
HAL Id: hal-00192410
https://hal.science/hal-00192410

Submitted on 27 Nov 2007

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Learning Multipicity Tree Automata
Amaury Habrard, Jose Oncina

To cite this version:
Amaury Habrard, Jose Oncina. Learning Multipicity Tree Automata. ICGI 2006, 2006, TOkyo,
Japan. p.268-280. �hal-00192410�

https://hal.science/hal-00192410
https://hal.archives-ouvertes.fr

Learning Multiplicity Tree Automata�,��

Amaury Habrard1 and Jose Oncina2,� � �

1 LIF – Université de Provence
39, rue Frédéric Joliot Curie – 13453 Marseille cedex 13 – France

amaury.habrard@lif.univ-mrs.fr
2 Dep. de Lenguajes y Sistemas Informático

Universidad de Alicante E-03071 Alicante – Spain
oncina@dlsi.ua.es

Abstract. In this paper, we present a theoretical approach for the prob-
lem of learning multiplicity tree automata. These automata allows one
to define functions which compute a number for each tree. They can be
seen as a strict generalization of stochastic tree automata since they al-
low to define functions over any field K. A multiplicity automaton admits
a support which is a non deterministic automaton. From a grammati-
cal inference point of view, this paper presents a contribution which is
original due to the combination of two important aspects. This is the
first time, as far as we now, that a learning method focuses on non de-
terministic tree automata which computes functions over a field. The
algorithm proposed in this paper stands in Angluin’s exact model where
a learner is allowed to use membership and equivalence queries. We show
that this algorithm is polynomial in time in function of the size of the
representation.
Keywords: multiplicity tree automata, recognizable tree series, learning
from equivalence and membership queries.

1 Introduction

Trees are natural candidates for modeling a hierarchy in data, and for example
they are particularly relevant to model a web page. Recently, due to the potential
applications in the web, a lot of machine learning approaches devoted to trees
have been proposed. From a grammatical inference standpoint, the natural ob-
jects for dealing with tree-structured data are tree automata and tree languages
[1, 2]. These objects are natural extensions of finite automata on strings, except
that the alphabet is constituted of functional symbols representing labels of tree
nodes. Several learning algorithms has been proposed in the literature for learn-
ing tree automata. Among them we can cite those of Knuutila et al. [3], Garcia et

� This work was supported in part by the IST Programme of the European Commu-
nity, under the PASCAL Network of Excellence, IST-2002-506778. This publication
only reflects the authors’ views.

�� This work is part of the ARA marmota french projet.
� � � This work was done when the second author was visiting the LIF Marseille.

2 Amaury Habrard and Jose Oncina

al. [4] and Kosala et al. [5] for dealing with an unranked alphabet. Besombes et
al. [6] have studied the learning of regular tree languages using positive examples
and membership queries. Carme et al. [7] have proposed to learn specific tree
transducers for information extraction applications. In the probabilistic case, we
can cite Carrasco et al. [8] and Rico et al. [9]. An important remark has to be
made here: In general, these approaches have focused on learning deterministic
models which may imply the construction of models with a high complexity.

In this paper, we propose to study the learnability of multiplicity tree au-
tomata. Informally, a multiplicity tree automaton defines a function allowing
one to associate to any tree a value in a field K (for example IR or Q). We call
such an automaton a K-multiplicity tree automaton. For example, stochastic tree
automata are then particular cases of multiplicity automata where K = [0, 1].
However, multiplicity automata do not compute stochastic distribution in gen-
eral. For example, you can define multiplicity tree automata that represent a
function which computes the number of occurrences of a given symbol in a tree.
There exists a notion of support for a multiplicity automaton which corresponds
to a non deterministic finite tree automaton. This non determinism characterize
a greater expressiveness than deterministic models. Another crucial point has to
be made here. For defining a multiplicity automaton, we define functions which
compute the value of a subtree when a transition is applied to analyse the sub-
tree. In the case of a multiplicity automaton these functions are multilinear (e.g.
for symbol of arity p we define a p−linear function) and offer a good expres-
siveness for defining the global function computed by a multiplicity automaton.
In fact, the function computed by multiplicity automata are usually referred as
recognizable formal power series on trees [10, 11].

