thus the component µi

n of µn

makes no contribution in c̃n − c. So we might rewrite (2.6) with µn a vector of
size less than I, whose components correspond only to indexes i with σi > 0.
For the seek of simplicity we keep the size I and consider that σi > 0 for all
1 ≤ i ≤ I.

If we define Fn := σ(1j≤νn
i
Xj

i , 1 ≤ i ≤ I, 1 ≤ j), then (µn)n≥0 is obviously

a (Fn)-martingale. Indeed, for n ∈ N
∗ let k ∈ N

∗ such that Nk−1 < n ≤ Nk.
For 1 ≤ i ≤ I the variables Nk−1

i and Nk
i are respectively FNk−2 and FNk−1 -

measurable (Step k > 1 in the Algorithm). As for each 1 ≤ i ≤ I the quantity
νn

i depends on the Nk−1
i ’s and the Nk

i ’s, it is FNk−1-measurable. Thus µn is
Fn-measurable and easy computations show that E[µn+1|Fn] = µn.

We wish to use Theorem 2.2 with γn = n. We will denote by diag(ai) the
I×I matrix having null coefficients except the i-th diagonal term with value ai.

We first verify the Lindeberg condition. We have, using the sequence (in)
defined in the rule for the νn

i ’s,

1
n
∑n

l=1 E
[
||µl − µl−1||21{||µl−µl−1||>ε

√
n}|Fl−1

]

= 1
n
∑n

l=1 E
[
|f(X

νl
il

il
) − Ef(Xil

)|21
{|f(X

νl
il

il
)−Ef(Xil

)|>ε
√

n}
|Fl−1

]

≤ 1
n
∑n

l=1 sup1≤i≤I E
[
|f(Xi) − Ef(Xi)|21{|f(Xi)−Ef(Xi)|>ε

√
n}
]

= sup1≤i≤I E
[
|f(Xi) − Ef(Xi)|21{|f(Xi)−Ef(Xi)|>ε

√
n}
]
.

As

sup
1≤i≤I

E
[
|f(Xi) − Ef(Xi)|21{|f(Xi)−Ef(Xi)|>ε

√
n}
]
−−−−→
n→∞

0,

the Lindeberg condition is proven.
We now turn to the bracket condition. We have,

〈µ〉n =
∑n

k=1 E
[
(µk − µk−1)(µk − µk−1)

′|Fk−1

]

=
∑n

k=1 diag
(

E
[ ∣∣f(X

νk
ik

ik
) − Ef(Xik

)
∣∣2 ]
)

=
∑n

k=1 diag
(
σ2

ik

)
.
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Thus, we have

〈µ〉n
n

= diag
(
(
νn
1

n
σ2

1 , . . . ,
νn

I

n
σ2

I )
)
−−−−→
n→∞

diag
(
(q∗1σ2

1 , . . . , q
∗
Iσ2

I )
)

a.s.,

where we have used Lemma 2.1.
Theorem 2.2 implies that

µn√
n

inlaw−−−−→
n→∞

N
(
0, diag

(
(q∗1σ2

1 , . . . , q∗Iσ2
I )
))

. (2.7)

Using again Lemma 2.1 we have

(p1
n

νn
1

, . . . , pI
n

νn
I

) −−−−→
n→∞

(
p1

q∗1
, . . . ,

pI

q∗I
) a.s. (2.8)

Using finally Slutsky’s theorem, (2.6), (2.7) and (2.8), we get,

√
n
(
c̃n − c

) inlaw−−−−→
n→∞

N
(
0, σ2

∗).

2.2 Proof of Proposition 2.2

Thanks to (H) and Proposition 1.1 there exists K ∈ N s.t. for all k ≥ K

we have
∑I

i=1 piσ̂
k
i > 0. The proportions (ρk

i =
piσ̂

k
i∑

I
j=1 pj σ̂k

j

)i are well defined

for all k ≥ K and play an important role in both allocation rules a) and b).
Proposition 1.1 implies convergence of ρk

i as k → +∞.

Lemma 2.2 Under the assumptions of Theorem 2.1,

∀1 ≤ i ≤ I, ρk
i −−−−→

k→∞
q∗i a.s.

Proof of Proposition 2.2 for allocation rule a). Let be 1 ≤ i ≤ I. We

have
Nk

i

Nk =
k+
∑ k

l=1 m̃l
i

Nk . Using the fact that ml
i − 1 < m̃l

i < ml
i + 1 we can write

∑k
l=1 ml

i

Nk
≤ Nk

i

Nk
≤ 2k

Nk
+

∑k
l=1 ml

i

Nk
.

