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Abstract. We consider the problem of learning stochastic tree languages from a
sample of trees independently drawn from a probability distribuffotusually,

from a grammatical inference point of view, we estim&tén a class of model

such as probabilistic tree automata. We propose to work in a strictly larger class:
the class of rational stochastic tree languages. These languages can, in fact, be
computed by rational tree series or, equivalently, by multiplicity tree automata. In
this paper, we provide two contributions. First, we show that rational tree series
admit a canonical representation with parameters that can be efficiently estimated
from samples. Then, we give an efficient inference algorithm that identify the
class of rational stochastic tree languages in the limit with probability one.

1 Introduction

In this paper, we stand in the field of probabilistic grammatical inference and we focus
on the learning of stochastic tree languagestdchastic tree language a probability
distribution over the set of tre€B(F) built on a ranked finite alphabe®. Given a
sample of trees independently drawn according to an unknown stochastic larfguage
we aim at finding an estimate d@f in a given class of models. Natural candidates in
this framework argrobabilistic tree automataCarrasceet al. have proposed to learn
deterministicstochastic tree automata [1]. Specific workfoobabilistic k-testable tree
languagesvas presented in [2] and for learning stochastic grammars in [3]. However, to
our knowledge, no efficient inference algorithm capable of identifying the whole class
of probabilistic tree automata is known.

Here, we can make a parallel with results on stochastic languages on strings. Indeed,
there exists no efficient algorithm capable of identifying the whole class of probabilis-
tic automata on strings either and the main reason is that we cannot define a canonical
structure for these models. Most former results deal with specific subclasses of the class
of probabilistic automata. Recently, it has been proposed to consider a larger class of
models: the class;** of rational stochastic languages [4]. In the field of strings, a
rational stochastic languagis a stochastic language that can be computed imyla
tiplicity automaton whose parameters may be positive or negative. Rational stochastic
languages have a minimal canonical representation while such canonical representa-
tions do not exist for probabilistic automata. And it has been shown that the class of
rational stochastic languages can be inferred in the limit with probability 1 [5,6]. The
aim of this paper is to study an extension of these results to the case of trees.



Rational tree series have been studied in [7,8]. As far as we know, very few ap-
proaches have focused on the learning of tree series but we can mention two papers
that stand in a variant of the MAT learning model of Angluin: [9] in a general case and
[10] in a deterministic case. But, to the best of our knowledge, this is the first attempt
for learning rational stochastic tree languages. Note that the adaptation to trees is not
trivial. Prefixes and suffixes of a string are also strings. The equivalent notions for trees
aresubtreesand contexty(a contextc is a tree one leaf of which acts as a variable, so
that substituting a treeto the variable yields a new tregt]), which are not similar
objects. In the case of words, it can be shown that any rational sehias a canoni-
cal representation that can be built on derived rational series of thedorsnch that
ar(v) = r(uv) for any stringv. The corresponding notion for trees could be rational
series of the formir wherec is a context, which associateéc[t]) with each tree.
However, it seems impossible to build a canonical representation on them and we need
to consider much more sophisticated objects.

Let R((T'(F))) be the vector space composed of all rational series defined on the
set of treesI'(F), letr € T(F) be a tree rational series, I8¢ be the subspace of
R{(T'(F))) spanned by all the series of the form

The first result of this paper shows that we can define a canonical representation
of r on the dual vector spad®™* composed of all the linear forms defined Bn. We
show that given an order ofi(F), a canonical basi$ty, ..., ¢,} - whose elements
naturally correspond to trees - can be definedlf6t. This point is important from a
machine learning perspective. First, we show that such a basis can be extracted from
any sufficiently large sample of trees drawn according to the target. Second, it can be
shown that the canonical representation has a minimal number of parameters to infer.
This leads us to the inference part of our paper.

Our second contribution consists in proposing an inference algorithm which iden-
tifies in the limit any rational stochastic tree language with probability one. We show
that there exists a sample size above which the structure of the canonical representation
is identified with probability one. Moreover, we show that the parameters output by the
algorithm converge to the true parameters at a convergence rate eqabto) where
v €] —1/2,0].

The paper is organized as follows. In Section 2, we introduce some preliminaries
and notation. The notion of canonical linear representation for rational tree series is
presented in Section 3. We propose our inference algorithm in Section 4. We conclude
by a discussion and a description of future work in Section 5.

2 Preliminaries

2.1 Formal Power Series on Trees

See [11] for references on trees. LEt= Fy U F; U --- U F, be a ranked alphabet
where the elements ift,,, are the function symbols afrity m. Let T'(F) be the set
of all the treesthat can be constructed froth. Let us define théneightof a treet
by: height(t) = 0if t € Fy andheight(t) = 1 + Max{height(t;)|i = 1..m} if

t = f(t1,...,tm). For any integen, let us definel™ (F) (resp.7<"(F)) the set of
trees whose height is equaltqresp.< n).