Hence, this article combines two main improvements for learning tree au-
tomata. The method we present allows us to learn tree automata with a non
deterministic support that compute functions from a set of trees to a field K.
This is, as far as we know, the first time that a learning method is proposed for
multiplicity tree automata. We think that this research direction can be very
promising due to the potential applications notably in information extraction
from the web.

In the case of strings, some learning methods of multiplicity automata have
already been published: [12]. But, there exists no similar work for trees. The
adaptation to trees is not trivial since the use of multilinear mappings for tran-
sitions are a real improvement in comparison with the string case.

We propose a learning algorithm for multiplicity tree automata which stands
in Angluin’s exact learning model [13]. In this framework, the learning algorithm
is allowed to ask queries to an oracle. The algorithm can ask equivalence queries
to know if he found the correct hypothesis. In the opposite case, a counterex-
ample is returned by the oracle. Membership queries are also available to have
information about one example. The algorithm we present runs in polynomial
time in the size of the target and needs a number of queries also polynomial in
the size of the target. This algorithm exploits a result showing that the number
of states of a minimal multiplicity tree automaton is exactly the rank (which is

Learning Multipicity Tree Automata 3

finite) of the Hankel matrix of the power tree series it represents. The under-
lying principle of our approach is to find a hierarchical basis which allows to
generate all the element of the target multiplicity automaton. This basis is then
used for building the tree automaton which is minimal since a basis is a minimal
representation by definition.

The paper is organised as follows. In Section 2, we introduce some background
about recognizable formal tree series and multiplicity automata. The Hankel
Matrix associated to a recognizable series is defined in Section 3. In this section,
we also characterize recognizable tree series in terms of the dimension of their
associated Hankel Matrix. The learning algorithm is presented in Section 4.

2 Background

To begin with, we introduce the alphabet for defining trees and the concept of
free magma which is an equivalent to the free monoid Σ∗ over strings.

Following [10], Let F be a finite set of function symbols, that is a ranked
alphabet F = F0 ∪ F1 ∪ · · · ∪ Fp. The elements in Fp are the function symbols
of arity p. We denote by M(F) the free magma generated by F . The elements
in M(F) are called trees. If t is a tree and t �∈ F0 then there exists an integer
p ≥ 0, a symbol function f ∈ Fp, and trees t1, . . . , tp such that t = f(t1, . . . , tp).

Definition 1. Let K be a commutative field. A formal power tree series (TS)
on M(F) with coefficients in K is a mapping

S : M(F) → K

The set of all TS on M(F) with coefficients in K is denoted by K{{F}}.

2.1 Recognizable Formal Power Tree Series (RTS)

Let V be a finite dimensional vector space over the field K, let dim(V) be the
dimension of V and let x ∈ V , we denote by [x]i the ith coordinate of the vector
x. In the following, the vector V will represent intermediate values used in a non
deterministic analysis of a tree by a multiplicity automaton. Each dimension
of V will correspond to the result associated to a state of the multiplicity tree
automaton.

We denote by L(V p; V) the set of p-linear mappings from V p to V . Let
L = ∪p≥0L(V p; V). The vector space V is an L-magma with L(V p; V) as the
function set with arity p. Thus any mapping µ : F → L which maps Fp into
L(V p; V) converts V into an F -magma.

Intuitively, µ will correspond to a transition in the automaton that defines
the next states used during the analysis of a tree.

Definition 2. A linear representation of the free magma M(F) is a couple
(V, µ), where V is a finite dimensional vector space over K, and where µ : F → L
maps Fp into L(V p; V) for each p ≥ 0.

4 Amaury Habrard and Jose Oncina

Thus for each f ∈ Fp, µ(f) : V p → V is p-linear, and since M(F) is free, µ
extends uniquely to a morphism µ : M(F) → V by the formula

µ(f(t1, . . . , tp)) = µ(f)(µ(t1), . . . , µ(tp)). (1)

Definition 3. let S be a TS on M(F), then S is a recognizable TS (RTS) if
there exists a triple (V, µ, λ), where (V, µ) is a linear representation of M(F),
and λ : V → K is a linear form, such that S(t) = λ(µ(t)) for all t in M(F).

