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Acoustic waves at the interface of a pre-stressed incompressible elastic solid and a viscous fluid

Introduction

Seismic records show that underground rocks and ocean beds are subject to stress and strain and that surrounding fluids are viscous and under high pressures. Clinical ultrasonic measurements indicate that arteries can undergo large strains in service and are most sensitive to changes in blood pressure. Many moving and vibrating parts of automotive devices are made of loaded elastomers in contact with highly viscous fluids. These are a few examples of situations where it is crucial to model and understand the motions and the stability of the interface between a deformed elastic solid and a viscous fluid. Yet only a handful of studies can be found on the subject, especially when compared with the abundant literature on waves at the interface between an elastic solid and an inviscid fluid, which goes from the pioneering works of Galbrun [START_REF] Galbrun | Propagation d'une Onde Sonore dans l'Atmosphère et Théorie des Zones de Silence[END_REF], Cagniard [START_REF] Cagniard | Réflexion et Eéfraction des Ondes Sismiques Progressives[END_REF], Scholte [START_REF] Scholte | On the Stoneley wave equation[END_REF], and Biot [START_REF] Biot | The interaction of Rayleigh and Stoneley waves in the ocean bottom[END_REF] to the definitive treatment of the acoustoelastic effect by Sinha et al. [START_REF] Sinha | Stoneley and flexural modes in a pressurized borehole[END_REF]; see also Poirée [6] and Degtyar and Rohklin [START_REF] Degtyar | Stress effect on boundary conditions and elastic wave propagation through an interface between anisotropic media[END_REF]. Waves at the interface between a viscous fluid and an undeformed isotropic elastic solid were examined by Vol'kenshtein and Levin [START_REF] Vol'kenshtein | Structure of a Stoneley wave at an interface between a viscosus fluid and a solid[END_REF] and the corresponding problem for an anisotropic elastic solid by Wu and Wu [START_REF] Wu | Surface waves in coated anisotropic medium loaded with viscous liquid[END_REF]. To the best of our knowledge, only Bagno, Guz, and their co-workers have studied the title problem (see, for example, [START_REF] Bagno | Stonely waves on the contact boundary between a prestressed incompressible rigid half-space and a viscous compressible fluid[END_REF], [START_REF] Bagno | Elastic waves in prestressed bodies interacting with a fluid[END_REF]). Their analytical treatment is, however, quite succinct and we therefore aim to shed new light on the problem by re-examining it on the basis of recent developments in the theory of small-amplitude waves, linearized in the neighbourhood of a finite, static, homogeneous deformation.

It turns out that one of the trickiest aspects of the study is the derivation of proper incremental boundary conditions at the interface because these are usually written in terms of the nominal stress in a deformed solid (Lagrangian formulation, Section 2) and in terms of the Cauchy stress in a fluid (Eulerian formulation, Section 3). These equations are combined in an appropriate way for a general interface in Section 4. We then specialize the analysis to principal wave propagation for an arbitrary (incompressible, isotropic) strainenergy function in Section 5. In the course of the analysis in Section 5, by way of application of the theory, we show that in respect of an abdominal aortic aneurysm it is appropriate to neglect the curvature and finite thickness for ultrasonic waves (10 MHz), i.e. to treat the aneurysm locally as a half-space. It also shown that it is not appropriate to use waves with a real frequency to study the stability of compressed solids in contact with a viscous fluid. Finally, in Section 6, by specializing to the neo-Hookean solid, we consider the propagation of non-principal waves for both tension and compression of the half-space in order to illustrate the influence of the fluid.

Basic equations for the solid

For the solid material we denote by F the deformation gradient relating the stress-free reference configuration, denoted B 0 , to the finitely deforming configuration, denoted B. This has the form F = Gradx, where x = χ(X, t) is the position vector in B at time t of a material point located at X in B 0 , χ is the deformation mapping, and Grad is the gradient operator relative to B 0 .

We consider the material to be elastic with a strain-energy function, defined per unit volume, denoted by W = W (F ). Furthermore, we restrict attention to incompressible materials so that the constraint

det F = 1 (2.1)
is in force. The nominal stress tensor, here denoted by S, and the Cauchy stress tensor σ are then given by

S = ∂W ∂F -pF -1 , σ = F ∂W ∂F -pI, (2.2) 
where p is a Lagrange multiplier associated with the constraint (2.1) and I is the identity tensor.

The equation of motion is

DivS = ρẍ, (2.3) 
where Div is the divergence operator relative to B 0 , ρ is the mass density of the material, and a superposed dot signifies the material time derivative. Next, we consider a small motion superimposed on the finite deformation. Let u(x, t) be the displacement vector relative to B and v(x, t) = u the associated particle velocity (the material time derivative of u). Then, on taking the increment of equation (2.3) and thereafter changing the reference configuration from B 0 to B, we obtain

divs = ρü ≡ ρ v, (2.4) 
where s is the increment in S (referred to B) and div the divergence operator relative to B. The (linearized) incremental version of the constitutive relation (2.2) is written s = A(gradu) + p(gradu) -pI, (

where A is a fourth-order tensor of elastic moduli, grad is the gradient operator relative to B, and p is the increment in p. In component form, this is written

s ij = A ijkl u l,k + pu i,j -pδ ij , (2.6) 
where ,k denotes ∂/∂x k and δ ij is the Kronecker delta. In terms of W the components of A are given by

A ijkl = F ip F kq ∂ 2 W ∂F jp ∂F lq . (2.7)
For details of these derivations (in a slightly different notation) we refer to Dowaikh and Ogden [START_REF] Dowaikh | On surface waves and deformations in a pre-stressed incompressible elastic solid[END_REF]. We now consider the material to be isotropic, so that W = W (λ 1 , λ 2 , λ 3 ) is a symmetric function of the principal stretches, λ 1 , λ 2 , λ 3 (the positive square roots of the principal values of F F T , where T signifies the transpose), subject to the constraint

