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2 1 INTRODUCTION

1 Introduction

Due to emerging technologies such as optical fiber sensors, temperature measurements
are destined to play a major role in petroleum production logging interpretation. Using
temperature recordings from a wellbore and a flowrate history on the surface, it can be
envisaged to develop new ways to predict flow repartition among each producing layer of
a reservoir or to estimate virgin reservoir temperatures.

In order to solve the inverse problem, one first needs to develop a forward model
describing the flow of a monophasic compressible fluid (oil or gas) in a reservoir and a
well, from both a dynamic and a thermal point of view. This implies to couple a reservoir
model (porous medium) and a well model (fluid medium).

We have already studied in [1] a reservoir model, consisting of the Darcy-Forchheimer
equation coupled with a non-standard energy balance, which includes notably the tem-
perature effects due to the decompression of the fluid (Joule-Thomson effect) and the
frictional heating that occurs in the formation. This problem was written in cylindrical
coordinates and discretized by means of the conservative Raviart-Thomas elements. The
model was also validated from both a numerical and a physical point of view.

In this paper, we introduce the well model which is based on the compressible Navier-
Stokes equations coupled with an energy equation, both written in axisymmetric form. In
order to take into account the privileged direction of the flow in the well and to reduce
the cost of the calculation, we propose here an approach to derive two pseudo 1D models,
by constructing an explicit solution in terms of the radial coordinate. The nonlinear time-
discretized problem is solved by means of a fixed point method with respect to the density
p. More precisely, for a given p, we compute at any time step the specific flux from the
mass equation and then we recover the velocity and the pressure, as well as the heat
flux and the temperature by using mixed variational formulations. Finally, we update
the density by means of a thermodynamic module and we loop until the convergence is
achieved. The difference between our two 1D models consists in the computation of the
radial velocity u, : in the first one, we neglect the momentum equation corresponding to
u, and we compute it directly from the specific flux by a projection method, while in the
second one, the whole velocity (u,,u,) is computed by using the Navier-Stokes equation
and by neglecting, this time, a boundary condition on the perforations. The first model
thus obtained is a little bit simpler, but the second one is well adapted to the coupling
with the reservoir.

Once the time discretization is achieved, we propose a well-posed finite element ap-
proximation, based on lowest-order Raviart-Thomas elements for the fluxes, ()9 elements
for the pressure and the temperature and Qi-continuous finite elements for the veloc-
ity. Numerical tests are also presented, validating the code from both a numerical and a
physical point of view.

The paper is organized as follows. The physical model is introduced in section 2, and
its semi-discretization leading to our two pseudo 1D conservative models is presented in
section 3. Then, the well-posedness of these two models is established in section 4, while



their space approximation by means of a finite element method is addressed in section 5.
Finally, section 6 is devoted to numerical tests.

2 Physical problem

We are interested in the modelling of the flow of a monophasic compressible fluid in a
petroleum wellbore. Our 3D domain is defined by

Qsp = {(ZB,y,Z) ; 0< ? +y2 < RZ, S [Zminazmax]}

where R is the radius of the well. In practice, R ~ 4inch while the length of the pipe can
attend several thousands meters.
The governing kinematic equations are the mass conservation law :

% + div(pu) =0 (1)
and the Navier-Stokes equations :
0 ) .
= (pu) + div(pu ® u) = —Vp + divz + pg + F, (2)

ot

where :
=2 [g(u) - %(divu)l]

and F is a source term which takes into account the friction at the surface of the pipe.
One generally uses an empirical formula for the modelling of the friction term F :

F= —I{,O|'ll|ll,

with k a positive coefficient depending on the diameter of the pipe.
We also consider an energy equation

%(pE) + div((pE + p)u) = div(ru) + div( AVT) + pg - u, 3)

2
where £ = ¢, T + % is the total energy, T the temperature, ¢, the specific heat, p the
viscosity and A the thermal conductivity.
Finally, we close the system by considering the Peng-Robinson state equation (see [10]

for more details), which we simply write here as follows :

p=pp,T). (4)

The unknowns of the problem are the density p, the pressure p, the fluid velocity u and
the temperature 7'. We impose initial conditions on p, pu, pE and boundary conditions
which will be described later.
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Due to the geometry of the domain (a cylindrical well surrounded by a reservoir), it
is natural to write the above problem in 2D axisymmetric form depending only on the
cylindrical coordinates (r, z), and to neglect the angular velocity ug.

Thus our domain merely consists of :

Q={(r,z); 0<r<R, z€l}

where I = [zmin, Zmax), and the unknowns are supposed to be independent of the angular
variable.

Let us recall the expression of some differential operators in cylindrical coordinates
(r,0, z) for a vector function u and a second order tensor 7 , written in the basis {e,, ey, e, }
where e, = es:

. 10up Ou,
diva = ——(ru -——+
7"87"( r) r 00 0z’
(divr), = 12 (rry) + L5 + B
(divT)g = %%(rug) + %3529 + 35;" +
(divr): = T4 (rrye) + 10 4 O
Our 171 du, 0 1 (Ouy Our
1 T 1,10 ‘;?"au u §(F81:08j$_t_0) li(lgur g%)
e(w) =5(Vu+Vul)= | 5% + %2 — %) o0 T 3750 + %)
l(auZ +8uT) l(lauZ +M) Ouz
2\ Or 0z 2\r 00 0z 0z

Thanks to our previous hypotheses, our problem can be written in 2D axisymmetric
form as follows :

C(rp)+ V- (rpu) =0 (5)

{ oo 3 ) 4o~ irm) -
P

(r7er) + 199 + repluju, =0 ©
S rpus) + V- (ruzpu) + r3l — S (rr,,) —

(r7z2) + rpg + repluju, =0

§|°JS’|Q:

0
a(rpE) +V . (r(pE+p)u) =V - (rru) — V- (rAVT) + rpgu, =0 (7)
p=pp,T) (8)
where A\ > A(r,z) > XAg > 0 a.e. in  and where from now on, we denote V = (8%, %)t

0
and u = (u,,u,). The components of the tensor 7 are given (cf. for instance [5] or [8]) by

ou 2 10 ou ou ou
Trr = 204 8; - gﬂ <;E(Tur) + a—zz> y Trz = Tzr = U ( 8’: + 8;) )
ou, 2 10 ou, Uy 2 10 ou,
) S ] —ou— 2,22 iz
Ter = 2H G, T 3H (7" or (rur) + 0z ) AT (rur) + 0z
One adds initial conditions o the previous system on p, pu, pE as well as boundary
conditions, which will be described later.