Let $ be a zero arity function symbol not iy. A contextis an element of (F U
{$}) such that the symbol $ appears exactly once. We denot§ 5 the set of all the
contexts that can be defined ovEr Lett be a tree and let be a context¢[t] denotes
the tree obtained by substituting the symBah the context: by the tree. A subsetd
of T'(F) is prefixialif forany c € C(F) and anyt € T(F), c[t] € A=t € A.

A formal power tree seriesn T'(F) is a mappingr : T(F) — R.

The set of all formal power series @r(F) is denoted bR {(T'(F))). It is a vector
space, when provided with addition and multiplication by a scalar.

Let V be a finite dimensional vector space oferWe denote byC(V?; V) the set
of p-linear mappings fronV’? to V. Let £ = U,>oL(V?; V). We denote by * the
dual space of/, i.e. the vector space composed of all the linear forms defindd.on

Definition 1. A linear representationf T'(F) is a couple(V, ), whereV is a finite
dimensional vector space ovEr, and whereu : 7 — £ mapsF, into L(V?; V) for
eachp > 0.

Thus for eachf € F,, u(f) : VP — V is p-linear. It can easily be shown that
extends uniquely to a morphism: T'(F) — V by the formula

plf (s tp)) = p(F) (u(tr), - -5 pltp))- 1)

The p function can be extended to work over contexts. fLetC(F) — L(V;V) be
inductively defined as follows:

a(8)(v) = v
ﬁ(f(tla s bic1, Gt . 7tn))(v) = /‘(f)(/j“(tl)7 s aM(tifl)aﬁ(c)(v)7u(ti+l)7 s au(tn))'

It can be shown that for any contexand any ternt, 7i(c)(u(t)) = p(c[t]).

Let(V, u) be alinear representation’t{ F) and letV ) be the vector subspace of
V spanned by:(T'(F)). It can be shown thatl#), 1) is also a linear representation
of T'(F). We say tha(V, i) is trimmedif V' = Vp(z). Let A be a prefixial subset of
T(F) and letV4 be the subspace &f spanned by:(A). Suppose that for any € F
and anyty,...,t, € Awherem = arity(f), p(f(t1,...,tm)) € V4. Then,V, =
VrF). As a consequence, a basis1of ) can be extracted from(A). Therefore,
given a linear representatidi, 1) of T'(F), a basis o) can be computed within
polynomial time.

Definition 2. Letr be a formal series oveF(F), r is arecognizable tree seriéfithere
exists atriple(V, u, A), where(V, 11) is a linear representation &f (F), andA : V — R
is a linear form, such that(¢) = A(u(t)) for all ¢ in T'(F).

Rational tree series have been studied in [7]. It has been shown that the notions of
recognizable tree series and rational tree series coincide. From now on, we shall refer
to them by using the term oétional tree series. Note also that rational series on strings
can be seen as particular cases of rational series on trees and hence, counterexamples
designed in the first field can be directly exported in the second one.



Example 1.Let F = {a,b,g(-), f(-,)}, letV = R? and let(ey, e2) be a basis of’.
We defineu and A\ by:

pa) = 2e1/3, u(b) = e2/2, u(g)(e1) = e2/2, u(g)(e2) = 0,

- _Je/3ifi=1andj =2
p(f)ei ej) = {0 otherwise
and

Aler) = 1andA(ez) = 0.

We have

p(f(a, b)) = p(f)(p(a), u(b)) = e1/9 andu(f(a, g(a))) = u(f)(p(a), u(g)(p(a))) = 2e1/27.

Hence,r(a) = 2/3,7(b) = 0,7(f(a,b)) = 1/9,r(f(a,g(a))) = 2/27 wherer(t) =
A(p(t)) for any treet.

Definition 3. A multiplicity tree automatorfMA) over F is a tupleA = (Q, F, 7, 9)
where @ is a set of statesr is a mapping from@ to R and ¢ is a mapping from
Umzofm x QM x QtoR.

A multiplicity automaton is a device that can be used to compute tree series. They
can be interpreted in a bottom-up or a top-down way, sit¢eqs, . . ., ¢m, ¢) = w can
be rewritten as a bottom-up rule or a top-down rule.

Fl@is-vam) = qorqg = f(qr,- ... qm).