λ 1 λ 2 λ 3 = 1, (2.8) 
which follows from (2.1). Then, on noting that for an isotropic material σ is coaxial with F F T and specializing equation (2.2) 2 , we obtain the principal Cauchy stresses (see, for example, Ogden [START_REF] Ogden | Non-Linear Elastic Deformations[END_REF])

σ i = -p + λ i W i , i = 1, 2, 3 (no sum over i), (2.9) 
where

W i = ∂W/∂λ i , i = 1, 2, 3.
When referred to the same principal axes, the only non-zero components of A are

A iijj = λ i λ j W ij , i, j ∈ {1, 2, 3}, (2.10) 
A ijij = λ i W i -λ j W j λ 2 i -λ 2 j λ 2 i , i, j ∈ {1, 2, 3}, i = j, (2.11) 
A ijji = A jiij = A ijij -λ i W i , i, j ∈ {1, 2, 3}, i = j, (2.12) 
where W ij = ∂ 2 W/∂λ i ∂λ j . For subsequent convenience, we adopt the notations defined by

γ ij = (λ i W i -λ j W j )λ 2 i /(λ 2 i -λ 2 j ), β ij = (λ 2 i W ii + λ 2 j W jj )/2 -λ i λ j W ij + (λ i W j -λ j W i )λ i λ j /(λ 2 i -λ 2 j ), (2.13) noting that γ ji λ 2 i = γ ij λ 2 j and β ji = β ij .

The pre-stressed elastic half-space

We now consider B to be independent of time and to correspond to a pure homogeneous strain of a half-space defined by x 2 0. The half-space is maintained in this configuration so that its boundary x 2 = 0 is a principal plane of strain. We denote by x 1 and x 3 the other two principal directions of strain and by λ 1 , λ 2 , λ 3 the principal stretches in the x 1 , x 2 , x 3 directions, respectively. The corresponding principal Cauchy stresses are then as given by (2.9). In particular, the boundary x 2 = 0 is subject to a normal stress σ 2 and, after elimination of p, the other two principal Cauchy stresses are then given by

σ 1 = σ 2 + λ 1 W 1 -λ 2 W 2 , σ 3 = σ 2 + λ 3 W 3 -λ 2 W 2 .
(

We are interested in the propagation of incremental (small amplitude) acoustic waves along the boundary plane x 2 = 0, in a direction making an angle θ with the principal direction x 1 . The incremental velocity and nominal stress fields v and s are then considered as superimposed on this finite static configuration. We examine inhomogeneous time-harmonic plane waves of the form

{v, s}(x 1 , x 2 , x 3 , t) = {v(x 2 ), -(k/ω)ŝ(x 2 )}e ik(c θ x 1 +s θ x 3 ) e -iωt , (2.15) 
where we have introduced the notations c θ = cos θ, s θ = sin θ, k is the wave number, ω is the wave frequency, and v, ŝ are functions of x 2 only, such that

v(∞) = 0, ŝ(∞) = 0. (2.16)
Using the results of Destrade et al. [START_REF] Destrade | Nonprincipal surface waves in deformed incompressible materials[END_REF] (see also Chadwick [START_REF] Chadwick | The application of the Stroh formalism to prestressed elastic media[END_REF]), we find that the incremental equations of motion can be written as a first-order differential system of six equations, namely

ξ ′ (x 2 ) = ikN ξ(x 2 ), (2.17) 
where the notation ξ is defined by

ξ = [v 1 , v2 , v3 , ŝ21 , ŝ22 , ŝ23 ] T , (2.18) 
and the 6 × 6 matrix N has the block structure

N = N 1 N 2 N 3 + ρI N T 1 , (2.19) 
in which the 3×3 matrices N 1 , N 2 , N 3 are real and their components depend on the material parameters γ ij and β ij given in (2.13), and the notation ρ = ρω 2 /k 2 has been introduced. Here I represents the 3 × 3 identity matrix.

Explicitly, -N 1 , N 2 , -N 3 are   0 c θ (γ 21 -σ 2 )/γ 21 0 c θ 0 s θ 0 s θ (γ 23 -σ 2 )/γ 23 0   ,   1/γ 21 0 0 0 0 0 0 0 1/γ 23   ,   η 0 -κ 0 ν 0 -κ 0 µ   , (2.20) 
respectively, where

η = 2c 2 θ (β 12 + γ 21 -σ 2 ) + s 2 θ γ 31 , ν = c 2 θ [γ 12 -(γ 21 -σ 2 ) 2 /γ 21 ] + s 2 θ [γ 32 -(γ 23 -σ 2 ) 2 /γ 23 ], µ = c 2 θ γ 13 + 2s 2 θ (β 23 + γ 23 -σ 2 ), κ = c θ s θ (β 13 -β 12 -β 23 -γ 21 -γ 23 + 2σ 2 ).
(2.21) Equation (2.17) provides the general expression for the equations of motion, for arbitrary θ and W . Now, in seeking a decaying partial-mode solution of the form

ξ(x 2 ) = e -ksx 2 ζ, ℜ(ks) > 0, (2.22) 
where ζ is a constant vector and s an unknown scalar, we arrive at the eigenvalue problem N ζ = isζ. In general, the associated propagation condition, det(N -isI) = 0, is a cubic in s 2 [START_REF] Rogerson | Harmonic wave propagation along a non-principal direction in a pre-stressed elastic plate[END_REF], where now I is the 6 × 6 identity matrix. Its analytical resolution is too cumbersome to be of practical interest, and so we specialize the general equations to the following, simpler, situations: (i) principal wave propagation (θ = 0) for arbitrary W ; (ii) nonprincipal wave propagation (θ = 0) for the neo-Hookean material, for which

W = C(λ 2 1 + λ 2 2 + λ 2 3 -3)/2, ( 2.23) 
where C > 0 is a constant (the shear modulus of the material in the reference configuration).