We will show that
∑k

l=1 ml
i

Nk → q∗i , and, as k
Nk → 0, will get the desired result.

For k ≥ K + 1, we have

∑k
l=1 ml

i

Nk
=

∑K
l=1 ml

i

Nk
+

∑k
l=K+1 ρl

i(N
l − N l−1 − I)

Nk

=

∑K
l=1 ml

i

Nk
+

Nk − NK

Nk
× 1

Nk − NK

Nk∑

n=NK+1

ρ̃n
i − I(k − K)

Nk
× 1

k − K

k∑

l=K

ρl
i

where the sequence (ρ̃n
i ) defined by ρ̃n

i = ρl
i for N l−1 < n ≤ N l converges to q∗i

as n tends to infinity. The Cesaro means which appear as factors in the second
and third terms of the r.h.s. both converge a.s. to q∗i . One easily deduce that
the first, second and third terms respectively converge to 0, q∗i and 0.

11



Proof of Proposition 2.2 for allocation rule b). There may be some strata
of zero variance. We denote by I ′ (I ′ ≤ I) the number of strata of non zero
variance.

For a stratum i of zero variance the only drawing made at each step will be
the one forced by (1.1). Indeed σ̂k

i = 0 for all k in this case. Thus Nk
i = k for

all the strata of zero variance and since k
Nk → 0, we get the desired result for

them (note that of course q∗i = 0 in this case).

We now work on the I ′ strata such that σi > 0. We renumber these strata
from 1 to I ′. Let now K ′ be such that σ̂k

i > 0 for all k ≥ K ′, and all 1 ≤ i ≤ I ′.
For k ≥ K ′, the integer Ik+1 at step k + 1 in procedure b) is equal to I ′.

Step 1. We will firstly show that

∀k ≥ K ′, ∀1 ≤ i ≤ I ′
Nk+1

i

Nk+1
≤ Nk

i + 1

Nk+1
∨
(
ρk

i +
1

Nk+1

)
. (2.9)

Let k ≥ K ′. At step k + 1 we denote by (.)k the ordered index in Point
i) of procedure b) and by i∗k the index i∗ in Point ii). We also set nk+1

i =
Nk

i + 1 + mk+1
i . By Point iii), for i > i∗k,

nk+1
(i)k

p(i)k
σ̂k

(i)k

=
mk+1

(i)k
+ Nk

(i)k
+ 1

p(i)k
σ̂k

(i)k

=
Nk+1 − Nk − I +

∑I′

j=i∗
k
+1(N

k
(j)k

+ 1)
∑I′

j=i∗
k
+1 p(j)k

σ̂k
(j)k

(2.10)
Case 1: i∗k = 0. Then, in addition to the drawing forced by (1.1), there are

some drawings at step k + 1 in stratum (1)k, and consequently in all the strata.
Thus (2.10) leads to

nk+1
i = ρk

i


Nk+1 − Nk − I + I ′ +

I′∑

j=1

Nk
j


 , ∀1 ≤ i ≤ I ′.

But Nk =
∑I′

j=1 Nk
j +k(I−I ′) and, following the systematic sampling procedure,

we have
Nk+1

i < nk+1
i + 1, ∀1 ≤ i ≤ I ′. (2.11)

Thus, in this case,

Nk+1
i

Nk+1
≤ ρk

i +
1

Nk+1
, ∀1 ≤ i ≤ I ′.

Case 2: i∗k > 0. If i ≤ i∗k, Nk+1
(i)k

= Nk
(i)k

+ 1 and (2.9) holds.

If i > i∗k, then (2.10) leads to

nk+1
(i)k

Nk+1
= ρk

(i)k

Nk+1 − Nk − I +
∑I′

j=i∗
k
+1(N

k
(j)k

+ 1)

Nk+1
∑I′

j=i∗
k
+1 ρk

(j)k

.

Using (2.11), it is enough to check that

Nk+1 − Nk − I +
∑I′

j=i∗
k
+1(N

k
(j)k

+ 1)

Nk+1
∑I′

j=i∗
k
+1 ρk

(j)k

≤ 1 (2.12)
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in order to deduce that (2.9) also holds for i > i∗k.

If
Nk

(i∗
k
)k

+1

Nk+1ρk
(i∗

k
)k

≤ 1, then inequality (2.12) holds by the definition of i∗k.

