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Abstract

Let n ¥ 3. We classify the finite groups which are realised as subgroups of the sphere braid
group BnpS2q. Such groups must be of cohomological period 2 or 4. Depending on the
value of n, we show that the following are the maximal finite subgroups of BnpS2q: Z2pn�1q;
the dicyclic groups of order 4n and 4pn � 2q; the binary tetrahedral group T1; the binary
octahedral group O1; and the binary icosahedral group I. We give geometric as well as
some explicit algebraic constructions of these groups in BnpS2q, and determine the number
of conjugacy classes of such finite subgroups. We also reprove Murasugi’s classification of
the torsion elements of BnpS2q, and explain how the finite subgroups of BnpS2q are related
to this classification, as well as to the lower central and derived series of BnpS2q.

1 Introduction

The braid groups Bn of the plane were introduced by E. Artin in 1925 [A1, A2]. Braid
groups of surfaces were studied by Zariski [Z]. They were later generalised by Fox to
braid groups of arbitrary topological spaces via the following definition [FoN]. Let M
be a compact, connected surface, and let n P N. We denote the set of all ordered n-tuples
of distinct points of M, known as the nth configuration space of M, by:

FnpMq � !pp1, . . . , pnq ∣

∣ pi P M and pi � pj if i � j
)

.

2000 AMS Subject Classification: 20F36 (primary), 20F50, 20E45, 57M99 (secondary).
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Configuration spaces play an important rôle in several branches of mathematics and
have been extensively studied, see [CG, FH] for example.

The symmetric group Sn on n letters acts freely on FnpMq by permuting coordinates.
The corresponding quotient will be denoted by DnpMq. The nth pure braid group PnpMq
(respectively the nth braid group BnpMq) is defined to be the fundamental group of FnpMq
(respectively of DnpMq).

Together with the real projective plane RP2, the braid groups of the 2-sphere S2

are of particular interest, notably because they have non-trivial centre [GVB, GG1],
and torsion elements [VB, Mu]. Indeed, Van Buskirk showed that among the braid
groups of compact, connected surfaces, BnpS2q and BnpRP2q are the only ones to have
torsion [VB]. Let us recall briefly some of the properties of BnpS2q [FVB, GVB, VB].

If D2 � S2 is a topological disc, there is a group homomorphism ι : Bn ÝÑ BnpS2q
induced by the inclusion. If β P Bn, we shall denote its image ιpβq simply by β. Then
BnpS2q is generated by σ1, . . . , σn�1 which are subject to the following relations:

σiσj � σjσi if |i � j| ¥ 2 and 1 ¤ i, j ¤ n� 1

σiσi�1σi � σi�1σiσi�1 for all 1 ¤ i ¤ n� 2, and

σ1 � � � σn�2σ2
n�1σn�2 � � � σ1 � 1.

Consequently, BnpS2q is a quotient of Bn. The first three sphere braid groups are finite:
B1pS2q is trivial, B2pS2q is cyclic of order 2, and B3pS2q is a ZS-metacyclic group (a group
whose Sylow subgroups, commutator subgroup and commutator quotient group are all
cyclic) of order 12, isomorphic to the semi-direct product Z3 �Z4 of cyclic groups, the
action being the non-trivial one, which in turn is isomorphic to the dicyclic group Dic12

of order 12. The Abelianisation of BnpS2q is isomorphic to the cyclic group Z2pn�1q. The

kernel of the associated projection ξ : BnpS2q ÝÑ Z2pn�1q (which is defined by ξpσiq � 1

for all 1 ¤ i ¤ n� 1) is the commutator subgroup Γ2

�
BnpS2q	. If w P BnpS2q then ξpwq

is the exponent sum (relative to the σi) of w modulo 2pn� 1q.
Gillette and Van Buskirk showed that if n ¥ 3 and k P N then BnpS2q has an element

of order k if and only if k divides one of 2n, 2pn � 1q or 2pn � 2q [GVB]. The torsion
elements of BnpS2q and BnpRP2qwere later characterised by Murasugi [Mu]. For BnpS2q,
these elements are as follows:

THEOREM 1 ([MU]). Let n ¥ 3. Then the torsion elements of BnpS2q are precisely powers of
conjugates of the following three elements:

(a) α0 � σ1 � � � σn�2σn�1 (which is of order 2n).
(b) α1 � σ1 � � � σn�2σ2

n�1 (of order 2pn� 1q).
(c) α2 � σ1 � � � σn�3σ2

n�2 (of order 2pn� 2q).
The three elements α0, α1 and α2 are respectively nth, pn� 1qth and pn� 2qth roots of

∆n, where ∆n is the so-called ‘full twist’ braid of BnpS2q, defined by ∆n � pσ1 � � � σn�1qn.
So BnpS2q admits finite cyclic subgroups isomorphic to Z2n, Z2pn�1q and Z2pn�2q. In [GG2],

we showed that BnpS2q is generated by α0 and α1. If n ¥ 3, ∆n is the unique element
of BnpS2q of order 2, and it generates the centre of BnpS2q. It is also the square of the
Garside element (or ‘half twist’) defined by:

Tn � pσ1 � � � σn�1qpσ1 � � � σn�2q � � � pσ1σ2qσ1.
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For n ¥ 4, BnpS2q is infinite. It is an interesting question as to which finite groups are
realised as subgroups of BnpS2q (apart of course from the cyclic groups xαiy and their
subgroups given in Theorem 1). Another question is the following: how many conju-
gacy classes are there in BnpS2q of a given abstract finite group? As a partial answer to
the first question, we proved in [GG2] that BnpS2q contains an isomorphic copy of the
finite group B3pS2q of order 12 if and only if n � 1 mod 3.

While studying the lower central and derived series of the sphere braid groups, we

showed that Γ2

�
B4pS2q	 is isomorphic to a semi-direct product of Q8 by a free group

of rank 2 [GG3]. After having proved this result, we noticed that the question of the
realisation of Q8 as a subgroup of BnpS2q had been explicitly posed by R. Brown [ATD]
in connection with the Dirac string trick [F, N] and the fact that the fundamental group
of SOp3q is isomorphic to Z2. The case n � 4 was studied by J. G. Thompson [ThJ]. In a
previous paper, we provided a complete answer to this question:

THEOREM 2 ([GG4]). Let n P N, n ¥ 3.

(a) BnpS2q contains a subgroup isomorphic to Q8 if and only if n is even.

(b) If n is divisible by 4 then Γ2

�
BnpS2q	 contains a subgroup isomorphic to Q8.

As we also pointed out in [GG4], for all n ¥ 3, the construction of Q8 may be gener-
alised in order to obtain a subgroup xα0, Tny of BnpS2q isomorphic to the dicyclic group
Dic4n of order 4n.

It is thus natural to ask which other finite groups are realised as subgroups of BnpS2q.
One common property of the above subgroups is that they are finite periodic groups
of cohomological period 2 or 4. In fact, this is true for all finite subgroups of BnpS2q.
Indeed, by [GG2], the universal covering X of FnpS2q is a finite-dimensional complex
which has the homotopy type of S3 (we were recently informed by V. Lin that X is
biholomorphic to the direct product of SLp2, Cq by the Teichmüller space of the n-
punctured Riemann sphere [Li]). Thus any finite subgroup of BnpS2q acts freely on
X, and so has period 2 or 4 by Proposition 10.2, Section 10, Chapter VII of [Br]. Since
∆n is the unique element of order 2 of BnpS2q, and it generates the centre ZpBnpS2qq,
the Milnor property must be satisfied for any finite subgroup of BnpS2q. Recall also
that a finite periodic group G satisfies the p2-condition (if p is prime and divides the
order of G then G has no subgroup isomorphic to Zp �Zp), which implies that a Sylow
p-subgroup of G is cyclic or generalised quaternion, as well as the 2p-condition (each
subgroup of order 2p is cyclic). The classification of finite periodic groups is given
by the Suzuki-Zassenhaus theorem (see [AM, ThC] for example), and thus provides a
possible line of attack for the subgroup realisation problem. The periods of the differ-
ent families of these groups were determined in a series of papers by Golasiński and
Gonçalves [GoG1, GoG2, GoG3, GoG4, GoG5, GoG6], and so in theory we may obtain
a list of those of period 4. A list of all periodic groups of period 4 is provided in [ThC].
However, in the current context, a more direct approach is obtained via the relation-
ship between the braid groups and the mapping class groups of S2, which we shall
now recall.