3 Conservative pseudo 1D models

A 2D finite element approximation, based on the MINT element, has confirmed that the
flow in the wellbore is essentially vertical (cf. [4]). In order to take into account the
privileged direction of the flow, the particular geometry of the domain, as well as the
supply at the perforations, a pseudo 1D modelling of problem (5)-(8) was proposed in [4].
Thus, on the one hand, the calculations are lightened and one can treat pipes of several
thousands meters high and on the other hand, one avoids any numerical instability due to
the large aspect ratio of a 2D grid.

The derivation of a simplified model is based on the following approach. One first
introduces two conservative variables (the specific flux G = pu and the heat flux q = AVT)
and a time discretization which leads to a decoupled system. Then, the 1D model is
obtained as a conforming approximation of the 2D semi-discretized problem. From a
discrete point of view, this method amounts to consider only one mesh in the radial
direction.

Let us now discuss the time discretization of the initial problem (5), (6), (7) and (8).
We obtain, at each time-step, a nonlinear system for which we apply a fixed point method
with respect to p. More precisely, the algorithm consists in solving, for a given p, the
following three decoupled problems :

p—p"

div(rG) = —r

1 r
div(ru) = —(div(rG) — -G - Vp
(ru) p( (rG) »C ) ) (10)
rpa; +1G-Vu+rVp —div(rr) + rgpe, + 76|Glu = rpg +rp%;

rey (pA + G- VT) — div(rq)
=rpe, 5 — ir (pw +G- V(|u|2)> — div(rpu) + div(rzu) +rg - G (11)

q=\VT.

Finally, the density is updated by means of a thermodynamic module and one loops until
the convergence is achieved.

Before proceeding with the boundary conditions associated to the systems (9), (10)
and (11), let us comment their derivation. The first equation of (10) translates the fact
that :

div(rpu) = div(rG), (12)

while in the other equations we have replaced pu by G. In the general case, relation (12)
only implies that :
rpu =rG + curlyp.
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So, at this stage, solving (10) and (11) is not equivalent to solving the initial Navier-Stokes
and energy equations.

Next, in order to specify the boundary conditions, 02 is divided into five parts 02 =
rulyuIl's Uy U as shown in Figure 1. It is useful to notice that on the wellbore’s

| Ty

.5‘ Iy
o]
£
@]
= |
<}
= |
|
‘ Y
I's

Figure 1: Decomposition of the wellbore boundary

symmetry axis '3 one has 7 = 0. On the perforations ¥, the normal specific flux G-n = Gx,
is given while an impermeability condition G - n = 0 is satisfied on I's UT'3 U I'y4.
Once G is computed, we impose

u-n= Gn on Of.
P

A Neumann condition 7n -t = 0 is set on the top I'y, on the bottom I'y and on the
non-perforated lateral boundary I's while on ¥ the tangential velocity is imposed; for the
sake of simplicity, we take here u-t = 0.

Concerning the energy equation, one imposes the temperature 7' = T, on the perfo-
rations Y and the normal heat flux q - n = 0 elsewhere. At the perforations, one may of
course prescribe the values of Ty, and of Gy, obtained thanks to the reservoir code.



A relevant issue concerns the boundary condition on the top of the wellbore I'y. Let us
notice that, even if the flowrate, denoted by Q1 = %, is known thanks to recorded data,
one cannot impose it on the outflow boundary I'; for the transport equation (9). Indeed,
@1 and Gy, are related by a compatibility condition :

p—p" _
T dx + rp@Qido+ [ rGedo =0,
o At I 5

therefore fFl rpQido is perfectly determined by Gy, at each time step.

Since beyond the perforations, the flow in the pipe is quasi-vertical, and due to the
dimensions of the wellbore, we consider an explicit dependence of the unknowns on the
radial coordinate. Mainly, the velocity is taken affine with respect to r and hence is
determined by two functions of z living on the two lateral boundaries, while the scalar
unknowns only depend on z :

p=p(z), p=p(z), T=T(2).

Thanks to the boundary conditions, one further gets u, = 5%, (z) with @, = 0 on I'y,
and u, = 5, (2) + Z=u;(2) with @, = 0 on .

Then an integration with respect to r yields a pseudo 1D model. The previous choice
(13) allows us to establish the following result, which justifies the proposed algorithm :

Lemma 1. The relation div(rpu) = div(rG) together with the boundary condition pu-n =
G - n on 09 imply that

pu=G in Q. (14)

Proof. Firstly, one deduces :
rpu =rG + curlp
with ¢ unique up to a constant. The boundary condition implies :
curlp - n =7y -t =0 on 01,

so we can assume that ¢ = 0 on 0f.
Secondly, since

Orp = T(Gz - Puz)a
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it comes that :
(Gz - paz) + 1/)('2) (15)

Moreover,
0.0 =r(pu, —G,) =0

due to the boundary conditions on the vertical axes. Therefore, by deriving the relation
(15) with respect to z it comes that :

az (pﬂz - paz) = 07 8z (paz - GZ) = 07 wl =0.

The boundary conditions on the top and on the bottom of the wellbore finally lead to
@ =20 on Q. |
Computation of u, via the boundary condition
Let us remark that since u, = %2 on ., the radial velocity can be completely deter-
mined on the whole domain €2, without solving the corresponding momentum equation.
Indeed, it comes that
r r ég(Z)

urp(r, 2) = Sup(2) = R p

7 (16)

where ég denotes the extension of Gy, by zero on the interval I.
Therefore, once G and u, known, it is sufficient to solve the following problem instead
of problem (10) :

rf p=p"
3Z(ruz):—? <,0 At +G-V,0>—8r(rur)

r(p%e + G- Vu,) +1r0.p — 0r(r7r) — 0:(r7.2) + 76|Glu, = —rpg + rpuA—%.

