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Particle image velocimetry (PIV) measurements were performed in a wave tank under
water waves propagating and breaking on a 1/15 sloping beach. The wave
transformation occurred in the surf zone over a large domain covering several
wavelengths from incipient breaking to swash zone beyond the shoreline. PIV spatial
interrogation windows must be small enough to obtain accurate velocities, and one
window covers only a small part of the domain. To overcome this problem and to
measure the instantaneous velocity field over the whole surf zone area, we have split
the full field into 14 overlapping smaller windows of the same size. Local measurements
were synchronized with each other using pulsed TTL triggers and wave gauge data.
The full velocity field was then reconstructed at every time step by gathering the
14 PIV fields. We then measured the complete space–time evolution of the velocity
field over the whole surf zone. We determined also the ensemble-period-average and
phase-average components of the flow with their associated fluctuating parts. We
used the PIV images and velocity measurements to estimate the void fraction in each
point of the surf zone. Special attention was given to the calculation of the spatial
derivatives in order to obtain relevant information on vorticity and on the physical
terms that appear in the fluctuating kinetic energy transport equation.

1. Introduction

Long-term forecast of the coastal shoreline evolution requires high precision of
the input terms in morphodynamic numerical models. The hydrodynamic input
terms play a dominant role in such modeling; but the internal flow structure in
the surf zone is complex, with many intermittent structures at different scales. Wave
breaking in depth-limited conditions is one of the most important nearshore processes.
Moreover it is difficult to make measurements under breaking waves owing to high
accelerations, impacts and air-flow mixing. Previous studies of breaking waves have
greatly improved our knowledge of the surf zone, but the present state of the art
is still far from satisfactory. So, because of lack of knowledge, people use very
simple semi-empirical hydrodynamic models as input for morphodynamic models. To
improve the understanding of sediment transport by wave breaking, it is important
first to under take experiments that give us the best information on the kinematics
and dynamics of wave breaking on beaches. We think it is important to know the
evolution of the velocity field, not only at one point in the time domain, but also
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in the space–time domain all over the surf zone, from the breaking location to the
shoreline. Determination of vorticity, fluctuating kinetic energy, transport of kinetic
energy and void fraction are also essential for quantifying physical processes.

Basco (1985), Jansen (1986) and Bonmarin (1989) used photographs to study wave
evolution during breaking. Many authors used laser-Doppler velocimetry (LDV) to
measure the time evolution of velocities under waves propagating in the surf zone
(Ting & Kirby 1994, 1995, 1996; Cox, Kobayashi & Koyabasu 1995; Petti & Longo
2001; Longo 2003; De Serio & Mossa 2006). Hot-film anemometry was also used
(Hattori & Aona 1985; Conley & Inman 1992; George, Flick & Guza 1994) to
describe the processes of sediment suspension under near-breaking waves, but this
technique is intrusive and fragile, so the equipment could be damaged under breaking
waves. LDV or hot-film measurements, which allow high-frequency data acquisition
rates, are ‘point-by-point’ techniques, with measurements taken only locally at one
point. It does not allow us to have an instantaneous spatial description of the
physical phenomena. With LDV, spatial derivatives are estimated through the Taylor
hypothesis (∂/∂x = (1/u)∂/∂t). Turbulent energy transport analysis reveals problems
associated with the use of the Taylor hypothesis in the surf zone (Ting & Kirby 1995).
The Taylor hypothesis states that fluctuations are small compared to the mean flow;
this condition is not satisfied in the surf zone since the turbulent velocity fluctuations
created by large eddies are not small. Moreover, LDV measurements are usually
located under the mean level of the wave troughs and not above them; but Stansby &
Feng (2005) succeeded in making LDV measurements above the trough level. During
the last decade, instantaneous spatial velocity measurements have been conducted
using particle image velocimetry (PIV) (see Adrian 1991 for a review). PIV provides
improved spatio-temporal coverage. This technique has, however, some limitations,
owing to low-frequency image acquisition, and to the relatively poor accuracy of the
velocity measurement, with many additional residual errors due to camera resolution,
light reflection by bubbles, seeding inhomogeneity, loss of two-dimensionality, etc. PIV
measurements under wave breakers were first investigated for deep-water waves (Lin
& Rockwell 1994, 1995; Dabiri & Gharib 1997; Melville, Veron & White 2002), then
for shallow-water waves (Chang & Liu (1998, 1999)), and also for waves breaking
over a submerged obstacle (Chang, Hsu & Liu 2001, 2005).

Peregrine (1983) and Battjes (1988) made a complete review of the hydrodynamics
of the surf zone. They described breaking mechanisms of waves breaking on sloping
beaches. Nadaoka, Kino & Koyano (1989), in wave tank experiments for spilling
breakers, observed large oblique vortex structures with descending trajectories that
seem to play a dominant role in the mass transportation. Large horizontal vortices
were also observed by Cox & Anderson (2001). Ting & Kirby (1994, 1995, 1996) and
Ting (2001) performed experiments in order to study kinetic turbulent transportation
in the surf zone under waves breaking over a 1/35 sloping beach. They showed that
fluctuating kinetic energy is transported shoreward by plunging breakers and seaward
by spilling breakers. As Stansby & Feng (2005) noted: ‘This could be associated with
turbulence being more concentrated in the roller for plunging breakers with prominent
shoreward motion and being more distributed for spilling bores’. They also found
that the characteristic length scale linked to turbulent transport is of approximately
the same order as the wavelength. Their measurements were made only between the
bottom and the mean level of the wave troughs. With LDV measurements, Cox &
Kobayashi (2000) showed that intense, intermittent events exist in the surf zone in the
case of regular spilling waves over a 1/35 slope beach. These events are not always
correlated with the passing of each wave. Petti & Longo (2001) measured turbulent
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velocities and waterfront dynamics in the swash zone over a 1/10 slope beach. They
showed that turbulent energy was higher during uprush than during backrush. Their
measured energy flux was essentially directed shoreward. Stansby & Feng (2005)
found multiple vortical structures at the initiation of breaking, becoming elongated
along the surface during the bore propagation. With period average kinematics,
they showed a shoreward mass transport above trough level and undertow below.
De Serio & Mossa (2006) measured the Reynolds shear distribution in the shoaling
zone, the maximum values being located under the crests.

The PIV results clearly showed high vorticity production by breaking; but for
shallow-water waves, the vertical mixing layer is restricted vertically. For waves
propagating and breaking over a flat bottom, Chang & Liu (1998, 1999) found that
vorticity was of the same magnitude as wave phase speed divided by water depth.
The maximum turbulence intensity outside the region aerated by bubbles was one
tenth of the phase speed. Cox & Anderson (2001) performed PIV measurements
in the horizontal plane under breaking waves. Their PIV interrogation window was
only 10 × 10 cm2, but they found intermittent horizontal coherent structures near
the seaward face of the breaking crests. Govender, Mocke & Alport (2002) studied
waves breaking over a 1/20 sloping beach for spilling and plunging breakers. They
used a new technique (digital correlation image velocimetry, DCIV) with the analysis
of bubble structures in the foam region to retrieve the velocity in the breaker.
They showed that turbulence generation occurred under the forward wave and that
turbulence is moved downward. They also showed that the onshore mass transport
above the mean water level is greater than the offshore mass transport under the
mean water level. This non-equilibrium results from the density of the foam region not
being taken into account. Cowen et al. (2003) measured turbulent Reynolds stresses
in the swash zone using PIV and showed that flow forced by plunging and spilling
breakers are similar. The uprush and downrush phases are not symmetric: the uprush
is dominated by bore-advected turbulence, and the downrush is much less turbulent.

The main differences between the present paper and previous studies are the surf
zone full-field reconstruction from different PIV windows, the space-phase-averaged
presentation and a map of the void fraction covering all the surf zone. Experiments
were conducted in the EGIM/ECM wave tank in Marseille. We made PIV velocity
measurements under regular waves breaking on a 1/15 sloping beach. We measured
velocities even in the vicinity of dual-phase air–water aeration. We made synchronized
space–time measurements in 14 locations along the surf zone. Then we gathered
together local data and merged them to produce a space–time full field coverage
of the whole surf zone. We computed mean and fluctuating parts, ensemble-average
statistics, and also spatial phase-average decomposition with their associated mean
and fluctuating parts. The experimental set-up is described in § 2. We show some data
validation in § 3. Instantaneous local and global velocity fields are displayed in § 4.
Ensemble average (§ 5), aeration (§ 6) and phase average (§ 7) results are presented.
In § 8, we quantify phase-locked fluctuating velocity components, fluctuating kinetic
energy and the associated production, dissipation and advection terms that appear in
the fluctuating kinetic energy transport equation. Conclusions are drawn in § 9.

2. Experimental set-up

Experiments were conducted in the EGIM/ECM wave tank in Marseilles. A side
view of the tank with the experimental set-up is shown in figure 1. The glass-windowed
tank is 17 m long and 0.65 m width. The water depth in front of the wavemaker is
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Figure 1. Side view of the experimental set-up.

about 0.705 m. A polyvinyl 1/15 sloping beach was mounted on the bottom. The
beach, which is about 13 m long, is partly made with transparent glass in order to let
the laser light sheet cross the beach vertically from the bottom to the free surface.
The transparent glass and the laser sheet are placed at 18 cm from the right-hand side
of the wave tank. The toe of the beach is 4 m away from the wavemaker. The rigidity
of the beach is ensured by transverse vertical plates spaced every 1m, by longitudinal
plates between the vertical plates and by the thickness of the beach plates (=2 cm).
The beach is screwed onto the vertical plates. The maximal vertical displacement of
the beach, observed during experiments was less than 1 mm. Because of the vertical
PVC plates, which were located under the beach to ensure rigidity, it was not possible
to put the vertical laser sheet in the centre of the tank. Transverse perturbations away
from the centreline are evaluated in § 3, figure 7. To characterize the wave field, water
elevation was measured with a set of six regularly spaced resistive wave gauges, with
a distance of 18 cm between each pair of gauges. Several runs allow us to displace
on a rail system this set of gauges all along the tank from the wavemaker up to the
breaking region. The space evolution of the maximum, the minimum and the mean
water level are shown in figure 2. We see clearly the wave shoaling, the crest/trough
asymmetry and the mean water level set-up. During the PIV experiment, this set of
gauges and the video camera were mounted on the same optical rail system, allowing
us to translate horizontally the whole experimental set-up (see figure 3). With this
moving set-up, the same two wave gauges were always in the visualization area of
the camera. The wave data acquisition frequency was 200 Hz.