If
Nk

(i∗
k
)k

+1

Nk+1ρk
(i∗

k
)k

> 1 we have
Nk

(i)k
+1

Nk+1ρk
(i)k

> 1, ∀i ≤ i∗k and thus

i∗k∑

j=1

(Nk
(j)k

+ 1) > Nk+1

i∗k∑

j=1

ρk
(j)k

.

This inequality also writes

Nk − k(I − I ′) + I ′ −
I′∑

j=i∗
k
+1

(Nk
(j)k

+ 1) > Nk+1
(
1 −

I′∑

j=i∗
k
+1

ρk
(j)k

)
,

and (2.12) follows.

Step 2. Let 1 ≤ i ≤ I ′. We set n̄k
i := Nk

i − k (this the number of drawings
in stratum i that have not been forced by (1.1)).

Using (2.9) we have

∀k ≥ K ′,
Nk+1

i − (k + 1)

Nk+1
≤ Nk

i + 1 − (k + 1)

Nk+1
∨
(
ρk

i − k

Nk+1

)
,

and thus

∀k ≥ K ′,
n̄k+1

i

Nk+1
≤ n̄k

i

Nk+1
∨
(
ρk

i − k

Nk+1

)
.

Let ε > 0. Thanks to Lemma 2.2, there exists k0 ≥ K ′ s.t. for all k ≥ k0,
ρk

i − k
Nk+1 ≤ q∗i + ε. Thus

∀k ≥ k0,
n̄k+1

i

Nk+1
≤ n̄k

i

Nk+1
∨
(
q∗i + ε). (2.13)

By induction

∀k ≥ k0,
n̄k

i

Nk
≤ n̄k0

i

Nk
∨ (q∗i + ε).

Indeed suppose
n̄k

i

Nk ≤ n̄
k0
i

Nk ∨ (q∗i + ε). If
n̄k

i

Nk ≤ q∗i + ε then
n̄k

i

Nk+1 ≤ q∗i + ε and

using (2.13) we get
n̄k+1

i

Nk+1 ≤ q∗i + ε. Otherwise n̄k
i = n̄k0

i and using (2.13) we are
done.

But as
n̄

k0
i

Nk → 0 as k → ∞ we deduce that lim supk
n̄k

i

Nk ≤ q∗i + ε. Since this

is true for any ε, and k
Nk → 0, we can conclude that lim supk

Nk
i

Nk ≤ q∗i . Now
using the indexation on all the strata and the result for the strata with variance
zero, we deduce that for 1 ≤ i ≤ I,

lim infk
Nk

i

Nk
= lim infk

(
1 −∑I

j=1

j 6=i

Nk
j

Nk

)
≥ 1 −∑I

j=1

j 6=i
lim supk

Nk
j

Nk

= 1 −∑I
j=1

j 6=i
q∗j = q∗i .

This concludes the proof.

13



3 Numerical examples and applications to op-

tion pricing

3.1 A first simple example

We compute c = EX where X ∼ N (0, 1).

Let I = 10. We choose the strata to be given by the α-quantiles yα of the
normal law for α = i/I for 1 ≤ i ≤ I. That is to say Ai = (y i−1

I
, y i

I
] for all

1 ≤ i ≤ I, with the convention that y0 = −∞ and y1 = +∞.

In this setting we have pi = 1/10 for all 1 ≤ i ≤ I.

Let us denote by d(x) the density of the law N (0, 1). Thanks to the relation
d′(x) = −xd(x) and using integration by parts, we can establish that, for all
1 ≤ i ≤ I,

E

(
X1y i−1

I

<X≤y i
I

)
= d(y i−1

I
) − d(y i

I
),

and
E

(
X21y i−1

I

<X≤y i
I

)
= y i−1

I
d(y i−1

I
) − y i

I
d(y i

I
) + pi,

with the convention that y0d(y0) = y1d(y1) = 0.
We can then compute the exact σ2

i = V(X |X ∈ Ai)’s and the optimal
standard deviation of the non-adaptive stratified estimator,

σ∗ =

I∑

i=1

piσi ≃ 0.1559335

We can also for example compute

q∗5 = 0.04685

This will give us benchmarks for our numerical tests.

We will compute ĉk for k = 1, . . . , 4. We choose N1 = 300, N2 = 1300,
N3 = 11300 and N4 = 31300.

First for one realization of the sequence (ĉk)4k=1 we plot the evolution of
Nk

5

Nk ,
when we use procedure a) or b) for the computation of allocations. This is done
on Figure 1.

We observe that the convergence of
Nk

5

Nk to q∗5 is faster with procedure b).