(17)

This variant of the 1D model was developed in [4], under the assumption % € H (D).

Computation of u, via the Navier-Stokes equation

In view of the coupling with the reservoir, we also present another variant, where u,
and u, are both computed from the Navier-Stokes equations. For this purpose, we have
to replace the boundary condition on u - n on the interface by a Neumann condition,
p—7n-n = Ps with Py given (for instance) by the reservoir code.

4 Well-posedness of the semi-discretized problem

4.1 First pseudo 1D model

We write here the first time-discretized problem under weak form. More precisely, we
propose a Petrov-Galerkin formulation for the equation (9) while for problems (10) and
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(11) we write mixed variational formulations. For this purpose, we introduce the following
spaces :

W = {w= ( %f’é";) ); w, € L*(I), w, € H'(Q)} C H(div, Q),
V o= {v; v(rz) = iﬁ(z) + for

v(z), 5,0 € H'(I)} c H'(Q),

R
M = {g=q(2); g€ L*(I)} C L*(9),
as well as :
W = {(weW;, w-n=0 ondQ\T},
W = {weW; w-n=0 ondQ\(I'hUk), w-n=G_Gy on X},
H = {weW; w-n=0 ondQ\X},
VP = {veV;v=0 onXUTy, v=0 onI},
VY = {veV;v=0 onXUTly, v=0Q; on T},

M° = MNLAQ).

The spaces W, V and M are respectively endowed with the natural norms of H(div, Q2),
H'(Q) and L?(Q). One can immediately notice, by means of a simple integration with
respect to r, that the norms [|w||y, [lvly- and |||/, are respectively equivalent to |||, ;+
lwzllg s [10ly,r and Jlgllo, -

We assume in what follows that @ is constant on I'1, that p1 > p(2) > pg > 0 a.e. on
>} and also that :

G
=2 c H\(®).
P
We next consider the problems :
Find G € W*
_n
/ div(rG)xdx = —/ . xdx Vyx € M, (18)

Find @, € H} (%)

/ puryndz = / Gyndz Vne H&(Z)a (19)
b 2

Find u, € V*, p € MO

a(uz,v) + b(p,?)) = fl (U) Vo € VO (20)

b(Qauz) = f?(q) VqEMoa
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and also the energy balance :

Findq€H, T € M
A(q,w) + B(T,w) = F(w) YweH (21)

B(S,q) — C(T,S)—D(T,S) = Fp(S) VSeM.

The bilinear forms are defined as follows :
4
a(u,v) = /Qr [(& + /<V|G|> u+ G- Vu] vdx + /Q,ur (8,@8,"1) + gazua,ﬂ)) dx,

b(q,v) = —/Qqaz(rv)dx,

Agw) = [ fa-wis, B(T,q) = [ Tdiv(ra)is,
oA Q
TS
c(r,s) = /rpcv—dx, D(T,S):/’FCUG'VTSdX
Q At Q
while the righthand side terms are given by :
n 2
filv) = —/Qrpgvdx—i-/QTpZ—Ztvdx—Fg/ﬂ,ur <%+8rur> 8zvdx—/ﬂ,ur(9zur8,nvdx,
f2lq) = —/L(pp_pn—l—G Vp)qu—/Rﬁqda
?  p? At s P ’
Fi(w) = /RTEW'ndU,
b
T e (e oY
S L L NYeE —d
mey = (g =5 (PR v ) — i)

+div(rru) + rg - G) Sdx.

Remark 1. An integration by parts in F5(-) is possible but we prefer to keep the above
expression, since in the discrete framework pu and 7u do not belong to H(div, €2).

In what follows, we are interested in establishing that problems (18), (19), (20) and
(21) are well-posed.

r

Concerning the weak formulation (18), we begin by considering a lifting G* = ( RSE >
of the boundary condition imposed on ¥, such that G — G* € WY. Then the following
lemma ensures the existence and the uniqueness of the solution of (18), according to a

generalization of the Babuska’s theorem (Cf. [9]).
Theorem 1. The next conditions are fulfilled :

di d
Yes 0. Yy € M, sup JoXdlrw)ds
wero 1wl

2 clIxllo.q;
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vw € W\ {0}, sup / xdiv(rw)dz > 0.
XEM JQ

Thus, problem (18) has a unique solution.

. . 0 .
Proof. Let us first notice that w € W translates into w = ( w,(2) >, with w, €
z

H'(I) and w,(Zmin) = 0. It comes that div(rw) = rd,w, and

R2
/div(rw)xdxz —/Xazwzdz.
Q 2 Jr

Associating with any x € M the function

yields that
. R
/de(rw)xdx = Slxle and [wl < ellxlo,0-

Hence the first inf-sup condition holds.
Concerning the second condition, with any w € W \ {0} we associate Y = d,w,, such
that we have :

. R,
xdiv(rw)dx = —|wl|5; ; >0
Q 2 ’
which ends the proof, thanks to the Friedrichs-Poincaré inequality. |
Lemma 2. Problem (19) has a unique solution.

Proof. The existence of a solution @, = %= is obvious, since % belongs to H{(X) by
hypothesis. The uniqueness is also immediate : indeed, by considering the homogeneous
problem and by taking the test-function n = w, , it comes that w, = 0 thanks to the
positivity of p. |

So, knowing @, on ¥ one can now determine u, on £ by means of (16).

Let us next consider the velocity-pressure formulation (20) and establish :

Theorem 2. Let G € L>*(2). Problem (20) has a unique solution, for At sufficiently
small.

