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 The Twofold Role of Diagrams in Euclid’s Plane Geometry 

Marco Panza1 

CNRS, REHSEIS (UMR 7596, CNRS and Univ. Paris 7) 

Proposition I.1 of Euclid’s Elements requires to ‘construct’ an equilateral triangle 

on a ‘given finite straight line’, or segment, in modern parlance. To achieve this, 

Euclid takes this segment to be AB (fig. 1), then describes two circles with centre 

in the two extremities A and B of this segment, respectively, and takes for granted 

that these circles intersect each other in a point C. This is not licensed by his 

postulates. Hence, either his argument is flawed, or it is warranted on other 

grounds. 

According to a classical view ‘the Principle of Continuity’ provides an 

appropriate ground for this argument, insofar as it ensures ‘the actual existence of 

points of intersection’ of lines2. M. Friedman3 has rightly remarked, however, that 

in the Elements ‘the notion of “continuity” […] is not logically analyzed’ and thus 

there is no room for a ‘valid syllogistic inference of the form: C1 is continuous [,] 

C2 is continuous [, then] C exists’, where C1 and C2 are the two circles involved in 

this proposition.  

A possible solution of the difficulty is to admit that Euclid’s argument is 

diagram-based and that continuity provides a ground for it insofar as it is 

understood as a property of diagrams. 

Proposition I.1 is, by far, the most popular example used to justify the thesis 

that many of Euclid’s geometric arguments are diagram-based. Many scholars 
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have recently articulated this thesis in different ways and argued for it4. My 

purpose is to reformulate it in a quite general way, by describing what I take to be 

the twofold role that diagrams play in Euclid’s plane geometry5 (EPG, from now 

on).  

Euclid’s arguments6 are object-dependent. They are about geometric objects7: 

the objects of EPG, as I shall call them from now on (points, segments, circles, 

angles, polygons, and their combinations or parts. Hence, they cannot be diagram-

based unless diagrams are supposed to have an appropriate relation with these 

objects.  

I shall take this relation to be a quite peculiar sort of representation8. Its 

peculiarity depends on the two following claims that I shall argue for: 

C.i) To provide the conditions of identify of the objects of EPG is the same as 

to provide the identity conditions for the diagrams that represent them or—in the 

case of angles—of appropriate equivalence classes of diagrams that represent 

them; 

C.ii) The objects of EPG inherit some properties and relations from the 

diagrams.  

For short, I shall say that diagrams play a global and a local role in EPG to 

mean, respectively, that they are such that claims (C.i) and (C.ii) hold9. 

Geometric objects are abstract. By contrast, I take diagrams to be concrete—by 

which I mean physical—objects10. Hence, I do not take them to be abstract types 

(like the diagram annexed to proposition I.1 of the Elements), but concrete tokens 

(like the diagram that I have just drawn)11. So understood, a diagram is a 
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configuration of physical lines and points drawn on physical flat surfaces12. Non-

contour-closed physical lines have extremities. For reasons of linguistic 

simplicity, it is convenient to suppose that a single physical contour-closed line is 

an elementary diagram (a diagram that does not include other diagrams), whereas 

a single physical non-contour-closed line is a diagram composed by three distinct 

diagrams: the line and two points providing its extremities. 

According to Aristotelian conception of continuity, the lines that compose a 

diagram and the surface on which they are drawn can be understood as 

continuous. I argue that this is a necessary condition for diagrams to be able to 

play their twofold role in EPG. This is because I shall begin my enquiry by 

expounding—in section I—(my interpretation of) Aristotle’s conception of 

continuity. 

The crucial function I assign to this conception of continuity suggests that my 

account of EPG could be understood as an Aristotelian interpretation of it. This 

understanding is more generally suggested by my construal of the relation of 

representation that links objects of EPG to diagrams. According to it, there is 

room to assert that the objects of EPG result from the diagrams that represent 

them through Aristotelian abstraction (which, broadly speaking, consists in 

isolating same properties of certain objects and taking them as if they were objects 

in turn).  

This contrasts with the usual understating of the objects of EPG as ideal objects 

in Platonic sense13. According to this understanding, EPG proceeds from 

contemplation of eternal truths and provides a paradigm for the most classical 
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form of Platonism in philosophy of mathematics. Because of the crucial role that 

EPG has played in the evolution of mathematics, this conception has strongly 

affected our understanding of mathematics, in general. One of the purposes of my 

paper is to suggest—based on a single example—a quite different understanding, 

according to which mathematical objects and truths are not contemplated but 

constituted. 

The Elements offer no explicit support for the Platonic interpretation. They 

offer, likewise, no explicit support for any alternative interpretation. Hence, all 

that I can do is to detail my interpretation and to apply it to a relevant fragment of 

the Elements. I shall do the former in section II, and the latter in section III. I hope 

to show, in this way, that my interpretation is plausible, at least. The plausibility 

of my interpretation should not only result from the consistence and 

appropriateness of the reconstruction I shall offer of a small part of the Elements. 

It should also results from my interpretation’s aid in solving an open interpretative 

problem: that of the status of the first definitions of book I. I shall consider this 

matter in section III.1. 

I. Aristotle on continuity 

The Aristotelian conception of continuity is not about the continuum as an object; 

it is rather about the concept of continuity14. It is moreover twofold, since 

continuity applies both to the first movement and to physical objects and 

particular movements. The latter are continuous insofar as they are generated by 

the former. Still, any physical object exists as a particular individual only if its 



5 

generative motion stopped. Hence continuity is at the same time present and 

irremediably lost in the latter.  

To avoid contradiction, one should distinguish two senses in which Aristotle 

speaks of continuity: a global sense, according to which only the first movement 

is continuous; and a local sense, according to which physical objects and 

particular movements can be continuous. I shall limit myself to this local sense, 

established by an appropriate definition occurring in Physics V, 3. 

This is the last one in a sequence of seven definitions, the first six of which 

concern relations: the relations of being together, apart, in contact, between, 

consecutive, and contiguous. Five of these definitions form a tree, and the 

definition of continuity is the unique root of this tree: 

 

Despite the fact that continuity is not a relation, this allows Aristotle to define 

it as the property of something that is complying with a relational condition: ‘that 

which is continuous is like that which is contiguous’15 (227a, 10); something is 

contiguous if it is ‘consecutive and in contact’ (227a, 6-7); and it is continuous if 

it is moreover such that ‘the extremity of each one of the two [parts] at which 

[these parts] touch themselves becomes one and the same [thing], and (as the 

word tell [us]) holds jointly’ (227a, 11-12). 
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A classical way to reformulate this definition is the following: something is 

continuous if the extremities of any pair of its consecutive parts are not merely 

‘together [ἅµα]’, but also ‘one [ἕν]’16. Aristotle himself entitles such a 

reformulation: ‘continuous are [the things whose] extremities [are] one’, he claims 

later (231a, 22). 

This reformulation is open to two difficulties, however. According to Aristotle, 

‘one says [to be] together in place17 those [things that] are in a [the] same proper 

place’ (226b, 21-22), and ‘the proper place [is] neither smaller nor greater [than 

the thing itself]’ (211a, 2). The difficulties are the following: a) Aristotle’s does 

not define the relation of being together, in general, but only that of being together 

in place; hence, either such a reformulation is unclear, or does not apply to entities 

as movements that have a temporal determination that is supposed to be relevant 

for their continuity; b) when the definition of being together in place is compared 

with the characterisation of a proper place, it is difficult to understand how things 

that are not one (that is, two distinct things) could be together in space, and thus 

how the condition of being one could be an additional condition for things that are 

together in space. 

Let us begin with (b). Ross suggests two possible solutions18: i) ‘one thing, 

occupying one place, may be two things in the sense that it discharges two 

functions’, hence, two distinct things are together in space if they are distinct for 

their functions, though being the same thing; ii) two (extensionally distinct) things 

are together in space ‘if they are in one place which contains nothing but the two, 

i.e. where there is nothing between them’. 
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According to (i), things are together in space without being one if they are the 

same thing with different functions. Thus, the condition of being one is an 

additional condition for things that are together in space insofar as it requires that 

no functional distinction occurs. For a physical object to be continuous, it would 

then not be enough that the final extremity of any part of it be also the initial 

extremity of the consecutive part. It would be also necessary that such an 

extremity have not distinct functions. But if there are two actual parts and they 

share an extremity, this cannot but be, at the same time, the final extremity of a 

part and the initial extremity of the other. Hence, if a physical object had actual 

parts, it could not be continuous: its continuity would be the same as it having no 

actual part at all. A physical objects would thus be continuous insofar as it is, so to 

say, intrinsically one: ‘actually undivided’, though, possibly, not ‘potentially 

undivided’, that is, capable of being divided (De anima, 430b, 6-8). It would not 

be composed by parts, though it would possibly be capable to be decomposed in 

parts. 

According to (ii), things are together in space without being one if there is 

nothing between them, though they are not the same thing. Thus, to require that 

two things that are together in space be one would be the same as to require that 

they be the same thing, possibly discharging different functions (if so, there would 

certainly be nothing between them, indeed). For a physical object to be 

continuous, it would then be just enough that the final extremity of any parts of it 

be also the initial part of the consecutive part. Such a physical object could have 

actual parts, but these parts could not be spatially separated from each other.  
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The solution (i) has an important advantage over (ii): the definition of 

continuity that results from (i) can easily be generalised to motions. According to 

(i), a motion could, indeed, be said to be continuous, insofar as it has no actual 

part, or it is intrinsically one. For this condition to be understandable, it would be 

necessary to establish what counts as an actual part of a motion. But this would be 

a problem also for physical objects. Hence, if (i) were admitted, the difficulty (a) 

would ipso facto solved, but a new difficulty would arise, that of specifying the 

notion of actual part both for physical objects and motions.  

If (ii) were admitted, the difficulty (a) would not be solved, instead, and 

motions could then be said to be continuous only if their continuity would be 

supposed to depend on their trajectory alone. This is not only implausible; it is 

also inconsistent with Aristotle’s arguments of Physics, VIII.8, according to 

which a motion that stops somewhere is not continuous (262a, 13-14). 

Moreover, according to these same arguments, a circular motion is continuous 

since it never changes direction (264b, 9-13), whereas a recliner motion that turns 

backs cannot be so since it inverts direction (261b, 31-34). It seems thus natural to 

admit that for Aristotle a motion along a broken line is not continuous, and, thus, 

that neither its trajectory is so. But, according to (ii), angles do not entail 

discontinuity. Hence, if (ii) were admitted, there would be no room for concluding 

that this is so. This seems to me a strong enough reason for rejecting (ii). 

Let us resume. If we admit that for Aristotle something is continuous if the 

extremities of any pair of its consecutive parts are not merely together, but also 

one, and interpret this condition according to (ii), we reach implausible 



9 

conclusions that are moreover inconsistent with the arguments of Physics, VIII.8. 

As there is strong textual evidence for making such an admission, this suggests 

interpreting this condition according to (i). It follows that for Aristotle something 

is continuous if it has no actual parts, that is, if it is intrinsically one. This 

definition leaves open the problem of establishing what counts as an actual part of 

something that is possibly continuous. Still, the same arguments of Physics VIII.8 

suggest that, according to Aristotle’s conception of continuity, angles mark the 

extremities of different actual parts of a physical line. 

For the purpose of my paper, it is important to notice that such an understating 

of the notion of continuity does not provide it with any sort of logical analysis. 

The concept of continuity is not, according to this understanding, reduced to other 

concepts or defined in terms of them: to say of something that it is intrinsically 

one, or that it has no actual part is only to exclude the possibility that it is 

composed by other things each of which is intrinsically one. Thus, according to 

Aristotle’s conception, continuity is a primitive property of physical objects and 

movements: a property that can only be displayed by showing a physical object or 

a motion. 

II. The Double Role of Diagrams in EPG 

Aristotle’s definition of local continuity is not a definition of an abstract—and, a 

fortiori, a mathematical—object. Still, it is apt to provide a basis for a 

mathematical theory of some local continua. I argue that EPG is such a theory19. 
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J. Klein20 has argued that ‘modern mathematics’ is ‘symbolic’, whereas ‘Greek 

science’, and especially Euclid's mathematics, are not. This is because the latter 

‘represents the whole complex of those “natural” cognitions which are implied in a 

prescentific activity’ and its concepts ‘are formed in continual dependence on 

“natural” prescentific experience’. If I understand well, this means that we have 

acquaintance of the objects of EPG through our experience of concrete objects, or, 

as Kline says, that we have an ‘immediate insight’ of them.  

Though the objects of EPG can certainly be viewed as forms of physical 

objects, I do not think that EPG is devoid of any symbolic component. It relies on 

the capacity of operating with physical objects like diagrams, but these are not its 

objects: EPG is neither an empirical, nor a contentual theory in Hilbertian sense21. 

It rather relies on diagrams to deal with abstract objects, so that the former can be 

understood as symbols of the latter. 