The velocity field in the water was measured with a PIV technique (see Adrian
1991 for a complete review). The PIV equipment is shown in figure 3. The water was
seeded with 6 µm diameter silver coated hollow glass spheres with a density of around
1.1 g cm−3. Their free vertical fall speed was negligible (≪ 1 mms−1). A twin ND-Yag
pulsed laser (2 × 300 mJ) produced a stroboscopic light sheet through a hinged arm
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Figure 2. Wave properties along the beach measured with the wave gauges: o, trough;
+, mean sea level; *, crest.
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Figure 3. PIV apparatus.

equipped with optical lenses. Pairs of images were taken with a double CCD-frame
camera, with a resolution of 1008 × 1018 pixels and 256 grey intensity levels. Image
data acquisition was synchronized with the laser pulses. We took a pair of images
every �t = 100 ms, so we had 10 instantaneous velocity fields per second. The time
delay between a pair of images was 7 ms. To compute the velocity field from the
digitized particle images, we used a recursive intercorrelation interrogation window
technique with several loops, taking into account pre-computed velocity gradients
and vorticity (Westerweel, Daribi & Gharib 1997; Meunier & Leweke 2003). For the
first loop, the interrogation window size was 64 × 64 pixels, then for the second and
the subsequent passes we used a smaller window (32 × 32 pixels) because the motion
was contained by the window shift. To avoid sub-pixel locking, we used a Gaussian
filter of size 3 (Westerweel 1993). Particular care was given to the automatic water
elevation surface profile detection. The pixels located in air are darker than the pixels
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Position Size Overlap
Window (cm) (cm2) (%)

w1 −258 37 × 37 ×
w2 −242 37 × 37 56
w3 −223 37 × 37 48
w4 −203 37 × 37 50
w5 −172 37 × 37 16
w6 −159 37 × 37 66
w7 −137 37 × 37 40

Position Size Overlap
Window (cm) (cm2) (%)

w8 −118 37 × 37 49
w9 −106 37 × 37 67
w10 −72 37 × 37 11
w11 −60 31 × 31 58
w12 −37 31 × 31 26
w13 −15 31 × 31 26
w14 +7 31 × 31 31

Table 1. For each window: horizontal distance from the window centre to the shoreline,
window size and overlapping between adjacent windows.

located in water. The automatic surface contour detection is a gradient grey-level
detection with a threshold value computed from the probability density function of
grey intensity levels. For each image, the detected water elevation profile was used
to build a mask to invalidate all the velocity vectors located in air: the pixels in air
were set to 256 (white is 255) and any cell that contained a pixel with this value
was not considered in the PIV calculation (Kimmoun, Branger & Zucchini 2004).
Similarly, a mask with a 256-level value was added under the beach. In the foam
generated during the breaking event, seeds were not clearly visible, so then, the PIV
intercorrelation algorithm was not really based on particle displacements, but more
on micro-foam structure and bubble displacements, as explained in Govender (1999)
and Govender et al. (2002). Briefly, the position of the peak in the cross-correlation of
PIV interrogation windows provides a measure of the displacement of the structure
created by the air bubbles during wave breaking.

In this paper, the vertical coordinate z is measured positive upward from the
still-water level, the horizontal coordinate x is measured negative seaward from the
shoreline at rest, η(x, t) is the instantaneous surface elevation, d(x) is the local still-
water depth, η̄(x) is the mean sea level and D(x) = d(x)+ η̄(x) is the local mean water
depth (referred to as D).

In this experiment, the length of the surf zone was about 3 m. In order to retrieve
the full velocity field all along this distance, we made camera PIV measurements in
14 locations ranging from the incipient breaking location to the swash zone. The
location of these 14 interrogation windows is shown in figure 1, and for each window,
the position, the size and the overlapping is given in table 1. For windows w1 to
w10, the size of the PIV images was 37 × 37 cm2 which corresponds to a resolution
of 0.037 cm/pixel, and for windows w11 to w14, where the depth was small, the size
of the PIV images was reduced to 31 × 31 cm2, which corresponds to a resolution of
0.031 cm/pixel. The video PIV experimental set-up (camera, light sheet) and the
wave gauge set-up were moved successively to each individual window location. For
windows w5 and w10, the depth in front of the wavemaker was increased by 1 cm in
order to obtain information behind the post of the wavetank. Owing to the 1/15 beach
slope, a 1 cm vertical increase of water depth in the canal was equivalent to a 15 cm
horizontal shift to the left. Wave gauge data allow us to verify the matching between
the free surface recorded at a position x and the free surface recorded at a position
x + 15 cm with a water depth set-up of 1 cm. Our goal was to build instantaneous
full velocity fields by combining local instantaneous results from the 14 PIV window
acquisitions. To achieve this, we synchronized PIV image acquisition and wave gauge
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data using an impulse TTL generator (Digital Delay Generator DG535 from Stanford
Research Systems). We used the same time triggers and duration acquisitions for all
experiments. Repeated experiments were conducted using the same wavemaker signal
and TTL pulse delivery. This overall synchronization allowed us to reconstruct, at
each time step, a full velocity field covering the entire surf zone, as explained in detail
in § 4.

Other PIV measurements were made between the wavemaker and the beginning
of the sloping beach, where the bottom is flat. We used these data to characterize
the incipient waves and to validate PIV measurements by comparing results with
theoretical developments.

Such experimental measurements and analysis are time consuming and only one
paddle wave condition was generated and analysed in this experiment. While breaking
wave dynamics depends highly on the incipient wave characteristics, the results
presented here will provide a general qualitative assessment of the flow structures and
properties during wave shoaling and breaking on a beach. Most of the results in the
following sections will be presented in a non-dimensional form for a better comparison
with previous experiments in the literature. The quantitative evaluation for one case
would help in analysing further more complex situations. In this experiment, the
wave period was T = 1.275 s, and wave amplitude before the sloping beach at depth
d = 70.5 cm (d =71.5 cm for w5 and w10) was a = 5.7 cm. The wavemaker motion for
regular wave generation is sinusoidal. The wavelength at this location was L0 = 2.41 m.
The wave height at breaking was Hb =14 cm. This measured wave height fits very
well the theoretical value given by Miche (1951): Hb = 0.14 L0 tanh(2πD �L0) = 13.9 cm.
The surf similarity parameter was ζ = S/

√
Hb/L0 =0.28, with S the beach slope. This

value usually characterizes a spilling breaker (Battjes 1988; Ting & Kirby 1995, 1996).
The wave reflection coefficient was measured in the flat part of the wave tank and was
less then 2 % in amplitude (the six wave gauges were moved to the flat bottom part
for this measurement). For each camera position, two runs with the same wavemaker
conditions were done. We waited a sufficiently long time (30 min), before starting a
new run. Then, for each new run, we waited a statistical quasi-stationary sea-state
(128 first wave-cycles) before starting data acquisition. Image acquisition duration
was set to 163.2s corresponding to 128 wave periods (wave-cycles 129 to 256). Finally,
a total number of n= 14 × 1632 × 2 = 45 696 couples of images were acquired and
processed.

Figure 4 is an example of the breaking process observed during the experiment in
the different PIV windows. Breaking appears first on the very top of the crest (w2 and
w3). The foam is very thin. The waves broke initially at about x ≃ −250 cm from the
shoreline. Rapidly, the breaking turns to be temporarily plunging with an overturning
lip (w4). A first splash-up is generated when the lip hits the water surface in front
of the wave (w5). There is a growth of a large amount of mixed air–water area with
foam, bubbles and whitecapping. The wedge of water pushed up by the plunging jet
forms another splash-up jet which strikes the water ahead of it at a second plunging
point (w7). The wavefront moves into a roller propagating towards the shore (w8
to w11). The volume of mixed air–water decreases gradually. The wave crosses the
shoreline (w14) and the flow runs up before coming back.

3. Measurement validation

The PIV technique is now a well known and commonly used tool to measure
velocity field in fluids (Lin & Rockwell 1994; Perlin, Bernal & He 1996; Skyner 1996;
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Figure 4. Example of a wave breaking event as it appears on overlapping PIV interrogation
windows.
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Dabiri & Gharib 1997; Peirson 1997; Govender et al. 2002; Melville et al. 2002). The
PIV equipment and the software developed at the IRPHE laboratory have been used
and validated for several physical applications (Meunier & Leweke 2003). In order to
validate the PIV apparatus for our experimental arrangement, we have measured the
velocity field under regular waves propagating over the flat part of the bottom of the
tank (window w0 in figure 1) and compared the results with a fifth-order analytical
solution (Fenton 1985). Two examples of experimental/analytical comparisons are
shown in figure 5 at two different wave phases. Differences between experimental
measurements and analytical results are weak. The mean relative error for the flow
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velocity over the whole domain for a full wave period is equal to ǫr,velocity =7.2 %,

with ǫr,velocity = ‖uMeasured − uAnalytical‖/‖uAnalytical‖. The mean absolute error for flow

direction is ǫa,direction = 3.8◦, with ǫa,direction = | arg(uMeasured ) − arg(uAnalitycal )|. This
comparison shows the ability of our PIV apparatus and software to measure velocities
under regular waves, even near the free surface.

It was not possible to validate PIV measurements in the breaking zone because
there is no analytical solution to compare with. Available numerical simulations have
to be validated and thus cannot be taken as a reference.

Comparisons with previous experiments published in the literature can be made
with non-dimensional values, because the input experimental parameters are not
exactly the same. To evaluate our ability to measure velocities in the breaking region,
we will compare in the following sections, in a non-dimensional form, our global
PIV velocity fields and fluctuations with some of the known published LDV or PIV
results cited in § 1. Here, the main differences from previous studies are the surf
zone full-field reconstruction from different PIV windows, the space-phase-averaged
presentation (see following sections), and the presentation of a map of the void fraction
covering all the surf zone. We used the same algorithm for velocity determination
in the whole surf and swash zones. We used two criteria to detect spurious velocity
vectors: (i) intercorrelation peak detection criterion: the height of the highest peak
of the intercorrelation between two interrogation windows should be greater than
1.2 times the secondary peak (Adrian 1991); (ii) average median criterion: the velocity
vector should not differ by more than 50 % in modulus and π/6 in direction from
the median value of all the neighbouring vectors (Meunier & Leweke 2003). Then,
spurious vectors are replaced by a median-filter procedure (see Westerweel 1994 for
details).

In order to validate our automatic surface contour detection (see § 2), we have
compared water elevation measured by wave gauges with the water surface level
computed from PIV images. Figure 6 gives three examples of time series comparisons
at three different stages of breaking. Differences are weak during incipient breaking
(figure 6a, window w1 of figure 4), and roller phase (figure 6c, w12). Differences
appear during the plunging and splash-up events (figure 6b, w7). During these
events characterized by a large air entrainment, the resistive wave gauge response is
proportional to the wire wet length which is lower than the actual surface elevation, as
shown in figure 4 (figure 6b). The relative root mean square (r.m.s.) difference between
gauges and PIV measurements is displayed in figure 4 (figure 6d). This difference is
related to the void fraction. This point will be discussed in § 6.

Even if the wave tank is narrow in comparison with the wavelength of the regular
waves we generated, it is necessary to verify the two-dimensionality of the mean
flow. For this purpose we measured at 12 positions from the wavemaker, the surface
elevation for three transverse positions: at 18 cm from the right-hand side of the tank,
at the centre and at 18 cm from the left-hand side of the tank. For each wave gauge
time series (t ∈ [129T , 256T ]), we extracted 128 waves by a zero up-crossing analysis
and we computed a time-phase average profile. In figure 7(a), we displayed the relative
root mean square error between the left/right time-phase average profile and the centre
time-phase average profile. Values are smaller than 10 %, so they characterize a good
two-dimensionality of our mean wave profile from incipient breaking to the end of
the first splash-up. An example of time-phase average profiles at the three transverse
positions is given in figure 7(b) at a distance from the shoreline of x = − 186 cm, at
the end of the plunging phase. Clearly, there is good two-dimensionality near the
wave crest, with some discrepancies near the troughs.
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Figure 6. Time series comparison between wave gauge elevation (dashed lines) and automatic
surface detection from PIV images (circles). Distance from shoreline: (a) 248 cm (incipient
breaking), (b) 142 cm (splash-up event), (c) 42 cm (roller). (d) r.m.s. difference (%) between
the PIV surface detection and the wave gauge measurements.

