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Abstract. We consider the problem of learning stochastic tree languages from a
sample of trees independently drawn from a probability distributionP . Usually,
from a grammatical inference point of view, we estimateP in a class of model
such as probabilistic tree automata. We propose to work in a strictly larger class:
the class of rational stochastic tree languages. These languages can, in fact, be
computed by rational tree series or, equivalently, by multiplicity tree automata. In
this paper, we provide two contributions. First, we show that rational tree series
admit a canonical representation with parameters that can be efficiently estimated
from samples. Then, we give an efficient inference algorithm that identify the
class of rational stochastic tree languages in the limit with probability one.

1 Introduction

In this paper, we stand in the field of probabilistic grammatical inference and we focus
on the learning of stochastic tree languages. Astochastic tree languageis a probability
distribution over the set of treesT (F) built on a ranked finite alphabetF . Given a
sample of trees independently drawn according to an unknown stochastic languageP ,
we aim at finding an estimate ofP in a given class of models. Natural candidates in
this framework areprobabilistic tree automata. Carrascoet al. have proposed to learn
deterministicstochastic tree automata [1]. Specific work forprobabilistic k-testable tree
languageswas presented in [2] and for learning stochastic grammars in [3]. However, to
our knowledge, no efficient inference algorithm capable of identifying the whole class
of probabilistic tree automata is known.

Here, we can make a parallel with results on stochastic languages on strings. Indeed,
there exists no efficient algorithm capable of identifying the whole class of probabilis-
tic automata on strings either and the main reason is that we cannot define a canonical
structure for these models. Most former results deal with specific subclasses of the class
of probabilistic automata. Recently, it has been proposed to consider a larger class of
models: the classSrat

R of rational stochastic languages [4]. In the field of strings, a
rational stochastic languageis a stochastic language that can be computed by amul-
tiplicity automaton, whose parameters may be positive or negative. Rational stochastic
languages have a minimal canonical representation while such canonical representa-
tions do not exist for probabilistic automata. And it has been shown that the class of
rational stochastic languages can be inferred in the limit with probability 1 [5,6]. The
aim of this paper is to study an extension of these results to the case of trees.



Rational tree series have been studied in [7,8]. As far as we know, very few ap-
proaches have focused on the learning of tree series but we can mention two papers
that stand in a variant of the MAT learning model of Angluin: [9] in a general case and
[10] in a deterministic case. But, to the best of our knowledge, this is the first attempt
for learning rational stochastic tree languages. Note that the adaptation to trees is not
trivial. Prefixes and suffixes of a string are also strings. The equivalent notions for trees
aresubtreesandcontexts(a contextc is a tree one leaf of which acts as a variable, so
that substituting a treet to the variable yields a new treec[t]), which are not similar
objects. In the case of words, it can be shown that any rational seriesr has a canoni-
cal representation that can be built on derived rational series of the formu̇r such that
u̇r(v) = r(uv) for any stringv. The corresponding notion for trees could be rational
series of the forṁcr wherec is a context, which associatesr(c[t]) with each treet.
However, it seems impossible to build a canonical representation on them and we need
to consider much more sophisticated objects.

Let R〈〈T (F)〉〉 be the vector space composed of all rational series defined on the
set of treesT (F), let r ∈ T (F) be a tree rational series, letW be the subspace of
R〈〈T (F)〉〉 spanned by all the series of the formċr.

The first result of this paper shows that we can define a canonical representation
of r on the dual vector spaceW ∗ composed of all the linear forms defined onW . We
show that given an order onT (F), a canonical basis{t1, . . . , tn} - whose elements
naturally correspond to trees - can be defined forW ∗. This point is important from a
machine learning perspective. First, we show that such a basis can be extracted from
any sufficiently large sample of trees drawn according to the target. Second, it can be
shown that the canonical representation has a minimal number of parameters to infer.
This leads us to the inference part of our paper.

Our second contribution consists in proposing an inference algorithm which iden-
tifies in the limit any rational stochastic tree language with probability one. We show
that there exists a sample size above which the structure of the canonical representation
is identified with probability one. Moreover, we show that the parameters output by the
algorithm converge to the true parameters at a convergence rate equal toO(|S|γ) where
γ ∈]− 1/2, 0[.

The paper is organized as follows. In Section 2, we introduce some preliminaries
and notation. The notion of canonical linear representation for rational tree series is
presented in Section 3. We propose our inference algorithm in Section 4. We conclude
by a discussion and a description of future work in Section 5.

2 Preliminaries

2.1 Formal Power Series on Trees

See [11] for references on trees. LetF = F0 ∪ F1 ∪ · · · ∪ Fp be a ranked alphabet
where the elements inFm are the function symbols ofarity m. Let T (F) be the set
of all the trees that can be constructed fromF . Let us define theheight of a treet
by: height(t) = 0 if t ∈ F0 andheight(t) = 1 + Max{height(ti)|i = 1..m} if
t = f(t1, . . . , tm). For any integern, let us defineTn(F) (resp.T≤n(F)) the set of
trees whose height is equal ton (resp.≤ n).



Let $ be a zero arity function symbol not inF0. A contextis an element ofT (F ∪
{$}) such that the symbol $ appears exactly once. We denote byC(F) the set of all the
contexts that can be defined overF . Let t be a tree and letc be a context,c[t] denotes
the tree obtained by substituting the symbol$ in the contextc by the treet. A subsetA
of T (F) is prefixial if for any c ∈ C(F) and anyt ∈ T (F), c[t] ∈ A⇒ t ∈ A.