In Case (i), the equations of motion decouple the system v′

3 ŝ′ 23 = ik 1/γ 21 0 0 1/γ 23 v3 ŝ23 , (2.24) 
(for which the trivial solution may be chosen) from a system of four differential equations for v1 , v2 , ŝ21 , ŝ22 . Hence, in this case, the wave is elliptically polarized, in the (x 1 , x 2 ) plane. The corresponding propagation condition is a quadratic in s 2 , which can be solved explicitly.

In Case (ii), we also find that the wave is two-partial, polarized in the plane containing the directions of propagation and attenuation (the saggital plane); there, the corresponding propagation condition involves the product of the factor (s 2 -1) and a term linear in s 2 , which simplifies the analysis.

Before embarking on the details of these cases, we complete the description of the boundary-value problem by considering the behaviour of the wave in the fluid in the half-space x 2 ≤ 0.

The fluid half-space

Adjoining the deformed solid half-space is a half-space x 2 0 filled with an incompressible viscous Newtonian fluid, for which all mechanical fields are denoted by a superscripted asterisk. In the static state the fluid is subject only to a hydrostatic stress σ * = -P * I, and by continuity of traction across the boundary x 2 = 0 we must have

-P * = σ 2 . (3.1)
The constitutive law for the fluid associated with the motion is then written in terms of a superimposed Cauchy stress tensor, denoted here by s * and given by

s * = -p * I + 2µ * D * , trD * = 0, (3.2) 
where µ * is the viscosity of the fluid,

D * = 1 2 [gradv * + (gradv * ) T ], (3.3) 
v * is the fluid velocity, and p * = p * (x, t).

We seek inhomogeneous waves with the same structure as in the solid, that is

{v * , s * }(x 1 , x 2 , x 3 , t) = {v * (x 2 ), -(k/ω)ŝ * (x 2 )}e ik(c θ x 1 +s θ x 3 ) e -iωt , (3.4) 
where v * , ŝ * are functions of

x 2 only, such that v * (-∞) = 0, ŝ * (-∞) = 0. (3.5)
We find that the equations of motion, divs * = ρ * v * (where ρ * is the mass density of the fluid), linearized in v * , can be cast as

ξ * ′ (x 2 ) = ikN * ξ * (x 2 ), (3.6) 
where

ξ * = [v * 1 , v * 2 , v * 3 , ŝ * 21 , ŝ * 22 , ŝ * 23 ] T , (3.7) 
and the constant complex matrix N * has the block structure

N * = N * 1 N * 2 N * 3 + ρ * I N * 1 , (3.8) 
N * 1 , N * 2 , N * 3 being real symmetric matrices, and the notation ρ * = ρ * ω 2 /k 2 has been adopted. If we write μ * = µ * ω, then, respectively,

-N * 1 , -iμ * N * 2 , -iN * 3 /μ * are   0 c θ 0 c θ 0 s θ 0 s θ 0   ,   1 0 0 0 0 0 0 0 1   ,   4c 2 θ + s 2 θ 0 3c θ s θ 0 0 0 3c θ s θ 0 c 2 θ + 4s 2 θ   . (3.9)
Again, when we seek a decaying partial-mode solution, this time in the form

ξ * (x 2 ) = e ks * x 2 ζ * , ℜ(ks * ) > 0, (3.10) 
where ζ * is a constant vector and s * an unknown scalar, we end up with an eigenvalue problem, here

N * ζ * = -is * ζ * . The associated propagation condition is det(N * + is * I) = 0, which here simplifies to (s ⋆2 -1)(s ⋆2 -1 + iǫ) 2 = 0, (3.11) with roots ±1, ± √ 1 -iǫ (repeated), (3.12) 
where ǫ = ρ * /μ * = ρ * ω/(µ * k 2 ). The roots are independent of θ, as expected, because the fluid is isotropic. Corresponding to each of the four roots, there are four eigenvectors and therefore potentially four partial-modes. However, two of these must be discarded since their amplitudes do not decay with distance from the interface x 2 = 0. The two remaining modes form the basis for the general solution of the equations of motion that is needed for matching with the two-partial wave in the solid. We now give the general boundary conditions at the deformed solid/viscous fluid interface.

The interface

In order to match the incremental tractions across the boundary it is necessary to work in terms of the Cauchy stress since the nominal stress is not defined inside the fluid. Towards this end we first calculate the incremental traction in the solid in terms of the Cauchy stress. Continuity of traction requires

S T N dA = σnda = σ * nda, (4.1) 
where dA and da are the area elements in B 0 and B, respectively. Taking the increment of this and updating the reference configuration to B yields

s T nda ≡ σnda + σ nda = s * nda + σ * nda, (4.2) 
where a superposed tilde indicates an increment. Note that, after updating, F = I and S = σ in the configuration B. Now, according to Nanson's formula (applied to the boundary of the solid), we have nda = F -T N dA, from which it follows, again after updating, that nda = -(gradu) T nda.

Hence, the incremental traction continuity condition can be written

s T n ≡ [σ -σ(gradu) T ]n = [σ * -σ * (gradu) T ]n, (4.4) 
and we recall that σ * = -P * I.

