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A tail bound for sums of independent random variables : application to the symmetric Pareto distribution

MOTIVATION

Let (Y i ) i∈N * be independent random variables. For any n ∈ N * , we wish to determine the smallest sequence of functions p n (t) such that

P n i=1 Y i ≥ t ≤ p n (t), t ∈ [0, ∞[.
This problem is well-known; numerous results exist. The most famous of them is the Markov inequality. Under mild assumptions on the moments of the X i 's, it gives a polynomial bound p n (t). In many cases, this bound can be improved. For instance, if the X i 's are almost surely absolutely bounded, or admit finite moments of all orders (and these moments satisfy some inequalities), the Bernstein inequalities provide better results. The obtained bounds p n (t) are exponential. See [START_REF] Petrov | Limit Theorems of Probability Theory[END_REF] and [START_REF] Pollard | Convergence of Stochastic Processes[END_REF] for further details and complete bibliography.

In this note, we present a new inequality which provides a bound p n (t) of the form p n (t) = v n (t) + w n (t), where v n (t) is polynomial, and w n (t) is exponential. It can be applied under mild assumptions on the X i 's; as for the Markov inequality, only knowledge of the order of a finite moment is required. The main interest of our inequality is that it can be applied when the 'Bernstein conditions' are not satisfied, and can give better results than the Markov inequality. In order to illustrate this, we investigate the bound of the tail probability for a sum of n weighted i.i.d. random variables having the symmetric Pareto distribution. This is particularly interesting because the exact expression of the distribution of such a sum is really difficult to identify. See, for instance, [START_REF] Ramsay | The distribution of sums of certain i.i.d. Pareto variates[END_REF]. Moreover, there are some applications in economics, actuarial science, survival analysis and queuing networks.

The note is organized as follows. Section 2 presents the main result. In Section 3 we illustrate the use of this result by considering the symmetric Pareto distribution. The technical proofs are postponed to Section 4.

MAIN RESULT

Theorem 2.1 below presents a bound of the tail probability for a sum of n independent random variables. As mentioned in Section 1, it requires knowledge only of the order of a finite moment.

Theorem 2.1. Let (Y i ) i∈N * be independent random variables. We suppose that

• for any n ∈ N * , and any i ∈ {1, ..., n}, we have, w.l.o.g., E(Y i ) = 0, • there exists a real number p ≥ 2 such that, for any n ∈ N * , and any i ∈ {1, ..., n}, we have

E(|Y i | p ) < ∞.
Then, for any t > 0, and any n ∈ N * , we have

P n i=1 Y i ≥ t ≤ C p t -p max r n,p (t), (r n,2 (t)) p/2 + exp - t 2 16b n , (2.1)
where, for any u ∈ {2, p}, r n,u (t) =

n i=1 E |Y i | u 1 {|Yi|≥ 3bn t } , b n = n i=1 E Y 2 i and C p = 2 2p+1 max p p , p p/2+1 e p ∞ 0 x p/2-1 (1 -x) -p dx .
The proof of Theorem 2.1 uses truncation technics, the Rosenthal inequality and one of the Bernstein inequalities. See [START_REF] Rosenthal | On the subspaces of L p (p ≥ 2) spanned by sequences of independent random variables[END_REF] and [START_REF] Petrov | Limit Theorems of Probability Theory[END_REF].

Clearly, Theorem 2.1 can be applied for a wide class of random variables. However, if the variables are almost surely absolutely bounded, or have finite moments of all orders, the Bernstein inequalities can give more optimal results than (2.1). But, when these conditions are not satisfied, Theorem 2.1 becomes of interest. This fact is illustrated in Section 3 below for the symmetric Pareto distribution. Other examples can be studied in a similar fashion. Proposition 3.1. Let s > 2 and (X i ) i∈N * be i.i.d. random variables with the probability density function f (x) = 2 -1 s|x| -s-1 1 {|x|≥1} . Let (a i ) i∈N * be a sequence of nonzeros real numbers such that n i=1 |a i | s < ∞. Then, for any n ∈ N * , any t ∈ (0, 3bn ρn ), where ρ n = (
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n i=1 |a i | s )
1/s , and any p ∈ (2, s),

we have P n i=1 a i X i ≥ t ≤ K p t -2p+s b p-s n n i=1 |a i | s + exp - t 2 16b n , (3.1) where b n = s s-2 n i=1 a 2 i , K p = 3 p-s max s s-p , s s-2 p/2
C p , and C p = 2 2p+1 max p p , p p/2+1 e p ∞ 0 x p/2-1 (1x) -p dx . Notice that, since the distribution of the variables is symmetric, the constant C p (associated to the Rosenthal inequality) can be improved. For its optimal form, we refer to [START_REF] Ibragimov | On an exact constant for the Rosenthal inequality[END_REF].