Proof. As usually when dealing with mixed formulations, we apply the Babuska-Brezzi

theorem (Cf. [3]).
We first notice that a(-,-) is well defined for G € L*°(2) and then we write that :

a(v,v) = /Qr [(Ait + /@|G|) v+ G- Vv} vdx +/Q,u7" <(8,nv)2 + g(@zv)2> dx.
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We bound the convective term by means of Young’s inequality :
1
/ rG - Vovdx < 8/ pr|Vo|?dx + —/ r|G|?v?dx, Ve > 0.
Q Q dpe Jo
This leads to :

. P | |2 2
a(v,v) > (1 6)/ | Vol dx+/ <At + k|G| — 4u8>v dx,

so a(-,-) is coercive on the whole space V" whenever one can choose ¢ < 1 such that

% + k|G| — |G| > 0 a.e. in . Hence, the condition
G|? — 4uk|G
1S G —4Gl g
At 4pp

yields the V%-coercivity of a(-,-).
One still has to check the inf-sup condition for b(-,-). For this purpose, we apply the
Fortin’s trick, that is with any ¢ € M° we associate a function v € V° satisfying :

b(g,v) 2 clallfo  and  vllie < ¢llalloe-

A simple computation gives that

R2
0 =-% / 4(20,5 + 0,5)dz,
I

for any v = E()+ ﬁ()andanquMo

By taking v = 0 and v({) = — ff z)dz, one gets that the previous conditions are
fulfilled.
Then the Babuska-Brezzi theorem allows us to conclude. [ |

Finally, we study the well-posedness of the energy equation (21).
We begin by neglecting the convective term and we establish :

Theorem 3. The variational formulation (21) with D(-,-) =0 has a unique solution.

Proof. We apply an extension of the Babuska-Brezzi theorem (Cf. [3]) for a mixed
formulation of operator
A B
| o)

with both A(-,-) and C(-,-) symmetric.
We first establish, by making use of the Fortin’s trick, the inf-sup condition for B(-,-).

One has :
. R? 2_
B(S,w) = / Sdiv(rw)dx = —/S d,w, + =w, | dz
0 2 Jr R
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%Er(z)

where by construction w = (
wy(2)

w defined by :

>. Then, with any S € M we associate the function

R
w, =0 on I'y, Er:m/lSdzonZ,

w,(£) :/j

min

respectively by
2

This choice ensures that w,(zmin) = w,(2Zmax) = 0. So, since w-n = 0 on J2\ X, it comes
that w € H. On the other hand,

2
O, w, + Ew_r =Sonl, HWHW < CHSHU,Qv

which yields the desired inf-sup condition.
Obviously, the bilinear form A(-,-) is positive on the whole space H :

Alw,w) > ¢ (@50 + lw:l5 o) -

Moreover, A(-,-) is H(div, 2)-elliptic on
2_
KerB = {W € H; d,w, + Ew,ﬂ = 0} ,
since the elements of KerB are characterized by
, 1_ 1_
divw = Ew,« + 0, w, = —Ew,ﬂ.

Together with the positivity of C(-,-), the previous properties imply the existence and
the uniqueness of the solution to the problem (21). |

So, one can now define a linear and continuous operator £, associating with any data
(Ts;, T",u", p, G,u,p) the unique solution (g,, q,,T) € L*(I) x H'(I) x L*(I) to (21).

Let us now return to the study of the global problem (21) and use a similar approach
to the one employed for the reservoir model (see [1] for details).

We establish :

Theorem 4. Let the boundary data T belong to H'(X), for a given § € 10,1], and let
VA eL>®(Q). Then problem (21) is well posed, for At sufficiently small.

Proof. First of all, let us introduce the space

Y = {S € H'(I); Sy € H'™(S), Sy € H2(I\ 2)}
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and notice that the solution of the variational problem (21) with D(-,-) = 0 satisfies
@)= €H 3(2), q, € HY(I) and T € Y. Indeed, interpreting the first variational equation
in the sense of distributions leads to the relations :

2q 2
aZT:%AqunI,
3¢, +4q: 1
29 T Zp_Tyon 3.
12X g5 —T)on

Taking into account that g, € L?(I) and g, € H'(I) by construction, it comes on the one
hand that the bilinear form D(-,-) is well defined, since T € H'(I). On the other hand,
the hypothesis Ts, € H°(X) gives that g, € H°(X). The above mentioned regularity of T
comes by virtue of the first equality together with g, =0 on I\ 3.

In conclusion, for s, € H°(X) the operator £ associated with the variational formula-
tion (21) takes values in H°(X) x H'(I) x Y and the linear operator D associated with the
bilinear form D(-,-), defined by D(T) = r¢,G - VT, is compact from Y into L?(I). This
last assertion comes by applying the Rellich’s theorem.

Finally, the operator of the global problem (with convection) can be seen as a compact
perturbation of the identity. So, it is now sufficient to prove that the homogeneous problem
has only the trivial solution in order to obtain, by means of the Fredholm’s alternative,
the well-posedness of the non homogeneous problem (21).

For this purpose, we take (w,S) = (q,T) as test-function in the homogeneous problem
(21) and we get that :

T2
/gqqu‘i‘/TCypKdX‘f‘/’l"CUGVTTdXZO
Q Q t Q

By replacing VT and by integrating with respect to r, it comes that :

1 /1, 1, 2_ pCy 0 Gucy
—| - — - T —— (2 3q,)T| dz = 0.
/I[A(4qr+2qz+3qrqz>+mt + o (24, +34:)T| dz
Since the expression under the integral sign is a positive definite quadratic form for At
sufficiently small, one deduces that (q,7") = (0,0).