Still, in EPG the relation between diagrams and the geometric objects they 

represent is quite peculiar22. Its peculiarity results from the facts described in 

previous claims C.i and C.ii. Because of the first of these facts, diagrams 

contribute to fix the objects of EPG; in my parlance, this is the global role of 

diagrams. Because of the second, they contribute to assign properties to these 

objects; in my parlance, this is the local role of diagrams. In the two following 

sections, I shall try to describe these roles better23. 
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II.1.  THE GLOBAL ROLE OF DIAGRAMS 

Like any other mathematical theory, EPG relies on stipulations. These can be 

understood as prescriptions addressed to the members of a relevant community 

that are supposed to have appropriate cognitive abilities for understanding and 

applying them24. 

Some of these prescriptions are supposed to provide appropriate conditions for 

recognising different sorts of geometric objects, others are supposed to provide 

appropriate conditions for recognising distinct geometric objects of each sort. The 

former are conditions of application of appropriate concepts; the latter are identity 

conditions for the objects of a certain sort. Suppose that the X’s are the objects of 

a certain sort. For short, instead of saying ‘to provide the conditions of application 

of the concept of the X’s’ and ‘to provide the identity conditions for the X’s’, I 

shall say, respectively: ‘to characterise the X’s’ and ‘to identify the X’s’.  

Under a first and very general classification, the objects of EPG are points, 

segments of straight lines25 (segments tout court, from now on), circles, plane 

angles (angles tout court, from now on), polygons, and their combinations and 

parts. As segments and circles can be understood as lines, all these objects, with 

the exception of angles and the combinations they belong to, can be understood as 

configurations of points and lines (I take, of course, a point or a line to be an 

elementary configuration of points and lines). Angles can be understood, instead, 

as that which is common to the elements of an equivalence class of pairs of 

lines26. Circles and polygons can also be understood as portions of plan, or figures 
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in the Euclidean sense27. But for the limited purpose of my paper the first 

understating will suffice. 

If this understating is the only one admitted, then characterising the objects of a 

certain sort is the same as providing the conditions that a configuration of 

geometric points and lines have to satisfy in order to be—or, in case of angles, to 

determine—an object of this sort. I suggest that this consists in establishing the 

conditions that a certain diagram has to meet in order to be appropriate for 

representing such an object28. 

In general, we could say that: geometrical points are the geometrical objects 

represented by physical points (the extremities of physical lines); segments are the 

geometrical objects represented by physical straight lines; circles are the 

geometrical objects represented by physical circles; angles are the geometrical 

objects represented by pairs of physical lines that represent segments or circles; 

polygons are the geometrical objects represented by contour-closer physical 

broken lines. 

To make EPG, it is not enough to characterize appropriate sorts of its objects, 

however. It is also necessary to identify these objects. 

Typically, an identity condition for the objects of a certain sort is an instance of 

the schema ‘x = y IFF C(x, y)’, where ‘x’ and ‘y’ are distinct names or descriptions 

for single objects of this sort, and ‘C(x, y)’ is another condition where these names 

or descriptions occur. An identity condition establishes that a condition like 

‘C(x, y)’ holds if and only if ‘x’ and ‘y’ apply to the same object. It follows that, in 
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order to identify the objects of a certain sort, it is necessary that single objects of 

this sort are set out, and appropriate names or descriptions for them are available.  

I argue that in EPG a single object is set out if and only if it is given. Hence, in 

my view, EPG includes only identity conditions for objects that are, or are 

supposed to be, given29. To understand the nature of these conditions is thus 

necessary to understand what ‘given’ means in EPG30. 

Though in the Elements, geometric objects are often taken as given, the 

conditions under which an object is given, are never explicitly stated. And this is 

neither done in the Data, whose definitions 1, 3 and 4 establish, rather, under 

which conditions appropriate geometric objects are given-in-magnitude, given-in-

form, and given-in-position, respectively31. 

In his recent commentary of the Data, C. M. Taisbak has discussed these 

definitions. He has argued that the term ‘given [δεδοµένος]’ means in them what 

it usually means: ‘that an object is given to us means that it is, in some relevant 

sense and scope, put at our disposal’32. According to him, the term ‘given’ occurs 

in these definitions as ‘a primitive needing no definition’, and ‘the very concept of 

given remains undefined’33. In his view, these definitions merely establish the 

conditions under which ‘some objects are also given (in the said respect), besides 

[…] those that are already given’34. 

Take the example of definition 1: ‘Given in magnitude is said of figures and 

lines or angles for which we can provide equals’35. According to Taisbak, this 

definition establishes that an appropriate object x is given-in-magnitude if and 

only if ‘we can provide’ its equal, and this is equivalent to state that an 
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appropriate object x is given-in-magnitude if and only if it is equal to an already 

given object a36. 

This interpretation leaves the crucial question open: what does it mean that a 

geometric object is ‘put at our disposal’ in some ‘sense and scope’, and that ‘we 

can provide’ an already given object a—that is, a geometric object a that is 

already at our disposal—which is equal to another geometric object x? This is not 

because Taisbak’s interpretation is deficient. It is rather because Euclid’s 

definition does not aim to establish what ‘given’ means, in general. 

Taisbak seems to suggest that our possibility of providing an object a which is 

equal to x is the same as the fact that x is provably equal to a, provided that a is 

already given. In the definition 1 of the Data, Euclid would thus not employ the 

verb ‘to provide [πορίζω]’ as a synonymous of the verb ‘to give [δίδωµι]’. Strictly 

speaking, the object a would not be provided, but provided-as-equal, and this 

would merely mean that it is given and proved to be equal to x. 

But what about the verb ‘to give’?  

Taisbak’s relies on Plato’s account of Republic VII, 527a6-b6 to argue that 

‘when mathematicians are doing geometry, describing circles, constructing 

triangles, producing straight lines, they are not really creating these items, but 

only drawing pictures of them’37. For him the giving of geometric object concerns 

the ‘Realm of Intelligence’, where ‘The Helping Hand […] takes care that lines 

are drawn, points are taken, circles described, perpendiculars dropped, etc.’ and 

keeps these operations ‘free from contamination of our mortal fingers’38. Taisbak 

makes the example of the postulate I.1 of the Elements, that licenses ‘to draw [a] 
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straight line from any point to any point’. According to him, such a postulate 

should be understood as follows: ‘whenever there are two points, there is also one 

(and only one) straight line joining them’, and the geometer is ‘permitted to 

behave accordingly, that is to conceive a picture of this line’39. 

According to Taisbak, a geometric object would thus be given insofar as it 

results from an act of selection: it would be put at our disposal if it is selected 

among other objects that are already there as the inhabitants of an eternal realm of 

abstract objects40. Diagrams would thus be nothing but pictures that geometers 

use, for their convenience, to denote the objects they successively select.  

I have a quite different interpretation from Taisbak’s.  

I begin by suggesting that definition I of the Data could also be understood the 

other way around: as stating that an appropriate object a is given-in-magnitude if 

and only if it is given and we can provide another object x of which it is possible 

to show that it is equal to a. This interpretation differs from Taisbak’s in two 

respects: it admits that the verb ‘to provide’ occurs in this definition as a 

synonymous of the verb ‘to give’; it assigns a crucial role to the modal operator 

that occurs in Euclid’s definition41. 

I shall come back to the second point in a moment. Before that, it is necessary 

to clarify my understanding of the notions of being given, or provided. I suggest 

that in EPG it is not possible to give more than one object at once, and that an 

object is given42 if and only if a diagram appropriate to represent it is canonically 

drawn. I shall say in a moment what ‘canonically’ means. At present it is enough 

to notice that, whatever it means, from this condition—and from the fact that, as I 
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have argued below, EPG includes only identity conditions for objects that are, or 

are supposed to be, given—it follows that these conditions applies only to objects 

that are, or are supposed43 to be, actually represented by appropriate diagrams. 

This fits quite well with the previous claim, according to which in EPG to 

characterise the objects of a certain sort is the same as to establish the conditions 

that a certain diagram has to meet in order to be appropriate for representing an 

object of this sort.  

But suppose that ‘x’ and ‘y’ are names or descriptions for two given objects of 

EPG. Under which condition x is the same object as y? I suggest that the right 

answer is the following: if x and y are points, segments, circles or polygons, then x 

is the same object as y if and only if they are represented by the same diagram; if x 

and y are angles, then x is the same object as y if and only if they are represented 

by diagrams belonging to the same appropriate equivalence class. Hence, the 

identification of an object of EPG goes together with the identification of a 

diagram that represents this object, as C.i asserts. 

With this in mind, we can come back to the second respect in which my 

interpretation of the definition 1 of the Data differs from Taisbak’s. This will 

allow me to clarify what I mean by saying that a diagram is canonically drawn in 

EPG. Under my understanding of the notion of being given, the definition 1 of the 

Data establishes, for example, that if a certain physical line, appropriate to 

represent a segment, has been canonically drawn (so that this segment is given), 

and we can canonically draw a new physical line appropriate to represent another 

segment equal to the first, then the former segment is given-in-magnitude.  
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Take the example of the proposition 4 of the Data: ‘if a given magnitude be 

subtracted from a given magnitude, the remainder will be given’44. A given 

magnitude is a geometric object given-in-magnitude, and this is also the case of 

the remainder. Euclid’s proof begins as follows: ‘For, since AB is given, it is 

possible to provide a [magnitude] equal to it. Let it have been provided, and let it 

be DZ’45. Then Euclid continues by repeating the same argument for the second 

pair of magnitudes—namely AC and DE—and concludes that as AB = DZ and 

AC = DE, the remainders are equal and that the remainder of AB and AC is thus a 

given magnitude. 

Notice that Euclid’s does not say ‘since AB is given, it is equal to another 

magnitude DZ’. He separates the claim ‘it is possible to provide a magnitude 

equal to AB’, from the claim ‘let it have been provided’. Under my interpretation 

‘to provide’ means the same as ‘to give’. If so, Euclid separates a claim like ‘x can 

be given’ from a claim like ‘let x be given’. His argument is general, but it is 

illustrated by a diagram where AB and DZ are depicted as segments (fig. 2). 

Suppose they are segments. I suggest, then, to interpret Euclid’s argument as 

follows: AB is a given segment represented by an appropriate physical line; it is 

then possible to draw canonically another physical line that represents another 

segment equal to it; let this line be drawn and let DZ be the segment that it 

represents; DZ is thus given. 

The crucial question is the following: what does it mean that a diagram can be 

canonically drawn, and thus a geometric object can be given?  
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The example of the proposition 4 of the Data cannot help us in responding this 

question, since, in this proposition, Euclid is reasoning in general, and thus he is 

only supposing that certain geometric objects be given or can be given. To 

understand what this means is rather appropriate to consider proposition I.3 of the 

Elements: ‘Given two unequal segments, to cut off from the greater [a] segment 

equal to the less’. This is a problem. To solve it, Euclid refers to a diagram (fig. 3) 

including two separate dashes representing the given segments AB and C. The 

diagram also includes a third dash representing a segment AD equal to C that is 

placed at the point A according to proposition I.2. Finally, the diagram includes a 

contour-closed line drawn around A and passing from D representing the circle 

with centre A and radius AD described according to postulate I.3. Euclid tacitly 

admits that this circle intersects AB in a point E, and concludes that this point cuts 

AB as required. I suggest that proposition I.3 of the Elements is a particular case 

of proposition 4 of the Data, and that in the former Euclid shows how to give the 

remainder of the given segments AB and C (assuming that this remainder is the 

same as that of the segments AB and any segment equal to C). 

If this is so, the response to the previous questions becomes natural. That a 

diagram can be canonically drawn means that a certain procedure, that starts from 

some other given diagrams and, if applied, results in the drawing of the former 

diagram, is authorised by the stipulations of EPG, or that these same stipulations 

authorise that such a diagram be taken as a starting point of such a procedure. 

Consequently, that a geometric object can be given means that a certain 

procedure, that starts from certain diagrams representing certain given geometric 
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objects and, if applied, results in a diagram representing such an object, is 

authorised by these stipulations, or that these same stipulations authorise that a 

diagram that represent such an object be taken as a starting point of such a 

procedure.  

The plausibility of this interpretation depends on the nature of the authorised 

procedures for drawing diagrams46. I shall consider this crucial point in section 

III.2. Here, I only need to say that this procedure is what in EPG is usually called 

‘construction [κατασκευή]’. Accordingly, I suggest that in EPG a construction is 

an authorised procedure for drawing diagrams47, and that a diagram in canonically 

drawn in EPG if and only if it results from an appropriate construction or is an 

authorised starting point of a construction48. 

As a matter of fact, in the Elements Euclid uses the verb ‘to give’ to refer to 

geometric objects that are taken as given, as in expressions of the form ‘a given x’ 

or ‘given x, to do that and that’, where x is a geometric object. He uses instead 

different verbs when he requires that some objects be set out, or he claims that 

these objects that have been set out. Five of these verbs occur, for example, in 

postulates I.1-3 and propositions I.1-3: in Heath’s translation, they are the verbs 

‘to draw [ἄγω]’, ‘to produce [ἐκβάλλω]’, ‘to describe [γράφω]’, ‘to construct 

[συνίστηµι]’ and ‘to place [λέγω]’. In my view, these verbs are used to require 

that particular appropriate procedures be applied, so as to obtain the giving of 

certain geometric objects. They would thus be particular specifications of the verb 

‘to give’. This fits quite well with my interpretation of the verb ‘to provide’ in the 

definition 1 of the Data. 
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As a matter of fact, Euclid does not use modal operators in the Elements, unless 

we interpret modally the verb ‘to postulate [αἰτέω]’ occurring at the perfect 

imperative middle-passive in postulate I.1 and implied in the other postulates. 