Second, to estimate the variance of our adaptive stratified estimator, we
do L = 10000 runs of all the procedure leading to the sequence (ĉk)4k=1. For
1 ≤ k ≤ 4 we compute,

v̂k =
1

L

L∑

l=1

([ĉk]l)2 −
( 1

L

L∑

l=1

[ĉk]l
)2

,

with the
(
[ĉk]l

)
1≤l≤L

independent runs of the algorithm till step k. This esti-

mates the variance of the stratified estimator at step k (Nk total drawings have
been used). To compare with σ∗ we compute the quantities

ŝk =
√

Nkv̂k

14
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Figure 1: Successive values of
Nk

5

Nk for 1 ≤ k ≤ 4, for procedure a) (the ⋄-line)

and procedure b) (the ∗-line), in function of Nk. The horizontal line is at level
q∗5 .

(in other words we compare the standard deviation of our adaptive stratified
estimator with Nk total drawings with the one of the non-adaptive stratified
estimator with optimal allocation, for the same number of total drawings).

The values are ploted on Figure 2. We observe that the convergence to
σ∗ is slightly faster with procedure b). This corresponds to the fact that the

convergence of the
Nk

i

Nk ’s is faster with this later procedure (see Proposition 2.1).

We wish to compare the efficiency of our algorithm with the one of the non-
adaptive stratified estimator with proportional allocation. Indeed this is the
one we would use if we did not know the σi’s.

With the same strata as in the previous setting the stratified estimator with
proportional allocation of c for a total number of drawings N4 = 31300 is

c̄ =
1

N4

10∑

i=1

3130∑

j=1

Xj
i .

We will compare it to ĉ4 that was computed in the example above. As we have
seen in the Introduction, the variance of c̄ is

1

N4

10∑

i=1

piσ
2
i .

We do L = 10000 runs of ĉ4 and c̄. We get an estimation v̂4 of the
variance of ĉ4 as previously. In a similar manner we get an approximation

v̄ = 1
L

∑L
l=1([c̄]

l)2 −
(

1
L

∑L
l=1[c̄]

l
)2

of the variance of c̄.

As
∑10

i=1 piσ
2
i ≥

(∑10
i=1 piσi

)2
we know that we will have v̄ ≥ v̂4. But to

compute ĉ4 we do some additional computations compared to a non adaptive

15
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Figure 2: Successive values of ŝk for 1 ≤ k ≤ p, for procedure a) (the ⋄-line) and
procedure b) (the ∗-line), in function of Nk (the abscissas axe). The horizontal
line is at level σ∗.

stratified estimator. This has a numerical cost. We thus use the L runs to
compute the average computation times t̂4 and t̄, respectively of ĉ4 and c̄.

We have t̂4v̂4 = 6.29 ∗ 10−8 and t̄v̄ = 7.57 ∗ 10−8. This means that in this
toy example the numerical cost of our algorithm is not that much balanced by
the achieved variance reduction.

3.2 Applications to option pricing

3.2.1 The setting

We wish to compare our results with the ones of [GHS99].
We will work on the example of the arithmetic Asian option in the Black-

Scholes model presented in this paper. We shortly present the setting. We have
a single underlying asset, with price at time t denoted by St. Under the risk
neutral measure P, the price (St)t follows the stochastic differential equation,

dSt = V StdWt + rStdt,

with r the constant interest rate, V the constant asset’s volatility, Wt a standard
Wiener process, and S0 fixed.

Let T > 0 be the option’s maturity and
(
tm = mT

d

)
1≤m≤d

the sequence

of times when the value of the underlying asset is monitored to compute the
average. The discounted payoff of the arithmetic Asian option with strike K is
given by

e−rT
(1

d

d∑

m=1

Stm
− K

)+

.
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Thus the price of the option is given by

c = E

[
e−rT

(1

d

d∑

m=1

Stm
− K

)+ ]
.

But in this Black-Scholes setting we can exactly simulate the Stm
’s using the

fact that St0 = S0 and

Stm
= Stm−1 exp

(
[r − 1

2
V 2](tm − tm−1) + V

√
tm − tm−1X

m
)
, ∀1 ≤ m ≤ d,

(3.1)
where X1, . . . , Xd are independent standard normals. Thus,

c = E[g(X)1D(X)],

with g some deterministic function, D = {x ∈ R
d : g(x) > 0}, and X a R

d-
valued random variable with law N (0, Id).

In [GHS99] the authors discuss and link together two issues: importance
sampling and stratified sampling.