Therefore, we obtain the announced result. |

4.2 Second wellbore model

We are now interested in the second pseudo 1D model and therefore we focus on the
computation of (@,,u,,p), which is now achieved by solving :

1
div(ru) = —(div(rG) —rG - Vp)

p n

rpa; + G- Vu+rVp — div(rr) + mgpe, + rr|Glu = rpg + rp%;
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instead of (16) and (17). To the previous equations, we add a new boundary condition on
the perforations :
p—tn-n=PFPs onX

but we no longer impose u-n=1G -n on X.
We begin by introducing the spaces :

V = {v= ( L ) o= T )+ ), 5T € HY(DD) C (@))%

VW = (veV; 5, =0 onTy, 5,=0 on%, v, =0 onT;UTy},
V' = {veV;5,=0 onT9, 7,=0 on %, v, =0 onTly, v,=0Q; onT}

and we next write the associated mixed variational formulation :

FindueV* pe M

a(u,v) + b(p,v) = filv) YveW (22)

b(g, u) = faq) Vge M,

Here above, the bilinear, respectively linear forms are defined by :

- 2
b(q,v) = —/ qdiv(rv)dx = —/ rq(0,v, + =7, )dx,

Q Q R
a 0 4Gl (s d G- (0,V Vu,)d
a(u,v) = /Qr (Kt + K| |) (ﬁurvr + u,v,) X+/Q’f’ - (vrVu, +v,Vu,)dx

4 1 1
—|—/ pr(Oru, + 0yuy ) (0rv, + Oy, )dx + = / pur(Oyu, — =1, )(0,v, — =0, )dx,
o 3 /g R R

filv) = /rpg-vdx—l—/rpm-vdx—/Rng-nda,
Q o At »

e r( p=p"
= [ = G- Vp)qd
f2(q) /Qp2 (p At p) qdx

where u, = 7%, and v, = v,. Let us note that due to the imposed normal forces on %,
the pressure is now looked for in M instead of MP.
One can then establish :

Theorem 5. Problem (22) is well-posed, for At sufficiently small.

Proof. We apply once more the Babuska-Brezzi theorem for mixed formulations and
we begin by establishing the inf-sup condition for b(-,-). After integration with respect to
r, one obtains

— R? 6

b(q,v) = e /Iq(Zazﬁ + 0,0+ Em)dz.
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We make use of the Fortin’s argument and with any ¢ € L?(I), we associate v € V0 as
follows. We take 7 = 0, U, € H3(X) such that

_ R _
/ s —— 2 / ¢z and |5l < cIP@)ly
> 6 Jr ’

and finally, v(¢) = f - (g+ Rv,« )dz. Here above, the notation P(q) stands for |71‘ f 7 qdz.
Obviously, v € H0 (I) since by construction of 7,., one has ¢ + Rv,« € L3(I). Then one gets

2
bla.v) = ¢ and [[vlly <

1 tellP@lor <cllallor

so the desired inf-sup condition holds.
Let us now look at the coercivity of @(-,-) on the kernel of b(-,-), given by :

Kerb= {VGVO; 28ZE+3217+%@:0 onI}.

By means of a simple calculation, based on an integration with respect to r, one can
notice that the norms ||0,v.||y q, [0rv:]lg.q and [|0.v,||, o are respectively equivalent to

1/2
<||(925H3J + ||(9217H3J) , [0 =19lp,; and [|0.0r[|g ;. Therefore, for any v € Kerb it comes
by replacing v, that :

R 72
c Hazvzug,ﬂ

2
/r(@zvz — lm)2dx _ & (38(8 9)? + 11(9,9)* + 320,75 9,9) dz
Q

Y

while

2 4 3
[ @+ omtae = 4 [ (R—@—@)2+R—(azu) + 2, vr(v—w) do
0 R/ \ 2 4

2 2
> C(Hazero,Q + HarvzHO,Q)-

We next bound the convective term similarly to Theorem 2. Finally, we deduce for a
sufficiently small time-step that :

a(v,v) 2 e(loslliq + lorlli ), ¥V € Kerb,

so the Babuska-Brezzi theorem allows us to conclude that problem (22) has a unique
solution. [
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5 Finite element approximation

5.1 First model

For the space discretization of problems (18), (19), (20) and (21), we employ a specific 2D
grid.

More precisely, we consider only one cell in the radial direction and we use a regular
mesh 7;, in the z direction. We put Q = UreT, K with K rectangle of width R. We denote
by &y the set of internal edges and by &, the set of all edges. As usually, hx represents
the diameter of K while h, is the length of the edge e.

We employ classical conforming finite element spaces which are compatible with the
dependence in r prescribed in (13).

The pressure and the temperature will be approximated by piecewise constant finite
elements. It goes the same way for the density thanks to its dependency on these two
previous variables.

We use a Petrov-Galerkin method for the discretization of problem (18) : G is ap-
proximated by conservative Raviart-Thomas elements of lowest order RTj, while the test-
functions A are taken piecewise constant. We recall that the degrees of freedom of the RTj
element are the normal fluxes G - n on each edge, and these quantities are constant.

The discrete version of (18) is then written as follows :

Find G, € WZ

/div(rGh)de: / r2h _phxdx, Vx € My,

with :
W, = {G € H(div, Q) ; G‘K € RTy, VK € 7}L} CcCW,

W, ={GeW,; G-n=00n92\(I"UX), G-n=7Z,(Gx) on &},
Mh = {q € L2(Q)’ Q\K € QU? VK € 772} C M?
and where Z;,(Gy) is a piecewise constant approximation of Gy on Ey.

Remark 2. The above choice of 2D finite dimensional space for G is equivalent to taking
the 1D functions G, and G, respectively piecewise constant and continuous piecewise
linear on I.

One has :
Lemma 3. The discrete problem (23) has a unique solution.

Proof. The well-posedness of (23) is obvious since one can successively compute Gy,
on every rectangle K € T, (from the bottom to the top of the domain €2) by means of the

relation : .
/ rGy, -ndo = / rudx.
oK kAt
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[ |
We next consider the following discrete version of problem (19) :
{ Find w,), € Ly, (24)
[s prtrpndo = [ Gsndo Vn € Ly

where
Ly={n¢€ H)(Z); n€ Pi(e), Ve € Ex}.

The following statement is then obvious :

Lemma 4. Assume that py > pp(z) > po > 0 a.e. on X, uniformly with respect to h.
Then the discrete problem (24) has a unique solution.

For the approximation of the velocity-pressure formulation (20), we introduce the
spaces :
Vi, ={veH(Q); v|[x €Qi, VK €T} CV,
V0=V, NV VF=V,nV* M) =M,nL3Q).
It follows that taking v € V}, is equivalent to imposing ¥, ¥ continuous and piecewise linear
on I.