A formal power tree seriesonT (F) is a mapping:r : T (F)→ R.
The set of all formal power series onT (F) is denoted byR〈〈T (F)〉〉. It is a vector

space, when provided with addition and multiplication by a scalar.
Let V be a finite dimensional vector space overR. We denote byL(V p;V ) the set

of p-linear mappings fromV p to V . Let L = ∪p≥0L(V p;V ). We denote byV ∗ the
dual space ofV , i.e. the vector space composed of all the linear forms defined onV .

Definition 1. A linear representationof T (F) is a couple(V, µ), whereV is a finite
dimensional vector space overR, and whereµ : F → L mapsFp into L(V p;V ) for
eachp ≥ 0.

Thus for eachf ∈ Fp, µ(f) : V p → V is p-linear. It can easily be shown thatµ
extends uniquely to a morphismµ : T (F)→ V by the formula

µ(f(t1, . . . , tp)) = µ(f)(µ(t1), . . . , µ(tp)). (1)

Theµ function can be extended to work over contexts. Letµ : C(F) → L(V ;V ) be
inductively defined as follows:

µ($)(v) = v
µ(f(t1, . . . , ti−1, c, ti+1, . . . , tn))(v) = µ(f)(µ(t1), . . . , µ(ti−1), µ(c)(v), µ(ti+1), . . . , µ(tn)).

It can be shown that for any contextc and any termt, µ(c)(µ(t)) = µ(c[t]).
Let (V, µ) be a linear representation ofT (F) and letVT (F) be the vector subspace of

V spanned byµ(T (F)). It can be shown that(VT (F), µ) is also a linear representation
of T (F). We say that(V, µ) is trimmedif V = VT (F). Let A be a prefixial subset of
T (F) and letVA be the subspace ofV spanned byµ(A). Suppose that for anyf ∈ F
and anyt1, . . . , tm ∈ A wherem = arity(f), µ(f(t1, . . . , tm)) ∈ VA. Then,VA =
VT (F). As a consequence, a basis ofVT (F) can be extracted fromµ(A). Therefore,
given a linear representation(V, µ) of T (F), a basis ofVT (F) can be computed within
polynomial time.

Definition 2. Letr be a formal series overT (F), r is a recognizable tree seriesif there
exists a triple(V, µ, λ), where(V, µ) is a linear representation ofT (F), andλ : V → R
is a linear form, such thatr(t) = λ(µ(t)) for all t in T (F).

Rational tree series have been studied in [7]. It has been shown that the notions of
recognizable tree series and rational tree series coincide. From now on, we shall refer
to them by using the term ofrational tree series. Note also that rational series on strings
can be seen as particular cases of rational series on trees and hence, counterexamples
designed in the first field can be directly exported in the second one.



Example 1.Let F = {a, b, g(·), f(·, ·)}, let V = R2 and let(e1, e2) be a basis ofV .
We defineµ andλ by:

µ(a) = 2e1/3, µ(b) = e2/2, µ(g)(e1) = e2/2, µ(g)(e2) = 0,

µ(f)(ei, ej) =
{

e1/3 if i = 1 andj = 2
0 otherwise

and
λ(e1) = 1 andλ(e2) = 0.

We have

µ(f(a, b)) = µ(f)(µ(a), µ(b)) = e1/9 andµ(f(a, g(a))) = µ(f)(µ(a), µ(g)(µ(a))) = 2e1/27.

Hence,r(a) = 2/3, r(b) = 0, r(f(a, b)) = 1/9, r(f(a, g(a))) = 2/27 wherer(t) =
λ(µ(t)) for any treet.

Definition 3. A multiplicity tree automaton(MA) overF is a tupleA = (Q,F , τ, δ)
whereQ is a set of states,τ is a mapping fromQ to R and δ is a mapping from
∪m≥0Fm ×Qm ×Q to R.

A multiplicity automaton is a device that can be used to compute tree series. They
can be interpreted in a bottom-up or a top-down way, sinceδ(f, q1, . . . , qm, q) = w can
be rewritten as a bottom-up rule or a top-down rule.

f(q1, . . . , qm) w→ q or q
w→ f(q1, . . . , qm).

A probabilistic tree automaton(PA) is an MAA = (Q,F , τ, δ) which satisfies the
following conditions:

– δ andτ take their values in[0, 1],
–

∑
q∈Q τ(q) = 1,

– for anyq ∈ Q,
∑

f(q1,...,qm)
w→q

w = 1.

Multiplicity automata and linear representations are two equivalent ways to repre-
sent rational series. For example, let(V, µ, λ) be a linear representation of the formal
seriesr defined onT (F) and letB = (e1, . . . , en) be a basis ofV . A multiplicity
automatonA = (Q,F , λ, δ) can be associated with(V, µ, λ,B) as follows:

– Q = {e1, . . . , en},
– δ(f, ei1 , . . . , eim , ej) = wj for anyf ∈ Fm whereµ(f)(ei1 , . . . , eim) =

∑
j wjej .

Conversely, an equivalent linear representation can be associated with any multiplicity
automaton.