Since n is in the x 2 direction for the considered half-space we may write the continuity condition in component form as

s 2i = s * 2i + P * u 2,i , i = 1, 2, 3, on x 2 = 0. (4.5)
Additionally, the velocity must be continuous, i.e.

v * i = v i , i = 1, 2, 3, on x 2 = 0. (4.6)
In terms of the functions v(x 2 ), ŝ(x 2 ) and their counterparts in the fluid, the boundary conditions become

v * i (0) = vi (0), i = 1, 2, 3, (4.7) 
and, noting that

v i = -iωu i , ŝ * 12 (0) + c θ P * v2 (0) = ŝ21 (0), ŝ * 32 (0) + s θ P * v2 (0) = ŝ23 (0), (4.8) 
and ŝ * 22 (0) -

i k P * v′ 2 (0) = ŝ22 (0). (4.9)
5 Principal waves: no restriction on W

General solution in the solid

Here we take θ = 0 and place no restriction on the form of W . When θ = 0, the in-plane mechanical fields in the solid satisfy the equations of motion ξ ′ = ikN ξ, where now ξ(x 2 ) = [v 1 , v2 , ŝ21 , ŝ22 ] T and

N =     0 -1 + σ 2 1/γ 21 0 -1 0 0 0 ρ -η 0 0 -1 0 ρ -ν -1 + σ 2 0     , (5.1) 
with σ 2 = σ 2 /γ 21 and η and ν now reduced to

η = 2[β 12 + γ 21 (1 -σ 2 )], ν = γ 12 + γ 21 (1 -σ 2 ) 2 .
Here the propagation condition is a quadratic in s 2 [START_REF] Dowaikh | On surface waves and deformations in a pre-stressed incompressible elastic solid[END_REF] and given by

s 4 -2βs 2 + α 2 = 0, (5.2) 
where 2β = 2β 12 - ρ γ 21 , α 2 = γ 12 - ρ γ 21 . (5.3) 
We recall that ρ = ρω 2 /k 2 . Formally, the roots of the quartic (5.2) are

± β + β 2 -α 2 , ± β -β 2 -α 2 .
(5.4)

We pause the analysis to highlight a particular feature of the present interface waves. Because the fluid is viscous, the wave number k is complex and so, therefore, are β and α. It follows that, in contrast to the purely elastic case [START_REF] Dowaikh | Interfacial waves and deformations in pre-stressed elastic media[END_REF], it is not clear a priori which two of these four roots are such that the decay condition Eq. (2.22) 2 is satisfied. Let s 1 and s 2 be two such roots. We note first that

s 2 1 + s 2 2 = 2β, s 2 1 s 2 2 = α 2 , (5.5) 
and then, depending on which value in Eq. ( 5.4) they correspond to, one of the following four possibilities may arise:

s 1 s 2 = α, s 1 + s 2 = 2(β + α), s 1 s 2 = α, s 1 + s 2 = -2(β + α), s 1 s 2 = -α, s 1 + s 2 = 2(β -α), s 1 s 2 = -α, s 1 + s 2 = -2(β -α). (5.6) 
Now, the eigenvectors ζ 1 and ζ 2 associated with s 1 and s 2 are columns of the matrices adjoint to N -is 1 I and N -is 2 I, respectively. Taking, for instance, the fourth column gives

ζ i = [is i , -1, -γ 21 (1 + s 2 i -σ 2 ), -iγ 21 s i (1 + 2β -s 2 i -σ 2 )] T , i = 1, 2.
(5.7) Finally, the general solution in the solid is

ξ(x 2 ) = A 1 e -ks 1 x 2 ζ 1 + A 2 e -ks 2 x 2 ζ 2 , (5.8) 
where A 1 and A 2 are constants.

General solution in the fluid

In the fluid, a two-partial solution is required for adequate matching at the interface. Taking θ = 0 in Section 3, we find that the in-plane equations of motion are ξ * ′ = ikN * ξ * , where now

ξ * (x 2 ) = [v * 1 , v * 2 , ŝ * 21 , ŝ * 22 ] T and N * =     0 -1 i/μ * 0 -1 0 0 0 4iμ * + ρ * 0 0 -1 0 ρ * -1 0     .
(5.9)

We assume that the wave propagates and is attenuated in the direction x 1 0. From Eq. (3.4) with θ = 0, we see that these assumptions lead to

ℜ(k) > 0, ℑ(k) > 0.
(5.10)

On the other hand, the wave is also attenuated with distance from the interface; it follows that we can discard the root -1 from Eq. (3.12) and retain the root +1. The choice to be made for the remaining two roots in Eq. (3.12) is not so clear cut and for the time being we call s * the suitable root; hence s * is such that s * 2 = 1 -iǫ, ℜ(ks * ) > 0.

(5.11)

Finally, the general solution in the fluid is

ξ * (x 2 ) = A * 1 e kx 2     i 1 -2iμ * -μ * (1 + s * 2 )     + A * 2 e ks * x 2     is * 1 -iμ * (1 + s * 2 ) -2μ * s *     , (5.12) 
where A * 1 and A * 2 are constants.

Dispersion equation for the interface wave

When we specialize the general boundary conditions (4.7), (4.8) and (4.9) to the present context, we find a linear homogeneous system of four equations for the four unknowns A 1 , A 2 , A * 1 , A * 2 , for which the associated determinant must be zero. After some manipulations, using Eq. (5.5), we find that

-s 1 -s 2 1 s * 1 1 1 1 γ 21 (1 + s 2 1 ) γ 21 (1 + s 2 2 ) -2iμ * -iμ * (1 + s ⋆2 ) γ 21 s 1 (1 + s 2 2 ) γ 21 s 2 (1 + s 2 1 ) iμ * (1 + s ⋆2 ) 2iμ * s * = 0. ( 5.13) 
We see at once that the normal load σ 2 does not appear explicitly in this equation. This feature highlights a major difference between a wave at the interface of a loaded solid half-space and a vacuum (Rayleigh wave) and a wave at the interface of a loaded solid half-space and a viscous fluid, as considered here; Chadwick and Jarvis [START_REF] Chadwick | Interfacial waves in a pre-strained neo-Hookean body I. Biaxial states of strain[END_REF] also noted this peculiarity for waves at the interface of two loaded solid half-spaces (Stoneley wave). Of course, σ 2 still plays an important role, in particular in the determination of the pre-stretch ratios and of the amplitudes of the tractions in the solid.