(V, µ, λ) is called a Multiplicity Tree Automaton (MTA) and we say that
(V, µ, λ) is a representation of S. Intuitively, if we try to make the link between
these automata and classical automata in language theory, the states of a mul-
tiplicity automaton correspond to a basis of V . The transitions are defined by µ
and the final states by λ. According to this definition, multiplicity tree automata
can be seen as an extension of bottom-up tree automata.

In order to illustrate these objects, we provide an example introduced in [10].
We consider a recognizable tree series S (i.e. a multiplicity tree automaton)
computing the number of occurrences of a symbol f in a tree.

We define a MTA (V, λ, µ) where V = Q2 and (e1, e2) a canonical basis of V
(i.e. e1 = (1, 0) and e2 = (1, 0)). We define µ and λ such that:

∀g ∈ Fq, g �= f : µ(g)(ei1 , . . . , eiq) =

e1 if ei1 = · · · = eiq = e1

e2 if there exists exactly one eij s.t. eij = e2

0 otherwise

f ∈ Fp : µ(f)(ei1 , . . . , eip) =

e1 + e2 if ei1 = · · · = eip = e1

e2 if there exists exactly one eij s.t. eij = e2

0 otherwise

∀a ∈ F0 : µ(a) =

e1 if a �= f
e1 + e2 if a = f ∈ F0

0 otherwise

Finally λ(e1) = 0 and λ(e2) = 1.
It can be shown that µ(t) = e1 + S(t)e2, then λ(µ(t)) = S(t). Let’s see an

example of a computation of S(t). Consider t = f(a, g(f(a, a))) over the ranked
alphabet F0 = {a}, F1 = {g(·)} F2 = {′f(·, ·)′}.

µ(f(a, g(f(a, a)))) = µ(f)(µ(a), µ(g(f(a, a))))
= µ(f)(e1, µ(g)(µ(f(a, a))))
= µ(f)(e1, µ(g)(µ(f)(µ(a), µ(a))))
= µ(f)(e1, µ(g)(µ(f)(e1, e1)))
= µ(f)(e1, µ(g)(e1 + e2))
= µ(f)(e1, µ(g)(e1)) + µ(f)(e1, µ(g)(e2))
= µ(f)(e1, µ(g)(e1)) + µ(f)(e1, µ(g)(e2))
= µ(f)(e1, e1) + µ(f)(e1, e2) = e1 + e2 + e2 = e1 + 2e2

Learning Multipicity Tree Automata 5

Hence λ(µ(t)) = 2.

2.2 Contexts

We introduce contexts which allow us to define an equivalent notion of concate-
nation for trees. Let $ be a zero arity function symbol not in F0, a context is an
element of the free-magma M(F ∪ {$}) such that the symbol $ appears exactly
one time. We denote by M($, F) such set.

Let c �= $ be a context, then, there exists two integers p and n (n ≤ p),
a symbol function f ∈ Fp, trees t1, . . . , tp−1 and a context c′ such that c =
f(t1, . . . , tn−1, c

′, tn, . . . , tp−1). Let t be a tree and let c be a context, t · c denotes
the tree obtained by substituting the symbol $ in the context c by the tree t.

The µ function can be extended to work over contexts (µ : M($, F) →
L(V ; V)) recursively on the following way:

µ($)(x) = x

µ(f(t1, . . . , tn−1, c, tn, . . . , tp))(x) = µ(f)(µ(t1), . . . , µ(tn−1), µ(c)(x), µ(tn), . . . , µ(tp))

It is easy to see that µ(t · c) = µ(c)(µ(t)). Let t be a tree we define Suf(t) = {c′ :
∃t′, t′ · c = t}.