Their importance sampling technique consists in a change of mean of the
gaussian vector X . Let us denote by h(x) the density of the law N (0, Id) and
by hµ(x) the density of the law N (µ, Id) for any µ ∈ R

d. We have,

c =

∫

D

g(x)
h(x)

hµ(x)
hµ(x)dx = E[g(X + µ)

h(X + µ)

hµ(X + µ)
1D(X + µ)].

The variance of g(X + µ) h(X+µ)
hµ(X+µ)1D(X + µ) is given by

∫

D

(
g(x)

h(x)

hµ(x)
− c
)2

hµ(x)dx.

Heuristically, this indicates that an effective choice of hµ should give weight to
points for which the product of the payoff and the density is large. In other
words, if we define G(x) = log g(x) we should look for µ ∈ R that verifies,

µ = argmax
x∈D

(
G(x) − 1

2
x′x

)
(3.2)

The most significant part of the paper [GHS99] is aimed at giving an asymp-
totical sense to this heuristic, using large deviations tools.

The idea is then to sample g(X + µ) h(X+µ)
hµ(X+µ)1D(X + µ).

Standard computations show that for any µ ∈ R
d,

c = E
[
g(X + µ)e−µ′X−(1/2)µ′µ1D(X + µ)

]
.

Thus the problem is now to build a Monte Carlo estimator of c = Efµ(X), sam-

pling fµ(X) with X ∼ N (0, Id), and with fµ(x) = g(x+µ)e−µ′x−(1/2)µ′µ1D(x+
µ), for the vector µ satisfying (3.2).

The authors of [GHS99] then propose to use a stratified estimator of c =
Efµ(X). Indeed for u ∈ R

d with u′u = 1, and a < b real numbers, it is easy to
sample according to the conditional law of X given u′X ∈ [a, b].
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It can be done in the following way (see Subsection 4.1 of [GHS99] for de-
tails). We first sample Z = Φ−1(V ) with Φ−1 the inverse of the cumulative
normal distibution, and V = Φ(a) + U(Φ(b) − Φ(a)), with U uniform on [0, 1].
Second we sample Y ∼ N (0, Id) independent of Z. We then compute,

X = uZ + Y − u(u′Y ),

which by contruction has the desired conditional law.

Let be u ∈ R
d satisfy u′u = 1. With our notation the stratified estimator ĉ in

[GHS99] is built in the following way. They take I = 100. As in subsection 3.1
we denote by yα the α-quantile of the law N (0, 1). For all 1 ≤ i ≤ I, they take
Ai = {x ∈ R

d : y i−1
I

< u′x ≤ y i
I
}. That is to say Xi has the conditional law of

X given y i−1
I

< u′X ≤ y i
I
, for all 1 ≤ i ≤ I. As in this setting u′X ∼ N (0, 1),

they have pi = 1/I for all 1 ≤ i ≤ I.
They then do proportional allocation, that is to say, Ni = piN for all 1 ≤

i ≤ I, where N is the total number of drawings (in other words qi = pi). Then,
the variance of their stratified estimator is

1

N

I∑

i=1

piσ
2
i .

According to the Introduction, that choice ensures variance reduction.

The question of the choice of the projection direction u arises. The authors
take u = µ/(µ′µ), with the vector µ satisfying (3.2) that has been used for the
importance sampling. They claim that this provides in practice a very efficient
projection direction, for their stratified estimator with proportional allocation.

As
(∑I

i=1 piσi

)2 ≤ ∑I
i=1 piσ

2
i (i.e. proportional allocation is suboptimal),

if u is a good projection direction for a stratified estimator with proportional
allocation, it is a good direction for a stratified estimator with optimal alloca-
tion.

In the sequel we take the same direction u and the same strata as in [GHS99],
and discuss allocation. Indeed we may wish to do optimal allocation and take
qi = q∗i = piσi∑

j
pjσj

. The trouble is the analytical computation of the quantities

σ2
i = V(fµ(X)|u′X ∈ (y i−1

I
, y i

I
]),

is not tractable, at least when fµ is not linear. As the pi’s are known, this
is exactly the kind of situation where our adaptive stratified estimator can be
useful.

3.2.2 The results

In all the tests we have taken S0 = 50, V = 0.1, r = 0.05 and T = 1.0. The
total number of drawings is N = 1000000.