Once the determinant is expanded and the factors (s 1 -s 2 )(1 -s * ) are removed, we end up with the exact dispersion equation,

γ 2 21 γ 12 - ρ γ 21 + 2β 12 + 2γ 21 - ρ γ 21 s 1 s 2 -1 -iγ 21 μ * [2(1 -s 1 s 2 )(1 -s * ) + (s 1 + s 2 )(1 + s * )(s * + s 1 s 2 )] + μ * 2 [iǫ + (iǫ -4) s * ] = 0. (5.14)
This equation is fully explicit because the terms s 1 + s 2 , s 1 s 2 , and s * are given by Eqs. (5.6) and Eq. (5.11). Of course, as noted earlier, there are several possibilities for these terms, which generate in total eight different dispersion equations. In each case the resulting root(s) in k must be checked for validity against the propagation and decay conditions (2.22) 2 , (5.10), and (5.11) 2 , which we summarize here as

ℜ(k) > 0, ℑ(k) > 0, ℜ(ks * ) > 0, ℜ(ks 1 ) > 0, ℜ(ks 2 ) > 0. (5.15)
Notice that in the special case of solids whose strain-energy function W is such that 2β 12 = γ 12 + γ 21 , which includes the neo-Hookean solid (2.23), the biquadratic (5.2) factorizes as (s 2 -1)(s 2 -α 2 ) = 0. Hence s 1 = 1, s 2 = ±α, and the exact secular equation (5.14) simplifies accordingly, leading this time to four different exact dispersion equations.

Application: modelling of intravascular ultrasound

In recent years, intravascular ultrasound (IVUS) has proved to be a most promising tool of investigation for measuring and assessing abdominal aortic aneurysms. Its accuracy is as good as that of computed tomography (CT) scans and it has obvious non-radiative advantages [START_REF] Lederle | Variability in measurement of abdominal aortic aneurysms[END_REF], [START_REF] Wolf | Duplex ultrasound scanning versus computed tomographic angiography for postoperative evaluation of endovascular abdominal aortic aneurysm repair[END_REF], [START_REF] Garret | Intravascular ultrasound aids in the performance of endovascular repair of abdominal aortic aneurysm[END_REF]. We now apply the results of this section to an IVUS context. First we recall that medical ultrasound imaging devices operate in the 1-10 MHz range; accordingly we take ω = 10 7 Hz. We argue, and will check a posteriori, that at such high frequency the wavelength is small compared with the radius and thickness of an artery so that, as far as the propagation of localized waves is concerned, an aortic aneurysm can be modelled as a half-space. Here we take the axis of the artery along the x 1 direction and consider that the half-space x 2 0 is filled with blood.

For the solid, we use a strain-energy function devised by Raghavan and Vorp [START_REF] Raghavan | Toward a biomechanical tool to evaluate rupture potential of abdominal aortic aneurysm: identification of a finite strain constitutive model and evaluation of its applicability[END_REF] to fit experimental data collected on uniaxial tension tests of aortic aneurysms, namely

W = C 1 (λ 2 1 + λ 2 2 + λ 2 3 -3) + C 2 (λ 2 1 + λ 2 2 + λ 2 3 -3) 2 , (5.16) 
where, typically, C 1 = 0.175 MPa, C 2 = 1.9 MPa. We assume that the aneurysm corresponds to a region where the tissue undergoes a strain of 20%, and that the end-systolic blood pressure is high, 150 mmHg (= 20 kPa) say, so we take σ 2 = 20 kPa. We consider that the tissue is free to expand or contract in the x 3 direction with σ 3 = 0. From (2.14) we find the remaining stresses and strains. Summarizing, we have λ 1 = 1.2, λ 3 ≃ 0.908, σ 1 ≃ 71.45 kPa, σ 2 = 20 kPa, σ 3 = 0, (5.17)

with λ 2 calculated from the incompressibility condition. For the mass density, we take ρ = 1000 kg/m 3 . For the blood, we use typical values of viscosity [START_REF] Spring | Decreased wall shear stress in the common carotid artery of patients with peripheral arterial disease or abdominal aortic aneurysm: Relation to blood rheology, vascular risk factors, and intima-media thickness[END_REF] and mass density [START_REF] Kenner | The continuous highprecision measurement of the density of flowing blood[END_REF]: µ * = 3.5 × 10 -3 Ns/m 2 , ρ * = 1050 kg/m 3 .

Here, the frequency ω is fixed as a real quantity a priori. We then replace k everywhere by k = ωS, where S = S + + iS -is the (complex) slowness, and the only unknown in the dispersion equation (5.14). The propagation and decay conditions (5.15) are satisfied and may be written as

ℜ(S) > 0, ℑ(S) > 0, ℜ(Ss * ) > 0, ℜ(Ss 1 ) > 0, ℜ(Ss 2 ) > 0. (5.18)
We find that the only qualifying root is S = 2.721 × 10 -2 + 4.424 × 10 -4 i, (5.19) from which we deduce the phase speed v = 1/S + , the damping factor γ = S -, and the wavelength λ 0 = 2π/(ωS + ): v = 36.75 m/s, γ = 4.424 × 10 -4 m -1 , λ 0 = 23.1 µm.