In order to describe the uncertainty in our turbulence measurements and to describe
how the error measurements propagate into our estimates of higher-order turbulence
quantities (see § 8 for fluctuating velocities and higher-order fluctuating component
determination) we performed a bootstrap analysis and calculated the uncertainty
interval at the 95 % confidence level for the different fluctuating quantities (Efron &
Tibshirani 1993; Zoubir & Boashash 1998). Figure 8 shows some examples of the
evolution of uncertainty intervals at the 95 % confidence level for some random

components. The depth-average of the uncertainty intervals for
√

u′2,
√

w′2, Reynolds
stress (u′w′) and one term of the kinetic energy production formulation: u′2(∂U/∂x) are
displayed in figure 8 for different distances from the shoreline and for phase ϕ = 106◦

(see §§ 7 and 8 for notation, phase and fluctuating components determination).
Typical uncertainty intervals were found to be around 12 % for fluctuating velocities,
around 20 % for Reynolds stress, and around 25 % for higher-order components. We
observe some higher localized values (a) near the shoreline (x > − 40 cm) because
the turbulence level is high and the PIV measurements are less precise during the
down-rush phase in this area (see figure 15 and the discussion at the end of § 5 before
(5.3)); and (b) far from the shore (x < − 250 cm), where the turbulence level is very
low, thus giving a large ‘relative’ error because the corresponding ‘mean’ value in the
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Figure 8. Examples of uncertainty intervals at the 95 % confidence level using the bootstrap
method for random components (Efron & Tibshirani 1993; Zoubir & Boashash 1998). The
x-axis is the distance from the shore. We present the vertically integrated mean of the

uncertainty intervals at the 95 % confidence level for fluctuating velocities
√

u′2,
√

w′2, Reynolds
stress (u′w′), and one term of the kinetic energy production term: u′2∂U/∂x. These results
are for phase ϕ =106◦ (see § 7 and 8 notation and determination of for phase and fluctuating
quantities).

denominator is low. We found quantitatively similar results at different wave-phase
for different fluctuating terms.

The error measurements do not propagate into our estimates of higher-order
turbulence quantities because we used cubic smoothing spline interpolation to
construct the velocity field over the whole surf zone (cf. § 4). A major asset of
the spline function is the direct use of calculated spline coefficients to compute
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space-derivative ∂/∂x and ∂/∂z, without noise contamination (Spedding & Rignot
1993; Fouras & Soria 1999; Cohn & Koochesfahani 2000). With this technique, we
avoid the use of the first-order difference scheme, therefore the quantities calculated
with derivatives are calculated with the same spatial discretization as terms without
derivatives. In conclusion, the uncertainty intervals at the 95 % confidence level for
higher-order fluctuating quantities are on average lower than 30 %, but with some
localized exceptions.

4. Instantaneous velocity field and full field reconstruction

Examples of instantaneous PIV velocity field are shown in figure 9. They correspond
to the mosaic of PIV images shown in figure 4. In each figure, the two surface profiles
automatically detected from PIV image couples are displayed. These figures show
clearly the ability of the PIV algorithm to measure velocities directly from raw
images, even in the mixed air–water region.

The surf zone is about 3 m long. Because of lack of resolution, it was not possible to
measure the full velocity field over the entire surf zone with only one PIV 1018 × 1008
pixels observation window. As explained in § 2, at each time step, we measured the
velocities at 14 locations ranging from the incipient breaking area to the swash
zone (figure 1). We built an instantaneous full velocity field by combining the 14
instantaneous results. Such a mosaic technique was used by Melville et al. (2002) for
wave breaking in deep water. Synchronization was done using pre-defined impulse
TTL signals. The first TTL pulse started wave gauge data acquisition and the
wavemaker simultaneously, and the second one, 163.2 s (128 wave periods) later,
started the PIV image acquisition. This technique allows us to obtain a 1 ms precision
(electronic precision of the TTL generator) on the synchronization between the
different runs. The run-to-run repeatability has been estimated by computing the
water elevation phase-to-phase variation between the different runs. For the wave
gauge located in front of the wavemaker, the standard deviation of the phase,
computed by fast Fourier transform-analysis, between the 28 runs (two runs per
window) was found to be 0.94◦. An example of gathering the mosaic of raw images
at a given instant is given in figure 10. Overlapping between windows shows clearly
the good continuity between adjacent fields. In order to build a continuous global
field over the whole surf zone, we first computed a continuous water surface profile
by interpolating the 14 local wave profiles using cubic spline interpolation. Then we
defined a new non-homogeneous space grid, (xi, zi,j )i =1,...,504,j = 1,...,324, over the full
domain, as follows: abscissa xi are regularly distributed in the x-direction along the
surf zone from x1 ≃ −280 cm, up to x504 ≃ +21 cm (�x = 0.592 cm), and, for each
abscissa xi , points (xi, zi,j = 1,...,324) are regularly distributed in the z-direction from the
local bottom location, zi,1 = −d(xi), up to the local surface water elevation, zi,324 = ηi .
From the 14 original groups of raw data, horizontal and vertical components of
velocity vectors were then interpolated on this new grid. We used a cubic smoothing
spline interpolation routine, with a smoothing parameter p =0.5 (De Boor 1978).
The influence of the smoothing parameter will be discussed in § 8. The final velocity
field reconstructed from the mosaic of figure 10 is shown in figure 11. Velocities and
water profile are now a continuous function of space, with no gap between the data.
We reconstructed a total set of nr × nc × T × na = 3264 different velocity fields and
wave profiles over the surf zone, with nr = 2 (2 runs per window), nc = 128 (128 wave
cycles), T = 1.275 s (wave period), and na = 10 (PIV acquisition rate per second).
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Figure 10. Mosaic of velocity fields at a given instant, before reconstruction (only 1/8 of the
arrows are displayed in the x-direction and 1/2 in the y-direction).
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Figure 11. Reconstructed and interpolated full velocity field (only 1/6 of the arrows are
displayed in the x-direction and 1/12 in the y-direction).

5. Ensemble average

The 3264 different velocity fields over the surf zone finally represent 256 different
wave cycles. We first calculated the time-averaged mean flow velocity field by
averaging all data. When a wave is propagating shoreward, the points located between
the troughs and the crests are alternately in the water and in the air depending upon
the local wave phase. A zero velocity value in air should not be considered for
averaging. So, we decided to take the ensemble-time-averaged mean value as:

U(x, z) =

∫ nT

0

δ(x, z, t)U(x, z, t) dt

/
∫ nT

0

δ(x, z, t) dt, (5.1)

with n= 256 and δ(x, z, t) set to, respectively, 1 when the point (x, z) is located, at
instant time t , in water and 0 if the point is located in air. A map of the horizontal
component of the non-dimensional velocity U(x, z)/

√
gD(x) is presented in figure 12.√

gD(x) is a first-order approximation of the wave celerity at depth D(x). In this
figure, we have also plotted η̄Max(x) the crest-envelope (locations of the wave maxima),
η̄min(x) the trough-envelope (locations of the wave minima), and η̄(x) the mean water
level. They were computed from the 3264 different water surface elevation profiles.
Downward arrows in figure 12 show the locations of the beginning of the main
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Figure 12. Map of the non-dimensional ensemble-time-averaged velocity field, U(x, z)/√
gD(x) (horizontal component). Dashed lines: crest-envelope η̄Max(x), mean water level η̄(x)

and trough-envelope η̄min(x).

events: beginning of breaking (↓ sb), beginning of plunging (↓ pb) and beginning of
the first splash-up (↓ s1).

The set-up of the crest-envelope after the initial break-point (↓ sb) is comparable
with other experiments (Madsen, Sovensen & Shaffer 1997; Stansby & Feng 2005). The
mean water level increases after breaking, as has been observed in many experiments
(Battjes 1988; Cox et al. 1995; Mocke 2001; Petti & Longo 2001; Govender et al.
2002). We observe the two bumps on the crest-envelope and mean sea level observed
for longer waves by Stansby & Feng (2005) after the plunging event, but in our
case they were less pronounced. This is due to the smaller similarity surf parameter
in our case. Amplitudes of wave crests are much higher than amplitudes of wave
troughs during wave breaking, leading to the well-known horizontal crest-to-trough
asymmetry. Figure 12 shows that mean velocities are directed onshore above the
trough-envelope and offshore under this line. Mean positive velocities (shoreward)
appear to be much greater than negative velocities. Maximal intensities, which were
nearly 33 % higher than unity in the non-dimensional form, occur at the crests during
the splashing event. This value is close to maximum celerities found by Stansby & Feng
(2005) (table 1) in their experiment. Owing to PIV elementary box-size resolution, we
were not able to measure velocities exactly at wave crest, but at half elementary box-
size (0.59 cm) below it. Near the bottom, maximum reverse non-dimensional velocities
reach 0.17

√
gD. Ting & Kirby (1995) found similar values with LDV measurements.

The mean velocity values computed above the trough envelope do not have a
concrete physical meaning, because the physical points are not always located in
water. For example, on the top of the crests, the mean velocity is just equal to the
velocity at the crest, and it does not mean that the velocity is equal on average to
this value during the whole wave cycle. It would be more physical to compute the
ensemble-average mean transport per wave cycle, T r (x, z), which is defined by:

T r (x, z) =
1

n

∫ nT

0

δ(x, z, t)U(x, z, t) dt. (5.2)

This quantity represents the average movement of a particle during a wave cycle.
Figure 13 shows a map of the horizontal component of the non-dimensional transport
T r/(T

√
gD), with T the incipient wave period. It could be noted that under the trough

envelope (e.g. points always located in the water), we have: T r (x, z) = T U(x, z),
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Figure 13. Map of the non-dimensional ensemble-time-averaged transport per wave cycle,
T r (x, z)/(T
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gD(x)) (horizontal component).
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Figure 14. Cross-shore evolution of the non-dimensional mean horizontal velocity at the
first PIV point above the beach.

so non-dimensional velocities and transport under the trough envelope line are
equal: T r/(T

√
gD) = U(x, z)/

√
gD. Figure 13 clearly shows that mean transport

is shoreward above the trough-envelope and seaward under it. These results agree
with data from Cox et al. (1995) and with LDV measurements by Stansby & Feng
(2005). Maximum shoreward values are found during the splash-up events, and not
during the plunging breaker event. The maximum seaward transport is situated near
the bottom and extends from the splash-up location to the rolling phase. Figure 14
presents the cross-shore evolution of the non-dimensional average horizontal velocity
very close to the bottom, at the first PIV grid point above the beach. Before breaking,
horizontal velocity is approximately null. At the beginning of breaking, near-bottom-
velocity increases and is directed offshore. Reverse flow reaches a maximum amplitude
of 0.17

√
gD during the roller phase, then it decreases near the shoreline. We found

positive velocity magnitudes close to the shoreline (x > − 9 cm), but this is due to an
underestimation of the offshore (e.g. negative) horizontal PIV measured velocities in
this area. Near to the shore, the edge of the incoming breaker bore during the up-rush
is relatively thick and the depth of the incoming wave is large enough to measure
coherent velocities. But after breaking, when the flow is going back during the down-
rush, the flow is shallow (see figure 15). The vertical water depth is approximately
equal to one PIV cell interrogation window, and the PIV system is not accurate
enough to measure velocities in such a region. More than two PIV cells in the vertical
dimension (Adrian 1991) would be required for a better estimation of the velocities
during the backrush event which follows the run-up. So our measured velocities
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Figure 15. Explanation of the measured positive mean transport close to the shoreline.

during the back-rush are wrong in this area, and finally we have a positive bias for
the computed mean velocity and transport near the shore. This uprush/downrush
asymmetry, with a sudden large bore-advected turbulence during the uprush, and a
long-time duration reverse flow with less turbulence during the downrush, has been
previously observed by Cowen et al. (2003).