We call GHS the procedure used in [GHS99], that is importance sampling
plus stratified sampling with proportional allocation. We call SSAA our pro-
cedure, that is the same importance sampling plus stratified sampling with
adaptive allocation.
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d K Price variance SSAA ratio GHS/SSAA

16 45 6.05 2.37 × 10−8 2.04
50 1.91 1.00 × 10−7 35
55 0.20 5.33 × 10−9 39.36

64 45 6.00 3.36 × 10−9 3.34
50 1.84 9.00 × 10−10 1.60
55 0.17 6.40 × 10−9 61

Table 1: Results for a call option with S0 = 50, V = 0.1, r = 0.05, T = 1.0 and
N = 1000000 (and I = 100).

More precisely in the procedure SSAA we choose N1 = 100000, N2 =
400000, N3 = 500000 and compute our adaptive stratified estimator ĉ3 of
c = Ef(X), with the same strata as in GHS. We have used procedure a) for the
computation of allocations. We denote by c̄ the GHS estimator of c.

We call ¡¡variance GHS¿¿ or ¡¡variance SSAA¿¿ the quantity σ̂, which is an
estimation of the variance of c̄ or ĉ3. More precisely for GHS,

(σ̂)2 =
1

N

I∑

i=1

piσ̂i
2,

where for each 1 ≤ i ≤ I,

σ̂i
2 =

1

piN

piN∑

j=1

f2(Xj
i ) −

( 1

piN

piN∑

j=1

f(Xj
i )
)2

,

and for SSAA

(σ̂)2 =
1

N

( I∑

i=1

piσ̂i

)2

,

where for each 1 ≤ i ≤ I,

(σ̂i)
2 =

1

N3
i

N3
i∑

j=1

f2(Xj
i ) −

( 1

N3
i

N3
i∑

j=1

f(Xj
i )
)2

.

Tables 1 and 2 show the results respectively for a call option and a put
option. We call ¡¡ratio GHS/SSAA¿¿ the variance GHS divided by the variance
SSAA. In general the improvement is much better for a put option. Indeed the
variance is often divided by 100 in this case.

A further analysis can explain these results. We plot on Figure 3 and 4
the values of the σ̂i’s and the estimated values of the conditional expectations
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d K Price variance SSAA ratio GHS/SSAA

16 45 0.013 7.29 × 10−10 107
50 0.63 7.29 × 10−8 79
55 3.74 2.50 × 10−5 249

64 45 0.011 5.76 × 10−10 95
50 0.62 5.61 × 10−8 64
55 3.69 1.85 × 10−5 58

Table 2: Results for a put option with S0 = 50, V = 0.1, r = 0.05, T = 1.0 and
N = 1000000 (and I = 100).
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Figure 3: On the left: value of σ̂i in function of the stratum index i in the case
of a call option. On the right: estimated value of Efµ(Xi). (Parameters are the
same as in Tables 1, with d = 64 and K = 45).
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Figure 4: On the left: value of σ̂i in function of the stratum index i in the case
of a put option. On the right: estimated value of Efµ(Xi). (Same parameters
than in Figure 3).
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Efµ(Xi)’s, for a call and a put option, with d = 64 and K = 45, a case for which
the ratio GHS/SSAA is 3.34 in the call case and 95 in the put case.

We observe that in the case of the put option the estimated conditional
variance of about 90% of the strata is zero, unlike in the case of the call option.
These estimated conditional variances are zero, because in the corresponding
strata the estimated conditional expectations are constant with value zero.

But these strata are of non zero probability (remember that in this setting
pi = 0.01, for all 1 ≤ i ≤ 100). Thus the GHS procedure with proportional
allocation will invest drawings in these strata, resulting in a loss of accuracy,
while in our SSAA procedure most of the drawings are made in the strata of
non zero estimated variance.

One can wonder if the expectation in the strata of zero observed expectation
is really zero, or if it is just a numerical effect. We define the deterministic
function s : R

d → R by

s(x) =
S0

d

d∑

m=1

exp
( m∑

p=1

{
[r − V 2

2
]
T

d
+ V

√
T

d
xp
})

, ∀x = (x1, . . . , xd)′ ∈ R
d.

With the previous notations, in the put option case, we have fµ(Xi) = 0 a.s.,
and thus Efµ(Xi) = 0, if s(Xi + µ) ≥ K a.s. (note that i denotes here the
stratum index and not the component of the random vector Xi).

Thus the problem is to study, in function of z ∈ R, the deterministic values
of s(x + µ) for x ∈ R

d satisfying u′x = z. The following facts can be shown.
Whatever the value of u or z the quantity s(x+µ) has no upper bound. Thus in
the call option case no conditional expectation Efµ(Xi) will be zero. To study
the problem of the lower bound we denote by M the matrix of size d×d given by

M =




1 0 . . . 0

1 1
. . .