(5.20)

Then we plot the depth profiles of the wave. Its amplitude is the real part of v in the solid and of v * in the fluid. Explicitly,

ℜ (v(x 1 , x 2 , t)) = e -γx 1 [ℜ (v(x 2 )) cos ω(x 1 /v -t)] .
-ℑ (v(x 2 )) sin ω(x 1 /v -t)] , (5.21) in the solid, and similarly for the fluid, for which v and v are replaced by their asterisk counterparts. Clearly, the particle velocity is elliptically polarized, and the lengths of the ellipse semi-axes decay with distance away from the interface and also with increasing x 1 . Figure 1 shows the variations of the normal (continuous curve) and tangential (dotted curve) velocity components in the fluid (x 2 0) and in the solid (x 2 0), normalized with respect to v2 (0), as functions of x 2 /λ 0 . Note that the components are in phase quadrature. Note also, as is clear from the zooms shown in Figure 1, that the components are continuous across the interface, as expected, but their first derivatives are discontinuous. The wave is elliptically polarized near the interface; the major axis is normal to the interface and more than 12 times the length of the minor axis; the ellipse is described in a retrograde manner. This shape is carried through the depth of the solid whereas in the fluid, the wave becomes rapidly circularly polarized at a depth of about 0.06 wavelengths, and remains nearly so through the rest of the half-space. The localization is greater in the fluid than in the solid: the amplitude has almost vanished after one wavelength into the former and after five wavelengths in the latter. An aneurysm is typically 1 mm thick, which, with the numerical values used here, is more than 50 wavelengths; thus, the assumption of a semi-infinite solid is justified, as is the assumption of a flat interface (aneurysms are typically of diameter 5 cm).

Finally, we note that if the fluid is absent then the corresponding surface wave would travel with speed 40.734 m/s; hence the viscous fluid not only dampens the wave but also slows it down noticeably. Of course, blood flows in an artery, and creates shear deformation and stress in the solid. The influence of wall shear stress on the waves will be treated elsewhere.

Example: compressive stresses

Here we consider the behaviour of the elastic half-space (in contact with the viscous fluid) when it is compressed in the x 1 direction (λ 1 < 1). In their pioneering works, Green and Zerna [START_REF] Green | Theoretical Elasticity[END_REF] and Biot [START_REF] Biot | Surface instability of rubber in compression[END_REF], [START_REF] Biot | Mechanics of Incremental Deformations[END_REF] showed that when a highly elastic half-space with a free surface (no fluid contact) is compressed, a surface instability may develop. Focusing on neo-Hookean solids (2.23) they showed that the critical stretches are λ cr = 0.666 for tangential equibiaxial compression (λ 1 = λ, λ 2 = λ -2 , λ 3 = λ), λ cr = 0.544 for plane strain compression (λ 1 = λ, λ 2 = λ -1 , λ 3 = 1), and λ cr = 0.444 for normal equibiaxial compression (λ 1 = λ, λ 2 = λ -1/2 , λ 3 = λ -1/2 ). Theirs was a static stability analysis, later also included in a wider dynamical context by Flavin [START_REF] Flavin | Surface waves in pre-stressed Mooney material[END_REF], Willson [START_REF] Willson | Plate waves in Hadamard materials[END_REF], Chadwick and Jarvis [START_REF] Chadwick | Surface waves in a pre-stressed elastic body[END_REF], Dowaikh and Ogden [START_REF] Dowaikh | On surface waves and deformations in a pre-stressed incompressible elastic solid[END_REF], and others. We now consider this problem.

A localized small-amplitude wave propagates over the free surface of a deformed Mooney-Rivlin or neo-Hookean half-space with normalized squared speed ρv 2 /γ 12 = 1 -σ 2 0 λ 2 2 /λ 2 1 , where σ 0 is the real root of σ 3 + σ 2 + 3σ -1 = 0 (σ 0 = 0.2956). Clearly, in the examples of plane strain and equi-biaxial strain above, the squared wave speed increases when λ increases and decreases when λ decreases. At λ = 1 there is no pre-strain and ρv 2 /C = 0.9126, the value found by Lord Rayleigh [START_REF] Rayleigh | On waves propagated along the plane surface of an elastic solid[END_REF] for isotropic incompressible linearly elastic solids. As λ → ∞, the squared wave speed tends to the squared wave speed γ 12 /ρ of a transverse bulk wave. As λ decreases, there is a critical stretch λ cr at which the squared speed is zero and below which v 2 < 0. Since the wave time dependence is of the form e ik(x 1 -vt) , with k > 0, it follows that the amplitude grows without bound in time when λ < λ cr , and that the surface becomes unstable (at least, in the linearized theory). It is therefore appropriate to ask what happens when the compressed half-space is in contact with a viscous fluid.

Bagno and co-workers addressed this question in a series of articles (see the review by Bagno and Guz [START_REF] Bagno | Elastic waves in prestressed bodies interacting with a fluid[END_REF] and references therein). For a neo-Hookean solid they found that the wave speed drops to zero when λ = 0.544 in plane strain compression and when λ = 0.444 in normal equi-biaxial compression, that is at the same critical stretches as for surface (solid/vacuum) instability, irrespective of the viscous fluid characteristics. On the other hand, Bagno and Guz [START_REF] Bagno | Stonely waves on the contact boundary between a prestressed incompressible rigid half-space and a viscous compressible fluid[END_REF] find that the wave speed falls to zero at a critical stretch that does depend upon the viscosity of the fluid. To address this disparity, we now compute the speed of the interfacial wave when the half-space is in compression.