Example 2.It can easily be shown that the linear representation described in Example 1
is equivalent to the probabilistic automaton defined by:Q = {e1, e2}, τ(e1) = 1,
τ(e2) = 0 and

δ = {e1
2/3→ a, e1

1/3→ f(e1, e2), e2
1/2→ b, e2

1/2→ g(e1)}.



2.2 Rational Stochastic Tree Languages

Definition 4. A stochastic tree languageover T (F) is a tree seriesr ∈ K〈〈T (F)〉〉
such that for anyt ∈ T (F), 0 ≤ r(t) ≤ 1 and

∑
t∈T (F) r(t) = 1.

Therefore, arational stochastic tree languageis a stochastic tree language which
admits a linear representation. Stochastic languages that can be computed by a prob-
abilistic automaton are rational. However, the converse is false: there exists a ratio-
nal stochastic tree language that cannot be computed by a probabilistic automaton [4].
Moreover, it can be shown that the rational series computed by a PA is not always
a stochastic language. For example, it can easily be shown that the PA defined by

Q = {q}, τ(q) = 1, δ = {q α→ a, q
1−α→ f(q, q)} defines a stochastic language iff

α ≥ 1/2. Whenα < 1/2,
∑

t∈T (F) r(t) < 1 [12].
Let P be a stochastic tree language overT (F). We consider infinite samplesS

composed of trees independently drawn according toP . For any integerm, let Sm be
the sample composed of them first elements ofS. We denote byPSm

the empirical
distribution associated withSm. LetA = (Ai)i∈I be a family of subsets ofT (F). It
can be shown [13,14] that for any confidence parameterδ and any integerm, with a
probability greater than1− δ, for anyi ∈ I,

|PSm
(Ai)− P (Ai)| ≤ C

√
d−log δ

4
m · (2)

whered is the Vapnik-Chervonenkis dimension ofA andC is a universal constant. In
particular, with a probability greater than1− δ, for anyt ∈ T (F),

|PSm
(t)− P (t)| ≤ C

√
1−log δ

4
m · (3)

Let Ψ(d, ε, δ) = C2

ε2 (d − log δ
4 ). One can easily verify that ifm ≥ Ψ(d, ε, δ), with a

probability greater than1− δ, |PSm(Ai)− P (Ai)| ≤ ε for any indexi.
Borel-Cantelli Lemma states that if(Ak)k∈N is a family of events such that

∑
k P (Ak) <

∞, the probability that a finite number of eventsAk occur is equal to 1.
Check that for anyα such that−1/2 < α < 0 and anyβ < −1, if we defineεk =

kα andδk = kβ , then there existsK such that for allk ≥ K, we havek ≥ Ψ(1, εk, δk).
For such choices ofα andβ, we havelimk→∞ εk = 0 and

∑
k≥1 δk < ∞. Therefore,

from Borel-Cantelli Lemma, it can easily be shown that with probability 1, there exists
K such that for anyk ≥ K, for anyt ∈ T (F),

|PSk
(t)− P (t)| ≤ εk· (4)

3 A Canonical Linear Representation for Rational Tree Series

The main goal of the paper is to show that any rational stochastic tree languageP can
be inferred in the limit from an infinite sample drawn according toP with probability
1. The first step is to define thecanonical linear representationof a rational tree series
r, whose components only depend onr.



3.1 Defining the Canonical Representation

Let c ∈ C(F). We define the (linear) mappinġc : R〈〈T (F)〉〉 → R〈〈T (F)〉〉 by:

ċ(r)(t) = r(c[t]).

Lemma 1. Let r be a rational series and let(V, µ, λ) be a linear representation ofr.
For any contextc, ċr is rational and(V, µ(c) ◦ µ, λ) is a linear representation oḟcr.

Proof. Indeed, for any termt,

ċr(t) = r(c[t]) = λµ(c[t]) = λµ(c)(µ(t)) = λ(µ(c) ◦ µ)(t). ut

Let r be a formal power series onT (F). Let us denote byWr the vector subspace
of R〈〈T (F)〉〉 spanned by{ċr|c ∈ C(F)}.

Lemma 2. If r is rational, then the dimension ofWr is finite.

Proof. Let (V, µ, λ) be a linear representation ofr. For any contextc, λµ(c) ∈ V ∗.
Since the dimension ofV ∗ is finite, there existsc1, . . . , cn s.t. for any contextc, there
existsα1, . . . , αn s.t.λµ(c) =

∑
i αiλµ(c). Check that{ċ1r, . . . , ċnr} spansWr. ut

Let W ∗
r be the dual space ofWr, i.e. the set of all linear forms defined overWr. For

anyt ∈ T (F), let t ∈W ∗
r be defined by:∀s ∈Wr, t(s) = s(t).

Lemma 3. Letf(u1, . . . , ui, . . . , up), t1, . . . , tn ∈ T (F) and suppose thatui =
∑n

j=1 αjtj
for some indexi. Then,

f(u1, . . . , ui, . . . , up) =
n∑

j=1

αjf(s1, . . . , tj , . . . , sp).

Proof. Let ci be the contextf(u1, . . . , $, . . . , un) where$ is at thei-th position. For
anys ∈Wr,

f(u1, . . . , ui, . . . , up)(s) = ui(ċis) =
n∑

j=1

αjtj(ċis) =
n∑

j=1

αjf(u1, . . . , tj , . . . , up)(s).

ut

Suppose that the dimension ofWr is finite and let{c−1
1 r, . . . , c−1

n r} be a basis of
Wr. One can show that there existsn termst1, . . . , tn such that the rank of the matrix
(c−1

i r(tj))1≤i,j≤n is n. Therefore,(t1, . . . , tn) is a basis ofW ∗
r .