A probabilistic tree automatofPA) is an MAA = (Q, F, 7, §) which satisfies the
following conditions:

— ¢ andr take their values if0, 1],
- ZqEQ T(q) = 1'

—foranyge Q. >, , yw,w=1

Multiplicity automata and linear representations are two equivalent ways to repre-
sent rational series. For example, (& u, A\) be a linear representation of the formal
seriesr defined onT'(F) and letB = (ey,...,e,) be a basis ol/. A multiplicity
automatond = (Q, F, A, §) can be associated witlV, 1, A, B) as follows:

—Q={e,...,en},

= 6(f,€irs--sei,,65) = wjforany f € F,, whereu(f)(ei,, ..., e:,,) = >, wie;.
Conversely, an equivalent linear representation can be associated with any multiplicity
automaton.

Example 2.1t can easily be shown that the linear representation described in Example 1
is equivalent to the probabilistic automaton defined Qy:= {e1,e2}, 7(e1) = 1,
7(e2) = 0 and

2/3 1/3 1/2 1/2
0=A{e1 4 a,e; 4 fler,ea),eq 4 b, es 4 g(er)}



2.2 Rational Stochastic Tree Languages

Definition 4. A stochastic tree languagerer T'(F) is a tree series € K{(T(F)))
such thatforany € 7'(7), 0 < r(t) < land}_, 5 r(t) = 1.

Therefore, aational stochastic tree language a stochastic tree language which
admits a linear representation. Stochastic languages that can be computed by a prob-
abilistic automaton are rational. However, the converse is false: there exists a ratio-
nal stochastic tree language that cannot be computed by a probabilistic automaton [4].
Moreover, it can be shown that the rational series computed by a PA is not always
a stochastic language. For example, it can easily be shown that the PA defined by
Q=1{q}7(q) =1,6 = {g 2 aq = f(qg,q)} defines a stochastic language iff
o> 1/2.Whena < 1/2, 3, r(t) < 1[12].

Let P be a stochastic tree language o%&tF). We consider infinite sampleS
composed of trees independently drawn according.téor any integern, let.S,, be
the sample composed of the first elements ofS. We denote byPg  the empirical
distribution associated with,,. Let A = (4;);cs be a family of subsets df (F). It
can be shown [13,14] that for any confidence parameimnd any integefn, with a
probability greater thah — ¢, for anyi € I,

d—log ¢
| Ps,, (Ai) = P(A;)| < O\ — =+ 2
whered is the Vapnik-Chervonenkis dimension dfandC' is a universal constant. In
particular, with a probability greater than- ¢, for anyt € T'(F),

[P, (1) — P(t)] < 0/ 12184 3)

Let¥(d,¢,0) = f—f(d — log %). One can easily verify that ifh > ¥(d,¢,0), with a
probability greater thath — J, | Ps,, (A;) — P(A;)| < e for any index.

Borel-Cantelli Lemma states that(ifi,) < is a family of events such that, P(Ay) <
oo, the probability that a finite number of evemtg occur is equal to 1.

Check that for anyr such that-1/2 < « < 0 and anys < —1, if we definee;, =
k> ands, = k7, then there exist& such that for alk > K, we havek > (1, e, 6y).
For such choices af and3, we havelimj_.. ¢, = 0 and)_, ., dx < co. Therefore,
from Borel-Cantelli Lemma, it can easily be shown that with probability 1, there exists
K such that for any: > K, for anyt € T(F),

|Ps, (t) = P(t)] < € (4)

3 A Canonical Linear Representation for Rational Tree Series

The main goal of the paper is to show that any rational stochastic tree lanfueaye
be inferred in the limit from an infinite sample drawn accordingtavith probability
1. The first step is to define tlomnonical linear representatioof a rational tree series
r, whose components only dependion



3.1 Defining the Canonical Representation
Letc € C(F). We define the (linear) mapping R((T'(F))) — R{(T(F))) by:
¢(r)(t) = r(cft]).

Lemma 1. Letr be a rational series and I€fV, 1, ) be a linear representation of.
For any context, ¢r is rational and(V, zi(c) o u, A) is a linear representation afr.

Proof. Indeed, for any term,
ér(t) = r(cft]) = Aulcft]) = Au(e)(u(t)) = A(u(c) o p)(t). O

Let r be a formal power series GR(F). Let us denote byV,. the vector subspace
of R((T'(F))) spanned by{ér|c € C(F)}.

Lemma 2. If r is rational, then the dimension oF,. is finite.

Proof. Let (V, u, A) be a linear representation ef For any context, Afi(c) € V*.
Since the dimension df * is finite, there exists;, . .., ¢, S.t. for any context, there
existsay, . .., a, S.LAL(c) = Y, a;Afi(c). Check thafc,r, ..., c,r} spansV,. O

Let W be the dual space &7, i.e. the set of all linear forms defined ovéf.. For
anyt € T(F), lett € W be defined by¥s € W,.,t(s) = s(t).

