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Abstract

Efforts at modelling the propagation of seismic waves in half-spaces
with continuously varying properties have been mostly focused on
shear-horizontal waves. Here a sagittaly polarized (Rayleigh type)
wave travels along a symmetry axis (and is attenuated along another)
of an orthotropic material with stiffnesses and mass density varying
in the same exponential manner with depth. Contrary to what could
be expected at first sight, the analysis is very similar to that of the
homogeneous half-space, with the main and capital difference that the
Rayleigh wave is now dispersive. The results are illustrated numer-
ically for (i) an orthotropic half-space typical of horizontally layered
and vertically fractured shales and (ii) for an isotropic half-space made
of silica. In both examples, the wave travels at a slower speed and pen-
etrates deeper than in the homogeneous case; in the second example,
the inhomogeneity can force the wave amplitude to oscillate as well as
decay with depth, in marked contrast with the homogeneous isotropic
general case.

1 Introduction

Love (1911) showed that a inhomogeneous half-space, consisting of an elas-
tic layer covering a semi-infinite body made of a different elastic material,
can sustain the propagation of a linearly polarized (shear horizontal) sur-
face wave. The Love wave is faster than the elliptically polarized (vertical)
Rayleigh (1885) wave and it has been observed countless times during earth-
quakes or underground explosions. Another recorded phenomenon is that
Rayleigh waves are dispersive, a characteristic which is incompatible with the
context of a homogeneous half-space given by Rayleigh (1885): Love showed
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that his layer/substrate configuration could also support a two-partial, ver-
tically polarized, surface wave. Because this configuration introduces a new
characteristic length, the layer thickness h (say), a dispersion parameter is
now kh where k is the wave number, and that surface wave is dispersive.

Subsequent analyses introduced more and more layers to refine the model,
until is was considered practical to view the inhomogeneity of the half-space
as a continuous variation of the material properties (Ewing et al. 1957).
Chief among these continuous variations is the one for which the elastic
stiffnesses and the mass density vary exponentially with depth, all in the
same manner, proportional to a common factor exp(−2αx2) say, where α is
the inverse of a inhomogeneity characteristic length, and x2 is the coordinate
along the normal to the free surface, so that here a dispersion parameter
is now α/k for instance. Hence Wilson (1942), Deresiewicz (1962), Dutta
(1963), Bhattacharya (1970), and many others studied the propagation of
surface waves in such inhomogeneous media; they were however interested in
shear-horizontal waves (Love-type). The literature on Rayleigh-type surface
waves in that type of media is quite scarce, probably because the difficulty
exposed below is encountered quite early in the analysis.

In an anisotropic elastic body with continuously variable properties, the
general equations of motion read

Cijklul,kl + Cijkl,jul,k = ρui,tt, (1)

where u is the mechanical displacement, and Cijkl and ρ are the elastic
stiffnesses and the mass density, respectively. Now consider the propagation
of an inhomogeneous plane wave with speed v and wave number k in the
x1-direction, and with attenuation in the x2-direction,

u = U◦eik(x1+qx2−vt), (2)

in a half-space x2 > 0 made of an orthotropic1 material with an exponential
depth profile,

{c11(x2), c22(x2), c12(x2), c66(x2), ρ(x2)} = e−2αx2{c◦11, c◦22, c◦12, c◦66, ρ◦}. (3)

Here the x1, x2, x3 directions are aligned with the axes of symmetry, α is a
real number, and the c◦ij and ρ◦ are constants; also, U◦ is a constant vector
and q a complex number so that the attenuation factor is kℑ(q). Then the
equations of motion (1) yield
[

c◦66q
2 + c◦11 − ρv2 + 2i(α/k)qc◦66 q(c◦12 + c◦66) + 2i(α/k)c◦66
q(c◦12 + c◦66) + 2i(α/k)c◦12 c◦22q

2 + c◦66 − ρv2 + 2i(α/k)qc◦22

]

U◦ = 0.

(4)
1An anisotropic material belongs to the orthotropic symmetry class when it possesses

three mutually orthogonal planes of mirror symmetry.
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At α = 0, the material is homogeneous, and the associated determinantal
equation – the propagation condition – is a real quadratic in q2 which can be
solved exactly (Sveklo, 1948).