Let r be a rational series. We know that the dimension ofWr is finite. Lett1, . . . , tn
be n terms such that(t1, . . . , tn) is a basis ofW ∗

r . We define a linear representation
(W ∗

r , ν, τ) of r as follows:

– for anyf ∈ Fp, defineν(f) ∈ L((W ∗
r )p;W ∗

r ) byν(f)(ti1 , . . . , tip
) = f(ti1 , . . . , tip

).
– τ ∈ (W ∗

r )∗ = Wr by τ(t) = r(t).

Lemma 4. For any termt ∈ T (F), ν(t) = t.



Proof. Let t = f(s1, . . . , sp) ∈ T (F) and letsi =
∑n

j=1 αj
i ti. Using the previous

lemma, we have

ν(f)(s1, . . . , sp) =
∑

j1,...,jp

αj1
1 . . . αjp

p f(tj1 , . . . , tjp) = f(s1, . . . , sp)

Remark thatν andτ do not depend on any basis chosen forW ∗
r .

Theorem 1. (W ∗
r , ν, τ) is a linear representation ofr which is called thecanonical

linear representationof r.

Proof. For any termt, τ(ν(t)) = τ(t) = r(t). ut

Given a total order≤ on T (F), there exists a unique subsetB of ν(T (F)) which
is a basis ofW ∗

r and such that for anys ∈ T (F), s ∈ B or {s} ∪ {t ∈ B|t ≤ s} is
linearly dependent. We say thatB is the canonical basis ofW ∗

r (wrt ≤).

3.2 Building the Canonical Representation

Given ann-dimensional trimmed linear representation(V, µ, λ) for r, it is possible to
build the canonical representation ofr in time polynomial innp wherep is the maximal
arity of symbols inF . The proof of this result relies on the following lemma:

Lemma 5. Given ann-dimensional trimmed linear representation(V, µ, λ) for the ra-
tional seriesr and givent1, . . . , tm ∈ T (F), it is decidable whether{t1, . . . , tm} is
linearly independent in time polynomial innm.

Proof (sketch).It is easy to show that if{(µ(t1), . . . , µ(tm)} is linearly independent in
V , then{t1, . . . , tn} is also linearly independent.

Now, letu =
∑n

i=1 αiµ(ti) where theαi are not all zero. Lets1, . . . , sn ∈ T (F) be
such that(µ(s1), . . . , µ(sn)) forms a basis ofV . Consider the smallest vector subspace
Vu of V such that:

– u ∈ Vu and
– for any context on the formc = f(si1 , . . . , sij−1 , $, sij+1 , . . . , sf ) and anyv ∈ Vu,

µ(c)(v) ∈ Vu.

If for any v in Vu, λ(v) = 0 then the relation
∑n

i=1 αiti = 0 holds.
If for somev in Vu, there exists a contextc such that

∑n
i=1 αiti(c) 6= 0. Such a context

c can be used to find another candidate linear combination
∑n

i=1 αiµ(ti) or to show
that{t1, . . . , tn} is linearly independent. ut

Proposition 1. Given ann-dimensional trimmed linear representation(V, µ, λ) for the
rational seriesr, a basis forW ∗

r can be computed in time polynomial innp.

Proof. One can verify that Algorithm 1 computes a basis ofW ∗
r . ut



Data : A trimmed linear representation(V, µ, λ) for r

Result : A basisB of W ∗
r

begin
B ← ∅; is a basis← False;
while not is a basisdo

is a basis← True;
for everyf ∈ F do

let p = arity(f);
for t1, . . . , tp ∈ B do

if B ∪ f(t1, . . . , tp) is linearly independentthen
B = B ∪ f(t1, . . . , tp); is a basis← False;

end

Algorithm 1: Building a canonical linear representation ofr

One can remark that the linear representation is only used to check whetherB ∪
f(t1, . . . , tp) is linearly independent. Therefore, the linear representation can be re-
placed by an oracle that says whetherB ∪ f(t1, . . . , tp) is linearly independent. Such
an oracle could be achieved, in a variant of the MAT learning model of Angluin, by us-
ing amembership oraclewhich would computer(t) for any treet and anequivalence
oraclewhich would say whether the current representation computesr, and would pro-
vide a counterexample(t, r(t)) otherwise. See [9,10] for related work.

Example 3.Let us consider the linear representation of Example 2.

– a 6= 0 sincea($) = 2/3.
– {a, b} is linearly independent sincea(f(a, $)) = 0 andb(f(a, $)) = 1/9.
– We havef(a, a) = g(b) = f(b, a) = f(b, b) = 0.
– We have alsog(a) = 2b/3 andf(a, b) = a/6.

Therefore,{a, b} is a basis of the canonical linear representation ofr.

4 Inference of Rational Tree Series in the Limit

In this section, we show how to identify in the limit a canonical linear representation of
a rational stochastic tree languageP from an infinite sampleS of trees independently
drawn according toP .