2.3 Multilinear Functions

Let V = Kd, let f : V p → V be a p-linear function, such that f(x1, . . . xp) = y
then f can be expressed as:

[y]i =
∑

1≤ji≤d

i=1,...,p

fi,j1,...,jp [x1]j1 . . . [xp]jp (2)

where fi,j1,...,jp are the dp+1 parameters that define the function f . Note that
in order to fully specify an MTA (V, µ, λ) (V = Kr), we need:

– d parameters to specify λ

–
∑

i:|Fi|�=0 |Fi|di+1 parameters to specify the multilinear functions.

Let (V, µ, λ) a MTA, as λ : V → K is a linear function it can be represented
as a vector (λ = (λ1, . . . , λd)).

In the same way, when applied over contexts, µ gives a linear function over
vectors in V (µ : M($, F) → L(V ; V)), this linear function can be represented
as a d × d matrix. For example, Using this notation, the equation λ(µ(t · c)) =
λ(µ(c)(µ(t))) can be written clearly as µ(t · c)λ = µ(t)µ(c)λ.

6 Amaury Habrard and Jose Oncina

3 Hankel Matrix and Recognizable Tree Series

3.1 The Hankel Matrix

Informally, the Hankel Matrix of a TS S is an infinite matrix that represents
all the possible values for S. The rows of the matrix are indexed by trees and
the columns by contexts. A value in this matrix corresponds to the value in the
series S for the tree built by the concatenation of the tree on the row and the
context on the column. An example is drawn on Figure 1.

Definition 4. The Hankel matrix (HM) of a TS S ∈ K{{F}} (HM(S)) is
an infinite matrix H : M(F) × M($, F) → K such that Ht,c = S(t · c) ∀t ∈
M(F), c ∈ M($, F).

$ f($, a) f($, b) f(a, $) · · ·
a S(a) S(f(a, a)) S(f(a, b)) S(f(a, a)) · · ·
b S(b) S(f(b, a)) S(f(b, b)) S(f(a, b)) · · ·
f(a, a) S(f(a, a)) S(f(f(a, a), a)) S(f(f(a, a), b)) S(f(a, f(a, a))) · · ·
...

...
...

...
...

. . .

Fig. 1: An example of the Hankel Matrix of a tree series S.

Let t be a tree, a row of the Hankel Matrix is defined by Ht, then Ht(c) = Ht,c.

Lemma 1. Let (V, µ, λ) an MTA of a TS S ∈ K{{F}}, let H the Hankel Matrix
of S, then rank(H) ≤ dim(V).

Proof. Let d = dim(V), define a ∞× d matrix R such that R(t, i) = [µ(t)]i and
define a d ×∞ matrix C such that C(i, c) = [µ(c)λ]i. Clearly, H = RC, but as
rank(C) ≤ d and rank(R) ≤ d, then rank(H) ≤ d.
�

3.2 Recognizable Tree Series

We are going to show that a TS is recognizable if an only if its HM has a finite
rank. For this purpose, we will introduce the notion of hierarchical generator
and show that this generator allows us to generate all the entries of the HM.

Definition 5. Let H be an HM, we say that B = {e1, . . . , ed} is a hierarchical
generator (HG) in H if

1. each ei ∈ B is linearly independent (LI) of the rest (�αj ∈ K : Hei =∑
1≤j≤d, i�=j αiHej)

2. ∀ei = f(ei1 , . . . , eip) ∈ B then eij ∈ B, j = 1, . . . , p.
3. There is no tree t = f(ei1 , . . . , eip), t �∈ B, eij ∈ B, j = 1, . . . , d, such that t

is LI of B.

Learning Multipicity Tree Automata 7

Algorithm HG(H)

input: Hankel matrix H
output: a hierarchical generator B

1. initialize B = {}, i = 1
2. search for the smaller tree ei = f(ei1 , . . . , eip) such that eij ∈ B, j = 1, . . . , p and

Hei is not a linear combination of {He1 , . . . , Hei−1}.
3. if not found then halt.

if found then add it to B and increment i.
4. go to 2

Algo. 1: Algorithm HG to obtain a Hierarchical Generator from a Hankel Matrix.