In order to minimize the number of parameters, we use the neo-Hookean solid, with W given by (2.23). We take a normal equi-biaxial pre-strain (λ 1 = λ, λ 2 = λ -1/2 , λ 3 = λ -1/2 ) and, following Bagno and Guz, we take the frequency ω to be real. A dimensional analysis of the resulting dispersion equation shows that (5.14) now depends on just three non-dimensional parameters: a measure of the pre-strain, λ; a measure of the dynamic viscosity of the fluid compared with the shear modulus of the solid, µ * ω/C; and the ratio of the densities, ρ * /ρ. Once these quantities are specified, the dispersion equation may be solved for the non-dimensional complex unknown x defined by

x := ρ γ 12 ω k = ρ Cλ 2 S -1 , (5.22) 
where S is the (complex) scalar slowness. The dispersion equation can now be solved numerically for x, and the interfacial wave speed, normalized with respect to the transverse bulk shear wave speed in the deformed solid, is c = ℜ(1/x).

For Figure 2(a), we fix ρ * /ρ at 1.0 and we take in turn µ * ω/C = 0.2, 0.04, 0.02. The first choice (ρ * /ρ = 1.0, µ * ω/C = 0.2) is roughly that obtained for the blood/artery interface of the previous section with C 1 = C and C 2 = 0. We see clearly that as µ * ω/C decreases the wave speed decreases towards zero as λ tends to 0.444, the critical compression stretch for the solid/vacuum interface (the thick curve gives the solid/vacuum interface wave speed). We find that in the extension to moderate compression range, the solid/fluid interface wave speed is significantly lower than the solid/vacuum wave speed. In the strongly compressive range (as λ → 0.444), the speed plot dips towards zero, and dips further as µ * ω/C decreases, without ever reaching that value; the plot gets close to the plot for the solid/vacuum interface wave speed as λ decreases, but then crosses it, and the fluid/solid interface wave speed increases again. Note that we checked the validity of the solution at all compressive stretches using (5.18). For Figure 2(b), we fixed µ * ω/C at 1.0 and took ρ * /ρ = 0.1, 0.05, 0.01. In the extension to moderate compression range, the plot for the solid/fluid interface wave speed gets closer to that for the solid/vacuum interface wave speed as ρ * /ρ decreases. In the strongly compressive range, similar comments to those made for Figure 2(a) apply.

The conclusion is that as both µ * ω/C and ρ * /ρ tend to zero, the speed tends to zero when the stretch tends to the critical compression stretch of the solid/vacuum surface instability. This is to be expected because this double limit corresponds to the vanishing of the fluid. However, as emphasized earlier, the speed never reaches the zero limit and the bifurcation criterion is therefore never met. For instance, the typical values used by Bagno and co-workers [START_REF] Bagno | Elastic waves in prestressed bodies interacting with a fluid[END_REF] put µ * ω/C at about 0.0002 and ρ * /ρ as low as 0.1, giving c smaller than 10 -4 , but not zero. In effect a localized damped wave exists for the whole compressive range, with speed values starting below the solid/vacuum interface wave speed in the moderate compressive range, reaching a minimum (above the solid/vacuum interface wave speed) as λ approaches 0.444, and then rising rapidly to infinity as λ decreases below 0.444. This result suggests that when a neo-Hookean half-space is in contact with a viscous fluid it becomes completely stable. This, however, is an incorrect deduction, because it is based on special motions, for which the frequency ω is assumed real. Other motions might be unstable, as is illustrated below.

We now take the wave number k to be real (k > 0) and let the speed v be complex,

k > 0, v = v + + iv -, (5.23) 
so that the motion is now proportional to e kv -t e ik(x 1 -v + t) . Clearly in this case, the conditions for a stable, localized wave, propagating in the x 1 > 0 direction, are

ℜ(v) 0, ℑ(v) 0, ℜ(s * ) > 0, ℜ(s 1 ) > 0, ℜ(s 2 ) > 0. ( 5.24) 
(note that ℜ(s 1 ) > 0 is automatically satisfied in a neo-Hookean solid, because s 1 = 1).

Then, an analysis of the dispersion equation (5.14), in the case of a neo-Hookean solid with normal equi-biaxial pre-strain, reveals three nondimensional quantities: λ, µ * k/ √ ρC, and ρ * /ρ. Once they are specified, we solve the dispersion equation for the non-dimensional quantity x defined as

x := ρ γ 12 ω k = ρ Cλ 2 v.
(5.25)

The interfacial wave speed, normalized with respect to the transverse bulk shear wave speed in the deformed solid, is c = ℜ(x).

For Figure 3, we take ρ * /ρ = 1.0, and µ * k/ √ ρC = 0.2, 0.002 in turn, and we plot v against λ in the compressive range. We find that at a compressive stretch close to the critical compressive stretch of surface stability for the solid/vacuum interface, the normalized speed c drops to zero. From the figure it is not clear that the values of λ at this point are different for 0.2 and 0.002, but the zoom in Figure 3 shows, however, that the value of the compressive stretch at which c = 0 depends on the material parameters. For comparison, the curve corresponding to µ * k/ √ ρC = 1 is also shown. We emphasize that the situation at c = 0 does not correspond to a static solution of the equations of motion (which would be impossible in the fluid), but to a non-propagating damped motion, proportional to e kv -t e ikx 1 . Moreover, this situation does not correspond to an instability because at that point, and a bit beyond, the requirements (5.24) still hold. For instance, in the case ρ * /ρ = 1.0, µ * k/ √ ρC = 0.2, the speed drops to zero at λ ≃ 0.44539 but there still exist non-propagating, localized motions for λ > 0.42212. Beyond that stretch value, however, all solutions of the considered type grow unboundedly with time and/or with space, indicating instability. From this example we see that the viscous load stabilizes slightly the solid half-space, because it can now be compressed by an extra 2%, from 0.444 to 0.422.