The convective term is treated by means of the following upwinding scheme, for any
¢ and v belonging to V}? :

/ rGy - Vevdx =y (4" - PK(¢))/rGh -nvdo, VK € T,
K

eCOK— €
where

0K ={e€dK ; Gy n <0}

is the set of incoming edges of K, with n the outward unit normal vector to the edge. We
denote the constant projection of ¢ on K by Pk (¢p) = ﬁ ! 5 ¢dx and we put

¢* = Py (¢p) with K’ € T, such that K'N K = {e}.

If the edge e is situated on the boundary of 2, then we agree to take ¢* = 0 if e C
(Ty UT4 UYX), respectively ¢* = Pg(¢) if e C (T'y UT3).
It is useful to introduce the bilinear form dj(-,-) :

his0) = Y 3 (4"~ Pa(@) [ Gy modo,

KeTh, ecOK— €
which satisfies :

Lemma 5. Let hy,i, = minger, hx. There exists ¢ > 0 independent of h such that:

C

dn(¢0)] = s—IGnloelldliallvlie, Vo, v € V.

min
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Proof. Thanks to the Cauchy-Schwarz inequality, one has :

1
= Gr - nlo,e

Vhe

C

Vhe

\w* ~ Pe(@) [ rGymodo

e

[r(@ =)+ 6~ Pe@)) vio

e

< —=1Gn - nlloe ([I¢ = ¢*lloe + I = Pr(d)llo.e) [[v]lo.e,

where the cells K and K’ share the edge e.

A classical passage to the reference finite element yields the estimate :

1 1
\/THUHO,e <c <E||U||0,K + |U|1,K> , Vwe H'(K), VK € T, Ve C OK.
e

Moreover, for any v belonging to a finite dimensional space, the following inverse inequality
holds :

C
lvl1,x < EHU lo, -

Therefore, one gets that

C
0e < —||v]|o,K
e < 7=l

|
—||v
Vhe
while the Bramble-Hilbert lemma gives :

1
Vhe

¢ — Pr(#)llo,e < clo

LK

The term ||¢ — ¢*||o,e is bounded similarly to ||¢ — Px(¢)|lo,.. Indeed, the only differ-
ence appears when ¢* = 0, that is when e C (I'y UT4 U X). In this case one employs
the Friedrichs-Poincaré inequality on K and a passage to the reference finite element to
conclude that :

1
Vhe

[#lloe < cl¢

LK -

Finally, using that for G, € W), one has (Cf. [11]) :

Y VhelGh-nloe | < cllGalloo,

ecéy
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it comes that :

|dh(¢a U)|
1/2
1
<el S hlen mld, ) [ 32 Il
ecty ecly, ¢
1/2
1 2 1 * (|2
Yoo > o= Pr@®)5e + ¢ = ¢* 15,
he he
KeT, ecOK—
1
< cf|Gallo,a( Z h_2|v|%’K)l/2|¢|1’Q
KeT, K
c
< —IGulloallvlloelPlo-
min
We conclude thanks to the Friedrichs-Poincaré inequality on V}?. |
We are now able to consider the discrete version of problem (20) :
Find u,, € V), pr, € M}
an(Uzn, v) + b(pp,v) = fin(v) + gn(v) Yo € V2 (25)

b(qauzh) = f2h(Q) Vq € M]?a

where we have put for all ¢,v € V)0 :

4
n(d.0) = [ v (& +rlGl) goax+ [ pr (amarw gazqsazv) dx + dn (6, 0).

Concerning the righthand side terms, fi5(-) and fop, () are obtained from fi(-) and fa(-),
by replacing the quantities G, u,, p by their finite element approximations Gy, urp, Pn
respectively. The linear form gj(-) takes into account the non homogeneous boundary
conditions in the treatement of the convective term, more precisely we put :

gn(v) = —Q1/ rGy, - nodo.
OK—NI'y

Theorem 6. The mized problem (25) is well-posed for At sufficiently small.

Proof. We apply once again the Babuska-Brezzi theorem. The proof of the inf-sup
condition for b(-,-) is similar to the one given at the continuous level in Theorem 2.
Indeed, for ¢ € M ,? it comes that the function :

¢
v(¢) = —/ q(z)dz, V(eI

Zmin
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is piecewise linear and continuous. So, the function v = R};’"i} associated with g belongs

to V0.

h

Next, we make use of Lemma 5 in order to deduce that a(-,-) is coercive on the whole
space V,?, for

L dGulloe  #|Gal
At — ,Ohfmm
So, the statement is established. |

a.e. in €.

For the approximation of the energy equation, we employ the spaces M), and
H;, =W, NH.

We finally consider the following discrete version of (21), where the righthand side term
Fy,(+) takes into account the numerical approximation of G, u, p and p :

Find q; € Hy,, Ty, € My,
A(qn,w) + B(Tp,w) = Fi(w) VYweH, (26)

B(S,an) — (C+ Dy)(Th,S) = Fou(S) VS € M.

The bilinear form Dy, (-, -) takes into account the convective term by means of the following
upwinding scheme :

Du(T,S) = > > () (/rGh-nda> 0(T) S|k
KeT, ecOK— €

where we put, on a given edge e :

_7—'|K’ 1feCE
5(T) = 0, ifecdQ\s
T — Ty, ifecé.

We recall some properties of the latter form Dy,(-,-), which were established in [1] :

Lemma 6. There exists a positive constant ¢ independent of h such that :

C
\V/T,S € Mp, |Dh(T7 S)| < hQ—HGh

min

|T

|S

lo,2l|T']l0,21|S]0,0-

One also has :
Dh(T, T) >0, VT e M,

Then one can show the next result :

Theorem 7. Problem (26) has a unique solution.
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Proof. Let us first notice that (C' + Dp)(-,-) is not symmetric and moreover, its conti-
nuity constant depends on both h and At, since :

c1p C2
(©+DIT.8) < (57 + 75 1Glha ) 1TloslSlos.

In order to establish the invertibility of the global operator
A B
An = [ BT —(C+ Dy) ]

of (26), we employ a result which can be found in Roberts and Thomas [11]. It ensures
the well-posedness of problem (26), if the following conditions are satisfied : (C' + Dy)(-,-)
is positive, A(+,-) is symmetric, positive and coercive on Ker, B, and B(-,-) satisfies an
inf-sup condition. Moreover, if the coercivity of A(-,-) and the inf-sup condition for B(-,-)
hold uniformly with respect to the discretization parameter, then one also gets that the
norm of the inverse operator A}:I is independent of h.