Lemma3. Letf(ui,...,ui,...,up),t1,...,t, € T(F)andsuppose that; = Z o5t
for some index. Then,

n
flut,. .o ug, .. up) :Zajf(sl,...,tj,...,sp).
j=1

Proof. Let ¢; be the contex{f (u1,...,$,...,u,) where$ is at thei-th position. For
anys € W,

flut, .o ug, . up)(s) = w(és Z :Zajf(ul,...,tj,...,up)(s).
j=1

O

Suppose that the dimension Bf, is finite and let{c; 'r,...,c; 'r} be a basis of
W,.. One can show that there existsermst, ..., t, such that the rank of the matrix
(¢;'7(tj))1<ij<n iSn. Therefore(t, ..., t,) is a basis oV

Letr be a rational series. We know that the dimensiol#fis finite. Lettq, ..., ¢,
be n terms such thatty, ..., ¢,) is a basis ofi¥*. We define a linear representation
(W}, v,7) of r as follows:

— forany f € F,, definev(f) € L((W;)Ps W) byv(f) (i, ... ti,) = f(tig, .. ti,)-
- Te (W) =W.byr(t) =r(t).

Lemma 4. For any termt € T'(F), v(t) =

|



Proof. Lett = f(s1,...,sp) € T(F) and lets; = Z;;l o’t;. Using the previous
lemma, we have

V()BT 5 = Y ol el f(ty,, o ty,) = f(s1,.. ., 5p)

J1s--5dp

Remark that andr do not depend on any basis choseniiar.

Theorem 1. (W}, v, 7) is a linear representation of which is called thecanonical
linear representatioof r.

Proof. For any termy, 7(v(t)) = 7(t) = r(¢). O
Given a total ordeK on T'(F), there exists a unique subs@tof v(T'(F)) which

is a basis ofi¥;* and such that forany € T'(F),5 € Bor{s} U{t € BJt < s} is

linearly dependent. We say thAtis the canonical basis &7 (wrt <).

3.2 Building the Canonical Representation

Given ann-dimensional trimmed linear representatidr 1, A) for r, it is possible to

build the canonical representationrof time polynomial inn? wherep is the maximal

arity of symbols inF. The proof of this result relies on the following lemma:

Lemma 5. Given ann-dimensional trimmed linear representatiovi, 11, A) for the ra-

tional seriesr and giventy,...,t, € T(F), itis decidable whethe{t,,...,%,,} is

linearly independent in time polynomial iti".

Proof (sketch)ltis easy to show that if (u(¢1), . . ., u(t.,)} is linearly independent in

V,then{t,...,¢,} is also linearly independent.
Now, letu = Z,’f:l a;u(t;) where they; are not all zero. Let,, ..., s, € T(F) be
such thafu(sy), . .., pu(sy)) forms a basis of/. Consider the smallest vector subspace

V,, of V such that:

- ueV,and
— for any context on the form= f(s;,,...,s:;_,,%,8i,,,,...,5¢) and any € V,,
a(c)(v) € V.

If for any v in V,,, A(v) = 0 then the relatior}_"_, a;t; = 0 holds.

If for somew in V,,, there exists a contextsuch thad """, «;;(c) # 0. Such a context
c can be used to find another candidate linear combindfigh, c;s(¢;) or to show
that{¢,,...,%,} is linearly independent. O

Proposition 1. Given ann-dimensional trimmed linear representatiovi, 11, A) for the
rational seriesr, a basis forl¥;* can be computed in time polynomialrifi.

Proof. One can verify that Algorithm 1 computes a basigiaf. O



Data : A trimmed linear representatiqtV, u, A) for r
Result : A basisB of W}
begin
B < 0; is_abasis— False;
while notis_a_basisdo
is_a_basis— True;
for everyf € F do

letp = arity(f);

for t1,...,t, € Bdo

if BU f(t1,...,tp) is linearly independerthen
L B =BU f(ti,...,tp); is.abasis— False;

end

Algorithm 1: Building a canonical linear representationrof

One can remark that the linear representation is only used to check wligther
f(t1,...,tp) is linearly independent. Therefore, the linear representation can be re-
placed by an oracle that says whettigt) f(¢4,...,t,) is linearly independent. Such
an oracle could be achieved, in a variant of the MAT learning model of Angluin, by us-
ing amembership oraclevhich would compute:(¢) for any treet and anequivalence
oraclewhich would say whether the current representation computasd would pro-
vide a counterexampl@, r(¢)) otherwise. See [9,10] for related work.

Example 3.Let us consider the linear representation of Example 2.

— @ # 0 sincea($) = 2/3.
— {@,b} is linearly independent sinc# f (a, $)) = 0 andb( f(a,$)) = 1/9.
— We havef(a,a) = g(b) = f(b,a) = f(b,b) = 0.