In the literature, there exist several results on the approximation of the tail probability of a sum of n i.i.d. random variables having the symmetric Pareto distribution. But, to our knowledge, contrary to Proposition 3.1, these results are asymptotic (i.e. t → ∞). See, for instance, [START_REF] Goovaerts | The Tail Probability of Discounted Sums of Pareto-like Losses in Insurance[END_REF].

Illustration. Here, we consider a simple example to compare the precision between (3.1) and the bound obtained via the Markov inequality.

Let s > 2 and (X i ) i∈N * be i.i.d. random variables with the probability density function f (x) = 2 -1 s|x| -s-1 1 {|x|≥1} . For any integer n such that n 1/2-1/s (log n) -1/2 > 2 3/2 3 s 1/2 , and any p ∈ max( s 2 , 2), s , if we take t = t n = 2 3/2 (sn log n) 1/2 , then we can balance the two terms of the bound in (3.1); there exist two constants, Q 1 > 0 and Q 2 > 0, such that

P n i=1 X i ≥ t n ≤ Q 1 n 1-s/2 (log n) -p+s/2 + n 1-s/2 ≤ Q 2 n 1-s/2 . (3.2)
Under the same framework, for any p < s, the Markov inequality combined with the Rosenthal inequality (see Lemma 4.1 below) implies the existence of two constants, R 1 > 0 and R 2 > 0, such that

P n i=1 X i ≥ t n ≤ t -p n E n i=1 X i p ≤ R 1 t -p n n p/2 ≤ R 2 (log n) -p/2 . (3.3)
Therefore, for n large enough, the rate of convergence in (3.2) is really faster than those in (3.3). In this case, (3.1) gives a better result than the Markov inequality.
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PROOFS

. Proof of Theorem 2.1. Let n ∈ N * . For any t > 0, we have

P n i=1 Y i ≥ t = P n i=1 (Y i -E (Y i )) ≥ t ≤ U + V,
where

U = P n i=1 Y i 1 {|Yi|≥ 3bn t } -E Y i 1 {|Yi|≥ 3bn t } ≥ t 2
and

V = P n i=1 Y i 1 {|Yi|< 3bn t } -E Y i 1 {|Yi|< 3bn t } ≥ t 2 .
Let us bound U and V , in turn.

The upper bound for U . The Markov inequality yields

U ≤ 2 p t -p E n i=1 Y i 1 {|Yi|≥ 3bn t } -E Y i 1 {|Yi|≥ 3bn t } p . (4.1)
Now, let us introduce the Rosenthal inequality. See [START_REF] Rosenthal | On the subspaces of L p (p ≥ 2) spanned by sequences of independent random variables[END_REF].

Lemma 4.1 (Rosenthal's inequality). Let p ≥ 2 and (X i ) i∈N * be independent random variables such that, for any n ∈ N * , and any i ∈ {1, ..., n}, we have E(X i ) = 0 and E(|X i | p ) < ∞. Then we have

E n i=1 X i p ≤ c p max   n i=1 E (|X i | p ) , n i=1 E X 2 i p/2   ,
where c p = 2 max p p , p p/2+1 e p ∞ 0 x p/2-1 (1x) -p dx .

For any i ∈ {1, ..., n}, set

Z i = Y i 1 {|Yi|≥ 3bn t } -E Y i 1 {|Yi|≥ 3bn t } . Since E(Z i ) = 0 and E (|Z i | p ) ≤ 2 p E |Y i | p 1 {|Yi|≥ 3bn t } ≤ 2 p E (|Y i | p ) < ∞, Lemma 4.1 applied to the independent variables (Z i ) i∈N * gives E n i=1 Z i p ≤ c p max   n i=1 E (|Z i | p ) , n i=1 E Z 2 i p/2   , (4.2) 
where c p = 2 max p p , p p/2+1 e p ∞ 0 x p/2-1 (1x) -p dx .