So, let us now check the previous conditions.

The positivity of (C+Dy,)(+, -) is obvious according to Lemma 6, as well as the positivity

and the symmetry of A(-,-).
By construction, one has :

w,(2)

W:< 70 (2) ) cH,,

that is w, is piecewise constant on I, while w, is continuous and piecewise linear on I. So,
one can characterize the discrete kernel of B(-,-) as follows :

2
Kerp,B = {W € Hy ; azwz+}—zm,« =0 a.e. in I} C KerB.

Then, the uniform coercivity of A(-,-) on Ker,B results from Theorem 3.
The proof of the inf-sup condition follows the one given in Theorem 3, so the statement
is established. |

5.2 Second model

We are now interested in the approximation of the second pseudo 1D model. As already
mentioned, the only difference concerns the computation of the velocity and the pressure,
which are obtained by solving the quasi-Stokes problem (5). So, let us consider its discrete

version :
Find uy, € V}:, pr € My,

an(up,v) + blpn,v) = filv) VveEV) (27)

b(q,up) = folq) Vge M,
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where now :

Vi = {vevV; vk e (@)’ VK € Tp},

V(;)Z:VhﬂVO, W:Vhﬂv*.

The bilinear form @+, -) takes into account the upwinding scheme for the convective term.
For the simplicity of the presentation, let us put :

an(u,v) = a(u,v) + dp(ur, vp) + dp(uy, v,),

a(u,v) = / r (& + I<.‘,|Gh|) u-vdx + / pr(Opuy, + Oyuy ) (Opv,
Q Q

1

1
_ﬂr) (azvz - E

I Uy )dx.

4
+ Oyvp)dx + o / pr (0 u, —
3 Ja
The main result of this section is given in the next Theorem :
Theorem 8. Problem (27) is well-posed, for At sufficiently small.

Proof. We apply the Babuska-Brezzi theorem for mixed formulations.
First of all, we note that

6
Kerp, b= {v € V,g; 20,0 + 0,0 + RE« =0 a.e. onI} C Kerb.
So, for any v € Kerp, b one gets, exactly as in the proof of Theorem 5, that :

mmszkQ§+mamw&h+M@w

g,Q + |Uz|i(2)

with ¢ > 0 independent of the triangulation. Then one deduces, thanks to Lemma 5, that
ap(+,-) is V-elliptic on Kery b for At sufficiently small, e.g.

1 dGulls
At~ pPhomin
We still have to check the inf-sup condition (of Stokes type) for the Q1 — Qg elements,
on the particular mesh with only one cell in the radial direction. Following the proof given
at the continuous level in Theorem 5, with any ¢ € M}, we associate the function v € V?L
defined by ¥ = 0, v, € H} (%), piecewise linear and such that

_ R _
/ﬁﬁzz— —/wL|MMXSﬂP@OJ
> 6 Jr

and finally, by

¢
Q) = = [ @+ pPu @) e T
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where Py, : L>(I) — Mj, is the L?(I)- orthogonal projection operator on M. This choice
ensures that ¥ is continuous on I, piecewise linear and it satisfies U(2min) = U(Zmax) = 0,
therefore the function v thus constructed belongs to V?L Moreover, one has :

Ivllg < erllgllor +e2llP@llor < cllallor
_ R? 6 L R* 5
b0.9) = 2 [ (o= g @) -)) as=
which yields the desired inf-sup condition. |

6 Numerical simulations

In this section, we discuss several numerical tests in order to validate our conservative
pseudo 1D model. First, we study the stability of our scheme by considering the behavior
of the solution with respect to the mesh refinement. Then, we present a more realistic
case which interfaces our numerical wellbore with a reservoir simulator already introduced
in [1].

6.1 Mesh convergence

As depicted in Figure 2, we consider a three-perforation wellbore.

Wellbore axis

E
E

E

]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
—
|

Figure 2: Vertical section of the 2D axisymetric wellbore
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Mesh Nodes | Edges | Triangles

Mesh 7, | 282 | 421 140
Mesh 7,2 | 562 | 841 280
Mesh T/, | 1122 | 1681 560

Mesh T,/s | 2242 | 3361 1120
Mesh T,/16 | 4482 | 6721 2240
Mesh Th/32 | 8962 | 13441 | 4480

Table 1: Definition of the congruent meshes

Within this framework, we simulate the production of a dry gas by imposing an incom-
ing specific flux at each perforation. In order to study the mesh convergence, the solutions
are computed on congruent meshes (7}, /2i)0§i§5 obtained from an innitial mesh 7, each
element being successively and vertically divided into two congruent ones (Cf. Table 1).
Note that, to preserve the pseudo 1D nature of our model, the mesh is not refined in the
radial direction.

Remark 1. When treating real cases, the mesh is only refined near the perforations so
that a qualitative coupling is ensured with the reservoir. On the other hand, thanks to
the conservative property of our scheme, the rest of the wellbore can be discretized with
more elongated meshes. Thus, the number of degrees of freedom remains reasonable though
considering wellbores of several hundreds meters depth.

The solution calculated on the most refined mesh 7}, /3, is assumed to be the reference
solution. Then, for each intermediate mesh (7}, /Zi)0§i§4, we evaluate the error between the
computed solution and the reference solution. On Figure 3, the latter error is represented
in L2 —norm for the pressure and the temperature. By computing the slope of the curves,
one can conclude that the convergence of the model with respect to the mesh refinement
is in h2.