— We have als@(a) = 2b/3 andf(a,b) = @/6.

Therefore (@, b} is a basis of the canonical linear representation of

4 Inference of Rational Tree Series in the Limit

In this section, we show how to identify in the limit a canonical linear representation of
a rational stochastic tree languagdrom an infinite samples' of trees independently
drawn according td.

Let (W*,v, ) be the canonical linear representation of the target. Given a total
order< onT'(F) satisfyingheight(t) < height(t') = t < t’, the aim of the algorithm
is to identify the canonical basiB = {#;,...,%,} of W* associated with<. Lett,,,.
be the maximal element dftq,...,¢,}. Let S be an infinite sample independently
drawn according td” and letS,,, be the sample composed of thefirst elements of.
We have to show that with probability one, there exists an intdgsuch that for any
n > N, the following properties can be identified frosh:



— B={t1,...,t,} is linearly independent,

— foranyt < ¢4, B U {t} is linearly dependent,

—forany f € Fand anyl < iy,...,ip, < n, BU{f(t;,...,t;,)} is linearly
dependent, whergis the arity off.

Given these relations, a linear representatidf‘, v,,, 7,) can be computed. Then, we
have to show that the (multi-) linear mappingg f) for any f € F andr,, converge to
the correct ones.

Since we are working on finite sampl8s, we cannot consider exact linear depen-
dencies. Lef” be a finite subset df (F), let.S,, be a finite sample composedwotrees
independently drawn from the target, tet T'(F), let {z;|s € T'} be a set of variables
and lete > 0. We denote by (T, t, S,,, €) the following set of inequalities :

I(T,t,Sp,€) = {[{(¢Ps) = Y _ 2.5(éPs)| < ele € C(S,)}
seT

where Pg is the empirical distribution or$,, and whereC'(S) = {c € C(F)|3t €
T(F)s.t.ct] € Sp} .

Let .S be an infinite sample of the targBt Suppose thaft} U {s|s € T'} is linearly
independent. We show that, with probability 1, there exists0 and a sample siz&/
from whichI(T,t, S, €) has no solution.

Lemma 6. Let P be a stochastic language and gb, ¢4, . . ., t,,} be a set of trees such
that{to,t1,...,t,} is linearly independent. Then, with probability one, for any infinite
sampleS of P, there exists a positive numbeand an integerM such that for every
m > M, I({t1,...,tn},to, Sm,€) has no solution.

Proof. Let .S be an infinite sample aP. Suppose that for every> 0 and every integer
M, there existsn > M such that/ ({¢1,...,t,}, to, Sm, €) has a solution. Then, for
any integet, there existsn;, > k suchthat ({¢,...,t,},t0, Sm,, 1/k) has a solution
(al,k; LERE an,k)-

Let pp = Max{l,|a1kl|,...,|onkl}s Yo = 1/px @ndy;r = —ayx/pr for 1 <
i < n. Foreveryk, Maz{|v; x| : 0 <i < n} = 1. Check that for any context

L 1 1
Yk > 0, i kti(CP <—< -
2 0|2 P )| S o <
There exists a subsequenes ), - - -, @n,¢(k)) Of (@1, .. ., an k) SUch that
(Y0,6(k)> - - - » Yn,6(k)) CONVErges tdo, . .., v,). We show below that we should have

iy viti(¢P) = 0 for every context, which is contradictory with the independence
assumption sincé/ax{v; : 0 <i < n} =1 and hence, somg is not zero.

Letc € C(F). With probability 1, there exists an integly such that € C(S,,,)
for anyk > kg. For such &, we can write

Yiti(¢P) = (viti(¢P) — viti(¢Ps,, ) + (Vi — Yipr))i(¢Ps,,. ) + Vipmyti(¢Ps,, )



and therefore

n

Z %tz(cp)

=0

n

. . - 1
< Z ti(¢P —¢Ps,, )|+ Z Vi — Vi,o()| + A
i=0 i=0

which converges to 0 whentends to infinity.

a

Let S be an infinite sample of the target Suppose that = 3 __ «.,5. We show
that, with probability 1, for any, €] —1/2, 0], there exists a sample sizé from which,
I(T,t, S, m") has a solution for anyn > M.

Lemma 7. Let P be a stochastic language and Igt ¢4, ..., ¢, be a set of trees such

that there existvy, ..., o, € Rsuchthaty = """ | a;t;. Then, foranyy €] —1/2,0],

with probability one, for any infinite sampleof P, there existd( s.t.I({t1, ..., tn}, to, Sk, k7)
has a solution for every > K.