If we considered a two-dimensional flow, mass conservation should lead to a zero

overall balance mean horizontal transport Tr :

Tr =

∫∫

T r (x, z) · x/(T
√

gD(x)) dx dz. (5.3)

We actually found Tr = 0.035. There might be two reasons for this non-zero measured
mean transport.

(i) As previously explained, for very shallow water measurement, e.g. near the
shoreline, we underestimate negative velocities, so the overall budget is positive (see
the positive cell at the right-hand side of figure 13). Considering only the part for

x ∈ [−280, −50] cm, mean mass transport decreases to a value Tr = 0.031.
(ii) Mainly above the mean sea level and during the breaking event, the flow is a

turbulent aerated two-phase air–water flow, as analysed in Brocchini & Peregrine
(2001a, b) For example, during the plunging event and the first splash-up, the
impinging jet mixes with the water and a region of high concentration of air bubbles
is developed. The bubble mass under the bore rises gradually while it translates
horizontally. The bore front is always tumbling over and air bubbles carried by large
eddies reach the bottom soon after the wavefront passes. A detailed investigation of
mass transport must account for the influence of air-entraining flow. The density of
the flow in a location surrounded by foam is lower than unity. The integral of the
horizontal transport should be weighted by the density of the flow, ρ(x, z):

Tr corrected =

∫∫

ρ(x, z)T r (x, z) · x/(T
√

gD(x)) dx dz. (5.4)

This correction would lead to a lower value of Tr corrected in comparison with Tr because
many positive velocities located near the crests should be weighed by lower density
values, more particularly all along the splash-up regions. In the next section, we
estimate the void fraction α(x, z):

α(x, z) = 1 − ρ(x, z). (5.5)
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Figure 16. Void fraction: vertically integrated values αZF (x) and αLI (x). −, zero flux
method; · − ·, light intensity method.

6. Void fraction estimation

Studies of surf-zone air entrainment and void fraction estimation under breaking
waves are limited because the flow fields of broken waves are complicated after mixing
the air bubbles (Loewen & Melville 1994; Chanson, Aoki & Maruyama 2002). We
estimated the void fraction with two different methods:

(i) Zero-flux method αZF

According to Govender et al. (2002), the vertically integrated void fraction can be
estimated from the horizontal transport conservation. For each location x, the integral
of the mean horizontal transport along the vertical water column should be equal
to zero (this hypothesis is valid only if the ensemble average water flow is two-
dimensional, which may not be true in the breaking region). It is possible to calculate
the vertically averaged mean density ρZF (x) (and then the mean void fraction αZF (x))
as the ratio between the reverse and the forward mean transport:

ρZF (x) =

∫

z for Tr (x,z)<0

T r (x, z) · x dz

/
∫

z for Tr (x,z)>0

T r (x, z) · x dz,

αZF (x) = 1 − ρZF (x).

⎫

⎬

⎭

(6.1)

The vertical integrated mean void fraction, αZF (x), is presented in figure 16. Before
breaking, αZF (x) is badly estimated because this parameter is here the ratio of two
small values (onshore and offshore transport are close to zero). There is a local
maximum value of α = 0.65 during the splash-up event (x ≃ − 150 cm). There is a
strong air entrainment in this area. A small secondary maximum is found near
x = − 50 cm. Near the shoreline (for x > − 40 cm), α values are incorrect because
negative PIV velocities are badly estimated in that area. The shape of this curve, with
two maxima, looks like the curve displayed in figure 6(d). Therefore, the observed
differences between the wave gauge data and the water surface computed from PIV
images seem to be related to the amount of aeration.

(ii) Light–intensity method αLI

During the breaking process, on the raw PIV images, regions of mixed air–water flow
are much brighter than regions without foam (see figure 4, windows w6 to w14). The
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light intensity of each pixel of a PIV image, I (x, z, t), is coded from 0 (black) to 255
(white). The brighter the light intensity, the larger the air entrainment. So we decided
to estimate the void fraction from the light intensity of the images. The attenuation
of the light intensity can be estimated using light-scattering theory (Mie theory).
When the scatters are air bubbles, and the light comes from a monochromatic YAG
laser (wavelength ≃ 532 nm), the light scattering is described well by the laws of
geometrical optics (Shamoun, EL Beshbeeshy & Bonazza 1999). When a light beam
traverses a volume containing air bubbles, the ratio of incident to transmitted light
intensity follows Lambert’s law:

I (x, z, t) − I0

I0

= − exp(KαLI (x, z, t)), (6.2)

with Io a light-intensity constant and K an attenuation coefficient.
The constant Io is matched to be the maximum of light intensity:

Io = max
x,z

I (x, z) (6.3)

with:

I (x, z) =

∫ nT

0

δ(x, z, t)I (x, z, t) dt

/
∫ nT

0

δ(x, z, t) dt. (6.4)

The attenuation coefficient K is obtained by matching the maximum of the vertically
integrated ensemble-average void fraction computed with the two methods during
the breaking event where air entrainment is important:

max
−250<x<−50

(αZF (x)) = max
−250<x<−50

(αLI (x)), (6.5)

with the vertically integrated ensemble-average void fraction defined by:

αLI (x) =

∫ η̄Max (x)

−d(x)

αLI (x, z) dz (6.6)

and the ensemble-average void fraction by:

αLI (x, z) =

∫ nT

0

δ(x, z, t)αLI (x, z, t) dt

/
∫ nT

0

δ(x, z, t) dt. (6.7)

By recursively matching (6.3) to (6.7), we finally obtained K = 2.00. Then the values
of the void fraction in the whole domain were obtained from light-intensity images
by inverting (6.2).

In order to validate this new void fraction determination technique from the raw
PIV images, we have compared our results with the analytical solution of the diffusion
equation for the void fraction distribution (Hoque & Aoki 2005). From Wu (1988)
and Stanton & Thornon (2000) observations and Hoque & Aoki (2005) developments,
the void fraction should consistently decay exponentially with depth under breaking
waves:

αLI (x, z < 0) = αLI (x, z = 0) exp (koz/H (x)) (6.8)

with ko =3.75, the proportionality constant defined by Hoque & Aoki (2005) for
the spilling case, and H (x) the local wave height at abscissa x. Figure 17 compares
the measured vertical profiles of the mean void fraction at different locations during
the breaking event and the vertical profiles of the mean void fraction computed
from (6.8). Clearly, we have good agreement between measured values and this
semi-analytical formulation. The decay of the void fraction with depth is obviously
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Figure 18. Map of the ensemble-averaged void fraction αLI (x, z).

exponential and Hoque & Aoki (2005)’s formulation is a good approximation. At
mean water level (z =0), the void fraction is of the order of 0.25 during the splash-up
event, then of the order of 0.1 during the spilling phase. At depth z = −6 cm, the void
fraction is always close to zero. Hoque & Aoki (2005) obtained similar behaviour,
but with slightly lower values of the void fraction at mean water level for spilling
breakers on a 1/9.5 sloping bed.

Figure 18 gives a map of the ensemble-averaged void fraction αLI (x, z). Void
fraction values are close to zero everywhere under the trough envelope, and before
the plunging event. We see clearly the air entrainment due to plunging, and then due
to the successive splash-up sequences. Values of the void fraction are relatively high
with a maximum value αmax = 0.88 near the crest envelope, close to the first splash-up
location. With an optical sensor that determines the refractive index on small area,
Blenkinsopp & Chaplin (2005) measured void fraction values around α ≃ 0.8 − 0.9
during the splash-up sequence of a waves breaking over an obstacle (see their figure 3).
With a global conducting probe, Lamarre & Melville (1991, 1994) found also high
void fraction plumes (α ≃ 0.5) for waves breaking in deep water, close to the surface.
After the splash-up, the void fraction decreases slowly above mean sea level during
the bore-propagating phase, with values near 0.3, then near 0.2 close to the shore
between the mean water level and the crest envelope. With a local conducting probe,
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Cox & Shin (2003) found relatively similar values of void fraction (α ≃ 0.2 − 0.3)
when the bore crossed the probe.

The vertically integrated void fraction by the light-intensity method was defined
by:

αLI (x) =

∫ η̄Max (x)

−d(x)

αLI (x, z)

η̄Max(x) + d(x)
dz. (6.9)

The comparison between the light-intensity method and the zero-flux method is
presented in figure 16. For relatively deep water, the light-intensity method gives
much better results with a void fraction close to zero. During the plunging phase,
there is a first local small maximum found by the two methods at x = −190 cm. Then,
the void fraction increases during the splash-up phase. There are some discrepancies
between the two methods. The light-intensity method gives successive local maxima
related to the successive splash-up sequences. After x = −60 cm, the two methods
diverge with more coherent data from the light-intensity method.

The ensemble-averaged transport corrected by the void fraction, T rcorrected
(x, z),

defined by:

T rcorrected
(x, z) = (1 − αLI (x, z)) T r (x, z)/(T

√

gD(x)) (6.10)

is shown in figure 19. Clearly, the amount of positive transport is reduced when the
void fraction is taken into account. Maximum values of the transport occurred from
the splash-up location to the shoreline between the mean sea level and the trough

envelope. The overall integral of the corrected transport is now equal to Tr =0.020
and if we consider only the part for x ∈ [−280, −50] cm, the value decreases up

to Tr = 0.016. This last value is 50 % lower than the value computed without void
fraction correction (cf. § 5).

7. Phase average

We computed 3264 different instantaneous velocity fields representing 256 wave
cycles. In order to have a statistical evolution of the periodic flow during a wave
cycle, we computed a phase-average of velocities and water profiles by averaging
all the instantaneous data that were acquired at the same phase. This procedure is
commonly used to study periodic events. The incipient wave period was T =1.275 s,
and the PIV acquisition rate was 10 Hz. So the duration of 51 successive PIV velocity
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Figure 21. Example of phase-to-phase repeatability between the 64 different cycles for the
phase ϕ =318◦ : wave profile (up), depth integrated horizontal velocity (down). Bold line,
phase average; thin line, standard deviation from spline surface reconstruction; dashed line,
standard deviation from original raw surface data.

fields corresponded exactly to 4 wave periods: 51/10 = 4 × T . Consequently, all the
PIV velocity fields separated by 51 PIV time steps were exactly in phase. As shown in
figure 20, this technique allowed us to describe a wave period in 51 different phases.
For each phase, the phase-average field is obtained by averaging the 256/4 = 64
instantaneous fields corresponding to that phase.