Non-principal wave: neo-Hookean solid

In this section we consider that the solid half-space is a deformed neo-Hookean material, with strain-energy function given by Eq. (2.23). For this material, Flavin [START_REF] Flavin | Surface waves in pre-stressed Mooney material[END_REF] noticed that Rayleigh waves are plane-polarized for any direction of propagation in a principal plane; see [START_REF] Braun | Rayleigh waves in a prestressed neo-Hookean material[END_REF], [START_REF] Dowaikh | Surface waves propagating in a half-space of neo-Hookean elastic material subject to pure homogeneous strain[END_REF]. Chadwick and Jarvis [START_REF] Chadwick | Interfacial waves in a pre-strained neo-Hookean body I. Biaxial states of strain[END_REF] showed the same result for Stoneley waves. Indeed, we now show that the saggital motion is always decoupled from the 'anti-saggital' motion, for any θ and any type of (bulk or interfacial) inhomogeneous wave.

First, we note that for neo-Hookean bodies, the parameters γ ij and β ij have the simple expressions

γ ij = Cλ 2 i , β ij = C(λ 2 i + λ 2 j )/2. (6.1)
It follows that the matrices N 1 , N 2 , N 3 , given by Eq. (2.20), are greatly simplified. Next, we recall that the direction of propagation and the normal to the interface define the saggital plane, with unit normal [-s θ , 0, c θ ] T . Now consider the new unknown functions w i , t 2i (i = 1, 2, 3), defined by

w i = Ω ij vj , t 2i = Ω ij ŝ2j , (6.2) 
where

Ω ij =   c θ 0 s θ 0 1 0 -s θ 0 c θ   . (6.3) 
Some algebraic manipulations reveal that the equations of motion (2.17), written for w i , t 2i , decouple the 'anti-saggital' motion [w with roots s = -1, which is discarded because it does not lead to a decaying wave,

s 1 = 1, s 2 = ± [C(c 2 θ λ 2 1 + s 2 θ λ 2 
3 ) -ρ]/(Cλ 2 2 ). (6.7)

The analysis leading to the derivation of the dispersion equation is by and large the same as that conducted for the principal wave in Section 5. The end result is that the dispersion equation is again (5.13), where now s 1 and s 2 are given by the expressions above, and γ 21 is replaced by Cλ 2 2 , but the other quantities remain unchanged.

As an illustration, we take the same numerical values as in Section 5.4, but with C 2 = 0 in (5.16). Hence the solid is neo-Hookean with C = 0.175 MPa and ρ = 1000 kg/m 3 . It is under the pre-stress σ 2 = 20 kPa, σ 3 = 0. The fluid has Newtonian viscosity µ * = 3.5 × 10 -3 Ns/m 2 , and mass density ρ * = 1050 kg/m 3 . The frequency is ω = 10 7 Hz. In turn, we take the solid to be compressed by 20% in the x 1 direction (so that λ 1 = 0.8 and then λ 2 ≃ 1.131, λ 3 ≃ 1.105), to be unstretched in the x 1 direction (so that λ 1 = 1, and λ 2 ≃ 1.014, λ 3 ≃ 0.986), and to be under an extension of 20% in the x 1 direction (so that λ 1 = 1.2, and λ 2 ≃ 0.929, λ 3 ≃ 0.897).

Figure 4 shows the dependence of the interfacial wave speed v + = ℜ(ω/k) on the angle of propagation θ. When the solid is almost unstrained, the speed hardly varies with the angle; when it is strained to ±20%, the induced anisotropy causes speed changes of more than ±25% in some directions. The figure also shows clearly that the wave travels at its fastest in the direction of greatest stretch, and at its slowest in the direction of greatest compression, indicating that it could be used for the acoustic determination of these directions. 
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 151 Figure 1: Depth profiles as functions of x 2 /λ 0 of the velocity components of the acoustic wave: x 2 (normal) component -continuous curve; x 1 (tangential) component -dotted curve. The zooms show continuity of these components and discontinuity of their derivatives.

Figure 2 :

 2 Figure 2: Normalized wave speed for a neo-Hookean solid under normal equibiaxial pre-strain and a viscous fluid: (a) ρ * /ρ = 1.0 and µ * ω/C = 0.2, 0.04, 0.02; (b) ρ * /ρ = 1.0, 0.4, 0.2 and µ * ω/C = 0.1. The thick curves are for an unloaded solid half-space.
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 3 Figure 3: Normalized wave speed for a neo-Hookean solid under normal equi-biaxial pre-strain and a viscous fluid with ρ * /ρ = 1.0 and µ * k/ √ ρC = 0.2, 0.002, 1 (indicated by the arrows) for the compressive range 0.4 < λ < 1.The zoom shows the details for µ * k/ √ ρC = 0.2, 0.002 for 0.442 < λ < 0.445 range. The thick curve corresponds to the solid half-space with no fluid loading.
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 4 Figure 4: Influence of propagation angle θ on the speed v + of a wave at the interface between a viscous fluid and a deformed neo-Hookean solid (thin curves). The thick curves represent the wave speed in the absence of fluid loading.
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			(6.4)
	with N in the form (5.1), where now		
	η = C(c 2 θ λ 2 1 + s 2 θ λ 2 3 + 3λ 2 2 ) -2σ 2 , ν = C(c 2 θ λ 2 1 + s 2 θ λ 2 3 ) + Cλ 2 2 (1 -σ 2 ) 2 ,	γ 21 = Cλ 2 2 , σ 2 = σ 2 /(Cλ 2 2 ).	(6.5)
	θ λ 2 1 + s 2 θ λ 2 3 ) + ρ] = 0,	(6.6)