Proof. Let.S an infinite sample oP. Letay = 1 and letR = Maxz{|a;| : 0 <
With probability one, there exist&; s.t.Vk > K, k > W(1,[k"(n+ 1)R] 1,
1)k?)~1) (see definition of# in Section 2). Lek > K, for anyc € C(F),

[to(¢Ps,) Z t;(¢Ps,)| < [to(éPs,) — to(¢P) |+Z|az||t (¢Ps,) — t;(¢P)).

i=1

From the definition of?, with probability greater than — 1%2 foranyi = 0,...,n
and any context, |£;(¢Ps, ) — t;(¢P)| < [k~ (n + 1)R]~! and thereforéfy(¢Ps, ) —
ZZ’ 1 a4t (¢Ps, )| < k7. For any integek > K, let E;, be the eventty(¢Ps, ) —
St aiti(¢Ps,)| > k7. SincePr(Ey) < 1/k?, from the Borel-Cantelli Lemma, the
probability that a finite number af, occurs is 1.

Therefore, with probability 1, there exists an intedérsuch that for anys > K,
I({t1,...,tn}, %o, Sk, k7) has a solution. |

In the next lemma, we focus on the convergence of the parameters found when
resolving an inequation system.

Lemma8. Let P € S(T(F)), letto,t1,...,t, such that{ty,...,t,} is linearly in-
dependent and lety, ..., o, € R be such that, = >, a;t;. Then, for anyy €

] — 1/2,0[, with probability one, for any infinite sampleof P, there exists an integer
K such thatvk > K, any solutionay, . .., a, of I({t1,...,tsn},t0, Sk, k") satisfies
|@; — o] < O(k7)for1 <i<m.

Proof. Letey, ..., ¢, € C(F) be such that the square matiiX defined byM i, j] =
t;j(¢;P)forl <i,j <nisinvertible. LetA = (a1,...,an)", U = (to(¢1 P),

., to(cnP))t. We haveM x A = U. Let S be an infinite sample oP, letk € N
and letay, ..., &, be a solution off ({¢1,...,¢,},to, Sk, k7). Let My, be the square
matrix defined byMy|i, j] = ¢;(¢;Ps, ) for1 < i,j < n,let Ay = (ay,...,a,)" and
U, = (%(C-lpsk), . ,%(C-npsk))t. We have

1M Ak = Ul* =Y [o(éiPs,) — D @55 (¢,Ps,)]” < nk™.



Data : S afinite sample ok trees;y €] — 1/2,0]
Result : alinear representatiafV, A, i)
begin
ao — min(Fo N Subtrees(S));
B —{ao};  plao) —ao; Aag — Ps(ao);
FS — Ufe]—‘,,,pzo{f(th ey tjp)|ti_,» S B}; FS — FS\{a()};
while F'S # () do
t — min(FS);, FS«— FS\{t};
if I(B,t,S, k") has no solutiorthen
B — BU {%}, ,u(t) — Ap — Ps(t);
FS «— FS Ufe}‘p,p21{f(tjl7' .. ,t]’p)‘m € B};
else
| Let(aw,)t,en asolution ofl;  pu(t) «— 35, cpawti;

end

Algorithm 2: Learning algorithm Alga§,~)

Check thatd — A, = M_I(MA —U+U—-Up + Uy — MpAp + M Ay, — MAy)
and therefore, forany <i <n

i — @il < A = Apll < IMTHIIUo = Ukl + 02k + | My, — M| Ax]).-

Now, by using Equation 4 and Borel-Cantelli Lemma as in the proof of Lemma 7,
with probability 1, there existd{ such that for allk > K, ||[Uy — Ukl < O(k")
and || M, — M| < O(k™). Therefore, for allk > K, any solutionay, ..., a, of
I({t1,...,tn}, to, Sk, k") satisfiega; — a;| < O(k7) for1 < i <n. 0

The learning algorithm is presented in Algorithm 2 and works as follows. We sup-
pose that a total order is defined oZ&(F) such thaheight(t) < height(t') =t <t
To begin with, we extract the first constant symbgbf the learning sample and we put
it in the basis seB. We define the frontier s¢'S) to be composed of all the trees of
the form f(ayo, ..., ap). Note thatF'S contains all the constant symbols different from
ap. Then, the algorithm processes the frontier set while it is not empty. For each tree
in this set, we check if it can approximately be expressed according to a linear combi-
nation of the elements of the current basis. If the answer is no, wetadtie basis and
we enlarge the frontier set by adding all the trees of the fétt, . . . , ¢,,,) where every
t; € B. Otherwise, we use the linear relation obtained from the inequation system to
complete the definition qof.

We can now present the theorem of convergence in the limit.