At α 6= 0, the propagation condition is seemingly a quartic in q with com-
plex coefficients, whose analytical resolution might appear to be a daunting
task and to preclude further progress toward the completion of a boundary
value problem (note that it remains a quartic even when the material is iso-
tropic.) Hence, Das et al. (1992) and Pal & Acharya (1998) stopped their
analytical study of that problem at that very point. In fact the transfor-
mation of the quartic to its canonical form reveals that it is a quadratic in
q + i(α/k), with real coefficients. That this is so has rarely been identified:
Biot (1965), in the context of incremental static deformations, seems to be
the only one who has recognized this simplification. The present paper shows
that the Stroh (1962) formulation of this problem, combined with a change
of unknown functions, leads naturally to the biquadratic in question. Then
the propagation condition can be solved exactly, and the general solution
of form (2) to the equations of motion follows. In particular, the resolution
of the dispersive Rayleigh wave boundary value problem poses no particular
difficulty after all. Section 2 exposes this analysis, and Section 3 applies it
to two types of exponentially graded half-spaces: one which would be made
of orthotropic shales if α → 0 and another which would be made of silica
(isotropic). There, it is seen for both examples that the influence of the in-
homogeneity is more marked upon the wave speed (rapidly decreasing with
α/k) than upon the attenuation factors (slowing increasing with α/k). It is
also found that the attenuation factors for the displacement amplitudes are
distinct from those for the traction amplitudes, and that the amplitudes can
decay in an oscillating manner for the isotropic silica. These two features
are unusual and are clearly due to the inhomogeneity.

The overall aim of the paper is to show that simple, analytical, exact re-
sults can be obtained for seismic Rayleigh wave propagation in an anisotropic,
inhomogeneous Earth. Of course it is unlikely any “real” inhomogeneity can
be such that the stiffnesses and the mass density all vary in the same man-
ner as in (3), because it then leads to bulk wave speeds (proportional to
the square root of stiffnesses divided by the density) which are constant
with depth. The analysis of more realistic models must turn to numerical
simulations such as those based on the finite difference technique or on the
pseudospectral technique or on techniques with Fourier or other function ex-
pansions (e.g. Tessmer 1995). These methods however encounter difficulties
for the implementation of accurate boundary conditions and of strong het-
erogeneity. The spectral element method seem to alleviate those difficulties
but, as stressed by Komatitsch & al. (2000), it must be validated against
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analytical solutions. Such a solution validation procedure is indeed a cru-
cial necessity of numerical simulations in geophysics, where different software
packages can give widely different predictions (Hatton 1997).

2 The dispersion equation

Consider the propagation of a Rayleigh wave, traveling with speed v and wave
number k in the x1-direction, in an inhomogeneous half-space x2 > 0 made
of the orthotropic material presented in the Introduction. The associated
mechanical quantities are the displacement components uj and the traction
components σj2 (j = 1, 2). They are now taken in the form

{uj, σj2}(x1, x2, t) = {Uj(x2), itj2(x2)}eik(x1−vt), (5)

where the Uj, tj2 (j = 1, 2) are yet unknown functions of x2 alone, to be
determined from the equations of motion and from the boundary conditions.

The equations of motion: σij,j = ρui,tt, can be written as the second-order
differential system (1), or as the following first-order differential system,

[

U ′

t′

]

= i

[

kN1 e2αx2N2

k2e−2αx2K kN t
1

] [

U

t

]

. (6)

Here N1, N2, K are the usual constant matrices of Stroh (1962), given by

N1 =





0 −1

−c◦12
c◦22

0



 , N2 =







1

c◦66
0

0
1

c◦22






, K =

[

X − c◦ 0
0 X

]

. (7)

where c◦ := c◦11−
c◦212
c◦22

and X := ρ◦v2. With the new vector function ξ, defined

as
ξ(x2) := [e−αx2U(x2), e

αx2t(x2)]
t, (8)

the system (6) becomes

ξ′ = ikNξ where N :=

[

N1 + i(α/k)I (1/k)N2

kK N t
1 − i(α/k)I

]

. (9)

Hence the apparently anodyne change of unknown functions (8) transforms
the differential system with variable coefficients (6) into one with constant
coefficients.