Let (W ∗, ν, τ) be the canonical linear representation of the target. Given a total
order≤ onT (F) satisfyingheight(t) < height(t′)⇒ t ≤ t′, the aim of the algorithm
is to identify the canonical basisB = {t1, . . . , tn} of W ∗ associated with≤. Let tmax

be the maximal element of{t1, . . . , tn}. Let S be an infinite sample independently
drawn according toP and letSm be the sample composed of them first elements ofS.
We have to show that with probability one, there exists an integerN such that for any
n ≥ N , the following properties can be identified fromSn:



– B = {t1, . . . , tn} is linearly independent,
– for anyt ≤ tmax, B ∪ {t} is linearly dependent,
– for any f ∈ F and any1 ≤ i1, . . . , ip ≤ n, B ∪ {f(ti1 , . . . , tip)} is linearly

dependent, wherep is the arity off .

Given these relations, a linear representation(W ∗, νn, τn) can be computed. Then, we
have to show that the (multi-) linear mappingsνn(f) for anyf ∈ F andτn converge to
the correct ones.

Since we are working on finite samplesSn, we cannot consider exact linear depen-
dencies. LetT be a finite subset ofT (F), letSn be a finite sample composed ofn trees
independently drawn from the target, lett ∈ T (F), let {xs|s ∈ T} be a set of variables
and letε > 0. We denote byI(T, t, Sn, ε) the following set of inequalities :

I(T, t, Sn, ε) = {|t(ċPS)−
∑
s∈T

xss(ċPS)| ≤ ε|c ∈ C(Sn)}

wherePS is the empirical distribution onSn and whereC(S) = {c ∈ C(F)|∃t ∈
T (F) s.t.c[t] ∈ Sn} .

Let S be an infinite sample of the targetP . Suppose that{t}∪{s|s ∈ T} is linearly
independent. We show that, with probability 1, there existsε > 0 and a sample sizeM
from whichI(T, t, Sm, ε) has no solution.

Lemma 6. LetP be a stochastic language and let{t0, t1, . . . , tn} be a set of trees such
that{t0, t1, . . . , tn} is linearly independent. Then, with probability one, for any infinite
sampleS of P , there exists a positive numberε and an integerM such that for every
m ≥M , I({t1, . . . , tn}, t0, Sm, ε) has no solution.

Proof. Let S be an infinite sample ofP . Suppose that for everyε > 0 and every integer
M , there existsm ≥ M such thatI({t1, . . . , tn}, t0, Sm, ε) has a solution. Then, for
any integerk, there existsmk ≥ k such thatI({t1, . . . , tn}, t0, Smk

, 1/k) has a solution
(α1,k, . . . , αn,k).

Let ρk = Max{1, |α1,k|, . . . , |αn,k|}, γ0,k = 1/ρk andγi,k = −αi,k/ρk for 1 ≤
i ≤ n. For everyk, Max{|γi,k| : 0 ≤ i ≤ n} = 1. Check that for any contextc:

∀k ≥ 0,

∣∣∣∣∣
n∑

i=0

γi,kti(ċPSmk
)

∣∣∣∣∣ ≤ 1
ρkk
≤ 1

k
.

There exists a subsequence(α1,φ(k), . . . , αn,φ(k)) of (α1,k, . . . , αn,k) such that
(γ0,φ(k), . . . , γn,φ(k)) converges to(γ0, . . . , γn). We show below that we should have∑n

i=0 γiti(ċP ) = 0 for every contextc, which is contradictory with the independence
assumption sinceMax{γi : 0 ≤ i ≤ n} = 1 and hence, someγi is not zero.

Let c ∈ C(F). With probability 1, there exists an integerk0 such thatc ∈ C(Smk
)

for anyk ≥ k0. For such ak, we can write

γiti(ċP ) = (γiti(ċP )− γiti(ċPSmk
)) + (γi − γi,φ(k))ti(ċPSmk

) + γi,φ(k)ti(ċPSmk
)



and therefore∣∣∣∣∣
n∑

i=0

γiti(ċP )

∣∣∣∣∣ ≤
n∑

i=0

|ti(ċP − ċPSmk
)|+

n∑
i=0

|γi − γi,φ(k)|+
1
k

which converges to 0 whenk tends to infinity.
ut

Let S be an infinite sample of the targetP . Suppose thatt =
∑

s∈T αss. We show
that, with probability 1, for anyγ ∈]−1/2, 0[, there exists a sample sizeM from which,
I(T, t, Sm,mγ) has a solution for anym ≥M .

Lemma 7. Let P be a stochastic language and lett0, t1, . . . , tn be a set of trees such
that there existα1, . . . , αn ∈ R such thatt0 =

∑n
i=1 αiti. Then, for anyγ ∈]−1/2, 0[,

with probability one, for any infinite sampleS ofP , there existsK s.t.I({t1, . . . , tn}, t0, Sk, kγ)
has a solution for everyk ≥ K.

Proof. Let S an infinite sample ofP . Letα0 = 1 and letR = Max{|αi| : 0 ≤ i ≤ n}.
With probability one, there existsK1 s.t.∀k ≥ K1, k ≥ Ψ(1, [kγ(n + 1)R]−1, [(n +
1)k2]−1) (see definition ofΨ in Section 2). Letk ≥ K1, for anyc ∈ C(F),

|t0(ċPSk
)−

n∑
i=1

αiti(ċPSk
)| ≤ |t0(ċPSk

)− t0(ċP )|+
n∑

i=1

|αi||ti(ċPSk
)− ti(ċP )|.