Algorithm MTAB(H)

input: a Hankel matrix H
output: a representation (V, µ, λ)

1. Obtain a hierarchical generator e1, . . . , ed from H .
2. Set dim(V) = d.
3. Set λi = H(ei), i = 1, . . . , d
4. ∀p,∀f ∈ Fp,∀i1, . . . , ip, 1 ≤ ij ≤ d, let αi such that: Hf(ei1 ,...,eip) =

Pr
i=1 αiHei .

Then fix fi,i1,...,ip = αi.

Algo. 2: Algorithm MTAB that builds representation from a Hankel Matrix.

Given any HM H, note that the previous definition does not imply that any
HG for H should be a basis for the HM. A HG can be easily extracted from an
HM following Algorithm 1 HG. In order to eliminate any ambiguity, we should
fix an arbitrary order on trees, any order can be chosen.

Algorithm 2 describes the algorithm MTAB to extract an MTA from an HM.
Although in the present version it works on infinite HM (then it is not really an
algorithm) we are going to use it later with finite size portions of the HM.

Now we present a series of lemma necessary to show that the multiplicity
automaton extracted by algorithm MTAB represents the TS defined by its HM.
Let δij representing a function that returns always 0 except when i = j it returns
1.

Lemma 2. Let H be the Hankel matrix of a RTS S ∈ {{K}}. Let (V, µ, λ) =
MTAB(H), then

[µ(ei)]j = δij .

Proof. Note that as ei are elements of the generator and let ei = f(ei1 , . . . , eip),
using the algorithm, fk,i1,...,ip = δik.

We prove the result by induction in the height of the trees in the generator.
Let ei ∈ F0, then p = 0 and fk = δik, in such case, [µ(ei)]j = fj = δij as required.

8 Amaury Habrard and Jose Oncina

Now let ei = f(ei1 , . . . , eip) and suppose, by induction, that [µ(eij)]k = δijk, j =
1, . . . , p. Then,

[µ(ei)]j = [µ(f(ei1 , . . . , eip))]j
= [µ(f)(µ(ei1), . . . , µ(eip))]j by Equation 1

=
∑
jl

fj,j1,...,jp [µ(ei1)]j1 . . . [µ(eip)]jp µ(f) is a multilinear function

=
∑
jl

fj,j1,...,jpδi1j1 . . . δipjp induction step

= fj,i1,...,ip = δij by Algorithm MTAB
�

Note that as a consequence of the Lemma 2, µ(ei)λ = H(ei), i = 1, . . . , r.

Lemma 3. Let H be the HM of a RTS S ∈ {{K}}. Let (V, µ, λ) = MTAB(H).
Let B = {e1, . . . , ed} = HG(H). then,

µ(f(ej1 , . . . , ejp)) =
r∑

j=1

fj,j1,...,jpµ(ej). (3)

Proof.

ˆ
µ(f(ej1 , . . . , ejp))

˜
i
=

ˆ
(µf)(µ(ej1), . . . µ(ejp))

˜
i

by Equation 1

=
X

1≤ki≤p

fi,k1,...,kp [µ(ej1)k1] . . . [µ(ejp)kp] by Equation 2

=
X

1≤ki≤p

fi,k1,...,kpδj1,k1 . . . δjp,kp by Lemma 2

= fi,j1,...,jp

=

"
rX

j=1

fj,j1,...,jpδij

#
i

=

"
rX

j=1

fj,j1 ,...,jpµ(ej)

#
i

by Lemma 2 ��

Lemma 4. Let H be the HM of a RTS S ∈ {{K}}. Let (V, µ, λ) = MTAB(H).
Let B = {e1, . . . , ed} = HG(H). Then, for all context c

Hei(c) = µ(ei)µ(c)λ.

Proof. By induction, the base case (c = $) is evident since µ(ei)λ = Hei($). Let
us show that Hf(ej1 ,...,ejp)(c) = µ(f(ej1 , . . . , ejp) · c)λ.

Learning Multipicity Tree Automata 9

Hf(ej1 ,...,ejp)(c) =
d∑

j=1

fj,j1,...,jpHej (c) by algorithm MTAB

=
d∑

j=1

fj,j1,...,jpµ(ej)µ(c)λ by induction step

= µ(f(ej1 , . . . , ejp))µ(c)λ by Lemma 3
= µ(f(ej1 , . . . , ejp) · c)λ
�

Theorem 1. Let H be the HM of a RTS S ∈ {{K}}. Let (V, µ, λ) = MTAB(H).
Then, S(t) = µ(t)λ.