4



Now solve the differential system (9) with a solution in exponential evanes-
cent form,

ξ(x2) = eikpx2ζ, ℑ(p) > |α|/k, (10)

where ζ is a constant vector, p is a scalar, and the inequality ensures that

u(∞) = 0, t(∞) = 0, ξ(∞) = 0, (11)

because by (8) and (10)1, u(x2) behaves as: exp k(ip + α/k)x2 and t(x2)
behaves as: exp k(ip−α/k)x2. Note in passing that, in sharp contrast to the
homogeneous case, the displacement field and the traction field have different
attenuation factors: for u it is k[ℑ(p) − α/k]; for t it is k[ℑ(p) + α/k].

Then ζ and p are solutions to the eigenvalue problem: Nζ = pζ. The
associated determinantal equation is the propagation condition, here a bi-
quadratic (and not a quartic as Eq.(4) suggested),

p4 − Sp2 + P = 0, (12)

where

S = [c◦212 + 2c◦12c
◦

66 − c◦11c
◦

22 + (c◦22 + c◦66)X]/(c◦22c
◦

66) − 2(α/k)2,

P = (c◦11 − X)(c◦66 − X)/(c◦22c
◦

66)

− (α/k)2[c◦212 − 2c◦12c
◦

66 − c◦11c
◦

22 + (c◦22 + c◦66)X]/(c◦22c
◦

66)

+ (α/k)4. (13)

Let p1 and p2 be the two roots of (12) satisfying inequality (10). That pair
may be in one of the two forms: p1 = ib1, p2 = ib2, or p1 = −a+ib, p2 = a+ib,
where b, b1, b2 are positive. In both cases, p1p2 is a real negative number and
p1 +p2 is a purely imaginary number with positive imaginary part. It follows
in turn that

p1p2 = −
√

p2
1p

2
2 = −

√
P, p1 + p2 = i

√

−(p1 + p2)2 = i

√

2
√

P − S. (14)

The associated eigenvectors ζ1, ζ2 are determined from: Nζj = pjζ
j, as

ζj =













p2
j + 2i(α/k)pj − e0

−[p3
j + i(α/k)pj + f1pj + i(α/k)f0]

−k[g1pj + i(α/k)g0]

−k[Xp2
j + h0]













, (15)
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where the non-dimensional quantities e0, f1, f0 appearing in the displacement
components are given by

e0 = (α/k)2 + c◦12(c
◦

66 − X)/(c◦22c
◦

66),

f1 = (α/k)2 + (c◦ − X)/c◦66 − c◦12/c
◦

22,

f0 = (α/k)2 + (c◦ − X)/c◦66 + c◦12/c
◦

22, (16)

and the quantities g1, g0, h0 (dimensions of a stiffness) appearing in the
traction components are given by

g1 = c◦ − (1 + c◦12/c
◦

22)X,

g0 = c◦ − (1 − c◦12/c
◦

22)X,

h0 = (α/k)2X − (c◦ − X)(c◦66 − X)/c◦66. (17)

Now construct the general solution to the equations of motion (9) as

ξ(x2) = γ1e
ikp1x2ζ1 + γ2e

ikp2x2ζ2, (18)

where the constants γ1, γ2 are such that the surface x2 = 0 is free of trac-
tions: t(0) = 0 or equivalently: ξ(0) = [U(0), 0]t. This condition leads to
a homogeneous linear system of two equations for the two constants, whose
determinant must be zero. After factorization and use of (14), the dispersion
equation follows as

g1(X
√

P + h0) + (α/k)g0X

√

2
√

P − S = 0. (19)

This equation is fully explicit (X is the sole unknown) because P and S
are given in (13) and g1, g0, h0 are given in (17), and it is clearly dispersive
due to the multiple appearance of the dispersion parameter α/k. At α = 0
(homogeneous substrate), it simplifies to

X

√

(c◦11 − X)(c◦66 − X)

c◦22c
◦

66

− (c◦ − X)(c◦66 − X)

c◦66
= 0, (20)

the classic (non-dispersive) secular equation for Rayleigh waves in orthotropic
solids.