The phase average was defined by:

ηϕi
(x) =

1

64

64
∑

j=1

η(x, tij ), Uϕi
(x, z) =

1

64

64
∑

j=1

U(x, z, tij )

with

tij = (i + 4j × 10T )�t, ϕi =
2i π

51
for i ∈ [1, 51], �t = 0.1 s

⎫

⎪

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎪

⎭

(7.1)

The phase-to-phase repeatability between the 64 different fields for a given phase
is shown in figure 21: the mean profile and the standard deviation from the mean
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profile are displayed for phase ϕ =318◦ for the water elevation and depth integrated
horizontal velocity. For both the surface elevation and depth integrated horizontal
velocity, the standard deviation is weak before breaking, even for the front of the
wave (x < − 200 cm). We observe small differences between the standard deviation
computed from the raw surface contour data and the standard deviation computed
from the surface spline interpolation. This result confirms the robustness of the
reconstruction method. After breaking, a dispersion appears on the back face of the
wave owing to the appearance of air–water mixing. The repeatability of the front
face of the bore remains excellent. With Fourier analysis, we computed the phase of
all the wave profiles. The phase-to-phase repeatability was statistically less than 1◦

(the standard deviation of all the phases that belonged to the same ‘phase’ was lower
than 1◦).

The water profile and the horizontal component of the non-dimensional phase-
averaged velocity U(x, z)ϕ/

√
gD(x) are presented in figure 22 for five different phases:

ϕ = 35◦, 106◦, 176◦, 247◦ and 318◦. This is a new result, to present phase-average results
in the space-domain (e.g. Uϕ(x, z)) over the surf zone; previous published results have
usually been presented in the time-domain (e.g. Uϕ(t) at each measurement point). We
see clearly the wave height attenuation during the wave breaking, and the decreasing
of the wavelength as the wave reaches the shoreline. Velocities are positive (shoreward)
under the crests, in the whole water column, from the top of the crest to the bottom.
Similarly, velocities are negative (seaward) under the troughs. Velocity maxima in
non-dimensional form are around unity near the tops of the crests at the beginning
of the plunging and reach 1.35 just after the splash-up phase. Negative velocities
are around −0.40

√
gD under the troughs. Before the plunging event, velocities are

maximal on the same vertical line under the wave crest (see figure 22, phase ϕ = 318◦,
highest velocities in the water column are all located at abscissa x = − 240 cm) but
after this event, during all the wave breaking, there is a phase shift from the bottom
to the crest, i.e. crest velocities are in advance of phase if they are compared with
bottom velocities (see figure 22, phase ϕ = 106◦, near the wave crest, velocity is a
maximum at abscissa x = − 155 cm and near the bottom velocity is maximum at
abscissa x = − 175 cm). This phase shift is due to (i) friction effects on the bottom
which slow down velocities near the beach, and (ii) the negative transport near the
bottom which acts against the wave. The shear of the current under the crests during
the breaking process has been observed by Govender et al. (2002).

As explained in § 4, we used cubic smoothing spline interpolation to construct the
velocity field over the whole surf zone. A major asset of the spline function is the
direct use of calculated spline coefficients to compute space-derivatives ∂/∂x and
∂/∂z, without noise contamination (Spedding & Rignot 1993; Fouras & Soria 1999;
Cohn & Koochesfahani 2000). With this technique, we avoid the use of the first-order
difference scheme, therefore the quantities calculated with derivatives are calculated
with the same spatial discretization dx =dz =0.592 cm.

Chang & Liu (1998, 1999) found that the vorticity generated by wave breaking,
under the trough envelope, was of the same order of magnitude as phase speed divided
by local depth: Ω(x) ≃ (

√
gD(x)/D(x)). Therefore, we calculated the dimensionless

phase-averaged vorticity field Ωϕ(x, z) = ‖∇ ⊗ Uϕ(x, z)‖/
√

g/D(x). The results are
shown in figure 23 for the same phases as figure 22. A large clockwise vortex structure
appears first on the front side of the wave crest at the beginning of the plunging phase
(phase ϕ = 35◦). This vortex is not localized at the top of the crest, but rather at the
toe of the front, just above the mean sea level. Peregrine & Svendsen (1978) were the
first to observe that vorticity was generated at the toe of the incipient breaking crest.
The vorticity magnitude increases during the plunging. The first splash-up sequence
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Figure 22. Horizontal component of non-dimensioned phase-averaged velocities
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√
g D; (a) ϕ = 35◦, (b) 106◦, (c) 176◦, (d) 247◦ and (e) 318◦.
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Figure 24. (a) Intensity and (b) Position of the four observed vortices generated during a
wave cycle: �, first; �, second; ∗, third; �, fourth.

creates a new vortex ahead of the first one (see ϕ = 106◦). Then successive vortices
are generated during the following splash-up sequences (ϕ = 176◦) and (ϕ = 318◦).
These vortices are the ‘horizontal eddies’ described by Nadaoka et al. (1989) in
their schematic representation of large-scale eddies under breaking waves, and also
illustrated by Christensen, Walstra & Emerat (2002) in their figure 4. They called
them ‘horizontal’ because their main axis is horizontal. The formation of vortices
during a splash-up event is illustrated by Lubin et al. (2006) in their large-eddy
simulation numerical study of breaking waves (see their figures 12 to 15). In non-
dimensional form, clearly the vorticity magnitude is of the order of

√
gD(x)/D(x),

more particularly during the bore propagating phase at low depth.
The intensity and location of the vortices generated during a wave cycle are

presented in figure 24. The first vortex moves on shore with increasing magnitude
during the plunging phase, then propagates more slowly downward with a decreasing
intensity at the beginning of the first splash-up sequence. The second vortex, initiated
by the first splash-up, reaches 30 s−1, moves shoreward and then downward with
a decreasing magnitude. The third and fourth vortices move towards the shoreline
along the trough-envelope line. Their magnitude is of the order of 20 s−1 when they
propagate near the bore-front, then they slow-down and vanish slowly when they go
deeper, dissipated by bottom friction and slowed down by mean return flow.

With LDV, for similar depth but for a higher experimental self-similarity parameter,
Stansby & Feng (2005) measured higher vorticity values during the plunging phase
(Ωmax = 65 s−1), with also a concentrated vorticity (Ω = 35 s−1) in the roller region,
moving with the bore front. Their measured vorticity magnitude decreases slightly
as the bore moves towards the shore. The difference in magnitude could be due to
the higher surf similarity parameter with a more pronounced plunging, or it could
be that the higher spatial resolution possible using LDA (obtained by moving the
probe position in the z-direction) enables the local peak value to be determined more
accurately. In our experiment, we measured vorticity lower than those for hydraulic
jumps of similar Froude number, whereas in Stansby & Feng (2005) the value at the
beginning of breaking was similar to hydraulic jumps; but their values were below
inshore.
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The phase-average void fraction αϕ(x, z) was computed from the void fraction data
αLI (x, z, t) measured with the light-intensity method. We used a formulation similar
to (7.1):

αϕi
(x, z) =

1

64

64
∑

j=1

αLI (x, z, tij ), (7.2)

with

tij = (i + 4j × 10T )�t, ϕi =
2i π

51
for i ∈ [1, 51], �t = 0. 1s

Space–time evolution of the phase-average void fraction is shown in figure 25, for the
phases presented in figures 22 and 23. We used the logarithmic intensity void fraction
scale presented by Blenkinsopp & Chaplin (2005) which allows a better localization
of the highly aerated areas. During the plunging phase, aeration is located inside
the overturning lip (phase ϕ = 35◦). During the splash-up sequence, the aeration is
localized between the two vortices (phase ϕ = 106◦). Then, during the bore-propagating
phase, the maximum void fraction is not localized exactly at the edge of the bore
front, but more behind the front-face of the wave (phase ϕ = 176◦ and ϕ = 247◦).
Close to the shore, aeration is still present at the front face of the wave, but also at
the back face of the wave near the crest (ϕ = 318◦).

8. Fluctuating components around phase-average

For each of the 51 wave phase ϕi , we have 64 different velocity fields U(x, z, tij ),
j ∈ [1, 64], i ∈ [1, 51]. To go further than standard phase-averaged computations,
we analysed velocity fluctuations around their own phase-averaged values. Using
Reynolds-type decomposition, for an instantaneous full field measurement U(x, z, tij ),
we wrote:

U(x, z, tij ) = Uϕi
(x, z) + U ′(x, z, tij ) (8.1)

with

U ′(x, z, tij ) = u′(x, z, tij ) x + v′(x, z, tij ) y + w′(x, z, tij ) z

U ′(x, z, tij ) is the difference between instantaneous velocity field U(x, z, tij ) and
the corresponding phase averaged value Uϕi

(x, z) (see (7.1)). U ′(x, z, tij ) could be
considered as a deviation, or a fluctuation, around the mean value Uϕi

(x, z) (e.g. Cox
et al. 1995; Ting & Kirby 1995, 1996; Cox & Anderson 2001)).

A quantity that characterizes physical transfers of energy is the so-called ‘fluctuating
kinetic energy per unit mass’ at phase ϕi , q ′2

ϕi
(x, z), defined by:

q ′2
ϕi
(x, z) = 1

2

(

u′2
ϕi
(x, z) + v′2

ϕi
(x, z) + w′2

ϕi
(x, z)

)

, (8.2)

with u′2
ϕi
, (respectively, v′2

ϕi
and w′2

ϕi
), the mean square value of the horizontal cross-shore

(respectively, horizontal alongshore and vertical upwards) component of fluctuating
velocities U ′(x, z, tij ):

u′2
ϕi
(x, z) =

1

64

64
∑

j=1

u′2(x, z, tij ). (8.3)

To simplify the notation, subscript i is now removed: ϕ stands for ϕi . Since our
PIV measurements provide only two components of the flow U (cross-shore u and
vertical w components), but not the horizontal transverse component v, fluctuating
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Figure 25. Phase average void fraction; (a) ϕ = 35◦, (b) 106◦, (c) 176◦, (d) 247◦ and (e) 318◦.
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kinetic energy q ′2
ϕ is estimated using the standard approximation for surf zone flow

(Svendsen 1987):

q ′2
ϕ =

4

3

(

u′2
ϕ + w′2

ϕ

)

2
(8.4)

which means that v′2
ϕ is approximated by:

v′2
ϕ = 1

3

(

u′2
ϕ + w′2

ϕ

)

. (8.5)

A commonly used physical fluctuating velocity scale is
√

q ′2
ϕ . Evolution of

√

q ′2
ϕ

with space and wave phase is important for the study of breaking-wave effects
on flow dynamics and the environment. For example, the probability of sediment
movement is related not only to the intensity of the mean flow, but also to the kinetic
fluctuating intensity near the bottom boundary layer (Dancey & Diplas 2003). Space–
time evolution of this velocity scale is shown in figure 26, in terms of Froude-scaled

phase-averaged turbulent kinetic energy:
√

q ′2
ϕ /

√
gD, with D the local mean water

depth (D = η̄ + d), for the phases presented in figures 22 and 23. This figure identifies
clearly the top of the front side of the breaking crest as the initiation point for

fluctuation generation (ϕ =318◦). Values of
√

q ′2
ϕ increase during the plunging event

(ϕ = 35◦), and the splash-up phase (ϕ = 106◦). Then, generated fluctuations are spread
downstream and towards the bottom (ϕ =176◦). At this phase, we found again three
cells of fluctuating intensities, but their location differs slightly from the location of

the three vorticity cells found in figure 26 at phase ϕ = 176◦. The centres of the
√

q ′2
ϕ

cells are located on the edge of the vorticity cells, just above, or under them. At
this phase, a local maximum is found near the bottom. During the rolling phase,
after the splash-up, the non-dimensional velocity scale attached to the bore does not
seem to decrease until the bore reaches the shoreline. The fluctuating intensity is
maintained by the moving breaking process. Fluctuating intensity declines after the
passage of the bore. Values are nearly zero under the trough on the back-side of the
incipient dominant wave, and around 0.05 under the trough of the wave just behind
the propagating bore.