For illustration, Figures 4 and 5 represent the reference solutions, i.e. the pressure,
the temperature, the velocity and the specific flux obtained on 7j,/35 at the end of the
production period. Note that the plots are given with respect to z and that the dotted
lines form the perforations. Focussing on Figure 4(a), the pressure in the wellbore clearly
appears to be mainly influenced by the gravity. The same observation holds for the
temperature when considering the flow beyond the perforations.
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Erreur relative sur la pression en norme L2

Ordre de convergence
T
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Figure 3: Order of convergence
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Figure 4: Pressure, temperature and specific flux at the end of the production
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6.2 Synthetic case

As mentioned earlier, our new wellbore model reveals itself when coupled with a reservoir
simulator. Thus, in this section we carry out a simulation by imposing at the interface X
the normal specific flux G - n and the temperature T generated by the reservoir model we
introduced in [1].

As represented in Figure 6, we now consider a two-perforation wellbore associated
with a five-layer reservoir which physical characteristics are detailed in Figure 7. One can
notably see that the two producing layers are separated by quasi walls which prevent any
cross flow between them in the reservoir.

Wellbore axis

|
|
|
|
|
|
|
|
|
|
|
! ° Layer #2
|

—

Figure 6: Vertical section of the 2D axisymetric wellbore-reservoir model

Within this framework, a light oil production is simulated by imposing at the exit of
each reservoir producing layer, and thus at the entry of each wellbore perforation, the
flowrates (Q;)1<i<2 given by Figure 8. In other words, the wellbore is in production mode
during 48h, and then is shut in the next 48h.

Concerning the temperature, we impose on 3 the solutions obtained from the reservoir
simulation, several of whom are represented on Figure 9 for some selected time-steps. In
accordance with the Joule-Thomson effect, the reservoir temperature increases during the
production phase and slowly comes back to normal the next hours.

The results of the wellbore simulation are displayed in Figure 10 for two vertical z
positions chosen straight in front of each perforation (Purple and green colored dots of
Figure 6). For these two z positions, we also draw a parallel (Cf. Figure 11) between
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kpn=10"*mD k,=10"*mD ¢=0.1 s, =1

kp =100mD k, =1mD ¢=0.15 s, =0.2

kp =10"*mD k, =10"*mD ¢=0.1 s, =1

kp =500mD ky,=1mD ¢=0.15 s, =0.2

Producing layer #2

kp =10"*mD k,=10"*mD ¢=0.1 s,=1

Figure 7: Vertical section of the reservoir

Historique de débit

—— Couche 1
— Couche 2

48
Temps (en h)

Figure 8: Flow rates imposed at each perforation

the temperature in the wellbore and the one computed inside the reservoir, closed to the
perforations.
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Température en fondtion de Z a différents instants
T T
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Figure 9: Temperature computed on ¥ by the reservoir simulator

From Figure 10(a), one can notice that the pressure clearly agrees with the theoretical
behavior given by softwares dedicated to well-testing analysis such as PIE (Cf. [1]).
Namely, we observe on Figure 10(a) that, either during the draw-down or the shut-in
period, the flow regime goes through a transitory state to reach a permanent one.

As part of the wellbore temperature, when the production is stopped (during the last
48h), it decreases and tends to reach the reservoir temperature near the perforation, as
enlightened by Figures 11(a) and 11(b).

On the other hand, during the production period, the wellbore temperature turns out
to be mainly influenced by the wellbore flow.

In fact, we first observe that the fluid temperature increases with the depth, which is
due to the geothermal gradient imposed in the reservoir. Moreover, the wellbore temper-
ature in front of the shallow perforation is far more higher than the corresponding one
in the reservoir side, at the same depth. The fluid extracted from the perforation #1 is
warmed in the wellbore when blended with the warmer fluid produced by the perforation
#2.

Thus, we come across the empirical idea which states that the temperature of the
fluid directly in front a perforation is mainly influenced by the temperature of the fluid
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Figure 10: Wellbore results in front of each perforation, with respect to time
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Figure 11: Wellbore and reservoir temperatures at each perforation

coming from the reservoir and by the one of the fluid going up in the pipe, which would
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be equivalent to say that for a given z :

/ TG - -ndo

T(z) = Oz
/ G - ndo
0

In fact, the latter relation which is plotted in Figure 12 could be referred to as a first-order
approximation of our model in the sense that it provides a good trend in production mode,
but fails in accuracy as it does not take into account the whole physical constraints such
as the gravity.

, Vzel=1,U . (28)

Température & 'aplomb des couches productrices
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Figure 12: Empirical simplified estimate of the wellbore temperature

References

[1] M. Amara, D. Capatina, B. Denel and P. Terpolilli. Mized finite element approzi-
mation for a coupled petroleum reservoir model, M2AN, Vol. 39, No. 2, pp. 349-376,
2005.

[2] G. Bourdarot. FEssais de puits : méthodes d’interprétation, Editions Technip, Paris,
1996.

[3] F.Brezzi and M. Fortin. Mized and Hybrid Finite Element Methods, Springer Verlag,
New York, 1991.

[4] B. Denel. Simulation numérique et couplage de modéles thermomécaniques puits-
milieuz poreux, Ph.D. Thesis, University of Pau, 2004.

[5] G. Duvaut. Mécanique des milieuz continus, Masson, 1990.



34

[6]

[10]

[11]

6 NUMERICAL SIMULATIONS

V. Girault and P.A. Raviart. Finite element method for Navier-Stokes equations,
Theory and Algorithms, Springer Verlag, Berlin, 1986.

F. Maubeuge, M. Didek, E. Arquis, O. Bertrand and J.P. Caltagirone. A model for
interpreting thermometrics, SPE 28588, 1994.

G. Medic and B. Mohammadi. NSIKE : An incompressible Navier-Stokes solver for
unstructured meshes, Rapport de Recherche No. 3644, INRIA, 1999.

R.A. Nicolaides. Ezistence, uniqueness and approzimation for gemeralized saddle
point problems, STAM J. Numer. Anal., Vol. 19, No. 2, pp. 349-357, 1982.

D.Y. Peng and D.B. Robinson. A new two-constant equation of state, Ind. Eng.
Chem. Fundam., Vol. 15, pp. 59-64, 1976.

J.E. Roberts and J.-M. Thomas. Mized and Hybrid Methods, in Handbook of Nu-
merical Analysis, Vol. 11, North Holland, Amsterdam, pp. 523-639, 1991.