From Euclid’s practice is however clear that not every construction that in any 

particular situation could be applied is actually applied. If the notion of being 

given is understood as I have suggested, the appeal to a modal operator applied to 

such a notion is quite useful for accounting for this practice49. For simplicity, I 

shall use the verb ‘to be susceptible of being given’ and their cognates to refer to 

such an operator. Hence I shall say of a geometric object that it is susceptible of 

being given to mean that it can be given, in the sense that I have previously 

explained50. 

Before concluding my account of the global role of diagrams in EPG, a last 

remark is useful. Also admitting that what I have argued for is right, one could 

wonder why EPG needs diagrams playing their global role. I suggest the 

following response: EPG relies on diagrams playing their global role in order to 

reduce the conditions of application of the concepts of its objects and the identity 

conditions for these same objects to conditions of application and identity relative 

to physical objects. This reduction is just what makes the former conditions 

available in EPG. 

II.2.  THE LOCAL ROLE OF DIAGRAMS 

Once this reduction is admitted, Aristotelian local continuity can apply to EPG 

and provide the conditions under which each of its objects is intrinsically one. 
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A diagram is a compositional object: it can be formed by other diagrams. This 

is the same for the objects of EPG. Thus, to drawn a diagram in EPG is possibly 

the same as to draw distinct (sub-)diagrams, representing distinct objects or 

distinct configurations of objects. But how are diagrams and, consequently, 

geometric objects distinct? 

Many distinctions depend on specific stipulations. For example, that an 

appropriate configuration of three segments be taken as a single object—a 

triangle—depends on the definition of triangles, whereas that a configuration of 

two triangles, external to each other but sharing a vertex, is never taken as a single 

object depends on the lack of an appropriate definition. But not any distinction 

can depend on a specific stipulation: for a specific stipulation to work, elementary 

objects have to be detected. I suggest that in EPG this is done according to a 

criterion that fits with Aristotle’s conception of continuity: angles in physical 

lines, and a fortiori, spatial gaps among these lines entail separation between 

distinct geometrical lines that are intrinsically ones; hence, a physical broken line 

or a pair of lines that mutually intersect or do not touch to each other are not 

intrinsically ones, that is, they are not elementary diagrams and represent 

configurations of distinct elementary geometric objects. 

This is a consequence of a more general fact concerning the objects of EPG: 

they inherit the property of continuity from the diagrams that represent them. This 

is part of the content of C.ii. To understand this point it is thus necessary to 

elucidate this claim. 
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For reasons of linguistic simplicity, let us admit that the term ‘attribute’ refers 

either to properties or to relations, and that to say that some objects have a certain 

attribute is the same as to say either that one or more objects have a certain 

property or that some objects stay in a certain relation.  

This being admitted, consider a certain sort of abstract objects and a certain 

sort of physical objects—let us say, the G’s and the D’s, respectively—and suppose 

that: the G’s are linked with the D’s by an application ϕ; x, …, z and x’,…, z’ are 

D’s, and ϕ(x),…, ϕ(z) and ϕ(x’),…, ϕ(z’) are G’s; ‘=’ denotes identity. I say that the 

G’s inherit a certain attribute—let say P—from the D’s if and only if P applies to 

the D’s, and it is admitted that: i) some G’s have a certain attribute and there is no 

other way to explain what it means that they have this attribute besides saying that 

they have P; ii) ϕ(x),…, ϕ(z) have this attribute (that is, according to (i), they have 

P) if and only if any x’,…, z’ such that ϕ(x’) = ϕ(x),…, ϕ(z’) = ϕ(z) have P; iii) if 

ϕ(x),…, ϕ(z) have this attribute (that is, if they have P), and Q is an attribute that 

applies to the D’s, complies with the conditions (i) and (ii), and is such that any 

x’,…, z’ such that ϕ(x’) = ϕ(x),…, ϕ(z’) = ϕ(z) have Q if they have P, then ϕ(x),…, 

ϕ(z) have the attribute corresponding to Q (that is, they have Q). 

Suppose now that the G’s are the objects of EPG, the D’s are diagrams, and ϕ is 

the application that associates diagrams to the objects they represent. Then the 

objects of EPG inherit an attribute P from the diagrams if and only if P applies to 

diagrams and it is admitted that: i) some objects of EPG have a certain attribute 

and there is no other way to explain what it means that they have this attribute 

besides saying that they have P; ii) the objects of EPG have this attribute (that is, 



23 

according to (i), they have P) if and only if the diagrams that represent these 

objects have P; iii) if some objects of EPG have this attribute (that is, they have 

P), and Q is an attribute that applies to diagrams, complies with the conditions (i) 

and (ii), and is such that all the diagrams that represent these objects have Q if 

they have P, then these objects have the attribute corresponding to Q (that is, they 

have Q). 

Let us suppose now that the objects of EPG inherit a certain attribute P from 

the diagrams. I shall say, for short, that P is a diagrammatic attribute (by 

implicitly implying that it is an attribute that applies to the objects of EPG). 

What I argue is thus that continuity is a diagrammatic property. This means 

that continuity applies to diagrams, and it is admitted that: i) some objects of EPG 

enjoy a certain property and there is no other way to explain what it means that 

they enjoys this property besides saying that they are continuous; ii) an object of 

EPG enjoys this property (that is, according to (i), it is continuous) if and only if 

the diagrams51 that represent this object are continuous52; iii) if some objects of 

EPG enjoy this property (that is, they are continuous), and Q is an attribute that 

applies to diagrams, complies with the conditions (i) and (ii), and is such that all 

the diagrams that represent these objects have Q if they are continuous, then these 

objects have the attribute corresponding to Q (that is, they have Q). 

This explication could appear cumbersome, but reflects the nature of continuity 

in EPG: when applied to geometric objects, the adjective “continuous” cannot 

have the same sense as it has when applied to physical objects (so that, strictly 

speaking, continuity of physical objects and continuity of geometrical objects are 
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distinct properties), but the sense it has when applied to geometric objects cannot 

be separately explained for lacking of appropriate (logical) resources53. 

The same happens with the properties of having extremities and of being 

contour-closed. These properties are thus diagrammatic, in turn. 

Insofar as they are physical objects, diagrams have a position in space, and 

distinct (sub-)diagrams composing a unique diagram differ from each other with 

respect to their positions in space. I argue that this is what confers their mutual 

spatial relations to the corresponding geometric objects54. EPG is not concerned 

with metric properties and relations of its objects. Thus, by speaking of mutual 

spatial relations of the objects of EPG I mean non-metric relations like the 

relations of intersecting each other, of being formed by, of being part of, of being 

inside, of being included in, of being on, or on a certain side of, of passing 

through, of having an extremity on, of sharing an extremity. I argue that these are 

diagrammatic relations. 

The local role of diagrams—that is, the fact that many properties and relations 

of the objects of EPG are diagrammatic—allows many arguments in EPG to be 

diagram-based. An example is provided by the argument related to proposition 

I.1. This argument depends on the fact that the properties of continuity, of having 

an extremity, and of being contour-closed, and the relations of intersecting each 

other, of being inside, and of passing through are diagrammatic. This being 

admitted, the crucial step in this argument can be reconstructed as a deduction of 

two conclusions from four premises involving diagrammatic attributes:  
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Premise i) A circle is a contour-closed line, passes through an extremity of a 

radius of it, and is such that the other extremity of this radius is inside it; 

Premise ii) A contour-closed line that passes through a point that is inside 

another contour-closed line intersects this latter line; 

Conclusion i) The second circle crosses the first; 

Premise iii) Circles are continuous; 

Premise iv) Continuous lines are capable of being divided, are actually so when 

another line intersects them, and, because of this division, an extremity is 

given where this other line cut them; 

Conclusion ii) The first circle is divided, and, because of this division, an 

extremity is given where the second circle intersects it. 

Once this last conclusion is admitted, the definition I.3 allows to derive that a 

point is given.  

The presence of premises (i-iv) in this argument manifests the local role of 

diagrams. Still this role does not manifest itself only insofar as many arguments of 

EPG can be reconstructed as arguments including premises like these. To 

understand the other ways in which this role manifests itself, it is useful to 

consider two distinctions introduced by K. Manders55.  

The first is the distinction between two components of a ‘demonstration’ in 

EPG: the ‘discursive text’—that ‘consists of a reason-giving ordered progression 

of assertions, each with the surface form of an ascription of a feature to a 

diagram’—and the diagram itself. According to Manders, a step in the discursive 

text ‘is licensed by attributions either already in force in the discursive text or 
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made directly based on the diagram as part of the step, or both’ and ‘consists in an 

attribution in the discursive text, or a construction in the diagram or both’56.   

The second distinction is that between ‘exact’ and ‘co-exact geometric 

attributes’57. The former ‘are those which, for at least some continuous variation 

of the diagram, obtain only in isolated cases’. The latter ‘are those […] which are 

unaffected by some range of every continuous variation of a specified diagram58. 

Manders’ crucial claim is that an ‘exact attribution is licensed only by prior 

entries in the discursive text; and may never be “read off” from the diagram’, 

whereas ‘co-exact attributions either arise by suitable entries in the discursive text 

[…] or are licensed directly by the diagram’59. 

I agree with Manders on the fruitfulness of the two previous distinctions. Still, 

it seems to me that the latter should be better specified, and that co-exact 

attributes should not be confounded with diagrammatic properties and relations. 

Unlike Manders60, I take exact and co-exact attributes as attributes of geometric 

objects. Hence, I argue that they should be distinguished based on what happens 

in a configuration of geometric objects, rather than in a diagram, and I suggest 

understanding exact attributes as those attributes of geometric objects that hold or 

do not hold for these objects based on the properties of non-elementary 

configurations of these objects that, for at least some variation of these 

configurations, obtain only in isolated cases; and co-exact attributes as the 

remaining attributes of geometric objects that hold or do not hold for these objects 

based on the properties of non-elementary configurations of them. 
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According to such a characterisation, the distinction of exact and co-exact 

attributes apply only to relations among geometric objects or to properties of these 

objects that result of the saturation of n-1 places in a n-places relation. Hence, it 

does not apply to properties like straightness, circularity, contour-closure, and, 

more importantly, continuity. This is enough to conclude that co-exact attributes 

do not coincide with diagrammatic properties or relations. But neither co-exact 

attributes other than properties like the latter coincide with diagrammatic 

properties or relations. For example, the diagrammatic relations of intersecting 

each other, of being formed by, of being part of, of being inside, of being included 

in, of being on, and of being on a certain side of are co-exact, whereas the 

diagrammatic relations of passing through, of having an extremity on, and of 

sharing an extremity are exact. 

Despite the difference between my and Manders’ understanding of the 

distinction between exact and co-exact attributes, it seems to me that he is right in 

claiming that diagrams cannot license exact attributions. Of course, diagrams 

cannot licence non-diagrammatic attributions either, whereas the possibility of 

non-diagrammatic attributions (either exact or co-exact) that are not licensed by 

diagrams is obvious. Also the possibility of diagrammatic attributions that derive 

by other diagrammatic attributions in force of the application of some deductive 

rule is obvious (provided that EPG relies on some form of logic). Call these last 

attributions ‘diagram-neutral’. 

All this being admitted, the relevant questions concern co-exact diagrammatic 

attributions licensed by diagrams and diagrammatic attributions—either exact or 
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co-exact—that are neither licensed by diagrams nor diagram-neutral. Do they 

occur in EPG? I argue that they do. 

The argument related to proposition I.1 that I have reconstructed above 

provides evidence for the occurrence of co-exact diagrammatic attributions 

licensed by diagrams: the co-exact attribution involved in premise (ii) is clearly 

licensed by diagrams, and the second part of the argument—from conclusion (i) to 

conclusion (ii)—shows the way as continuity of diagrams61 enters arguments of 

EPG to transform a diagrammatic co-exact attribution—like that involved in 

conclusion (i)—in a conclusion asserting that a certain geometric object is given. 

But what about diagrammatic attributions that are neither licensed by diagrams 

nor diagram-neutral? 

Consider the example of proposition I.3 that I have relied on above. The 

diagrammatic attribution to the circle and the greater segment of the co-exact 

relation of intersecting each other is certainly not licensed by diagrams. Things go 

the other way around: it is because the greater segment is greater that the circle 

intersects it, and the diagram has to be drawn so to display this co-exact 

diagrammatic relation. Still, there is no deductive inference from the premise ‘the 

segment AB is greater than the segment AD and shares with it the extremity A’ to 

the conclusion ‘the circle whose radius is AD and whose centre is A intersects 

AB’. Euclid’s argument seems rather to depend on a reduction of the non-

diagrammatic relation of being greater than62, applied to two segments that share 

an extremity, to the diagrammatic relation of intersecting to each other, applied to 

the greater of these segments and the circle whose the smaller of them is a radius. 
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This is another relevant aspect of the local role of diagrams in EPG: many co-

exact non-diagrammatic attributes are reduced to co-exact diagrammatic 

attributes, and this allows many theorems to be proved and many problems to be 

solved63. 