From the definition ofΨ , with probability greater than1 − 1
k2 , for any i = 0, . . . , n

and any contextc, |ti(ċPSk
)− ti(ċP )| ≤ [k−γ(n + 1)R]−1 and therefore|t0(ċPSk

)−∑n
i=1 αiti(ċPSk

)| ≤ kγ . For any integerk ≥ K1, let Ek be the event:|t0(ċPSk
) −∑n

i=1 αiti(ċPSk
)| > kγ . SincePr(Ek) < 1/k2, from the Borel-Cantelli Lemma, the

probability that a finite number ofEk occurs is 1.
Therefore, with probability 1, there exists an integerK such that for anyk ≥ K,

I({t1, . . . , tn}, t0, Sk, kγ) has a solution. ut

In the next lemma, we focus on the convergence of the parameters found when
resolving an inequation system.

Lemma 8. Let P ∈ S(T (F)), let t0, t1, . . . , tn such that{t1, . . . , tn} is linearly in-
dependent and letα1, . . . , αn ∈ R be such thatt0 =

∑n
i=1 αiti. Then, for anyγ ∈

]− 1/2, 0[, with probability one, for any infinite sampleS of P , there exists an integer
K such that∀k ≥ K, any solutionα̂1, . . . , α̂n of I({t1, . . . , tn}, t0, Sk, kγ) satisfies
|α̂i − αi| < O(kγ) for 1 ≤ i ≤ n.

Proof. Let c1, . . . , cn ∈ C(F) be such that the square matrixM defined byM [i, j] =
tj(ċiP ) for 1 ≤ i, j ≤ n is invertible. LetA = (α1, . . . , αn)t, U = (t0(ċ1P ),
. . . , t0(ċnP ))t. We haveM × A = U . Let S be an infinite sample ofP , let k ∈ N
and letα̂1, . . . , α̂n be a solution ofI({t1, . . . , tn}, t0, Sk, kγ). Let Mk be the square
matrix defined byMk[i, j] = tj(ċiPSk

) for 1 ≤ i, j ≤ n, let Ak = (α̂1, . . . , α̂n)t and
Uk = (t0(ċ1PSk

), . . . , t0(ċnPSk
))t. We have

‖MkAk − Uk‖2 =
n∑

i=1

[t0(ċiPSk
)−

n∑
j=1

α̂jtj(ċiPSk
)]2 ≤ nk2γ .



Data : S a finite sample ofk trees,γ ∈]− 1/2, 0[

Result : a linear representation(V, λ, µ)

begin
a0 ← min(F0 ∩ Subtrees(S));
B ← {a0}; µ(a0)← a0; λa0 ← Ps(a0);
FS ←

S
f∈Fp,p≥0{f(tj1 , . . . , tjp)|tij ∈ B}; FS ← FS\{a0};

while FS 6= ∅ do
t← min(FS); FS ← FS\{t};
if I(B, t, S, kγ) has no solutionthen

B ← B ∪ {t}; µ(t)← t; λt ← PS(t);
FS ← FS

S
f∈Fp,p≥1{f(tj1 , . . . , tjp)|tji ∈ B};

else
Let (αti)ti∈B a solution ofI; µ(t)←

P
ti∈B αtiti;

end

Algorithm 2: Learning algorithm Algo(S,γ)

Check thatA − Ak = M−1(MA − U + U − Uk + Uk −MkAk + MkAk −MAk)
and therefore, for any1 ≤ i ≤ n

|αi − α̂i| ≤ ‖A−Ak‖ ≤ ‖M−1‖(‖U0 − Uk‖+ n1/2kγ + ‖Mk −M‖‖Ak‖).

Now, by using Equation 4 and Borel-Cantelli Lemma as in the proof of Lemma 7,
with probability 1, there existsK such that for allk ≥ K, ‖U0 − Uk‖ < O(kγ)
and ‖Mk − M‖ < O(kγ). Therefore, for allk ≥ K, any solutionα̂1, . . . , α̂n of
I({t1, . . . , tn}, t0, Sk, kγ) satisfies|α̂i − αi| < O(kγ) for 1 ≤ i ≤ n. ut

The learning algorithm is presented in Algorithm 2 and works as follows. We sup-
pose that a total order is defined overT (F) such thatheight(t) < height(t′)⇒ t ≤ t′.
To begin with, we extract the first constant symbola0 of the learning sample and we put
it in the basis setB. We define the frontier set(FS) to be composed of all the trees of
the formf(a0, . . . , a0). Note thatFS contains all the constant symbols different from
a0. Then, the algorithm processes the frontier set while it is not empty. For each treet
in this set, we check if it can approximately be expressed according to a linear combi-
nation of the elements of the current basis. If the answer is no, we addt to the basis and
we enlarge the frontier set by adding all the trees of the formf(t1, . . . , tm) where every
ti ∈ B. Otherwise, we use the linear relation obtained from the inequation system to
complete the definition ofµ.

We can now present the theorem of convergence in the limit.