Proof. Let B = {e1, . . . , ed} = HG(H). Note that for f ∈ F0

Hf (c) =
d∑

i=1

fiHei(c) by Algorithm MTAB

=
d∑

i=1

fiµ(ei)µ(c)λ by Lemma 4

=
d∑

i=1

fi

d∑
j=1

[µ(ei)]j [µ(c)λ]j

=
d∑

i=1

fi

d∑
j=1

δij [µ(c)λ]j by Lemma 2

=
d∑

i=1

fi [µ(c)λ]i

=
d∑

i=1

µ(f)i [µ(c)λ]i by Equation 2

= µ(f)µ(c)λ = µ(f · c)λ

And we have what we wanted because for any tree t, it exists an f ∈ F0 and
a context c such that t = a · c . Then, S(t) = Hf (c) = µ(f · c)λ = µ(t)λ.
�
Corollary 1. Let H be the Hankel Matrix of a RTS S ∈ {{K}}. Then, the
MTA (V, µ, λ) that represents S with a smaller dim(V) satisfies that rank(H) =
dim(V).

Proof. By Lemma 1 we have that rank(H) ≤ dim(V), and by Theorem 1 we
have shown that, using algorithm MTAB, we can build a representation (V, µ, λ)
consistent with H such that dim(V) ≤ rank(H).
�

10 Amaury Habrard and Jose Oncina

Corollary 2. Let H be the HM of a RTS S ∈ {{K}}, HG(H) is a basis, i.e.
HG(H) can generate all the Hankel Matrix H.

Corollary 3. Let H be the Hankel Matrix of a RTS S ∈ {{K}}. The MTA
(V, µ, λ) = MTAB(H) is the representation of S that minimizes dim(V).

4 Inference algorithm

The learning model we use is the exact learning model of Angluin [13]. Let f be
a target function. At each step of the inference procedure, the learning algorithm
can propose an hypothesis function h by making an equivalence query (EQ) to an
oracle. This oracle answers YES if h is equivalent to f on all input assignments.
In this case the target is identified, the learning algorithm succeeds and halts.
Otherwise, the answer to the equivalence query is NO and the algorithm receives
a counterexample, that is an assignment z such that f(z) �= h(z). Moreover, the
learning algorithm is also allowed to query an oracle for the value of the function
f on a particular assignment z by making a membership query (MQ) on z. The
response to such a query is the value f(z). We say that the learner identifies
a class of functions F , if, for every function f ∈ F , the learner outputs an
hypothesis h that is equivalent to f and does so in polynomial time in the “size”
of a shortest representation of f and the length of the longest counterexample.

To begin with, we define an experimental table which corresponds to a sub-
matrix of the Hankel Matrix of a the target series S.

Definition 6. An experiment table (ET) is a 3-tuple (T, C, Ĥ) such that: T is
a set of trees, C is a set of contexts, Ĥ : T × C → K a submatrix of an HM.

In the following, we will maintain this table filled such that Ĥt,c = S(t · c).
Next definition will allows us to apply algorithm MTAB to any Experiment

Table.

Definition 7. Let M = (T, C, Ĥ) be an ET and let B = HG(Ĥ). M is closed if
∀p, ∀f ∈ Fp, ∀ei1 , . . . , eip ∈ B, f(ei1 , . . . , eip) ∈ T

Algorithm 3 close is able to close any ET. Note that any call to close will
include all the symbols in F0.

The following definition will ensure that any extracted MTA by MTAB is con-
sistent with the data in the Experiment Table.

Definition 8. Let M = (T, C, Ĥ) be a closed ET, let (V, µ, λ) = MTAB(M). An
ET is consistent if ∀t ∈ T, ∀c ∈ C, µ(t · c)λ = Ĥt,c.

Definition 9. A set of contexts C is suffix complete if ∀c ∈ C, ∀c1, c2 : c1 ·c2 = c
then c2 ∈ C.