But suppose now that AB and AD are two equal geometrical segments share 

the extremity A and that this is the centre of a circle that has AD as radius. We are 

not licensed to conclude that this circle passes though the extremity B of AB 

based on the fact this is so for the diagram that represents these objects. Thus the 

attribution of this exact diagrammatic relation to such a circle and the segment AB 

is not diagram-based. But it is neither diagram-neutral. Definition I.15 asserts that 

a circle is such that their radii are equal but it does not ensure, as such, that if 

AB = AD then the circle of centre A and radius AD passes through B. To derive 

that it so from this definition, one has to suppose that it is not so and conclude 

that, then, the segments AB et AD cannot be equal because one of them is equal to 

another segment that is cut off from the other or from which this other segment is 

cut off. This argument by reductio ad absurdum involves the derivation of non-

diagrammatic attributions from diagrammatic ones. Suppose (fig. 3, again) that 

the circle of centre A and radius AD intersects AB in a point E. From the exact 

diagrammatic attribution to the segments AD et AE of the relations of sharing the 

extremity A and of being such that the former is the radius of a circle of centre A 

that passes though the extremity E of the other, one derives the exact non-

diagrammatic attribution to these same segments of the relation of being equal to 

each other. Then, from the co-exact diagrammatic attribution to the segments AE 
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and AB of the relation of one being a part of the other, one derives the co-exact 

non-diagrammatic attribution to these same segments of the relation of one being 

greater than the other. Both these derivations are licensed by a reduction of a non-

diagrammatic relation to a diagrammatic one: whereas the reduction that licenses 

the latter derivation concerns two co-exact relations, that which licenses the 

former derivation concerns two exact relations. 

It follows that in EPG also exact non-diagrammatic attributes are reduced to 

exact diagrammatic ones, and this also allows many theorems to be proved and 

many problems to be solved. 

But, it is not enough to remark that in EPG both exact and co-exact non-

diagrammatic attributes are reduced to diagrammatic ones, in order to understand 

the role that diagrams play in arguments that involve such reductions. It is also 

necessary to notice that these reductions provide, in fact, the most fundamental 

explication of the former attributes in EPG. To take only an example, what does it 

mean, in the last resort, in EPG, that two segments are equal to each other? The 

answer leaves no doubt: it means that an appropriate circle passes though an 

extremity of one of them; it is enough to study the proposition I.1 and I.2 of the 

Elements to understand that it is so. 

II.3. DETERMINATES AND ACCURANTENS OF DIAGRAMS 

EPG can be understood as a close system, that is, a pure argumentative game 

governed by its own stipulations; but it can also be understood as a mathematical 

account of some features of physical reality. When conceived in the first way, 
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EPG requires only that its diagrams be appropriate for playing their global and 

local roles. But this is possibly not enough for it to be able to provide an 

appropriate mathematical account of some features of physical reality. This 

depends of course on the features of physical reality that EPG is supposed to 

account for. One could require, for example, that its diagrams have some 

attributes corresponding to non-diagrammatic attributes of its objects, namely that 

equal segments be represented by physical lines of equal length, or circles be 

represented by (contour-closed) physical lines with equal curvature. 

These two sorts of requirements impose that diagrams have certain features but 

they are far from determining them completely. Hence, in EPG the shape of 

diagrams can vary within the limits imposed by these requirements (or even only 

by the former of them, if EPG is merely understood as a close system), and it 

varies in fact in the extant manuscripts of the Elements, as K. Saito has shown for 

some Greek and Latin manuscripts64.  

All that I said and I shall say on the roles of diagrams in EPG is of course 

intended to be unaffected by these variations, and Saito’s results confirm that this 

is so. The principal phenomenon he notes is ‘overspecification’: in the 

manuscripts he has studied, many diagrams are inaccurate ‘as metrical 

representation of geometric objects’, since they represent polygons as more 

regular than the relative propositions require65. According to him, this suggests 

that ‘diagrams are not meant to be a strict reproduction of the spatial relationships 

of geometric objects along the lines of a photograph but are rather meant to be a 

schematic representation’, that he also calls ‘topological’66. In my language, this 
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can be said as follows: in EPG, diagrams has to correctly represent diagrammatic 

attributions but are not supposed to represent correctly metric relations, and, as a 

matter of fact, in the manuscript studied by Saito, they tend to represent these last 

relations as if they met some unnecessary conditions of regularity. 

But sometimes, both in the Heiberg’s edition and in the Greek and Latin 

manuscripts studied by Saito, diagrams are also inaccurate with respect to 

diagrammatic attributions. This generally happens in two quite particular 

circumstances: when proofs by reductio ad absurdum or arguments involving 

distinctions of cases are concerned.  

Diagrams related to proofs by reductio are of two different types exemplified, 

respectively, by the propositions I.6 and 1.27 of the first book of the Elements. 

Diagrams of the first type are as usual, though they are partially inconsistent with 

some diagrammatic attributions involved in the proof: in the case of proposition 

I.6, an angle that should be equal to another—if two appropriate segments were 

equal to each other—is represented as included in this other angle. Diagrams of 

the second type include unusual representations of mathematical objects: in the 

case of proposition I.27, two segments are represented by two broken lines 

(though the proof could also be conducted based on a usual but metrically 

inaccurate diagram67). 

Diagrams related to arguments involving distinctions of cases, are sometimes 

intended to represent the totality of cases at once, to the effect that they 

misrepresent some diagrammatic attribution68. 
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The inaccurateness of diagrams occurring in these circumstances depends on 

their quite particular function, and it does not contradict my account of their role 

in EPG. 

II.4. BEING GIVEN, EXISTENCE, AND CONSTRUCTION 

In section II.1, I have suggested that EPG includes only identity conditions for 

given objects or for objects that are supposed to be given, and that in EPG a 

geometric object is given if and only if a diagram appropriate to represent it is 

canonically drawn, which entails that in EPG a geometric object is given only if a 

diagram appropriate to represent it is drawn. Should one admit, thus, that EPG 

does not provide appropriate resources for identifying those of its objects that are 

neither actually represented by a certain diagram nor supposed to be so (that is, 

for providing the conditions of identities of these objects)? If one takes for granted 

that mathematical—especially, geometrical—objects exist as such, independently 

of the theories that deal with them, there would be no alternative, I’m afraid. But, 

why should an account of EPG take for granted that mathematical geometrical 

objects exist as such? Would it not be possible, instead, to admit that 

mathematical objects are objects of certain theories, so that their nature depends 

on the identity conditions provided by (or in) these theories? If this is admitted, 

then the question of their existence also depends on these identity conditions. 

From such a point of view, once it is admitted that in EPG things go as I have 

suggested on matter of identification and being given, the question of whether 

EPG does provide resources for identifying those of its objects that are neither 
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actually represented by a certain diagram nor supposed to be so (and thus neither 

given, nor supposed to be given) is deprived of any clear meaning. This is because 

the very questions of whether such objects exist—or whether universal statements 

of EPG concerns objects like those—are deprived of any clear meaning.  

But how should one, then, interpret a theorem in EPG? Is it a universal 

statement? And if it is, what is the range of the universal quantifiers it includes? 

Consider the example of the first part of proposition I.5: ‘angles at the bases of 

isosceles triangles are equal to one other’. I suggest understanding it as follows: 

‘if an isosceles triangle is given, then its angles at the base are equal to one other’. 

One could also rewrite this as follows: ‘angles at the bases of any given isosceles 

triangle are equal to one other’. But it would then be important to clarify that this 

does not mean that, among isosceles triangles, those that are given have angles at 

the base equal to each other, but rather that any time that an isosceles triangle is 

given it has angles at the base that are equal to each other. Isosceles triangles—as 

well as any other objects of EPG—are not given once forever: they are given in a 

context of a particular argument, where they are distinct from any other geometric 

object occurring in this same argument according to their identity conditions and 

to the conditions of application of the corresponding concepts. The only thing that 

can be done once forever, in EPG, concerning isosceles triangles, is simply to 

prove that they are susceptible of being given, provided that two segments are 

given69, and that, any time that they are given, they have a certain property. This is 

what a solution of a problem and a proof of a theorem result in, respectively. 
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To generalise we should claim that in EPG things go as follows: in solving a 

problem, one proves that geometric objects of a certain sort are susceptible of 

being given under appropriate conditions70; in proving a theorem, one establishes 

that if such an objects is given, then it is so and so71. And this is all that is needed, 

in fact. 

If I’m right, the ontology of EPG is structurally very different from the 

ontology of a contemporary axiomatic theory. This is because in EPG, geometric 

objects are not (implicitly) defined at once, through an appropriate system of 

axioms that assesses, once for all, their mutual relations and warrants their 

existence as elements of a certain structure (the structure whose elements satisfy 

these relations)72. But EPG is neither founded on a simple recursive definition: its 

objects do not result from a repeated iteration of a single constructive clause fixed 

once for all (like in constructive arithmetic, for example). The objects of EPG are 

rather defined through several steps.  

First come what Euclid calls ‘definitions’. As a matter of fact, these are not 

sufficient to define the objects of EPG in our sense of the verb ‘to define’: they 

merely provide the conditions of application of an appropriate family of concepts 

(the concept of some sorts of geometrical objects). These conditions admit an easy 

interpretation on freely drawn diagrams73. 

Postulates (or at least some of them) are then employed to codify the procedure 

for drawing diagrams canonically—that is, for establishing the rules of 

constructions—and so to allow an alternative interpretation of definitions on 

canonically drawn diagrams74. The identity conditions for the objects of EPG 
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depend on this last interpretation: as said, these objects are identified insofar as 

they are represented by diagrams that are canonically drawn. 

But such an interpretation is not offered at once. It is rather obtained step by 

step according to an order whose appropriateness reveals itself only post festum. 

This is the order in which geometric objects are proved to be susceptible of being 

given: to say of some objects that they are susceptible of being given is the same 

as to claim that the conditions of application of the corresponding concepts (their 

definitions, in Euclid’s language) have been successfully interpreted according to 

the postulates. 

It has often been clamed that in EPG constructions provide existence proofs75. 

My account allows to clarify and revise this claim: if to prove the existence of an 

object of EPG means to establish that this object is there among the eternal objects 

that EPG is about—supposing that these objects are there independently of this 

theory—, then this claim is flawed; if to prove the existence of an object of EPG 

means to establish that the corresponding concept is instantiated in EPG, then this 

claim is correct, I think, and can be easily rephrased by saying that in EPG a 

geometric object exists, if and only if it is given, and it is proved to be capable of 

existence under certain conditions, if and only if it is proved to be susceptible of 

being given under these same conditions76. 

But, if the connection between construction and existence proof is so 

understood, then Mueller is right in remarking that this connection provides no 

evidence for assigning to Euclid a ‘constructivist philosophy of mathematics’, 

being rather ‘the natural outgrowth of his conception of geometric objects’, 
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according to which ‘geometric objects are treated as isolated entities about which 

one reasons by bringing other entities into existence and into relation with the 

original objects and one another’77. 

This is not the end of the story, however. The matter should be considered, 

indeed, in the light of a distinction that I have not introduced yet.  

As said, the definitions of the objects of EPG admit an interpretation on freely 

drawn diagrams. These diagrams do not differ from canonically drawn diagrams 

for their intrinsic nature, but only because the drawing of the latter is submitted to 

appropriate rules, whereas this is not the case of the former. In the presence of the 

global role of diagrams in EPG, this circumstance suggests a weaker 

understanding of the existence of the objects of EPG. According to this 

understanding, such an object exists if a diagram appropriate for representing it 

can be freely drawn (that is, it can exist as any physical object is supposed to 

exist)78. 

Let us consider a simple example. Suppose that a circle is given in EPG, 

together with an inscribed and a circumscribed square. According to the local role 

of diagrams (and the reduction of the relation of being greater applied to figures79 

to the diagrammatic relation of being included in), the circumscribed square is 

greater than the circle, and the inscribed one is smaller than it. But a square is 

susceptible of being given, provided that its side is given, and the greater its side, 

the greater it is. Hence, by continuity, there should exist a square equal to the 

circle. This argument is not admissible in EPG: the claim ‘by continuity, there 

should exist a square equal to the circle’ is neither licensed by diagrams, nor by 
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prior entries in the discursive text. Still this argument seems not completely 

foreign to EPG. I suggest it is appropriate to establish the existence of the square 

it is about in the weaker of the two understandings of the existence of an object of 

EPG that I have distinguished.  

These two understandings result in two different notions of existence for the 

objects of EPG that have to be carefully distinguished. I suggest to term ‘internal’ 

the existence of an object of EPG insofar as it is understood in the stronger sense, 

and ‘external’ the existence of such an object insofar as it is understood in the 

weaker sense. 