For n P N, let M0,n denote the mapping class group of the n-punctured sphere. We
allow the n marked points to be permuted. If n ¥ 2, a presentation of M0,n is obtained
from that of BnpS2q by adding the relation ∆n � 1 [Ma, MKS]. In other words, we have
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the following central extension:

1 ÝÑ x∆ny ÝÑ BnpS2q pÝÑM0,n ÝÑ 1. (1)

If n � 2, B2pS2q � M0,2 � Z2. For n � 3, since M0,3 � S3, this short exact sequence
does not split, and in fact for n ¥ 4 it does not split either [GVB].

This exact sequence may also be obtained in the following manner [Bi]. Let Diff��S2
	

denote the group of orientation-preserving homeomorphisms of S2, and let X P DnpS2q.
Then Diff��S2, X

	 � "
f P Diff��S2

	 ∣

∣

∣
f pXq � X

*
is a subgroup of Diff��S2

	
, and we

have a fibration Diff��S2, X
	 ÝÑ Diff��S2

	 ÝÑ DnpS2q, where the basepoint of DnpS2q
is taken to be X, and where the second map evaluates an element of Diff��S2

	
on X.

The resulting long exact sequence in homotopy yields:� � � ÝÑ π1

�
Diff��S2, X

		 ÝÑ π1

�
Diff��S2

		loooooooooomoooooooooon
Z2

ÝÑ π1pDnpS2qqlooooooomooooooon
BnpS2q

δÝÑ π0

�
Diff��S2, X

		looooooooooooomooooooooooooon
M0,n

ÝÑ π0

�
Diff��S2

		loooooooooomoooooooooon�t1u . (2)

The homomorphism δ : BnpS2q ÝÑM0,n is the boundary operator which we shall use
in Section 3 in order to describe the geometric realisation of the finite subgroups of

BnpS2q. If n ¥ 3 then π1

�
Diff��S2, X

		 � t1u [EE, Hm, Sc], and we thus recover equa-

tion (1) (the interpretation of the Dirac string trick in terms of the sphere braid groups [F,

Hn, N] gives rise to the identification of π1

�
Diff��S2

		
with x∆ny).

In a recent paper, Stukow applies Kerckhoff’s solution of the Nielsen realisation
problem [K] to classify the finite maximal subgroups of M0,n [St]. Applying his results
to equation (1), we shall see in Section 2 that their counterparts in BnpS2q are cyclic,
dicyclic and binary polyhedral groups:

THEOREM 3. Let n ¥ 3. The maximal finite subgroups of BnpS2q are:

(a) Z2pn�1q if n ¥ 5.
(b) the dicyclic group Dic4n of order 4n.
(c) the dicyclic group Dic4pn�2q if n � 5 or n ¥ 7.
(d) the binary tetrahedral group, denoted by T1, if n � 4 mod 6.
(e) the binary octahedral group, denoted by O1, if n � 0, 2 mod 6.
(f) the binary icosahedral group, denoted by I, if n � 0, 2, 12, 20 mod 30.

REMARKS 4.

(a) If n is odd then the only finite subgroups of BnpS2q are cyclic or dicyclic. In the latter
case, the dicyclic group Dic4n (resp. Dic4pn�2q) is ZS-metacyclic [CM], and is isomorphic
to Zn �Z4 (resp. Zn�2 �Z4), where the action is multiplication by �1.
(b) If n is even then one of the binary tetrahedral or octahedral groups is realised as a
maximal finite subgroup of BnpS2q. Further, since T1 is a subgroup of O1, T1 is realised
as a subgroup of BnpS2q for all n even, n ¥ 4.
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(c) The groups of Theorem 3 and their subgroups are the finite groups of quaternions [Co].
Indeed, for p, q, r P N, let us denotexp, q, ry � xA, B, C | Ap � Bq � Cr � ABC y .

Then Z2pn�1q � xn� 1, n� 1, 1y, Dic4n � xn, 2, 2y, Dic4pn�2q � xn� 2, 2, 2y, T1 � x3, 3, 2y,
O1 � x4, 3, 2y and I � x5, 3, 2y. It is shown in [Co, CM] that for T1, O1 and I, this
presentation is equivalent to:xp, 3, 2y � B

A, B
∣

∣

∣
Ap � B3 � pABq2F ,

for p P t3, 4, 5u, and that the element Ap is central and is the unique element of order 2
of xp, 3, 2y.