Lemma 5. Let M = (T, C, Ĥ) be a closed ET such that C is suffix complete
and let (V, µ, λ) = MTAB(M). For any tree t = f · c : f ∈ F0, c ∈ C, then
µ(f · c)λ = Ĥf,c.

Learning Multipicity Tree Automata 11

Algorithm close(M)

input: an ET M = (T, C, Ĥ)
output: a closed ET M

1. Let B ← HG(M)
2. if ∃p,∃f ∈ Fp,∃ei1 , . . . , eip ∈ B

f(ei1 , . . . , eip) �∈ T
then T ← T ∪ f(ei1 , . . . , eip)
else halt

3. go to 1

Algo. 3: Algorithm close allowing to
close a table.

Algorithm consistent(M)

input: an experiment table
M = (T, C, Ĥ)

output: a consistent table M

1. M ← close(M)
2. if exists t ∈ T, c ∈ C : Ĥt,c �= µ(t · c)λ

then C ← C ∪ Suf(t · c)
else halt

3. make membership queries to fill Ĥ
4. go to 1

Algo. 4: Algorithm consistent allowing
to keep a table consistent

Proof. Sketch. A similar technique used in the proof of Theorem 1 allows to prove
the result. Note that since some proofs of lemmas needed to show Theorem 1
use induction over trees and contexts, C should be suffix complete in order to
guarantee its correctness.
�
Lemma 6. Let M = (C, T, Ĥ) be a closed table with C suffix complete and let
(V, µ, λ) = MTAB(M). Consider t ∈ T and c ∈ C such that µ(t · c)λ �= Ĥt,c, we
can decompose t ·c = f ·c′ where f ∈ F0. Let M ′ = (T ′, C′, Ĥ ′) = closed((T, C∪
Suf(f · c′), Ĥ)); then µ′(f · c′)λ = Ĥ ′

f,c′ . Moreover, rank(Ĥ ′) > rank(Ĥ).

Proof. Sketch. A direct application of Lemma 5 ensures that µ′(f · c′)λ = Ĥ ′
f,c′ .

On the other hand, all the trees of the HG(M) are linearly independent. By
adding new contexts in C, those trees remain linearly independent and then they
will be a part of HG.

Let A = MTAB(M) and A′ = MTAB(M ′). Clearly all the trees in HG(M) are also
in HG(M ′) but new trees should appear in HG(M ′), otherwise, by construction,
A = A′ and this is impossible because µ(f · c′)λ �= µ′(f · c′)λ.

Thus, rank(Ĥ ′) > rank(Ĥ).
�

Theorem 2. Let MQ and EQ respectively membership and equivalence oracles
of a RTS S with an associated Hankel matrix H. Let r = rank(H) LearnMTA(MQ,
EQ) returns the minimal representation compatible with the target in polyno-
mial time making at most r equivalence queries and |A|m membership queries,
where m is the length of the longest counterexample returned by the Equivalence
Queries.

Proof. In the same way as Lemma 6, it can be shown that the counterexample
acts in a similar way as when a non consistency is found in the ET. In any case,
after the consistent call (after step 4 of LearnMTA) a new MTA compatible
with all the data in the ET is obtained. As shown in Lemma 6, the hierarchical

12 Amaury Habrard and Jose Oncina

Algorithm LearnMTA(EQ, MS)

input: an equivalence oracle EQ
input: a membership oracle MS
output: a MTA A

1. Initialize: T = {}, C = {}, A = an empty MTA, M = (T, C, Ĥ) an empty ET.
2. Ask an equivalence query EQ(A).

If the answer is YES then halt with output A.
Otherwise the answer is NO and z is a counterexample.

3. Add Suf(z) to C.
4. M ← consistent(M)
5. A← MTAB(M)
6. go to 2

Algo. 5: inference algorithm LearnMTA

generator HG of this MTA has strictly more trees than the previous one. As the
number of trees in HG can not be bigger than the rank of the HM for the target
MTA, then the process should finish and gives the correct hypothesis.