Now, it seems to me that external existence of an object of EPG is, so to say, a 

horizon for internal existence: ideally, any object of EPG that exists externally 

should also be capable of existing internally. But whereas external existence can 

be established based on an argument as the previous one, capability of internal 

existence has to be proved in EPG, and this must be done by construction. It is 

however a matter of fact that Euclid seems often to take external existence of a 

certain geometric object (that is, the possibility of drawing freely a diagram 

appropriate to represent such an object) as a sufficient condition for admitting that 

it susceptible of being given. In many cases (as in proposition I.580) this is a mere 

shortcut. But sometimes, its operational ease pushes Euclid into arguments that 

seem difficult to license in EPG (at least if this theory is interpreted as I suggest to 

do). An example is offered by proposition III.1 that requires to construct the 

centre of a given circle: the very fact that this problem is advanced suggests that 
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Euclid is admitting that a circle could be given although its centre is not given, 

whereas a circle can certainly not be constructed in EPG, if its centre is not given. 

III. The Construction of a Right Angle 

Up to now I have spoken of EPG in quite general terms. It is time now to consider 

an example, so as to clarify the previous considerations in concreto. The one that I 

have chosen concerns the fragment of the book I of the Elements that leads up to 

propositions I.11-12. Both of them require constrcuting a perpendicular: the 

former to a given segment from a given point on it; the latter to a given straight 

line from a given point outside it. In EPG, an angle is given when two segments 

that meet each other are given, and it is taken to be right if and only if it is equal 

to another one that is adjacent to it. To account for Euclid’s solutions of these two 

problems, it is thus necessary to account for the way in which segments and their 

intersections are given and for the conditions of equality of angles. This involves a 

number of fundamental ingredients of EPG, and this is why I have chosen such an 

example. 

III.1. DEFINITIONS I.1-4 AND I.8-10 

Among these ingredients, there are definitions I.1-4. According to them: ‘[a] point 

is that of which [there is] no part’; ‘[a] line [is] breadthless length’; ‘[the] 

extremities of [a] line [are] points’; and ‘[a] straight line is that [line] which lies 

evenly with respect to [the] points on itself’. 
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These definitions appeal to notions that are foreign to the argumentative system 

of EPG, and, as a matter of fact, they openly licence none of the inferences 

occurring in this system. This led many commentators to argue that these 

definitions play no effective role in EPG81. I argue that this is not so, and suggest 

that definitions like these aim to specify both which diagrams are appropriate to 

represent the objects they are supposed to define, and which properties of these 

diagrams are relevant82 for them to play their roles in EPG83. 

Though the notion of a line that lies evenly with respect to the points on itself 

depends on that of points on a line, the notion of a point does not enter the 

definition of lines. A line seems rather conceived as an object that has neither 

parts nor components—though having, possibly, two extremities—, that is, as a 

local continuous in Aristotle’s sense. Definition I.2 seems thus to rely on the 

cognitive capacity of distinguishing physical lines among other sorts of physical 

objects, and to state that geometric lines are what physical lines represent, by 

prescribing, at the same time, that only the properties of physical lines that depend 

on these lines having a length are relevant. 

The case of definition I.1 is different, since the description ‘that of which there 

is no part’ is unable to specify a determinate sort of physical objects (on my 

reading of Aristotle, something that has no part is continuous, but Euclid is 

certainly not willing to say that points are continuous). It seems thus to be hard to 

grasp what a point is without relying on the definitions I.3 and/or I.2. Supposing 

that an extremity of a geometric line is that which is represented by an extremity 

of a physical line, definitions I.3 suggests that (geometric) points are that which 
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have no parts—both actually and potentially—insofar as they are what extremities 

of physical line represent84, and that only the properties that depend on the fact 

that these extremities have a spatial location without having parts are relevant. It 

follows that a point cannot be given if a line is not. 

Once it is established what a point is, definition I.4 seems to rely on the 

cognitive capacity of appreciating evenness in physical lines, and recognising, 

then, the physical lines that lay evenly with respect to the points on them (that is, I 

guess, to the points that one can generate on these lines by dividing them in parts). 

According to this definition, geometric straight lines are thus those represented by 

physical straight lines, and only the properties that depend on the evenness of 

these last lines are relevant. 

Any physical straight line is limited. It is also so, in general85, for geometric 

straight lines in EPG: they are segments. Hence, in EPG, to give a straight line is, 

ipso facto, to give two points as its extremities. 

The definitions I.8-9 can be similarly understood. According to them: ‘[a] 

plane angle is the inclination to one another of two lines in [a] plane which meet 

one another and [which] do not lie in [a] straight line’; and an angle is rectilineal 

if ‘the lines containing […][it] are straight’.  

Hence, plane angles are not merely pairs of lines that meet one another. Such 

pairs determine them, but they are not angles. Euclid appeals to the notions of 

inclination to suggest that what matters is the mutual position of these lines. He 

seems also to take for granted that two lines cannot meet one another without 

sharing or generating an extremity. In the second case, only the lines that begin in 
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this extremity seem to be relevant, and they form an angle provided they do not 

form a straight line. Let us consider only rectilineal angles. Their definition seems 

to rely, at least, on two cognitive capacities: that of recognising pairs of physical 

straight lines that share an extremity without forming another straight line; and 

that of recognising in each of these pairs a common feature that it shares with all 

the other pairs of physical lines that share the same extremity and have the same 

‘inclination’, that is, the same mutual position (the position of one of those line 

with respect to the other). Angles are thus that which is represented by pairs of 

physical straight lines that share an extremity and that is common for all pairs of 

physical straight lines that share the same extremity and have the same mutual 

position. Only the properties of such a pair of physical straight lines that depend 

on their mutual position and on their sharing a certain extremity are thus relevant. 

The lengths of these lines are thus not relevant. 

Right angles are plane rectilinear angles of a particular sort. Definition I.10 

establishes that ‘when [a] straight [line] having been set up on [a] straight [line] 

yields adjacent angles [which are] mutually equal, [then] each of the equal angles 

is right, and the straight [line] standing upon [the other] is called “perpendicular” 

to that upon which it stands.’ If straight lines and angles are understood as said 

before, this definition is clear enough, but it leaves open the problem of specifying 

the conditions under which two (distinct) angles are equal. This is the essential 

question the construction of a right angle is concerned with. 
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III.2. CONSTRUCTIVE CLAUSES AND RULES OF INFERENCE ABOUT BEING GIVEN 

Before considering it, a crucial question about construction has to be answered, at 

least partially: which are the rules that govern it?  

Since any construction starts out from some given objects, a first rule should 

establish which objects can be taken as given without resulting from a previous 

construction. Postulates I.1 and I.3 suggest that these objects are points. They 

licence, indeed, respectively, ‘to draw [a] straight line from any point to any 

point’ and to ‘draw a circle with any centre and interval’86. Still, definitions I.1-4 

suggest, as we have just seen, that a point cannot be given if a line is not, and that 

two points are given if a segment is. This suggests that in EPG only segments can 

be taken as given without resulting from a previous construction, to the effect that 

any construction has, in principle, to start from segments: namely from any 

number of segments whose mutual spatial relations obey no specific conditions. 

The question is thus the following: supposing that an appropriate number of 

such segments are given, what are the rules for constructing other objects starting 

from these segments? According to the global role of diagrams, these rules should 

apply to already drawn diagrams, establish which other diagrams can be drawn in 

presence of these diagrams, and specify, thus, which objects are susceptible of 

being given provided that the objects represented by the already drawn diagrams 

are given. Each rule would thus be twofold, including both a constructive 

clause—licensing to draw certain diagrams provided that others have already been 

drawn—and a rule of inference about being given, warranting that if certain 
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geometric objects are given and satisfy certain conditions, some other objects are 

susceptible of being given. 

Postulates I.1-3 seems to provide three of these twofold rules87. 

I have already mentioned postulates I.1 and 1.3. The rules they provide are the 

following88: 

R.1) If two points are given, then one and only one physical segment joining 

the physical points that represent these points can be drawn; hence, if two 

points are given, one and only one segment joining these points is 

susceptible of being given. 

R.3) If two points are given89, then two and only two physical circles can be 

drawn—each of them having their centre in the physical point that 

represents one of two given points and passing through the physical point 

that represents the other—; hence, if two points are given, two and only two 

circles—each of them having their centre in one of two given points and 

passing through the other—are susceptible of being given. 

Postulate I.2 licences ‘to produce [a] limited straight [line] continuously in [a] 

straight [line]’. The main difficulty in the understanding of this postulate is 

concerned with the adverb ‘continuously [κατὰ τὸ συνεχὲς]’. There is no doubt 

that Euclid is referring to the (diagrammatic) property of continuity. What is not 

clear is the subject to which this property is attributed. Euclid seems to licence to 

produce a (given) segment by tracing a new segment from one of its extremities. 

The grammatical form of the sentence suggests that this property is not attributed 

to the former segment and it is quite implausible that it be attributed to the latter.  
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If it were so, one could not avoid of wondering why continuity intervenes so late 

in Euclid’s exposition as an attribute of a line, and why it is explicitly attributed 

only to this latter segment and not to the former. It is much more plausible that 

Euclid attributes continuity to the configuration formed by the given segment and 

its prolongation: this would not merely be a configuration of two contiguous 

segments, but it might also be taken as something continuous, that is as a unique 

segment. Supposing that a segment has been given, the postulate I.2 would thus 

license to produce it so to get two new segments: the segment that produces the 

given one, and that which results from this latter segment and the given one, taken 

together. This is the interpretation I suggest. 

It would follow that Euclid is admitting that a pair of segments might be 

understood as something continuous. This would contradict an Aristotelian 

precept, since it would be the same as admitting that a unique—and thus 

continuous—segment has two actual parts. This seem to me a necessary condition 

for EPG to be set forth.  

This is not all, however, about postulate I.2. Another relevant question 

concerns the conditions of its application. Does Euclid licence producing a given 

segment at will, that is, tracing a new arbitrarily long segment? In many cases 

(like the in the proposition I.2 and I.5), it seems that it is so. A better scrutiny of 

Euclid's applications of the postulate I.2 shows however that another 

interpretation is possible: when Euclid applies such a postulate so as to produce a 

given segment at will, he merely abridges a possibly more complex procedure, 

where the given segment would be produced so as to meet a given line. If so, the 
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application of the postulate I.2 would be submitted to an implicit condition: a 

given segment could be produced only up to meet a given line. Moreover, this 

same application would result not only in the construction of two new segments 

but also in the construction of a new point on a given line and, if this line is a 

segment, in that of two other segments on it. Still, Euclid does not provide a 

general criterion to decide whether a given segment can be produced to meet a 

given line. He simply relies on diagrams to decide whether this is so. 

In summary, I suggest that the postulate I.2 provides the following rule: 

R.2) If a segment is given and the physical line that represents it is such that its 

prolongation can meet an already drawn physical line, then this segment can 

be produced up to meet this line; hence, if a segment a and another line b 

are given, then two other segments—one, let’s say c, producing a up to meet 

b, and the other, let’s say d, formed by a and c taken together—and a point 

on b—where it meets both with c and d—are susceptible of being given. 

Not all the rules of inferences about being given that occur in EPG are 

associated with a constructive clause, and have a modal nature. The construction 

of a right angle requires two rules of inferences about being given that are not so. 

One of them is implicit in definition I.3, the other depends on the interpretation of 

the intersection of two lines as an extremity of other lines resulting from a 

division of these lines. These rules are the following90: 

R.4) If a segment is given, two points, consisting in its extremities, are given. 
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R.5) If two intersecting lines meet each other, then, for any time they meet a 

point is given where they meet; if both the given lines are segments, then 

four or two new segments, cut off on the given segments, are also given; if 

one of the given lines is a segment and the other is a circle, then also two 

other segments (if the given lines meet each other once) or three other 

segments (if they meet each other twice), cut on the given segment, are 

given. 

III.3. COMMON NOTIONS 

Not all the rules of inferences occurring in EPG are concerned with being given. 

Among those that are not, the most relevant concern the relations of equality, of 

being part of, of being smaller than, and of resulting from the addition or the 

subtraction of, as applied to segments, polygons and angles. In the Elements, these 

relations are not defined once for all, and they could not have been so defined, 

since they are quite different from each other according to whether they apply to 

segments, polygons or angles. Hence, they are successively defined for each of 

these sorts of objects. Still, whatever sort of geometric objects they apply to, each 

of these relations has to satisfy appropriate general conditions. In my view, 

common notions aim to fix some of these conditions91. 

To say it in modern terms, common notions I.1-1.3 establish that any relation 

that is supposed to be an equality has to be transitive (provided that its being 

symmetrical be taken for granted), and conserved under addition and subtraction. 

Common notions I.4-6 are probably interpolated92, since they follow from the 
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previous ones: they establish, respectively, that any relation that is supposed to be 

an inequality has to be conserved under addition, and that any relation that is 

supposed to be an equality is conserved under passage to the double and the half. 