Theorem 2. LetP be a rational stochastic tree language defined onT (F), let (V, µ, λ)
be the canonical linear representation ofP , let B = {t1, . . . , tn} the canonical ba-
sis ofV (associated with some known total order onT (F)) and letγ ∈] − 1/2, 0[.
Then, with probability one, for any infinite sampleS of P , there exists an integer
K such that for anyk ≥ K, Algo(Sk, γ) identifiesB. Moreover, let(V, µk, λk) be



the linear representation output by the algorithm. There exists a constantC such that
|µk(f)(ti1 , . . . , tin

)− µ(f)(ti1 , . . . , tin
)| ≤ Ckγ and |λk(ti)− λ(ti)| ≤ Ckγ for any

f ∈ F and any elementsti, tij of B.

Proof. Lemmas 6 and 7 prove that the basisB will be identified from some step with
probability one. Lemma 8 can then be used to prove the last part of the theorem.ut

WhenP is a rational stochastic tree language which takes its values in the set of
rational numbersQ, the algorithm can be completed to exactly identify it. The proof
is based on the representation of real numbers by continuous fractions. See [15] for a
survey on continuous fractions and [16] for a similar application.

Let (εn) be a sequence of non negative real numbers which converges to0, let
x ∈ Q, let (yn) be a sequence of elements ofQ such that|x − yn| ≤ εn for all but
finitely manyn. It can be shown that there exists an integerN such that, for anyn ≥ N ,

x is the unique rational numberpq which satisfies
∣∣∣yn − p

q

∣∣∣ ≤ εn ≤ 1
q2 . Moreover, the

unique solution of these inequalities can be computed fromyn.
Let P be a rational stochastic tree language which takes its values inQ, let γ ∈

] − 1/2, 0[, let S be an infinite sample ofP and let(V, µk, λk) the linear represen-
tation output by the algorithm on input(Sk, γ). Let (V, µ′k, λ′k) be the representation
derived from(V, µk, λk) by replacing every parameterαk = µk(f(ti1 , . . . , tin

)) or

αk = λk(ti) with a solutionp
q of

∣∣∣αk − p
q

∣∣∣ ≤ kγ/2 ≤ 1
q2 and letAlgo′ be the corre-

sponding algorithm.

Theorem 3. Let P be a rational stochastic tree language which takes its values inQ,
let γ ∈] − 1/2, 0[, and let(V, µ, λ) be its canonical linear representation. Then, with
probability one, for any infinite sampleS of P , there exists an integerK such that
∀k ≥ K, Algo′(Sk, γ) returns(V, µ, λ).

Proof. From the previous theorem, for every parameterα of (V, µ, λ), the correspond-
ing parameterαk in (V, µk, λk) satisfies|α − αk| ≤ Ckγ for some constantC, from
some stepk, with probability one. Therefore, ifk is sufficiently large, we have|α −
αk| ≤ kγ/2 and there exists an integerK such thatα = p/q is the unique solution

of
∣∣∣α− p

q

∣∣∣ ≤ kγ/2 ≤ 1
q2 . Therefore, the parameter corresponding toα in the linear

representation output byAlgo′(Sk, γ) is α itself. ut
Example 4.To illustrate the principle of our algorithm. Consider the following learning
sample made up of 20 trees (the number of occurrences of each term is indicated inside
brackets):
{a[13], f(a, b)[4], f(a, g(a))[1], f(a, g(f(a, g(a))))[1], f(f(f(a, g(a)), b), b)[1]}.
In a first step the algorithm putsa in the basis and setsµ(a) = a.
Next, the algorithm considers the constant symbolb. To check ifb should belong to

the basis, the algorithm constructs a set of inequations with the contexts definable in the
learning set. For sake of simplicity, we will not consider all the contexts, but only 3 of
themc0 = $, c1 = f($, b), c2 = f(a, $). We obtain the following inequation system:

|b(ċ0pS)−Xaa(ċ0pS)| = |pS(c0[b])−XapS(c0[a])| = |0−Xa
13
20 | ≤ ε

|b(ċ1pS)−Xaa(ċ1pS)| = |pS(c1[b])−XapS(c1[a])| = | 4
20 −Xa0| ≤ ε

|b(ċ2pS)−Xaa(ċ2pS)| = |pS(c2[b])−XapS(c2[a])| = |0−Xa
4
20 | ≤ ε



If we setε to 0.1, the systems admits no solution and thenb is added to the basis
with λb = 0.

The algorithm examine the termsf(a, a), g(a), f(a, b), f(b, a), f(b, b), g(b). Since,
the values ofpS according to the 3 contexts is null forf(a, a) f(b, a), f(b, b) andg(b)
we do not show the inequation systems.

Forg(a) the system obtained is:

|g(a)(ċ0pS)−Xaa(ċ0pS)−Xbb(ċ0pS)| = |0−Xa
13
20 −Xa0| ≤ ε

|g(a)(ċ1pS)−Xaa(ċ1pS)−Xbb(ċ1pS)| = |0−Xa
4
20 −Xb| ≤ ε

|g(a)(ċ2pS)−Xaa(ċ2pS)−Xbb(ċ2pS)| = | 1
20 −Xa0−Xb

4
20 | ≤ ε

Xa = 0 andXb = 1
4 is a solution of the system, then the algorithm setsµ(g)(a) = 1

4b.
Forf(a, b), the inequation system is:

|f(a, b)(ċ0pS)−Xaa(ċ0pS)−Xbb(ċ0pS)| = | 4
20 −Xa

13
20 −Xa0| ≤ ε

|f(a, b)(ċ1pS)−Xaa(ċ1pS)−Xbb(ċ1pS)| = |0−Xa
4
20 −Xb0| ≤ ε

|f(a, b)(ċ2pS)−Xaa(ċ2pS)−Xbb(ċ2pS)| = |0−Xa0−Xb
4
20 | ≤ ε

Xa = 4
13 andXb = 0 is a solution of the system, then the algorithm setsµ(f)(a, b) =

4
13a. The representation obtained is finally:

µ(a) = a, µ(b) = b, µ(g)(a) = 1
4b, µ(f)(a, b) = 4

13a, λa = 13
20 , λb = 0.