Theorem 2. Let P be a rational stochastic tree language defined((F), let (V, i, A)
be the canonical linear representation 8 let B = {#;,...,¢,} the canonical ba-
sis of V' (associated with some known total order ®.F)) and lety €] — 1/2,0].
Then, with probability one, for any infinite sampfe of P, there exists an integer
K such that for anyk > K, Algo(Sk,) identifies B. Moreover, let(V, u, Ax) be



the linear representation output by the algorithm. There exists a conétanich that
e (f)(tirs o ti,) — p(f)(Eiys -5 i) < CKY and [Ag(t;) — A(t:)| < CkY for any
f € F and any elements, ¢;, of B.

Proof. Lemmas 6 and 7 prove that the basiwill be identified from some step with
probability one. Lemma 8 can then be used to prove the last part of the theorem.

When P is a rational stochastic tree language which takes its values in the set of
rational numberg), the algorithm can be completed to exactly identify it. The proof
is based on the representation of real numbers by continuous fractions. See [15] for a
survey on continuous fractions and [16] for a similar application.

Let (e,,) be a sequence of non negative real numbers which converggsleo
z € Q, let (y,,) be a sequence of elements@fsuch thatz — y,,| < ¢, for all but
finitely manyn. It can be shown that there exists an intelyesuch that, for any. > N,

x is the unique rational numbé;rwhich satisfies*yn — g <e, < q% Moreover, the
unique solution of these inequalities can be computed fypm

Let P be a rational stochastic tree language which takes its valu@s let v €
] —1/2,0], let S be an infinite sample oP and let(V, uy, Ax) the linear represen-
tation output by the algorithm on inpfy, ). Let (V, i}, A},) be the representation
derived from(V, ux, A\x) by replacing every parameten, = pup(f(ti,,...,t:,)) Or
ar = A(t;) with a solutiong of ‘ak — g‘ < k2 < q% and letAlgo’ be the corre-
sponding algorithm.

Theorem 3. Let P be a rational stochastic tree language which takes its valugg,in
lety €] — 1/2,0[, and let(V, u, \) be its canonical linear representation. Then, with
probability one, for any infinite samplé of P, there exists an integeK such that
Vk > K, Algo’ (Sk,~) returns(V, u, \).

Proof. From the previous theorem, for every parametef (V, i, \), the correspond-
ing parametety;, in (V, ug, \i) satisfiesa — ai| < Ck” for some constant’, from
some stepk, with probability one. Therefore, & is sufficiently large, we havey —
agl < k7/? and there exists an integéf such that = p/q is the unique solution
of ‘oz — g < k1?2 < q% Therefore, the parameter correspondingvtm the linear

representation output bylgo’(Sk, ) is « itself. ad

Example 4.To illustrate the principle of our algorithm. Consider the following learning
sample made up of 20 trees (the number of occurrences of each term is indicated inside
brackets):

{a[13], f(a,)[4], f(a,g(a)1], f(a, g(f(a,g(a))))[L], F(f(f(a, 9(a)),b),b)[1]}.

In a first step the algorithm putsin the basis and sejs(a) = @.

Next, the algorithm considers the constant synitbdb check ifb should belong to
the basis, the algorithm constructs a set of inequations with the contexts definable in the
learning set. For sake of simplicity, we will not consider all the contexts, but only 3 of
themcy = $, ¢c; = f(8$,b), ca = f(a, $). We obtain the following inequation system:

@(C'ops) — Xgza(¢ops)| = |ps(colb]) — Xaps(cola))| = |0 — Xz52| <€
b(¢1ps) — Xaa(éaps)| = [ps(ci[b]) — Xaps(ei[a))] = |55 — Xa0 < e
|b(¢ops) — Xaa(éaps)| = |ps(ca[b]) — Xaps(calal)| = [0 — Xaz5| <€



If we sete to 0.1, the systems admits no solution and thés added to the basis

The algorithm examine the ternf$a, a), g(a), f(a,b), f(b,a), f(b,b), g(b). Since,
the values ops according to the 3 contexts is null fgfa, a) f(b,a), f(b,b) andg(b)
we do not show the inequation systems.

For g(a) the system obtained is:

19(a) (¢ops) — Xaa(éops) — Xgh(éops)| = 10 — Xad — Xa0| < ¢
lg(a)(¢é1ps) — Xaa(cips) — 59( ps)| =10~ 52% - X3 <e
19(a) (éaps) — Xaa(éaps) — Xpb(éaps)| = |55 — Xa0 — Xzm | < e

Xz = 0and X3 = 1 is a solution of the system, then the algorithm seig)(a) = 1.

For f(a,b), the inequation system is:

— Xags — Xq0| < ¢
— Xaas — X30| < €

O—XEO b20‘<6

f(a,b)(¢ops) — Xaa(éops) — Xa@(éops)\ \
(a,b)(¢1ps) — Xaa(éips) — Xpb(éips)| = |
f(a,b)(éaps) — Xga(éaps) — Xpb(Caps)| = |

Xz = 15 and Xy = 0 is a solution of the system, then the algorithm gt) (a, b) =
%6 T e representatlon obtained is finally:
p(a

)=a, u(b)=b, p(g)(@) = 3b, p(f)@0b) = 3a, \a=5, X5=0.