Common notions I.7-8 are quite different. They state respectively that two 

things that coincide each with other are equal, and that the whole is greater than 

the part. I take them as referring to diagrams and having several functions. Taken 

alone, the former seems both to state that objects that are represented by the same 

diagram are equal to each other—which, under my interpretation, is the same as to 

state that any relation that is supposed to be an inequality has to be reflexive—, 

and to licence the (non-constructive) argument that Euclid relies on for proving 

proposition I.493. Taken alone, too, the latter seems to establish that a geometric 

object represented by a diagram that is composed by, or that includes spatially, 

another diagram that represents a geometric object of the same sort, is greater than 

this object. Taken together, these common notions state, moreover, that when 

defined for the same sort of geometric objects, the relations of being equal to, and 

of being greater or smaller than are exclusive and respect trichotomy. 

III.4. EQUALITY OF ANGLES 

The solution of any problem in EPG includes two steps: the construction of 

appropriate objects, and a proof of the appropriateness of these objects (the fact 

that these objects satisfy the conditions of the problem). To achieve the latter in 

cases of propositions I.11-12, the equality of two angles has to be proved, and—
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for it to be possible—some conditions relative to the equality of equals are 

needed. 

In both cases, Euclid relies on proposition I.8 that provides a sufficient 

condition of equality for any pair of angles. This condition establishes that two 

angles are equal if they are (susceptible of being) included into two triangles with 

equal homologous sides. Equality of angles is thus reduced to equality of 

segments (that has, therefore, to be defined beforehand). This reduction goes 

together with an appropriate justification: proposition I.8 is proved, rather than 

stated as a pure (consistent) convention. The proof relies on a previous condition 

provided by proposition I.4. This establishes that two appropriate angles are equal 

to each other, if two other appropriate angles are so; it is thus, so to speak an 

implicative particular condition. It can be expressed as follows: if two angles are 

equal to each other, and they are taken as internal angles of two triangles whose 

homologous sides that include these angles are also respectively equal to each 

other, then the two other angles included in these triangles are respectively equal 

to each other.  

But also proposition I.4 has to be proved. Euclid does it by relying on an 

argument that is generally understood as being foreign to the constructive 

constraints of EPG, and that supposes, indeed, that a triangle could be rigidly 

displaced as if the diagram that represents it were replaced a rigid configuration of 

bars. This argument is thus not only diagram-based, but also mechanical, so to 

speak94. As it is well known, no alternative argument, complying with the 
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constructive constraints that govern the great majority of the arguments in EPG, 

may replace it95. 

Still, once proposition I.4 is admitted, and proposition I.5 is derived from it, the 

construction performed in the propositions I.11 and I.12 can be proved to be 

appropriate by relying neither on the proposition I.8 nor on any other sufficient 

condition of equality for angles. If Euclid prefers to proceed as he does (that is, to 

rely on proposition I.8 in his proof of the appropriateness of this construction), it 

is possibly because he wants to replace as soon as possible the implicative 

particular condition stated by the proposition I.4 with a genuine sufficient 

condition. This may be understood, from the perspective of the establishment of 

EPG as a whole. But if the aim is only that of constructing a right angle a simpler 

argument could be preferred. For short, this is the argument that I shall reconstruct 

according to my understanding of EPG. 

III.5. PROPOSITIONS I.11-12 

Proposition I.1 of the Elements requires ‘to construct an equilateral triangle on a 

given limited straight line’. Provided that segments are defined, and diagrams play 

their global role, the definitions of triangles in general (definition I.19), and of 

equilateral, isosceles, and scalene triangles in particular (definition I.20), present 

no difficulty, apart from the fact that those of equilateral and isosceles triangles 

rely on equality of segments that is not previously explicitly defined. 

Definition I.15 supplies an appropriate basis for providing such a definition, 

however. It establishes that ‘[a] circle is a plane figure contained by a line, such 
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that all the straight [lines] falling upon it from one [point among] those lying 

inside such a figure are equal to one another’. As said, despite this definition, 

Euclid often considers a circle to be a line rather than a figure, and this is what I 

have supposed up to now and continue to suppose96. Definition I.15 establishes 

that this line encloses a point—its centre—such that all the segments of which it is 

an extremity and whose other is on the line itself are equal to each other. When 

this claim is coupled with postulate I.3 and is understood according to the local 

role of diagrams, definition I.15 provides a sufficient condition for the equality of 

segments that share an extremity: these segments are equal if a circle passes 

trough their other extremities.  

Relying on this condition, the problem addressed in proposition I.1 can be 

easily solved through a diagram-based argument that I have already partially 

reconstructed and discussed: let AB (fig. 1) the given segment. According to R.4, 

the points A and B are given. Apply R.3 so as to give two circles with radius AB 

and centre A and B, respectively. According to R.5 and the local role of diagrams, 

the point C and D are given. Apply R.1 so as to give four segments joining A and 

B to C and D. For the global role of diagrams, two triangles are thus given, and, 

for the definition I.15 and the common notion I.1, they are equilateral. 

From proposition I.1, it follows that equilateral triangles are susceptible of 

being given, provided that a segment is given. It would thus be enough to rely on 

R.1 to give the segment CD, and then on R.5 and to the global role of diagrams to 

conclude that four angles would thus be given at the intersection of AB and CD. 

These angles are right, but, without further resources, there would be no way to 



52 

prove that it is so. As a matter of fact, these resources are provided by the 

propositions I.4-5. Hence, were our problem that of constructing a right angle, 

without any supplementary condition, the conjunction of propositions I.1 and I.4-

5 would be enough to solve it. But propositions I.11 and I.12 ask to construct two 

right angles whose sides meet some conditions that the segments AB and CD do 

not meet, in general. Thus other constructions are needed to satisfy their 

requirements. 

Propositions I.4-5 are also needed for proving that these other constructions are 

appropriate (and in fact they are sufficient, too). We have then to consider them.  

In the former, it is supposed that two distinct triangles are given and that two 

sides and the angle they include of one of these triangles are respectively equal to 

two sides and the angle they include of the other triangle. As said, proposition I.1 

ensures that equilateral triangles are susceptible of being given provided that a 

segment is given. In order to prove that this is also the case for any sort of 

triangles, provided that two or three appropriate segments are given, one should 

rely on proposition I.2 that provides a sufficient condition for the equality of any 

pair of segments. Euclid postpones this proof in proposition I.22, however97. 

Moreover, he does not provide, in advance, any sufficient condition for the 

equality of angles98. Still, once it is admitted that two distinct triangles as those 

involved in proposition I.4 are susceptible of being given, and that one of them 

could be rigidly displaced, there is no need to rely on proposition I.2 for proving 

proposition I.4. 
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Euclid’s proof goes as follows. Let ABC and DEF (fig. 4) the given triangles 

and let BA = ED, CA = FD, ∠BÂC = ∠EDF. According to Euclid, if the triangle 

ABC is rigidly displaced so that the respective members of these equalities came 

to coincide to each other, the points B and C come to coincide with the points E 

and F respectively, and thus the side BC comes to coincide with the side EF, and, 

for common notion I.7, these sides will be equal to one another, and thus also the 

whole triangles and their other angles will be equal each other. This is what 

proposition I.4 asserts. 

The problems with this argument do not depend only on the appeal to rigid 

displacements of triangles. Even if this is admitted, no explicit stipulation of EPG 

ensures that when a triangle is so displaced, its sides and angles come to coincide 

with other segments and angles that are supposed to be equal to them, 

respectively. For it to be so, the converse of the common notion I.7 would have to 

hold for segments and angles. Euclid seems to admit implicitly that it is so99. 

Proposition I.5 is a theorem. It asserts, as already point out, that the angles at 

the base of any isosceles triangle are equal to one another, as well as their 

supplementary angles. Once the proposition I.4 is admitted, the proof of this 

theorem presents no further difficulty. 

Let ABC (fig. 5) be an isosceles triangle with BA = CA. Euclid applies the 

postulate I.2 so as to produce these segments on the side of B and C up to two 

points D and E taken at random, then takes, once again at random, a point F on 

DB so that EA be greater than FA. He relies then on proposition I.3100, to cut on 

EA a segment GA equal to FA. 
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As what is essential in the proof is merely that GA = FA, one could avoid 

indefinite prolongation and points taken at random. It would be enough to apply 

R.3 so as to give two circles passing through A (fig. 5bis), with centre in B and C, 

respectively, then to apply R.2 so as to produce BA and CA up to meet these 

circles in F and G. From the definition I.15, it would just follow that GA = FA.  

Howsoever the points F and G have been given, the rest of Euclid’s argument 

can be reconstructed as follows. Apply R.1 so as to give two segments joining the 

points F and G to the points C and B, respectively. According to the global role of 

diagrams, the two triangles ABG and AFC are thus given, and include the same 

angle at vertex Â. Hence, since BA = CA, GA = FA and equality of angles is 

necessarily reflexive, these triangles satisfy the condition of proposition I.4. Thus 

the angles ∠ABG and ∠BGA are respectively equal to the angles ∠FCA and 

∠AFC and the segments GB and FC are equal to each other. Moreover, according 

to the global role of diagrams, the triangles BFC and BGC are also given, and, 

provided that the non-diagrammatic relation of resulting from the subtraction of is 

reduced to the diagrammatic relation of being part of, their sides FB and GC can 

be understood as resulting by subtracting the equal segments BA and CA from the 

equal segments FA and GA. Hence, for the common notion I.3, these sides are, in 

turn, equal to each other, and the triangles BFC and BGC also satisfy the 

condition of proposition I.4, so that the angles ∠FCB and ∠CBG are equal to 

each other, too. Now, according to the global role of diagrams and to the 

reduction of the relation of resulting from the subtraction of to the relation of 
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being part of, the angles ∠ABC and ∠BCA can be understood as the result of the 

subtraction of the equal angles ∠CBG and ∠FCB from the equal angles ∠ABG 

and ∠FCA. According to common notion I.3, they are thus equal to each other, 

which was to be demonstrated. 

Once propositions I.4 and I.5 are proved, the solution of the problems 

addressed by propositions I.11-12 presents no further difficulties. 

Consider firstly propositions I.11. Euclid’s solution can be reconstructed as 

follows. 

Let AB (fig. 6) be the given segment and C a given point on it. The problem 

consists in constructing a perpendicular to AB from C. The construction of a 

segment collinear to AB, whose middle point is C, is easy. Euclid suggests taking 

another point D at random on AB so that the circle of centre C that passes through 

this point meets AB in another point E. The same can be achieved in another way, 

avoiding points taken at random. It is enough to remark that, according to R.4, the 

points A and B are given, and apply R.3 so as to give the circle of centre C (fig. 

6bis) which passes through one of these points, let’s say A, then, if necessary, to 

apply R.2 so as to produce AB on the side of its other extremity—let’s say, B—up 

to meet this circle in a new point G that is thus given in turn101 together with the 

segment AG. According to definition I.15, C is the middle point of this last 

segment. 

Once a segment collinear to AB whose middle point is C is constructed, to 

construct the required perpendicular it is enough to construct, according to 
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proposition I.1, an equilateral triangle FDE (or FAG in case of fig. 4bis), and to 

apply R.1 so as to give the segment FC. According to the global role of diagrams, 

the triangles FDC and FCE (or FAC and FCG) are thus given, together with the 

adjacent angles ∠ACF and ∠FCB. These are equal to each other and, 

consequently, right. To prove that it is so, Euclid relies on proposition I.8, 

remarking that the sides DF and DC of FDC are respectively equal to the sides 

EF and CE of FCE, whereas the side CF is common to these triangles. It is 

however obvious that propositions I.4 and I.5 are also appropriate, since the 

triangle FDE is isosceles, and the angles ∠FDC and ∠CEF are thus equal to each 

other. 

Let us consider now proposition I.12. 

The mutual position of a given segment and a given point that is not on it may 

of course be such that no perpendicular from the latter to the former is susceptible 

of being given. Possibly to avoid distinguishing different cases, Euclid supposes 

to be given an ‘unlimited straight line’ AB (fig. 7), rather than a segment. 

Provided that the point C is also given, the proposition requires to construct the 

perpendicular to AB from C. 

Supposing, instead, that what is given is a segment, let’s say AG (fig. 7bis), 

one should rely on R.4 to deduce that its extremities are also given, then apply R.3 

so as to give the two circles that pass through these points, and have the given 

point, let’s say C, as centre, and distinguish the case where one of these circles 

meets twice the segment AG, from that where none of them does. In the latter case 

(displaced in the fig. 7bis), one should then apply R.2, so as to produce the given 
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segment, so as to meet one of these circle in a second point, let’s say E, and to 

give this point together with the segment AE. Two new cases should then be 

distinguished: that where the point C is on AE, and that where it is not. In the 

former the problem has no solution; in the latter (displaced in the fig. 7bis), the 

mutual situation of the point C and the segment AE is the same as that of the point 

C and the segment AG in the latter of the two cases previously distinguished, and 

the problem may thus be solved as in this last case, by replacing AG with AE. 

Under Euclid’s own formulation, the problem is unique. Its solution requires, 

however, that a point, other than the given one, be taken at random and supposed 

to be given, in turn. Euclid relies on the diagram, so as to take this other point, D 

(fig. 7), ‘on the other side’ of AB than C, then applies postulate I.3, so as to give 

the circle with centre in C that passes through D and—because of the local role of 

diagrams—meets the given line twice, in G and E. At this stage, the situation is 

the same as in the first and third of the three cases previously distinguished. 