...
...

. . . 0
1 . . . . . . 1




, with inverse M−1 =




1 0 . . . 0

−1 1
. . .

...
...

. . .
. . . 0

0 . . . −1 1




,

and by 1 the d-sized vector (1, . . . , 1)′. If we use the change of variable

y = M
(
[r − V 2

2
]
T

d
1 + V

√
T

d
(x + µ)

)
,

we can see that minimizing s(x + µ) for x ∈ R
d satisfying u′x = z is equivalent

to minimizing S0

d

∑d
m=1 exp(ym) for y ∈ R

d satisfying

w′y = v, (3.3)

where,
w = (M−1)′u,

and

v = u′
(
[r − V 2

2
]
T

d
1 + V

√
T

d
(x + µ)

)
= V

√
T

d
(z + u′µ) + (r − V 2

2
)

d∑

m=1

um.
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Figure 5: Value of the component um of u ∈ R
d in function of m.

If all the components of w are stricly positive the lower bound of s(x + µ)
under the constraint u′x = z is

s∗ =
S0

d
× exp

(v −∑d
m=1 wm log wm∑d

m=1 wm

)
×

d∑

m=1

wm. (3.4)

If all the components of w are stricly negative we get the same kind of result
by a change of sign. Otherwise the lower bound is zero: it is possible to let the
ym’s tend to −∞ with (3.3) satisfied.

In the numerical example that we are analysing the direction vector u is the
same in the call or put option cases, and its components are stricly positive and
decreasing with the index (see Figure 5). Thus the components of w are strictly
positive and the lower bound is given by s∗ defined by (3.4). With z taking
values in the 90 last strata we have s∗ > 45. Thus the conditional expectations
Efµ(Xi) are truly zero in these strata.

We can then wonder if it is worth stratifying the part of the real line corre-
sponding to these strata, in other words stratifying R

d and not only D. Maybe
stratifying D and making proportional allocation will provide a sufficient vari-
ance reduction. But this would require a first analysis, while our SSAA proce-
dure avoids automatically to make a large number of drawings in Dc.

To conclude on the efficiency of our algorithm in this example let us notice
that the computation times of the GHS and SSAA procedures are nearly the
same (less than 1% additional time for the SSAA procedure). Indeed, unlike
in the toy example of Subsection 3.1, the computation time of the allocation
of the drawings in the strata is almost negligible in comparison to the other
calculations (drawings etc...).

4 Appendix

We justify the use of procedure b) in the following proposition.
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Proposition 4.1 When σ̂k−1
i > 0 for some 1 ≤ i ≤ I, by computing at Step k

the mk
i ’s with the procedure b) described in Section 1, we find (mk

1 , . . . , mk
I ) ∈ R

I
+

that minimizes
I∑

i=1

p2
i (σ̂

k−1
i )2

Nk−1
i + 1 + mk

i

,

under the constraint
∑I

i=1 mk
i = Nk − Nk−1 − I.

Proof. First note that if σ̂k−1
i = 0 for some index i it is clear that we have to set

mk
i = 0 and to rewrite the minimization problem for the indexes corresponding

to σ̂k−1
i > 0. This corresponds to the very beginning of procedure b).
For the seek of simplicity, and without loss of generality, we consider in the

sequel that σ̂k−1
i > 0 for all 1 ≤ i ≤ I, and thus work with the indexation

{1, . . . , I}.
We will note M = Nk − Nk−1 − I, and, for all 1 ≤ i ≤ I, ni = Nk−1

i + 1,
αi = piσ̂

k−1
i , and mi = mk

i . We thus seek (m1, . . . , mI) ∈ R
I
+ that minimizes

∑I
i=1

α2
i

ni+mi
under the constraint

∑I
i=1 mi = M .

Step 1: Lagrangian computations. We write the Lagrangian corresponding
to our minimization problem, for all (m, λ) ∈ R

I
+ × R:

L(m, λ) =

I∑

i=1

α2
i

ni + mi
+ λ(

I∑

i=1

mi − M) =

I∑

i=1

hi(mi, λ) − λM.

with hi(x, λ) =
(

α2
i

ni+x + λx
)

for all i.

We first minimize L(m, λ) with respect to m for a fixed λ.
For any λ ∈ R let us denote m(λ) := argminm∈RI

+
L(m, λ).

Minimizing L(m, λ) with respect to m is equivalent to minimizing hi(mi, λ)
with respect to mi for all i.

The derivative of each hi(., λ) has the same sign as −α2
i + λ(ni + x)2.