Amplitudes of fluctuating energy can be compared with results of Mocke (2001)
(see their figure 1 for comparison with many other data sets): their Froude-scaled
turbulent kinetic velocity scale is in the range 0.03–0.07, but their data concern only
measurements under the mean sea level η̄(x). Ting & Kirby (1995) found a maximum
value of 0.1 just below the trough level. We found similar values under the trough
line, except during and after the slash-up event with values up to 0.3 near the bottom.
Maximum intensities were found, however, in the front part of the crests, above the

trough line during the splash-up events (max
√

q ′2
ϕ /gD ≃ 0.4). Ting & Kirby (1995)

found also maximum values of q ′2 just after the first jet-splash cycle. To compare our
results with previous published experiments, we have plotted (figure 27) the vertical
profile of the square root ensemble time-averaged non-dimensional fluctuating energy.
The ensemble time-averaged fluctuating energy is defined by:

q ′2(x, z) =
1

nT

∫ nT

0

δ(x, z, t)q ′2(x, z, t) dt. (8.6)

The vertical profile is plotted at x = − 100 cm, at the end of the splash-up region and
at the beginning of the propagating bore region. It is compared with Ting & Kirby
(1994) results and Govender et al. (2002) results (we use the u′ and w′ data plotted in

29



E
le

v
at

io
n
 (

cm
)

sb pb s1

–250 –200 –150 –100 –50 0

–18

–12

–6

0

6

12
(a)

(b)

(c)

(d)

(e)

E
le

v
at

io
n
 (

cm
)

sb pb s1

–250 –200 –150 –100 –50 0

–18

–12

–6

0

6

12

E
le

v
at

io
n
 (

cm
)

sb pb s1

–250 –200 –150 –100 –50 0

–18

–12

–6

0

6

12

E
le

v
at

io
n
 (

cm
)

sb pb s1

–250 –200 –150 –100 –50 0

–18

–12

–6

0

6

12

E
le

v
at

io
n

 (
cm

)

sb pb s1

–250 –200 –150

Distance from the shore (cm)

–100 –50 0

–18

–12

–6

0

6

12

0
0.03
0.07
0.10
0.13
0.17
0.20
0.23
0.27
0.30
0.33
0.37
0.40

0
0.03
0.07
0.10
0.13
0.17
0.20
0.23
0.27
0.30
0.33
0.37
0.40

0
0.03
0.07
0.10
0.13
0.17
0.20
0.23
0.27
0.30
0.33
0.37
0.40

0
0.03
0.07
0.10
0.13
0.17
0.20
0.23
0.27
0.30
0.33
0.37
0.40

0
0.03
0.07
0.10
0.13
0.17
0.20
0.23
0.27
0.30
0.33
0.37
0.40

Figure 26. Phase-locked Froude normalized fluctuating kinetic energy (q ′2
ϕ /gD)1/2;

(a) ϕ =35◦, (b) 106◦, (c) 176◦, (d) 247◦ and (e) 318◦.

their figure 24-middle at station 3 for test 2, with their formula: q ′2 = 1.33 (u′2+w′2)/2).

Profiles are similar, with increasing values of

√

q ′2 from the bottom to the trough

envelope line (0 < (z + d)/d < 0.6), and decreasing values from the trough envelope
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Figure 27. Vertical profile of non-dimensional ensemble time-average fluctuating kinetic

energy scale

√

q ′2 / gD. , Ting & Kirby 1994; Govender et al. 2002; �, our PIV measurements
at location x = −100 cm �.

to the top of the crest (0.6 < (z + d)/d < 1.5). Our values are close to Ting & Kirby
(1994) values under the trough line and to Govender et al. (2002) values above it. We
found, moreover, a negative gradient of q ′2 close to the bed.

An important aspect would be the effect of the smoothing parameter, p, in the
calculation of all the results. To illustrate this influence, some examples with p = 0.99
(i.e. almost no smoothing) are given (figure 28) for the horizontal velocity, vorticity
and fluctuating kinetic energy scale. They must be compared with the results presented
in figures 22, 23 and 26 for phase ϕ = 176◦, which were calculated with a smoothing
parameter p =0.5. For the velocity and vorticity fields, the discrepancies are very
weak. For the fluctuating kinetic energy scale, there are some local variations near
the maxima, but nevertheless, looking at the two graphs, the discrepancies are not

large. The root mean square difference between the two fields
√

q ′2
ϕ,p = 0.50/gD and

√

q ′2
ϕ,p = 0.99/gD was found to be 0.015. This value represents 4 % of the maximum

of (
√

q ′2
ϕ,p = 0.99/gD) value, and 18 % of the mean of (

√

q ′2
ϕ,p = 0.99/gD).

In order to illustrate the influence of window gathering and smoothing, we
calculated also the phase-average of the fluctuating kinetic energy for each of
the 14 elementary windows, directly from the elementary PIV velocity fields of

the 14 windows. The fourteen
√

q ′2
ϕ fields are gathered in figure 28(d) without

any interpolation, and should be compared with figure 28(c). Boundaries between
the windows are visible, but there are no large discrepancies between the two
plots. Consequently, despite some local errors, the effect of the interpolation and
smoothing of the velocity field on the fluctuating quantities does not seem large. The

interpolation/smoothing procedure allows us to present global
√

q ′2
ϕ fields with no

discontinuities.
Bottom shear stress plays a major role in the surf zone physical processes, for

example in sediment transportation and turbulent kinetic energy balance near the
bed (Cox & Kobayashi 1997; Trowbridge & Elgar 2001). Figure 29(a) represents the
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Figure 28. For ϕ = 176◦, same as figures 21, 22 and 25, but with a smoothing value of
0.99 (i.e. almost no smoothing); (a) Non-dimensional horizontal velocity Uϕ,p = 0.99/

√
gD,

(b) non-dimensional vorticity Ωϕ,p=0.99/
√

g/D, (c) Froude normalized fluctuating kinetic energy

scale
√

q ′2
ϕ,p = 0.99, and (d) Froude normalized fluctuating kinetic energy scale calculated for

each of the 14 elementary windows directly from the elementary PIV fields without interpolation
and smoothing.

ensemble-averaged Reynolds shear stress, (U (x, z)W (x, z)), under the trough level.
Values above the trough envelope are not presented, because they are about ten times
higher than values under the troughs, and we preferred to use an appropriate zoom-
scale under the troughs in order to see better the stress variations near the sloping
beach. The stress is mainly negative in the splash-up and rolling regions, which means
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Figure 29. Ensemble average shear stress. (a) Reynolds shear stress under trough level (UW ),
(b) fluctuating shear stress under trough level (u′w′), (c) bottom shear stress at the first PIV
point above the beach (solid line, (UW ); dashed line, (u′w′)). Units in cm2 s−2.

that transfers occur mainly onshore/downward or offshore/upward in that area. On
the contrary, the mean stress is slightly positive before breaking and during the
plunging phase. There is a well-localized minimum just after the start of the splash-
up near x = − 150 cm when the lip of the splash-up hits the water. De Serio &
Mossa (2006) found slightly lower values (stress around −30 cm2 s−2) for their
plunging/spilling test 1. The ensemble-average fluctuating shear stress (u′(x, z)w′(x, z))
is shown in figure 29(b). Again, values above the trough line are not presented because
they are ten times higher. Values are negative almost everywhere which means that
near the bed, fluctuations would induce sediment transportation onshore/downward
or offshore/upwards. However, values are very weak before plunging. There are two
distinct negative cells apart from x = − 150 cm, related to the existence of the distinct
vorticity cells that appear during the splash-up phase. Misra et al. (2005) measured
also cells of shear stress under quasi-static spilling breakers. The bed shear stress very
close to the bottom (at the first PIV point above the bed) is shown in figure 29(c).
Reynolds-averaged and fluctuating components of the stress are both plotted. Near
the bed, Reynolds stress is always positive, except near the splash-up region, which
means that transfers very close to the bottom would be directed offshore except during
the strong splash-up event. In this location, fluctuating stress is negative, whereas it
is almost zero everywhere else. Stansby & Feng (2005) found fluctuating stress values
of the order of −25 cm2 s−2 near the bed, which is close to our measured values.
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Figure 30. Example of non-dimensional phase-locked fluctuating energy transports by mean

flow: phase ϕ = 176◦, (a) (U q ′2)ϕ/(gD)3/2; (W q ′2)ϕ/(gD)3/2.

An example of the horizontal and vertical fluctuating energy transports by the
mean flow are shown in figure 30 for the phase ϕ = 176◦. High values of the transport
terms are located mainly under the breaking wave, so we restricted the view to
the crest, i.e. from −155 cm <x < − 105 cm, during the splash-up sequence. Clearly,
fluctuating kinetic energy is mainly transported by the rolling wave crest towards the
shore. High values of the transport are all localized above the trough line. There are
two convection cells, related to the successive eddies that appear at this phase (see
figure 23, phase ϕ = 176◦). The vertical transport is one order of magnitude lower than
the horizontal one. Looking from the right to the left, the vertical transport is slightly
downward at the air/water interface in the front part of the wave, then upward under
the splash-up crest, then strongly downward between the two local wave maxima,
and finally slightly upward on the opposite face. De Serio & Mossa (2006) found that
the energy flux under the crest could be upward for spilling breakers, and we found
similar values (around 0.002 m3 s−3) in dimensional form at z = − 3 cm under the
mean sea level. We obtained much greater values than those of Ting & Kirby (1996),
but their measurements were restricted under the trough line. Under the trough line,
we found effectively much lower values than those measured near the crests. There
are also two other transport cells which are located near the bottom: the upward
one is located on the left-hand side of the main vortex at x = − 140 cm (velocity is
upward on the left of a positive vortex), and the downward one is located on the
right-hand side of the third small vortex at x = − 146 cm (velocity is downward on
the right of a positive vortex).

Similarly, transport by fluctuations (u′ q ′2)ϕ/(gD)3/2 and (w′ q ′2)ϕ/(gD)3/2 were
calculated. We do not present these terms here; they are mainly concentrated in the
rolling phase near the front part of the crest, and its maximum seems to be attached
to the front face of the roller.

Evolution of fluctuating kinetic energy can be modelled by the kinetic energy
balance equation (Hinze 1975) which relates the total derivative D q ′2/Dt with
(i) transport terms due to convection, pressure gradients, and fluctuations,
(ii) kinetic energy production terms and (iii) dissipation and diffusion terms. In
the Appendix, we have developed the expression of all these terms using’s Svendsen’s
(1987) approximation that relates non-measured alongshore velocity variations with
measured cross-shore and vertical variations. Except for pressure terms that were
beyond the capability of our experimental apparatus, these terms are a combination of
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Figure 31. Kolmogorov length scale (ν3/ε)1/4 (in cm) for phase ϕ = 113◦; (a) zoom from the
full field gathering/smoothing (p = 0.99) reconstruction; (b) computed from window number
w6 and spatial resolution dx = dz =0.592 cm with 32 × 32 pixels elementary PIV interrogation
boxes; (c) computed from window number w6 and spatial resolution dx = dz = 0.296 cm with
16 × 16pixels elementary PIV interrogation boxes.

space-derivatives, ∂/∂x and ∂/∂z of several tensor products with variables that we were
able to measure (e.g. phase-averaged velocity Uϕ and associated fluctuating component
U ′, equation (8.1)). As explained in § 4, a major asset of the spline interpolation
technique is the direct use of calculated spline coefficients to compute space-derivatives
∂/∂x and ∂/∂z, without noise contamination (Cohn & Koochesfahani 2000). Therefore
the quantities calculated with derivatives are calculated with the same order of spatial
discretization (dx = dz = 0.592 cm). However, to measure the different terms of the
kinetic balance equation, the spatial resolution must be of the order of ten times the
Kolmogorov length scale (Cowen & Monismith 1997). The Kolmogorov length scale
could be defined by

ηk =

(

ν3

ε

)1/4

, (8.7)

where ν is the kinematic viscosity, and ε the isotropic dissipation rate in the
homogeneous turbulence. The dissipation rate ε is given in equation (A 22) of
the Appendix. We first estimated the Kolmogorov length scale using our spatial
discretization dx = 0.592 cm from the full reconstructed field. The Kolmogorov length
scale field defined in (8.7) is presented in figure 31(a) phase ϕ =113◦ during the splash-
up sequence. We choose to display this phase because the smallest values of ηk were
obtained in that case. Figure 31 is a zoom of ηk in a location where the turbulence
intensity level was high. Values of ηk range between 0.01 cm near the wavefront, up
to 0.1 cm near the bottom and in the water column behind the wavefront, with an
average value ηk = 0.028 which is about 21 times smaller than the space resolution
we used.