The rest of Euclid’s argument can be reconstructed as follows (I consider 

Euclid’s diagram: fig. 7).  

Apply R.2 so as to construct the segments GC and EC. According to the global 

role of diagrams and to definition I.15, the isosceles triangle CGE and the angle 

∠ECG are also given. Construct then, according to proposition I.1 the equilateral 

triangle FEG, on the other side of AB than C, and apply R.1 so as to give the 

segment FC. For R.5 and the global role of diagrams, seven new segments—FG, 

FE, FC, FH, HC, GH, HE—and seven new triangles—FEG, FEH, FHG, FCG, 
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FEC, CHE, CGH—, together with their internal angles, are thus given. And, by 

reasoning on these objects, it is easy to prove that the segment CH is the 

perpendicular that was to be constructed.  

Euclid proves firstly that this segment bisects the angle ∠ECG, by relying on 

proposition I.8: the angles ∠HCG and ∠ECH are equal since they are 

homologous angles of the triangles FCG and FEC whose sides are respectively 

equal. This is the content of proposition I.9, which requires bisecting a given 

angle. Propositions I.4 and I.5 provide, however, sufficient basis for getting the 

same conclusion, since the triangles FEG and CGE are isosceles, and thus: 

∠HGF = ∠FEH, ∠CGH = ∠HEC, and—according to common notion I.2, and 

provided that the non-diagrammatic relation of resulting from the addition of is 

reduced to the diagrammatic relation of being composed by—∠CGF = ∠HEC. 

Secondly, Euclid proves, by relying on proposition I.4, that the point H bisects 

the segment GE, which corresponds to proposition I.10. This allows him to prove 

that ∠GHC = ∠CHE by relying, once again, on proposition I.8. But this last 

equality can also be proved through proposition I.4, since GC = EC, and 

∠HCG = ∠ECH. 

IV. Conclusions 

The solution of the problems addressed by proposition I.11-12—that I have 

reconstructed in section III—should provide an example of the roles that diagrams 
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play in EPG. These roles appear both in proofs and constructions and depend on 

the relation that diagrams have in EPG with geometric objects.  

My account of this relation focuses on two crucial aspects. The first pertains to 

claim (C.i), that, in sections II.1 and II.4, I have tried to clarify by connecting 

identification, being given, construction and existence. The second pertains to 

claim (C.ii), that, in sections II.2 and II.3, I tried to clarify by introducing the 

notion of a diagrammatic attribute, and comparing my account with the results of 

philological enquiries about the variations of the shapes of diagrams in the extant 

manuscripts of the Elements. 

From a more general point of view, I have also suggested that diagrams are apt 

to play their roles in EPG since—according to Aristotle’s conception of 

continuity, that I have discussed in section I—physical lines that compose them 

are continuous objects, and EPG is (or at least can be viewed as) a mathematical 

theory of Aristotelian continua. This suggests that the classical interpretation of 

EPG, according to which it would result from contemplation of something similar 

to Platonic ideas, can be contrasted and replaced by another interpretation, more 

Aristotelian (and Kantian) in spirit, according to which EPG is (or results from) a 

codified practice essentially based on the production and inspection of physical 

objects, like diagrams. 
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1 Some views expounded in the present paper have been previously presented in 

Panza 2002, whose first version was written in 1996, during a visiting 

professorship at the Universidad Nacional Autónoma de México. I thank all the 

people who supported me during my stay there. I also thank, for many suggestions 

and valuable comments, Carlos Alvarez, Andrew Arana, Jessica Carter, Karine 

Chemla, Davide Crippa, Massimo Galuzzi, Pierluigi Graziani, Jan Lacki, Danielle 

Macbeth, Michael Hallett, Ken Manders, Mircea Radu, and Giuseppina Ronziti. 

2 Euclid H, vol. I: 242 and 235. On this matter (in its connection with Book III of 

the Elements and proposition I.12 that I’ll consider in section III.5), cf. 

also Frajese 1968.  

3 Friedman 1985: 60. 

4 For a survey of recent literature about diagram-based arguments in geometry, cf. 

Manders 2007a. 

5 With ‘Euclid’s plane geometry’ I mean plane geometry as it is expounded by 

Euclid, especially in the Elements (but the Data are also relevant for 

understanding some crucial feature or this geometry), and was largely practiced 

up to early modern age. This should be confounded neither with plane Euclidean 

geometry in general, nor with elementary synthetic plane geometry (Stekeler-
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Weithofer 1992). The text of the Elements I refer to is that established by 

Heiberg (Euclid HM). This leaves open the possibility of confirming or refuting 

some of my statements based on philological evidences that Heiberg’s edition 

does not reflect.  

6 I use the term ‘argument’ as a generic term, so as to refer to that which counts 

for Euclid either as a proof of a theorem or as a solution of a problem. 

7 As it should be clear from that which follows, I take the objects of EPG to be 

posits resulting from appropriate stipulations. In his Seventh Letter (342 a-d), 

Plato distinguishes between the tools of knowledge—name, definition, and 

imagine—, the knowledge itself, and its object, and offers a geometric example: 

that of the circle, its knowledge, its name, its definition, and its diagram. The 

object is the reason of unity of the other elements: name, definition, imagine and 

knowledge are its name, its definition, its imagine, and knowledge of it. This unity 

is for him warranted by the independent existence of the object. To reject this 

solution—in case of abstract, or more specifically mathematical, objects—is not 

the same as to maintain that the problem of unity of knowledge and its tools is not 

a genuine and crucial problem. The admission of objects as posits provides a non-

Platonic solutions of this problem. Mathematics can certainly be understood as a 

codified practice including attributions but not objects. In the case of EPG, this is, 

for example the suggestion of Ken Manders (cf. Manders 2007a). But such an 

understating leaves this problem open: what EPG is about? what its singular terms 

refer to? what their definitions define? and what their diagram represent? 
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8 For short, I shall use the term ‘diagram’ in a quite restricted sense, so as to refer 

only the particular sort of diagrams that occur in EPG. If the same term is used in 

its usual larger sense (as I have just do), one should distinguish between 

‘intrinsically depictive’ and ‘intrinsically non-depictive’ diagrams 

(Tennant 1986). The former are those that stand for some objects and display 

some properties and relations of them. I call ‘representation’ the relation that 

intrinsically depictive diagrams have with the corresponding objects. If these 

objects are abstract, intrinsically depictive diagrams cannot, however, be 

understood as ‘diagrams […][that] represent in virtue of a similarity of visual 

appearance with its objects(s)’ (Norman 2006: 78). The reason is that abstract 

objects have not visual appearance as such.  

9 Insofar as they occur in the expressions ‘global role of diagrams’ and ‘local role 

of diagrams’, the adjectives ‘global’ and ‘local’ are thus supposed to have a 

technical sense that I shall try to clarify (respectively in sections II.1 and II.2). No 

other sense of them is presupposed, here. 

10 The physical lines and points that enter a diagram have, of course, to be 

carefully distinguished from the geometric objects that they represent. Anytime 

that the context is not clear enough to avoid misunderstanding, I shall use the 

adjectives ‘physical’ and ‘geometric’ to designate the former and the latter, 

respectively. 

11 Consider two independent diagrams. Is it necessary, for making EPG, to be able 

to recognise whether these diagrams represent the same geometric objects? Most 
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people would certainly answer ‘yes, it is, of course!’ But, I do not think that this is 

the right answer. After all, we could admit that to make mathematics, and, a 

fortiori, to make EPG, one has only to be able to conduct, in different places and 

times, certain arguments in a certain—let us say, in a right—way, and that this 

capacity is completely independent whether these arguments concern the same 

objects or not. That which is relevant is rather that they concern some objects and 

that the objects that each argument is about are appropriately distinguished. But 

also if a more orthodox view were admitted, it would not follow that the objects of 

EPG are represented by diagram-types. They would rather be represented by 

tokens complying with appropriate types. 

12 Diagrams have also to be carefully distinguished from figures, in Euclidean 

sense established in definitions I.14 of the Elements, according to which a figure 

(σχῆµα) is ‘that which is contained by any boundary or boundaries’. In this sense, 

figures are geometric objects. I shall use the term ‘figure’ only in this sense. 

According to definition 1.15 of the Elements, a (geometric) circle is a figure. But 

in the Elements, the term ‘circle’ is also often used to denote a (geometric) line. 

For the purpose of my paper, there is no danger in admitting this last sense only 

and use the term ‘circle’ to denote either a geometric or a physical line. I shall do 

so. 

13 Cf. footnote (7). 

14 Panza 1992. 
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15 The translation of the passages of Aristotle’s Physics and Euclid’s Elements that 

I quote is mine (though that of the latter does very seldom differ from Heath’s 

translation: Euclid H).  

16 Ross 1936: 69; and Düring 1966: 325. 

17 Or perhaps, ‘insofar as place is concerned’: ‘κατὰ τόπον’. 
18 Ross 1936: 627. For an account of other classical interpretations, cf. Heath 

1949:122-3. 

19 The term ‘theory’ is far from being innocent in history and philosophy of 

mathematics. I use it in a broad sense to refer, more than to a corpus of 

statements, to a space of authorised acts codified by appropriate stipulations, and 

resulting in the constitution of a domain of abstract objects and in the 

establishment of a corpus of results about these same objects. 

20 Klein 1934-36: 119-123. 

21 That is a theory of ‘extra-logical discrete objects, which exist intuitively as 

immediate experience before all thought’: cf. Hilbert 1922: 202.  

22 Historically speaking, this relation could be seen as the result of an evolution of 

the role of schema in Thales’ geometry as it is described in Caveing 1997: 73-75, 

148-149. According to Caveing in this geometry, a schema is ‘given in visual 

intuition’ and its ‘mode of being’ is ‘the same as that of the decorative drawing’, 

but its ‘sense’ is ‘no more esthetical’, being rather that ‘of representing a 

problematic situation’, so as ‘to work as a field of possibilities’ (ibid.: 73 and 

148). For Caveing (1982), things change radically with Euclid’s geometry, 
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however, since in this geometry ‘empirical intuition is out of the question’ and the 

continuum is not—as it was not, already for Aristotle—‘a simple intuitive 

determination’ (ibid.: 155 and 164). My interpretation of EPG and of Aristotle’s 

conception of continuity is opposite to Caveing’s. 

23 For different, but (at least partially) complementary, insights about the role of 

diagrams in Euclid's and, more generally, Greek geometry, cf. Netz 1999: chap. 1; 

12-67; Azzouni 2004; Norman 2006; Manders 2007b; Macbeth 2007. 

24 In the case of EPG, these abilities should include, of course, the capacity of 

dealing with physical lines and points and their configurations (that is, recognising 

them, distinguish any one of them from another one, etc.), and that of conceiving 

them as representations of something else. 

25 Euclid usually refers to segments of straight lines through the term ‘straight line 

[εὐθεῖα γραµµή or εὐθεῖα]’ tout court. Sometimes (as in postulate I.2 or in 

proposition I.1), he uses the term ‘limited straight lines [εὐθεῖα πεπερασµένη]’ 

and quite seldom (as in proposition I.12) he considers ‘unlimited straight lines 

[εὐθεῖα ἄπειρος]’. Cf. Mueller 1981: 56, note 43. 

26 I shall clarify this matter in section III.1. 

27 Cf. footnote (12). 

28 Notice that for characterising circles and polygons as figures it is necessary 

(though not sufficient) to characterise them as configurations of lines. Thus, what 

I shall say about characterisation of the objects of EPG should not be wrong if 

circles and polygons are understood as figures. It should just be incomplete.  
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29 Cf. footnote (46). 

30 One could argue that in EPG for giving a circle and a polygon as figures it is not 

necessary to give them as configurations of lines. If it were so, what holds in EPG 

for the identification of circles and polygons, understood as configurations of 

lines, could not hold for the identification of circles or polygons, understood as 

figures. I do not think that this is so, since I maintain that in EPG for giving a 

circle and a polygon as figures it is necessary to give them as configurations of 

lines (and thus that things go for the identification of these objects as they go for 

their characterisation [cf. footnote (28)]). Still, I shall not consider this matter in 

my paper. To avoid misunderstanding, anyone that do not share my view on it, is 

invited to take what I shall say about the notion of being given applied to circles 

and polygons as merely concerned with these objects understood as configurations 

of lines. 

31 Definition 2 of the Data establishes under which condition a ratio is given. The 

status of ratios in EPG is controversial, but, for my purpose, it is not useful to 

consider this matter. 

32 Taisbak 2003: 18.  

33 Taisbak 2003: 25 and 22.  

34 Taisbak 2003: 25.  

35 Taisbak 2003: 17.  

36 Taisbak 2003: 29.  

37 Taisbak 2003: 27. 
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38 Taisbak 2003: 28-29.  

39 Taisbak 2003: 28.  

40 Taisbak 2003: 19: ‘The Plane is supposed to be full of points, and one is free to 

choose among them. The same holds to a certain extent for lines and line 

segments’. 