It follows from (4.1) and (4.2) that

U ≤ 2 p t -p c p max n i=1 E (|Z i | p ) , n i=1 E Z 2 i ≤ 2 2p t -p c p max   n i=1 E |Y i | p 1 {|Yi|≥ 3bn t } , n i=1 E Y 2 i 1 {|Yi|≥ 3bn t } p/2   = C p t -p max r n,p (t), (r n,2 (t)) p/2 , (4.3) 
where

C p = 2 2p c p .
The upper bound for V . Let us present one of the Bernstein inequalities. See, for instance, [START_REF] Petrov | Limit Theorems of Probability Theory[END_REF].

Lemma 4.2 (Bernstein's inequality). Let (X i ) i∈N * be independent random variables such that, for any n ∈ N * and any i ∈ {1, ..., n}, we have E(X i ) = 0 and |X i | ≤ M < ∞. Then, for any λ > 0, and any n ∈ N * , we have

P n i=1 X i ≥ λ ≤ exp - λ 2 2(d 2 n + λM 3 )
,

where d 2 n = n i=1 E(X 2 i ).
For any i ∈ {1, ..., n}, set

Z i = Y i 1 {|Yi|< 3bn t } -E Y i 1 {|Yi|< 3bn t } . Since E(Z i ) = 0 and |Z i | ≤ |Y i |1 {|Yi|< 3bn t } + E |Y i |1 {|Yi|< 3bn t } ≤ 6bn
t , Lemma 4.2 applied with the independent variables (Z i ) i∈N * , and the parameters λ = t 2 and M = 6bn t , gives

V ≤ exp   - t 2 8 n i=1 V Y i 1 {|Yi|< 3bn t } + t 6 6bn t   . Since n i=1 V Y i 1 {|Yi|< 3bn t } ≤ n i=1 E Y 2 i = b n , it comes V ≤ exp - t 2 16b n . (4.4)
Putting (4.3) and (4.4) together, we obtain the inequality

P n i=1 Y i ≥ t ≤ U + V ≤ C p t -p max r n,p (t), (r n,2 (t)) p/2 + exp - t 2 16b n .
Theorem 2.1 is proved. 

Y i ) = a i E(X i ) = 0 and n i=1 E(Y 2 i ) = s s-2 n i=1 a 2 i < ∞.
In order to apply Theorem 2.1, let us bound the term r n,u

(t) = n i=1 E |Y i | u 1 {|Yi|≥ 3bn t } = n i=1 |a i | u E |X i | u 1 |Xi|≥ 3bn |a i |t
for any u ∈ {2, p}, and any p ∈ max( s 2 , 2), s .

Recall that ρ n = ( C p , and C p = 2 2p+1 max p p , p p/2+1 e p ∞ 0 x p/2-1 (1x) -p dx . Proposition 3.1 is proved.
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  Proof of Proposition 3.1. Let n ∈ N * . Set, for any i ∈ {1, ..., n}, Y i = a i X i . Clearly, (Y i ) i∈N are independent random variables such that E(
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  = sup i=1,...,n |a i |, we have E |X i | u 1 |Xi|≥ 3bn

					n i=1 |a i | s )	1/s . Since t ∈ 0, 3bn ρn	⊆ 0, 3bn σn , where
	σ n |a i |t s s-u 3bn |ai|t u-s . Hence,	= s	∞ 3bn |a i |t	x u-s-1 dx =
					r n,u (t) =	s s -u		3b n t	u-s n i=1	|a i | s .
	Therefore,							
	max r n,p (t), (r n,2 (t)) p/2 ≤ R p	3b n t	p	max	  3b n tρ n	-s	,	3b n tρ n	-s p/2	  ,
	where R p = max	s s-p , s s-2	p/2	.		
	Since t ∈ 0, 3bn ρn	and p > 2, we have max	3bn tρn	-s	,	3bn tρn	-s p/2	=
	3bn tρn	-s	. Hence,						
			max r n,p (t), (r n,2 (t)) p/2 ≤ R p		3b n t	p-s n i=1	|a i | s .	(4.5)
	Putting (4.5) in Theorem 2.1, we obtain		
		P	n i=1	a i X i ≥ t ≤ K p t -2p+s b p-s n	n i=1	|a i | s + exp -	t 2 16b n	,
	where b n =	s s-2	n i=1 a 2 i , K p = 3 p-s max	s s-p , s s-2	p/2
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