To avoid the contamination of the window-gathering and the associated
smoothing/interpolation procedure, we calculated ηk in one single PIV window (w6,
see figure 1 and table 1), which corresponds to the zoom displayed before. Calculations
were done with the same spatial discretization dx = 0.592 cm. The result is presented
in figure 31(b). The average value in this case is ηk = 0.029. Clearly, discrepancies are
weak between the two results, except very close to the interface.

In order to evaluate the influence of the predefined space resolution on the
evaluation of ηk , we made a new computation of all the velocity fields from the
complete PIV image database, with a new smaller resolution: dx = 0.296 cm. We did
this for window number w6 where the seeding was particulary homogeneous and
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Figure 32. non-dimensional phase-locked ‘transport-due-to-convection-term’ of the fluctuat-
ing kinetic energy equation (equation (A 12) multiplied by T g−1D−1); for (a) ϕ = 106◦ and
ϕ = 176◦ (b).

concentrated owing to the mixing turbulence, and this configuration allowed us to
decrease the elementary PIV interrogation box size up to 16 × 16 pixels (instead of
32 × 32 pixels) and to increase the overall number of velocity vectors in w6 up to
128 × 128 (instead of 64 × 64). Therefore, the spatial distribution decreased in this
case to dx = 0.296 cm. The new Kolmogorov length-scale field computed with this
resolution is displayed in figure 31(c), and should be compared with the others.
Clearly, discrepancies are small, and ηk values are similar throughout the domain,
except close to the water surface for small values of the length scale (ηk < 0.01), for
which, effectively, the spatial resolution is not precise enough. The average value is
now ηk = 0.023 which is very close to the previous 0.29 value, and it is about 13 times
smaller than the new space resolution. For this case, the discretization seems to be
good enough (dx ≃ 10 ηk) to estimate some terms of the fluctuating energy transport
equation. Unfortunately, it was not possible to use 16 ×16 pixels in all the windows
because of the lack of particles (fewer than 5 particles in a box) in relatively deep
water and in very shallow water. However, the ηk field computed with the coarse
resolution dx = 0.592 cm (figure 31a) looks similar to the the ηk field computed with
low resolution (figure 31c), and we decided to calculate some terms of the fluctuating
energy transport equation with our first space resolution, even if the precision is out
of order near the crests.

For simplification, if we denote (U, W ) the components of Uϕ , and (u, w) the
components of U ′

ϕ , 26 different variables were computed in order to estimate the terms

of the kinetic energy transport equation. These 26 terms are: U , W , u2, w2, uw, ∂U/∂x,

∂W/∂x, ∂U/∂z, ∂W/∂z, ∂u2/∂x, ∂u2/∂z, ∂w2/∂x, ∂w2/∂z, ∂u3/∂x, ∂uw2/∂x, ∂wu2/∂z,

∂w3/∂z, (∂u/∂z)(∂w/∂x), (∂u/∂z)2, (∂w/∂x)2, (∂u/∂x)2, (∂w/∂z)2, (∂/∂x)u(∂u/∂x)2,

(∂/∂x)w(∂u/∂z)(∂w/(∂x), (∂/∂z)u(∂w/∂x)(∂u/∂z), (∂/∂z)w(∂w/∂z)2. Here, the overbar
represents the average over the 64 samples which have the same phase ϕ, as explained
in § 7. The procedure of phase averaging smoothes out the fluctuations of the space-
derivatives caused by the passages of eddies, but will not remove the fluctuations
entirely because the successive eddies are not completely random in space and time.
Evolution of the phase-averaged ‘transport-due-to-convection-term’, and ‘production’,
are presented in non-dimensional form (equations (A 17) and (A 12) multiplied by
T g−1D−1) in figures 32 and 33, for phases ϕ = 106◦ and 176◦) in the vicinity of
the crest. Only two phases are presented here, but we observed that transport by

36



(a)

6

0

–6

–12

–180 –170 –160
Distance from the shore (cm)

E
le

v
at

io
n
 (

cm
)

Distance from the shore (cm)

–150 –140

1.80

1.38

0.97

0.55

0.13

–0.28

–0.70

1.80

1.38

0.97

0.55

0.13

–0.28

–0.70

(b)

6

0

–6

–12

–150 –140 –130 –120 –110

Figure 33. Non-dimensional phase-locked ‘production-term’ of the fluctuating kinetic energy
equation (equation (A 17) multiplied by T g−1D−1); for (a) ϕ = 106◦ and (b) ϕ = 176◦.

convection was mainly localized near the front part of the crest after the plunging
event and before the last splash-up. These terms are weak under the mean sea level.
In non-dimensional form, these terms are high in the swash zone, above the shoreline,
because mean water depth D becomes very weak. The same remarks could be made
for the transport by fluctuations (not presented here). These terms are concentrated
mainly during the splash-up sequence between the second and third splash-ups; near
the crest above mean sea level and very close to the surface. Non-dimensional values
are also high in the swash zone.

Production terms are also localized near the crests, and more particularly near the
toe of the front face of the crest, but high values last throughout the breaking event,
at any phases, from the incipient breaking to the swash zone, and remain attached
to the front part of the crest. Maximum non-dimensional values are always higher
than unity near the toe throughout the wave propagation. As shown in Brocchini &
Peregrine (2001a); Brocchini & Peregrine (2001b), fluctuating kinetic production is
mainly generated in this particular location of the wave crest. Under the back face
of the crest, we observed several cells of positive and negative values, but with much
lower intensity than near the toe.

The viscous dissipation and diffusion terms are three orders of magnitude lower
than convection or transport terms. They are not presented here. We probably did
not have a high enough space resolution for the correct estimation of these terms
close to the surface or to the bottom line, the elementary PIV box size being too large.
Maximum non-dimensional values are in the range 0.0005 (viscous diffusion) to 0.001
(viscous dissipation). Viscous effects are higher during the bore propagating phase.

Our goal was not to present a full budget of the turbulent kinetic equation terms
because (i) we did not measure the pressure terms, and (ii) we did not have everywhere
the required space resolution to measure the different terms exactly. However, the few
examples presented here are an illustration of the spatial repartition in the (x, z)-plane
of some terms under the breaking waves.

9. Conclusions

Experiments were conducted in a 17 m long wave tank, in order to measure
dynamics and kinematics of waves propagating and breaking over a 1/15 sloping
beach for a particular case of a spilling–plunging breaker, with a very short first

37



spilling phase followed by a plunging event, a splash-up, a small second splash-up
and a bore-propagating phase. PIV measurements were performed all along the swash
zone on 37 × 37 cm2 small windows in order to have sufficient velocity precision
everywhere. We used TTL signals and wave gauge time series to synchronize all
the measurements from the different small windows and merged them to obtain an
instantaneous full velocity field from the incipient breaking to the wave run-up. Errors
due to gathering/smoothing were estimated. We reconstructed 3264 different global
velocity fields and wave profiles representing 256 different wave cycles. Ensemble-
average values of velocity and transport were computed. The acquisition of 51 PIV
image-couples lasted exactly 4 wave periods. So we were able to describe statistically
a wave period with exactly 51 different phases. For each phase, phase-averaged values
were computed by averaging the 64 instantaneous fields having the same phase.
The phase-to-phase repeatability was estimated to be less than 1◦. We computed
instantaneous mean phase-averaged and fluctuating phase-locked data around phase-
averaged values. It is the first time that phase-averaged velocities have been presented
in a continuous space-domain (Uϕ(x, z)) over the whole surf zone. Usually they are
presented in the time-domain Uϕ(t) at some particular measurement points (x, z),
and time-to-space conversion is done through the Taylor hypothesis (x = ut , or
∂/∂x =(1/u)∂/∂t), which states that the temporal fluctuations could be assumed
to correlate to the passage of a frozen turbulence pattern. In breaking waves, the
turbulent velocities created by the large-scale motion are so large that this condition
is not always satisfied. In this paper, phase averaged data and convective derivatives
are computed in the whole domain without this hypothesis. Most of the terms are
presented in a non-dimensional form, velocities divided by nominal phase speed

√
gD,

and time divided by mean wave period T . The calculation of space derivatives with
spline functions allowed us to compute the vorticity, and the different terms that
appear in the fluctuating kinetic energy transport equation.

The envelope trough-line, which is drawn in all the figures, seems to be a natural
boundary between on-shore mean velocities above this line and offshore velocities
under it. Non-dimensional measured velocities are O(1) near the crest-envelope, and
O(0.1) under the troughs. The maximum non-dimensional value is 1.35 and occurs
after the splash-up sequence. A new result is the increase of the undertow close to the
bottom line during the bore-propagating phase. We observed a vertical-phase shift
between velocities at the crest and velocities near the bottom, owing to friction effects
and to the undertow near the bed.

We estimated the void fraction in each point of the domain by means of light-
intensity image analysis and vertically integrated velocity considerations in the
domain. We used light-scattering theory with a Lambert law to relate void fraction to
light intensity. We found an exponential decay of void fraction with depth below the
mean sea level, with a very good fit to the Hoque & Aoki (2005) semi-theoretical law.
It is the first time that an ensemble-average void fraction over the whole laboratory
surf zone has been measured. The air-entrainment is large during the first splash-up
event with values of void fraction near 0.88 above mean sea level inside the splash-up.
Then the void fraction decreases slowly when the wave propagates towards the shore,
with values near 0.2–0.3. Close to the shore, aeration is still present in the front face
of the wave, but also at the back face of the bore near the crest. The ensemble-
average transport was evaluated with the void fraction taken into account. Results
show a mean shoreward transport above the trough level and an undertow below.
The maximum shoreward transport was found in the splash-up location, between the
mean sea level and the trough line. The maximum seaward transport near the bottom
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was found after the first splashing region when the turbulent bore is propagating
towards the shore.

Several vortices with horizontal axes are generated during the breaking. The first
one is generated by the plunging event. It is advected obliquely towards the bottom
and moves slower than the wave crest. A second vortex is created during the splash-up
phase with a vorticity amplitude greater than the first one. A third vortex is created
during the second splash-up. A fourth one is generated at the front face of the
propagating bore and remains attached to the bore up to the shoreline.