41 According to Taisbak’s interpretation, this operator only occurs in Euclid’s 

definition prima facie, since the logical form of this definition is the following:  

(Given(a) ∧ a = x) ⇔ Given-in-magnitude(x) 

I suggest, instead, to interpret Euclid’s definition as follows: 

(Given(a) ∧ ◊Given(x) ∧ (Given(x) ⇒ a = x)) ⇔ Given-in-magnitude(a). 

I shall can back later to the exact meaning that has to be assigned to the operator 

‘◊’. 

42 Cf. footnote (30). 

43 Cf. footnote (46). 

44 Taisbak 2003: 43. 

45 Taisbak 2003: 44. 

46 There however no need to specify the nature of such a strategy to understand, at 

this point, what does it mean in EPG that a certain object is supposed to be given, 

that is, it is supposed to be represented by an appropriate canonically drawn 

diagram: it means that a diagram appropriate for representing this object is freely 

drawn—that is, it is drawn without following this procedure—and it is taken as 

having been canonically drawn. This is the base of analytic arguments in EPG. 
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The question related to the nature of these arguments cannot be raised here. The 

literature on geometrical analysis is quite large. For my views on this matter, cf. 

Panza 1997 and Panza 2007. 

47 Hartshorne 2000: 19. 

48 Norman 2006: 21 and 33. 

49 The modal nature of EPG has been emphasized in Chihara 2004: 10.  

50 Cf. footnote (70). 

51 In fact, only lines—that is, segments and circles–are continuous in EPG and 

each line is represented in EPG by a single (elementary) diagram. Hence, if we 

confine ourselves to lines and to the diagrams that represent them, the relation of 

representation is associated to an injective application and the plural is here 

needless. 

52 Of course, neither visual inspection of a physical line nor its material production 

can ensure that it is continuous (that is, according to Aristotle, it does not present 

spatial gaps or angles). What matter in EPG are not the real (possibly 

microscopic) features of a physical line (or generally of a diagram), but the 

features that are attributed to it and actually recognised in it (cf. Azzouni 2004: 

125). Still, I suggest that Norman is wrong when remarks that ‘there is nothing as 

such about the visual feature of a drawn line that instructs a reasoner to take it as 

representing a continuous (or non-continuous) geometrical line’ (Norman 2006: 

33). In EPG there no other way, indeed, to explain what does it mean that a 
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geometrical line is continuous that saying that it has the property that physical 

lines have if they are continuous. 

53 Friedman 1985: 63.  

54 Is this that Reed (1995: 42) means when he claims that the function of a 

diagram in EPG is ‘to exhibit the relationship of figures and their parts’? If yes, I 

agree with him, though I do not see why ‘to ask other things of the diagrams is to 

misunderstand the nature of Euclid’s demonstrations’ (ibid.). 

55 Manders 2007b. 

56 Manders 2007b: 5 of the ms. 

57 I admit that Manders also uses the term ‘attribute’ as referring both to properties 

and relations.  

58 Manders 2007b: 9 of the ms.  

59 Manders 2007b: 10 of the ms. Of course, attributions are exact or co-exact—or, 

as I shall say later, diagrammatic or non-diagrammatic— insofar as they are 

attributions of exact, co-exact, diagrammatic or non-diagrammatic attributes, 

respectively. 

60 Cf. footnote (7). 

61 In the Element only two explicit attributions of continuity occur, namely in 

postulate I.3 and in proposition 11.1. But in many other cases, like in proposition 

I.1, these attributions occur implicitly. 

62 It is easy to see that the relation of being greater than—as well as that of being 

equal to—is not diagrammatic. They meet neither the condition (i), nor the 
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condition (ii) relative to diagrammatic relations. Consider the example of 

segments: to explain what does it mean in EPG that two segments are equal to 

each other or that one of them is greater than the other is certainly not appropriate 

to say that this the case of the diagrams that represent them, and in EPG it is 

certainly not necessarily the case that equal segments be represented by equal 

physical lines and a segment greater than another by a physical line greater than 

the physical line that represents this other segment. 

63 A large part of Manders’ account concerns ‘controlling’ of ‘diagram 

appearance’. This is because for him, ‘diagram-based attribution requires […] that 

the feature attributed appear in appropriately produced diagrams’ (Manders 

2007b: 12 of the ms). In my view, this is not a special ‘discipline’ (the terms is 

Manders’) requiring a specific training. It is just a natural consequence of the local 

role of diagrams. Take the well-known example (mentioned by Manders: 2007b: 

11 of the ms) of the (wrong) argument proving that all triangles are isosceles. 

Suppose that any triangle is given and trace the bisector of one if its internal 

angles and the perpendicular bisector of the opposite side. Then, from the 

intersection point of these bisectors, trace the perpendiculars to the two other sides 

(or to their prolongations). It is easy to prove that, if both perpendiculars meet 

these sides inside or outside the triangle, then the given triangle is isosceles. But 

this provides no evidence for the necessity of a specific discipline aiming to 

control the appropriateness of the diagrams. It is part of a geometric argument 

including the previous construction to ask whether these perpendiculars (has to) 
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meet the relative sides inside or outside the triangle. This depends on some 

features of the given triangle. And if these features are not specified, no correct 

inference can be concerned with the properties of the diagram that depend on the 

fact that these perpendiculars meet the relative sides inside or outside the given 

triangle (Norman 2006: 6 and 159). 

64 Cf. Saito’s paper in the present collection and Saito 2006, where are reprinted 

the diagrams relative to the all 48 propositions of the first book of the Elements in 

six principal manuscripts.  

65 Cf. Saito 2006: 82. 

66 Cf. Saito 2006: 82 and his paper in the present volume, ??? (last page of the 

ms.) 

67 A similar diagram appears, in a bottom margin, in only one of the six 

manuscripts studied by Saito that also presents a usual diagram where the two 

parallel line involved in the proof do not meet (2006: 123). 

68 Saito (2006: 84-90) offers a comprehensive study of this phenomenon for 

proposition III.25 of the Elements. 

69 As a matter of fact this proof is (implicitly) offered in the Elements only in 

proposition I.22. Cf. footnote (97). 

70 In EPG, to prove that geometric objects of a certain sort are susceptible of being 

given under appropriate conditions it is enough to give an object of this sort under 

these conditions (and without relying on any other supplementary condition). 

Furthermore, in order for a single geometric object x to be susceptible of being 
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given in EPG, it is enough that it be an object of a certain sort X, the X’s be 

susceptible of being given if appropriate conditions are met, and these conditions 

are met. 

71 If this view is admitted, the classical generality objection against diagram-based 

arguments (or, more generally, against arguments involving diagrams) appears to 

be misleading relatively to EPG. According to this objection, the consideration of 

a single diagram can, at most, licence a claim concerning with the single object 

represented by this diagram, but not an universal claim concerned with all the 

objects of the same sort. But in EPG no such claim is made, I think. And, if the 

proof of a theorem is only supposed to establish that, if a X is given, then it is so 

and so, for such a proof to hold it is sufficient that it relies only on conditions that 

have to me meet for a X to be given. And this depends on nothing but the 

conditions of application of the concepts of the X’s. A similar point—though in 

the context of a quite different view about the logical nature of the theorems of 

EPG—is made by Norman 2006: 156-159. 

72 On this matter, and especially on the difference between ‘Euclid’s and Hilbert’s 

geometry’, cf. Mueller 1981: 14-15. 

73 Cf. footnote (46). 

74 As we shall se at section III.2, postulates are in fact not enough to codify this 

procedure completely. For that, other implicit presuppositions are needed. 

75 Zeuthen's emphasis on this claim is well known, as well known are the more 

recent objections against his theses. Cf., for instance, Zeuthen 1896; Mueller 
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1981: 14-15 and 27-29; Knorr 1983; Euclid V: vol. 1, 170-172; Hartshorne 2000: 

18-19; Harari 2003. 

76 Harari (2003) has argued for an alternative view about construction in EPG. 

According to her (ibid: 21), constructions serve in EPG both ‘as means of 

measurement’ allowing to deduce ‘quantitative relations’ between objects, and as 

‘means of exhibiting qualitative relations, i.e., the order or the position of 

geometric figures’, so as to place ‘the elementary geometric figures (i.e., lines) in 

different spatial relations’. This view is however perfectly consistent with my 

understanding of the claim that in EPG constructions provides existence proofs. 

77 Mueller 1981: 14-15. Mueller adds that in the Elements ‘the emphasis on 

construction […] is connected with the absence of absolute existence assertions’: 

‘the existence of one object is always inferred from the existence of another’, and 

construction is the means used for making this inference.  

78 This understanding of the existence of the objects of EPG seems to me to 

correspond to an understanding of these objects as forms of physical objects. 

79 Cf. footnotes (12), (28), (30). 

80 Cf. footnotes (69) and (97). 

81 Russo (1998) has even claimed that the definitions I.1-1.7 are due to Heron and 

were interpolated in the Elements. 

82 A similar view is argued for in Azzouni 2004: 126. 

83 But, if it is so and diagrams are supposed to play their global and local roles, 

why—one could wonder—no diagram is associated to definitions in the 
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Elements? I suggest two different reasons. The first of them depends on the global 

role of diagrams: according to this role, a diagram represents a single 

configuration of geometric objects, whereas definitions are supposed to define 

sorts of geometric objects not single ones (they provide the conditions of 

application of appropriate concepts, not the identity conditions for the objects 

falling under these concepts). The second reason depends on the fact that in EPG 

diagrams represent given objects only if they are canonically drawn. It would thus 

be inappropriate to draw diagrams and suppose that they represent (given) 

geometric objects before establishing the rules governing a construction. 

84 According to B. Levi (1947: 94), the right understanding of the definition I.3 is 

this: ‘point is what of which it is absurd to conceive parts’. To avoid appealing to 

the definition I.3 for specifying what a point is, Proclus (Commentary: 93.6-94.7; 

Proclo CM: 76) admits that the subject matter of geometry is established in 

advance and maintains that, according to the definition I.1, a point is that which 

has no part ‘in geometric matter’. This is clearly unsatisfactory, however. 

85 Cf. footnote (25). 

86 Cf. footnote (12). 

87 P. Mäenpää and J. von Plato capture the twofold nature of the rules provided by 

postulates I.1-3, by rendering them as rules of introduction, according to the 

‘general pattern of natural deduction rules used in intuitionistic type 

theory’(1990: 281). For example postulate I.1 is rendered as following (I write 
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‘Segment’ instead of ‘Line’ to adapt Mäenpää’s and von Plato’s rule to my 

language): 

a : Point   b : Point 
____________________________ 

l(a, b) : Segment 

Any segment so introduced is a particular value of function defined on points. 

Hence, the rule specifies which segment can be introduced for any pair of 

particular points. But, in Mäenpää’s and von Plato’s system there is no place for 

diagrams, to the effect that geometric objects are ultimately identified only as that 

which appropriate terms of the language of this same system refer. Hence, in my 

view, does not account for many essential features of EPG: namely it allows 

describing construction involved in proposition I.1 of the Elements, but does not 

account for its grounds: cf. Mäenpää and von Plato 1990: 288-289. 

88 Cf. Azzouni 2004: 123-124, that also understand postulates I.1-3 are rules for 

drawing diagrams. 

89 Postulate I.3 literally speaks of a point and an ‘interval [διάστηµα]’. The latter 

can be understand both as a segment having an extremity in this point, or merely 

as the distance between to given points. According to postulate I.1 and definition 

I.3 these two interpretations are equivalent, in fact.   

90 Cf. the second and third ways ‘in which points enter into arguments in the 

Elements’, according to Mäenpää and von Plato (1990: 286). 

91 A similar interpretation of Euclid’s common notions is also suggested by 

Stekeler-Weithofer (1992: 136).  
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92 This is in any case Heath’s view: he is so sure that it omits them. My 

numeration is of course Heiberg’s one. 

93 I shall come back to this argument in section III.5. 

94 This argument has been, along the centuries, the object matter of a great number 

of discussions. For two opposed views about it, cf. Euclid H: vol. I, 225-231 and 

249-250, and Mueller 1981: 21-26. 

95 This situation originates in the fact that Euclid wants to prove a proposition 

involving equality of angles without having introduced any explicit stipulation 

concerning this equality (apt to play the same rule played by definition I.15 for 

equality of segments). This led Hilbert to include a weaker version of the 

proposition I.4 among the postulates of his own version of Euclidean plane 

geometry: cf. Hilbert 1899, post. IV.6 (or III.6, or III.5, in other editions of 

Hilbert's treatise). 

96 Cf. footnotes (12), (28) and (30). 

97 This proposition relies of course on proposition I.2 through proposition I.3 that 

is, in fact, merely used to simplify the construction. On the construction of any 

sort of triangle, cf. also Proclus, Commentary, 218.12-220.6, and Proclo CM: 171-

172. 

98 Cf. footnote (95). 

99 Cf. Hartshorne 2000: 34. 

100 Cf. section II.1. 
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101 Euclid seems implicitly to admit that what is given is not a segment, but a 

straight line, in our sense. He is thus compelled to take on it a point at random, but 

avoids distinguishing the cases where the point B is inside, outside or on the circle 

that he draws. 
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