If λ ≤ 0 we have m(λ) = (∞, . . .∞).
If λ > 0 there are two cases to consider for each hi:

either λ >
α2

i

n2
i

and mi(λ) = 0,

or λ ≤ α2
i

n2
i

and mi(λ) =
√

α2
i /λ − ni.

(4.1)

To sum up we have

L(m(λ), λ) =





−∞ if λ < 0,

0 if λ = 0,

∑I
i=1

[
1
{λ>

α2
i

n2
i

}
α2

i
ni

+ 1
{λ≤α2

i

n2
i

}
(2αi

√
λ − niλ)

]
− Mλ if λ > 0.

We now look for λ∗ that maximizes L(m(λ), λ). For all λ ∈ (0,∞) we have,

∂λL(m(λ), λ) =
I∑

i=1

1
{λ≤α2

i

n2
i

}

( αi√
λ
− ni

)
− M. (4.2)
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This function is continuous on (0, +∞), equal to −M for λ ≥ maxi
α2

i

n2
i

, de-

creasing on (0, maxi
α2

i

n2
i

] and tends to +∞ as λ tends to 0. We deduce that

λ 7→ L(m(λ), λ) reaches its unique maximum at some λ∗ ∈ (0, maxi
α2

i

n2
i

).

If ∂λL
(
m
(α2

(i)

n2
(i)

)
,

α2
(i)

n2
(i)

)
< 0 for all 1 ≤ i ≤ I, we set i∗ = 0.

Otherwise we sort in increasing order the α2
i /n2

i ’s, index with (i) the ordered
quantities, and note i∗ the integer such that

∂λL
(
m
(α2

(i∗)

n2
(i∗)

)
,
α2

(i∗)

n2
(i∗)

)
≥ 0 and ∂λL

(
m
(α2

(i∗+1)

n2
(i∗+1)

)
,
α2

(i∗+1)

n2
(i∗+1)

)
< 0. (4.3)

Then λ∗ belongs to
[α2

(i∗)

n2
(i∗)

,
α2

(i∗+1)

n2
(i∗+1)

)
, or

(
0,

α2
(1)

n2
(1)

)
if i∗ = 0. But on this interval

∂λL(m(λ), λ) =

I∑

j=i∗+1

(
α(j)√

λ
− n(j)) − M.

As ∂λL(m(λ∗), λ∗) = 0 we have,

1√
λ∗

=

M +

I∑

j=i∗+1

n(j)

I∑

j=i∗+1

α(j)

.

Clearly, if i∗ 6= 0, λ∗ ≥ α2
(i)

n2
(i)

is equivalent to i ≤ i∗. If i∗ = 0 then λ∗ <
α2

(i)

n2
(i)

for all 1 ≤ i ≤ I. Thus, according to (4.1), we have m(i)(λ
∗) = 0 if i ≤ i∗, and

if i > i∗,

m(i)(λ
∗) = α(i).

M +

I∑

j=i∗+1

n(j)

I∑

j=i∗+1

α(j)

− n(i). (4.4)

We have thus found (m(λ∗), λ∗) that satisfies

L(m(λ∗), λ∗) = max
λ∈R

min
m∈RI

+

L(m, λ),

which implies that L(m(λ∗), λ∗) ≤ L(m, λ∗) for all m ∈ R
I
+. Besides (4.4)

implies
∑I

i=1 mi(λ
∗) = M and L(m(λ∗), λ∗) = L(m(λ∗), λ) for all λ ∈ R.

Therefore (m(λ∗), λ∗) is a saddle point of the Lagrangian and m(λ∗) solves the
constrained minimization problem.

Step 2. We now look for a criterion to find the index i∗ satifying (4.3). If
i∗ 6= 0, we have the following equivalences using the concavity of λ 7→ L(m(λ), λ)
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and (4.2)

i ≤ i∗ ⇔ ∂λL(m(
α2

(i)

n2
(i)

),
α2

(i)

n2
(i)

) ≥ 0 ⇔ n(i)

α(i)
≥

M +

I∑

j=i+1

n(j)

I∑

j=i+1

α(j)

.

In the same manner,

i∗ = 0 ⇔ n(i)

α(i)
<

M +

I∑

j=i+1

n(j)

I∑

j=i+1

α(j)

, ∀1 ≤ i ≤ I.

The proof of Proposition 4.1 in then completed: in Points i) and ii) of
procedure b) we find the index i∗ mentionned in Step 1, using the criterion of
Step 2. In Point iii) we compute the solution of the optimization problem using
the results of Step 1.
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