5 Discussion, Future Work and Conclusion

We have proved a theoretical result: rational stochastic tree languages are identifiable
in the limit with probability one. The inference algorithm we use runs within polyno-
mial time and approximates the parameters of the model with usual statistical rates of
convergence. How can it be used in practical cases? Can it be improved?

First of all, the algorithm highly relies on an inequation system which aims at de-
tecting linear combinations

I(T, t, Sn, ε) = {|t(ċPSn
)−

∑
s∈T

xss(ċPSn
)| ≤ ε|c ∈ C(Sn)}.

However, this system uses contexts which can be poorly represented in current samples.
We can overcome this drawback by usinggeneralized contexts, i.e. contexts containing
several variables.

Let $0, $1, . . . , $k be zero arity function symbols not inF0. A generalized context
is an element ofT (F ∪ {$0, $1, . . . , $k}) such that$0 appears exactly once and each
other new symbol appears at most once. Now, for any stochastic languagesP and any
generalized contextc, we define

t(ċP ) = ċP (t) =
∑

t1,...,tk∈T (F)

P (c[$0 ← t, $1 ← t1, . . . , $k ← tk]).



We can then replace the inequation systemI(T, t, Sn, ε) with

I(T, t, Sn, ε) = {|t(ċPSn
)−

∑
s∈T

xss(ċPSn
)| ≤ ε|c ∈ Cg

k(Sn)}

whereCg
k(Sn) is the set of generalized context withk variables occurring inSn.

If the number of new variables in not bounded, the VC-dimension of the set of gen-
eralized contexts is unbounded. However, it can easily be shown that the VC-dimension
of the set of generalized contexts withk variables is bounded by2k + 1. Therefore,
we can adjust the number of variables to the size of the current learning sample in the
inference algorithm in order to avoid overfitting.

Next, the rational seriesr output by the inference algorithm is not a stochastic lan-
guage. Moreover, it may happen that the sum

∑
t∈T (F) r(t) diverges. We conjecture

that as soon as the size of the learning sample is large enough, with a high probability,
the sum

∑
t∈T (F) r(t) is absolutely convergent, i.e.

∑
t∈T (F) |r(t)| converges.

Given this property, it is possible to normalize the linear representation output by
the algorithm in such a way that it computes a seriesr satisfying

∑
t∈T (F) |r(t)| <∞

and
∑

t∈T (F) r(t) = 1.
Consider the canonical linear representation(V, µ, λ) of a rational tree seriesr and

letB = {t1, . . . , tn} be a basis ofV . For any treet, r(t) = t(r($)) =
∑n

i=1 αt
iti(r($)) =∑n

i=1 αt
ir(ti). Then, when

∑
t∈T (F) r(t) is absolutely convergent,

∑
t∈T (F) αt

i is ab-
solutely convergent for any indexi. Hence,si =

∑
t∈T (F) αt

i is defined without ambi-
guity. One can show thatsi can be efficiently estimated.

Then, we can normalize the representation as follows: let(V, µN , λN ) be defined
by

– ∀f ∈ F , [µN (f)(tj1 , . . . , tjp)]i = [µ(f)(tj1 , . . . , tjp)]i · πp
k=1sjk

/si.
– λN (ti) = λ(ti)× si for any element ofλN .

It can easily be shown that(V, µN , λN ) computesr and that∑
tj1 ,...,tjp∈B [µN (f(tj1 , . . . , tjp))]i = 1.

We can then adjust the linear formλ by multiplying each of its coordinates by a constant
in order to get a seriesr which sums to 1.

However, it may happen that the seriesr takes negative values. We call such a se-
ries, apseudo-stochastic language. From these languages, we can extract a probability
distributionPr such thatPr(t) = 0 if r(t) < 0 and otherwisePr(t) = btr(t) with a
normalization that compensates the loss of the negative values. We may compute this
distribution iteratively when developing a tree. Suppose that at a given step, we are
building a tree with some leaves labeled by states. We choose to develop a new branch
from any of these states. We consider all the transitions leaving from the considered
state grouped by symbols. If all the possible expansions with a given symbol lead to a
negative value, then we omit this symbol and we renormalized the probabilities of the
other expansions. Note that whenr defines a stochastic language,Pr = r since there
will be no negative values. See [6] for a more detailed description of this point, in the
case of pseudo-stochastic languages defined on strings.



To conclude, we have studied in this paper the inference of a stochastic tree language
P from a sample of trees independently drawn according toP . We have proposed to
work in the class of rational stochastic tree languages that are stochastic languages com-
puted by rational tree series. We have presented two contributions. First, we have shown
that rational tree series admit a canonical linear representation. Then, we have proposed
an inference algorithm which identifies in the limit the class of rational stochastic tree
languages. Our future work will concern improvements of our approach in practical
cases as evoked in the previous discussion.
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