Plots of the phase-average fluctuating energy identify clearly the front of the
breaking crest as the initiation point for kinetic energy production. Fluctuations
generated at the crest spread downstream and toward the bottom. Maximum values
of fluctuating kinetic energy are found during the splashing events. The fluctuating
energy is transported shoreward under the wave crest by organized wave-induced
flow. It is spread downward by the large eddies. Our measured values of fluctuating
energy are very close, in non-dimensional form, to those measured by Govender et al.
(2002) and Ting & Kirby (1994). Bottom shear stress has a strong local maximum in
the splash-up region.

We computed the Kolmogorov length scale ηk over all the domain and found that
the average ηk was about 21 times the space resolution. We have shown that for a
half-space resolution the results, except near the crest interface, are very similar. So
we decided to compute, with the first space resolution, the different terms that appear
in the fluctuating kinetic energy propagation equation.

The dynamics of surf zone fluctuations seem to be controlled by fluctuating
transport and convection of large-scale structures. Convective, fluctuating and
production terms in the fluctuating kinetic transport equation are both important,
more particularly inside the propagating bore during the successive splash-up cycles.
Only a small portion of the wave energy loss is dissipated below the trough level.
Viscous terms are relatively low, but we did not have enough space resolution, and
the elementary PIV box size is too large to have a correct estimation of these terms
very close to the surface or to the bottom line.

We now have a large data set of space–time evolution of the velocity field, water
wave profile, and void fraction over the whole surf and swash zone. This data could
be useful for testin, as a reference benchmark, numerical codes simulating breaking
waves in a surf zone. By changing the slope angle and the incipient wave amplitude
and period, it could be useful for studying the dynamics of spilling, strong plunging
or surging breakers.

We would like to thank specifically Bertrand Zucchini for his very helpful
and careful technical assistance during the study. The French National Program
PATOM/IDAO and the CNRS provided part of financial support.

Appendix. Fluctuating kinetic energy equation

We use the following notation,
x is the cross-shore direction:
y is the spanwise direction,
z is the vertical upward direction,
Uϕ = Uϕ + U ′

ϕ with

Uϕ =(Uϕ, Vϕ, Wϕ), Uϕ = (Uϕ, V ϕ, W ϕ), U ′
ϕ = (u′

ϕ, v
′
ϕ, w

′
ϕ),

pressure: P = P + p′.
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In the following, in order to simplify the notation, we leave the substrings ϕ and the
primes:
Uϕ = (U, V , W ), U ′

ϕ = (u, v, w).
The fluctuating kinetic energy is (cf. equations (8.2) to (8.5)):

q2 =
(u2 + v2 + w2)

2
= 4

3
(u2 + w2) (A 1)

with:

v2 = 1
3

(u2 + w2). (A 2)

The kinetic energy balance equation could be written as: (Hinze 1975)

D

Dt
q2 = Transport-due-to-convection

+ Transport-due-to-pressure-gradient

+ Transport-due-to-fluctuations

+ Production + Dissipation + Diffusion (A 3)

with successively in tensorial notation:
Convective transport term:

Transport-due-to-convection = −Ui

∂

∂xi

q2, (A 4)

Transport due to pressure gradient:

Transport-due-to-pressure-gradient = − ∂

∂xi

ui

p

ρ
, (A 5)

Transport due to fluctuations:

Transport-due-to-fluctuations = − ∂

∂xi

uiq2, (A 6)

Production term:

Production = −uiuj

∂Uj

∂xi

, (A 7)

Viscous dissipation term:

Dissipation = −υ

(

∂ui

∂xj

+
∂uj

∂xi

)

∂uj

∂xi

, (A 8)

Viscous diffusion term:

Diffusion = +υ
∂

∂xi

uj

(

∂ui

∂xj

∂uj

∂xi

)

, (A 9)

where ρ and υ are, respectively, the water density and kinematic viscosity.

A.1. Convective transport term

−Transport-due-to-convection = Ui

∂

∂xi

q2 = U
∂u2

∂x
+ V

∂u2

∂y
+ W

∂u2

∂z
+ U

∂v2

∂x
+ V

∂v2

∂y

+ W
∂v2

∂z
+ U

∂w2

∂x
+ V

∂w2

∂y
+ W

∂w2

∂z
. (A 10)
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If we assume V = 0, then:

−Transport-due-to-convection = U
∂u2

∂x
+ W

∂u2

∂z
+ U

∂v2

∂x
+ W

∂v2

∂z

+ U
∂w2

∂x
+ W

∂w2

∂z
(A 11)

and considering (A 2), finally we have:

−Transport-due-to-convection =
4

3

(

U
∂u2

∂x
+ W

∂u2

∂z
+ U

∂w2

∂x
+ W

∂w2

∂z

)

. (A 12)

A.2. Fluctuating transport term

−Transport-due-to-fluctuations =
∂

∂xi

uiq2 =
∂u3

∂x
+

∂uv2

∂x
+

∂uw2

∂x
+

∂vu2

∂y
+

∂v3

∂y

+
∂vw2

∂y
+

∂wu2

∂z
+

∂wv2

∂z
+

∂w3

∂z
. (A 13)

The gradient in the spanwise direction y of the triple correlations which
involved alongshore component v could be neglected:

−Transport-due-to-fluctuations =
∂

∂xi

uiq2 =
∂u3

∂x
+

∂uv2

∂x
+

∂uw2

∂x

+
∂wu2

∂z
+

∂wv2

∂z
+

∂w3

∂z
. (A 14)

Terms with v2 could not be measured, and as previously, we used (A 2) which gives:

−Transport-due-to-fluctuations =
∂

∂xi

uiq2 =
4

3

(

∂u3

∂x
+

∂uw2

∂x
+

∂wu2

∂z
+

∂w3

∂z

)

.

(A 15)

A.3. Production term

−Production = uiuj

∂Uj

∂xi

= u2
∂U

∂x
+ uv

∂V

∂x
+ uw

∂W

∂x
+ vu

∂U

∂y
+ v2

∂V

∂y

+ vw
∂W

∂y
+ wu

∂U

∂z
+ wv

∂V

∂z
+ w2

∂W

∂z
, (A 16)

we assume V = 0, so:

−Production = uiuj

∂Uj

∂xi

= u2
∂U

∂x
+ uw

∂W

∂x
+ vu

∂U

∂y
+ vw

∂W

∂y
+ wu

∂U

∂z
+ w2

∂W

∂z
.

(A 17)

We were not able to measure the derivative in the alongshore direction y. These
regular waves are two-dimensional before breaking, with no y-variations. We assume
that the terms with derivatives in the y direction are small compared to derivatives
in the x cross-shore and z vertical directions (which is not the case during the last
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stages of breaking). We have then:

−Production = uiuj

∂Uj

∂xi

= u2
∂U

∂x
+ uw

∂W

∂x
+ wu

∂U

∂z
+ w2

∂W

∂z
. (A 18)

A.4. Viscous dissipation

Fluctuating kinetic energy dissipation is one of the most challenging parts to be
estimated in the fluctuating energy equation.

−Dissipation = υ

(

∂ui

∂xj

+
∂uj

∂xi

)

∂uj

∂xi

= υ

(

2

(

∂u

∂y

∂v

∂x

)

+ 2

(

∂u

∂z

∂w

∂x

)

+ 2

(

∂v

∂z

∂w

∂y

)

+

(

∂u

∂y

)2

+

(

∂u

∂z

)2

+

(

∂v

∂x

)2

+

(

∂v

∂z

)2

+

(

∂w

∂x

)2

+

(

∂w

∂y

)2

+ 2

(

∂u

∂x

)2

+ 2

(

∂v

∂y

)2

+ 2

(

∂w

∂z

)2
)

. (A 19)

Again, we assume that the terms with y-derivatives are small compared with other
terms, so we have:

−Dissipation = υ

(

∂ui

∂xj

+
∂uj

∂xi

)

∂uj

∂xi

= υ

(

2

(

∂u

∂z

∂w

∂x

)

+

(

∂u

∂z

)2

+

(

∂v

∂x

)2

+

(

∂v

∂z

)2

+

(

∂w

∂x

)2

+ 2

(

∂u

∂x

)2

+ 2

(

∂w

∂z

)2
)

. (A 20)

The two terms: (∂v/∂x)2 and (∂v/∂z)2 could not be measured with our PIV system.
Using the same kind of approximation as in (A 2), we arbitrarily write:

(

∂v

∂x

)2

= 1
3

(

(

∂u

∂x

)2

+

(

∂w

∂x

)2
)

, (A 21a)

(

∂v

∂z

)2

= 1
3

(

(

∂u

∂z

)2

+

(

∂w

∂z

)2
)

, (A 21b)

so we have:

−Dissipation = υ

(

∂ui

∂xj

+
∂uj

∂xi

)

∂uj

∂xi

= υ

(

2

(

∂u

∂z

∂w

∂x

)

+
4

3

(

(

∂u

∂z

)2

+

(

∂w

∂x

)2
)

+
7

3

(

(

∂u

∂x

)2

+

(

∂w

∂z

)2
) )

. (A 22)

A.5. Viscous diffusion

Diffusion = υ
∂

∂xi

uj

(

∂ui

∂xj

∂uj

∂xi

)

= υ

(

∂

∂x
u

(

∂u

∂x

)2

+
∂

∂x
v

(

∂u

∂y

∂v

∂x

)

+
∂

∂x
w

(

∂u

∂z

∂w

∂x

)

+
∂

∂y
u

(

∂v

∂x

∂u

∂y

)

+
∂

∂y
v

(

∂v

∂y

)2

+
∂

∂y
w

(

∂v

∂z

∂w

∂y

)

+
∂

∂z
u

(

∂w

∂x

∂u

∂z

)

+
∂

∂z
v

(

∂w

∂y

∂v

∂z

)

+
∂

∂z
w

(

∂w

∂z

)2
)

(A 23)
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If we remove the y-derivative, we have:

Diffusion = υ
∂

∂xi

uj

(

∂ui

∂xj

∂uj

∂xi

)

= υ

(

∂

∂x
u

(

∂u

∂x

)2

+
∂

∂x
w

(

∂u

∂z

∂w

∂x

)

+
∂

∂z
u

(

∂w

∂x

∂u

∂z

)

+
∂

∂z
w

(

∂w

∂z

)2
)

(A 24)

All four diffusion terms, which are the result of the derivative of triple correlation,
are very low. Usually, their relative share in the total energy budget is minuscule
(Piirto et al. 2003).

A.6. Pressure terms

Measuring the pressure gradient terms was beyond the capability of our experimental
apparatus. The pressure term must be solved by the energy balance by summing up
the other terms.

A.7. Conclusions

Twenty-six different terms must be estimated to yield equations (A 12), (A 15), (A 17),
(A 22) and (A 24). These terms are

U, W, u2, w2, uw, ∂U/∂x, ∂W/∂x, ∂U/∂z, ∂W/∂z, ∂u2/∂x, ∂u2/∂z, ∂w2/∂x,

∂w2/∂z, ∂u3/∂x, ∂uw2/∂x, ∂wu2/∂z, ∂w3/∂z, (∂u/∂z∂w/∂x), (∂u/∂z)2, (∂w/∂x)2,

(∂u/∂x)2, (∂w/∂z)2, ∂/∂xu(∂u/∂x)2, ∂/∂xw(∂u/∂z∂w/∂x), ∂/∂zu(∂w/∂x∂u/∂z),

∂/∂zw(∂w/∂z)2.
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