5 Discussion, Future Work and Conclusion

We have proved a theoretical result: rational stochastic tree languages are identifiable
in the limit with probability one. The inference algorithm we use runs within polyno-
mial time and approximates the parameters of the model with usual statistical rates of
convergence. How can it be used in practical cases? Can it be improved?

First of all, the algorithm highly relies on an inequation system which aims at de-
tecting linear combinations

I(T,t,Sn,€) = {[{(¢Ps,) — Y _ 2.5(¢Ps,)| < elc € C(Sn)}.
seT

However, this system uses contexts which can be poorly represented in current samples.
We can overcome this drawback by usgneralized context&e. contexts containing
several variables.

Let $o, 91, ..., %, be zero arity function symbols not iiy. A generalized context
is an element of (F U {8, $1,...,%x}) such that$, appears exactly once and each
other new symbol appears at most once. Now, for any stochastic langBaayes any
generalized context we define

HeP)=¢P(t)= Y Pc[So« t,$1 —t1,..., 8k — ti]).

t1,..t, €T (F)



We can then replace the inequation sysf#, ¢, S,,, €) with

I(T,t, Sn,€) = {[{(¢Ps,) — Y x.5(cPs,)| < €|le € CJ(Sn)}
seT

whereC?(S,,) is the set of generalized context withvariables occurring ir,,.

If the number of new variables in not bounded, the VC-dimension of the set of gen-
eralized contexts is unbounded. However, it can easily be shown that the VC-dimension
of the set of generalized contexts withvariables is bounded b3k + 1. Therefore,
we can adjust the number of variables to the size of the current learning sample in the
inference algorithm in order to avoid overfitting.

Next, the rational seriesoutput by the inference algorithm is not a stochastic lan-
guage. Moreover, it may happen that the SE@GT(]_-) r(t) diverges. We conjecture
that as soon as the size of the learning sample is large enough, with a high probability,
the sum)_, .1 7(t) is absolutely convergent, i.2_, . ) |r(t)| converges.

Given this property, it is possible to normalize the linear representation output by
the algorithm in such a way that it computes a sefisatisfying_, 1) [7(t)| < oo
and}_, .5 T(t) = 1.

Consider the canonical linear representatibhu, ) of a rational tree seriesand
let B = {t1,...,t,} beabasisoV. Foranytree,r(t) = t(r($)) = > i, a‘t;(r($)) =
> iy afr(t:). Then, wherds, . - r(t) is absolutely convergen},, 5 o} is ab-
solutely convergent for any indéxHence,s; = ZteT(f) ! is defined without ambi-
guity. One can show that can be efficiently estimated.

Then, we can normalize the representation as follows(Wetiy, Ax) be defined
by

= Vf e F un(f)Ers - 8,)) = O s - 85, Ty 850 /8-
— An(t;) = A(t;) x s; for any element of\ y.

It can easily be shown th&V, ux, Ax) computes: and that
Zq,“.,meg[ﬁw(f(tju cee ?tj;n))}i =1L
We can then adjust the linear forkby multiplying each of its coordinates by a constant
in order to get a serieswhich sums to 1.

However, it may happen that the serietakes negative values. We call such a se-
ries, apseudo-stochastic languagérom these languages, we can extract a probability
distribution Pr such thatP-(¢t) = 0 if 7(¢t) < 0 and otherwiseP=(t) = b:7(t) with a
normalization that compensates the loss of the negative values. We may compute this
distribution iteratively when developing a tree. Suppose that at a given step, we are
building a tree with some leaves labeled by states. We choose to develop a new branch
from any of these states. We consider all the transitions leaving from the considered
state grouped by symbols. If all the possible expansions with a given symbol lead to a
negative value, then we omit this symbol and we renormalized the probabilities of the
other expansions. Note that whemlefines a stochastic languade, = r since there
will be no negative values. See [6] for a more detailed description of this point, in the
case of pseudo-stochastic languages defined on strings.



To conclude, we have studied in this paper the inference of a stochastic tree language
P from a sample of trees independently drawn accordinfy .téVe have proposed to
work in the class of rational stochastic tree languages that are stochastic languages com-
puted by rational tree series. We have presented two contributions. First, we have shown
that rational tree series admit a canonical linear representation. Then, we have proposed
an inference algorithm which identifies in the limit the class of rational stochastic tree
languages. Our future work will concern improvements of our approach in practical
cases as evoked in the previous discussion.
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