Now, looking at the time complexity, since all the steps of the algorithm can
be done in polynomial time with respect to the size of the target MTA (linear
independence of a set of vector, Algorithms HG, MTAB, close and consistent),
it is evident that algorithm LearnMTA runs in polynomial time.

With respect to the queries, it is easy to see that the number of Equivalence
Queries can no be larger than r (at most one for each tree added to HG).

Moreover, note that the all the results of the membership queries are stored
in the equivalence table or were used to calculate the λ vector (of size r). It is
easy to see that |T | =

∑
i:Fi �=0 |Fi|ri and that |C| ≤ r.m since for a tree t we

can define no more than |t| contexts. Reminding that |A| =
∑

i:Fi �=0 |Fi|ri+1 + r
then, the number of Membership Queries is lower that |T ||C| + r ≤ |A|m.
�

5 Conclusion

In this paper we proposed a learning algorithm for identifying multiplicity tree
automata that define functions associating a number to any tree. We showed that
the size of a minimal multiplicity tree automaton is function of the finite rank
of its Hankel matrix. Our algorithm is able to identify the minimal automata in
polynomial time in the exact learning model of Angluin. The originality of our
approach is to find a hierarchical basis that permits to generate all the elements
of the target series.

We think that multiplicity tree automata can offer a wide range of poten-
tial applications, especially for extraction information from the web. We showed
that this class of automata is identifiable and our perspective is to find efficient
approaches in other learning paradigms. We have begin to study a possible ex-

Learning Multipicity Tree Automata 13

tension of the approach presented in [14, 15], which allows to learn stochastic
languages on strings represented by multiplicity automata, to trees.

References

1. Gécseg, F., Steinby, M.: Tree Automata. Akadémiai Kiadó, Budapest (1984)
2. Comon, H., Dauchet, M., Gilleron, R., Jacquemard, F., Lugiez, D., Tison, S.,

Tommasi, M.: Tree Automata Techniques and Applications . Available from:
http://www.grappa.univ-lille3.fr/tata (1997)

3. Knuutila, T., Steinby, M.: Inference of tree languages from a finite sample: an
algebraic approach. Theoretical Computer Science 129(2) (1994) 337–367

4. Garcia, P., Oncina, J.: Inference of recognizable tree sets. Research Report DSIC
- II/47/93, Universidad Politécnica de Valencia (1993)

5. Kosala, R., Bruynooghe, M., den Bussche, J.V., Blockeel, H.: Information extrac-
tion from web documents based on local unranked tree automaton inference. In:
Proceedings of IJCAI 2003. (2003) 403–408

6. Besombes, J., Marion, J.: Learning tree languages from positive examples and
membership queries. In: Proceedings of ALT’04, Springer (2004) 440–453

7. Carme, J., Gilleron, R., Lemay, A., Niehren, J.: Interactive learning of node se-
lecting tree transducer. Machine Learning (2006) to appear.

8. Carrasco, R., Oncina, J., Calera-Rubio, J.: Stochastic inference of regular tree
languages. Machine Learning 44(1/2) (2001) 185–197

9. Rico-Juan, J., Calera, J., Carrasco, R.: Probabilistic k-testable tree-languages. In:
Proceedings of ICGI 2000. Volume 1891 of LNCS., Springer (2000) 221–228

10. Berstel, J., Reutenauer, C.: Recognizable formal power series on trees. Theoretical
Computer Science 18 (1982) 115–148

11. Esik, Z., Kuich, W.: Formal tree series. Journal of Automata Languages and
Combinatorics 8(2) (2003) 219–285

12. Beimel, A., Bergadano, F., Bshouty, N., Kushilevitz, E., Varricchio, S.: Learning
functions represented as multiplicity automata. Journal of the ACM 47(3) (2000)
506–530

13. Angluin, D.: Learning regular sets from queries and counterexamples. Information
and Computation 75(2) (1987) 87–106

14. Denis, F., Esposito, Y., Habrard, A.: Learning rational stochastic languages. In:
Proceedings of COLT’06. (2006) to appear.

15. Denis, F., Esposito, Y.: Rational stochastic language. Technical report, LIF -
Université de Provence (2006)