3 Examples: exponentially graded shales and

silica

As two examples of application, consider in turn that the half-space is made of
a material with exponentially variable properties which is (i) with orthotropic
symmetry and (ii) isotropic.
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In Example (i) the starting point is a model proposed by Schoenberg and
Helbig (1997), accounting for the vertical fine stratification and the vertical
fractures found in many shales. In their numerical simulations, they used
the following orthotropic elastic stiffness matrix,

[c◦ij] = ρ◦

















9 3.6 2.25 0 0 0
3.6 9.89 2.4 0 0 0
2.25 2.4 5.9375 0 0 0
0 0 0 2 0 0
0 0 0 0 1.6 0
0 0 0 0 0 2.182

















. (21)

Note that here the matrix is density-normalized so that its components have
the dimensions of squared speeds, expressed in (km/s)2 (Schoenberg 1994).
Schoenberg and Helbig remark that “the rock mass behaves as if it contains
systems of parallel fractures increasing the compliance in some directions”;
integrating this information, α is assumed positive here. Also, (21) is as-
sumed to be the elastic stiffness matrix on the free surface x2 = 0.

In Example (ii), the half-space is assumed to be made of an exponentially
graded material such that at the boundary, c◦11 = 7.85, c◦12 = 1.61 (1010 N/m2)
and ρ◦ = 2203 kg/m3 as in silica (Royer & Dieulesaint 2000). Here too, α is
taken positive.

If the half-spaces were homogeneous, then the Rayleigh wave would travel
with speed v◦ =

√

X/ρ◦ where X is given by (20), that is v◦ = 1.412 km/s
for shales and v◦ = 3409 m/s for silica. For any given dispersion parameter
α/k, the dispersion equation (19) in the inhomogeneous half-spaces gives a
unique root X. In both examples, it has then been checked that for that
X, the propagation condition (12) gives two roots such that the inequality
(10)2 is always satisfied. Thus the surface wave exists for arbitrary value of
α/k, and it travels with speed v =

√

X/ρ◦. Although this state of affair
is acceptable mathematically, it seems reasonable to limit the range of α/k
to values where the wave amplitude decays faster than the inhomogeneity.
Because the amplitudes of the tractions t decay as exp−k[ℑ(p) + α/k], they
always decrease faster than exp−2αx2 by (10)2; on the other hand, the
amplitudes of the displacements u decay as exp−k[ℑ(p) − α/k]: thus they
decrease faster than the inhomogeneity as long as ℑ(p) > 3α/k. In Example
(i), it turns out that this latter inequality is verified for α/k < 0.107, and in
Example (ii), for α/k < 0.274.

Fig. 1 shows the variation of the wave speed (decreasing) and of ℑ(p1),
ℑ(p2) (increasing) in Example(i) over the range 0 6 α/k 6 0.1. It has also
been checked there that the attenuation factors for both the displacements
amplitudes (k[ℑ(p) − α/k]) and the tractions amplitudes (k[ℑ(p) − α/k])
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increase also. In conclusion, the surface wave travels at a slower speed in the
inhomogeneous shales than in the homogeneous shales, and it is less localized.

Fig. 2 shows the variation of the wave speed (decreasing) and of ℑ(p1),
ℑ(p2) (increasing) in Example(ii) over the range 0 6 α/k 6 0.25. It has
been checked again that the attenuation factors for both the displacements
amplitudes (k[ℑ(p) − α/k]) and the tractions amplitudes (k[ℑ(p) − α/k])
increase also. Here again, the surface wave travels at a noticeably slower
speed in the inhomogeneous case than in the homogeneous case, and it is
slightly less localized. A most interesting phenomenon occurs at α/k ≈ 0.211
where the nature of the roots changes from the form: p1 = ib1, p2 = ib2, to the
form: p1 = −a+ib, p2 = a+ib, so that the amplitudes switch from decaying in
a real exponential manner to decaying in an exponential oscillating manner.
This latter situation never arises in a homogeneous isotropic half-space.
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Figure 1: Exponentially graded orthotropic shales: variations with the dis-
persion parameter α/k of (a) the surface wave speed and (b) the imaginary
parts of the quantities p1 and p2 appearing in (18) (the dashed line is the plot
of 3α/k, above which ℑ(p1), ℑ(p2) must be for the wave to decrease faster
than the inhomogeneity).
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Figure 2: Exponentially graded silica: variations with the dispersion param-
eter α/k of (a) the surface wave speed and (b) the imaginary parts of the
quantities p1 and p2 appearing in (18) (the dashed line is the plot of 3α/k).
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