In Section 2, we also generalise another result of Stukow concerning the conjugacy
classes of finite subgroups of M0,n to BnpS2q:
PROPOSITION 5.

(a) Two maximal finite subgroups of BnpS2q are isomorphic if and only if they are conjugate.
(b) Each abstract finite subgroup G of BnpS2q is realised as a single conjugacy class within
BnpS2q, with the exception, when n is even, of the following cases, for which there are precisely
two conjugacy classes:

(i) G � Z4.
(ii) G � Dic4r, where r divides n

2 or n�2
2 .

In Section 3, we explain how to obtain geometrically the subgroups of Theorem 3,
and we also give explicit group presentations of the cyclic and dicyclic subgroups, as
well as in the special case T1 for n � 4.

In order to understand better the finite subgroups of BnpS2q, it is often useful to
know their relationship with the three classes of elements described in Theorem 1. This
shall be carried out in Proposition 15 (see Section 4).

The two conjugacy classes of part (b)(i) are realised by the subgroups
B

α
n{2
0

F
andB

α
pn�2q{2
2

F
(they are non conjugate since they project to non-conjugate subgroups in

Sn). In Section 5, we construct the two conjugacy classes of part (b)(ii) of Proposition 5:

THEOREM 6. Let n ¥ 4 be even. Let N P tn, n� 2u, and let x � α0 (resp. x � α0α2α�1
0 ) if

N � n (resp. N � n� 2). Set N � 2lk, where l P N, and k is odd. Then for j � 0, 1, . . . , l, and
q a divisor of k, we have:

(a) BnpS2q contains 2j copies of Dic2l�2�jk{q of the form
A

x2jq, xiqTn

E
, where i � 0, 1, . . . , 2j�1.

(b) if 0 ¤ i, i1 ¤ 2j � 1,
A

x2jq, xiqTn

E
and

A
x2jq, xi1qTn

E
are conjugate if and only if i � i1 is

even.

Another question arising from Theorem 2 is the existence of copies of Q8 lying in
Γ2pBnpS2qq. More generally, one may ask whether the dicyclic groups constructed above
(and indeed the other finite subgroups of BnpS2q) are contained in Γ2pBnpS2qq. In the
dicyclic case, we have the following result, also proved in Section 5:
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PROPOSITION 7. Let n ¥ 4 be even, let N P tn, n� 2u, and let r divide N. If r does not
divide N{2 then the subgroups of BnpS2q abstractly isomorphic to Dic4r are not contained in
Γ2pBnpS2qq. If r divides N{2 then up to conjugacy, BnpS2q has a two subgroups abstractly
isomorphic to Dic4r, one of which is contained in Γ2pBnpS2qq, and the other not. In particular,
BnpS2q exhibits the two conjugacy classes of Q8, one of which lies in Γ2pBnpS2qq, the other not.

The corresponding result for the binary polyhedral groups may be found in Propo-
sition 16. As a corollary of our results we obtain an alternative proof of Theorem 1 (see
Section 6).
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2 The classification of the finite maximal subgroups of

BnpS2q
In this section, we prove Theorem 3. We start by making some remarks concerning the
central extension (1).

REMARKS 8. Let G be a finite subgroup of BnpS2q.
(a) If H is a finite subgroup of M0,n then p�1pHq is a finite subgroup of BnpS2q of order
2 |H|.
(b) If |G| is odd then ∆n R G, and so G � ppGq. Conversely, if G � ppGq then p|G is
injective, and thus ∆n R G, so |G| is odd.
(c) If |G| is even then ∆n P G, and so we obtain the following short exact sequence:

1 ÝÑ x∆ny ÝÑ G
p|GÝÑ ppGq ÝÑ 1, (3)

where ppGq is a finite subgroup of M0,n of order
|G|

2
.

(d) If G is a maximal finite subgroup of BnpS2q then |G| is even, and ppGq is a maximal
finite subgroup of M0,n. Conversely, if H is a maximal finite subgroup of M0,n then
p�1pHq is a maximal finite subgroup of BnpS2q.

We recall Stukow’s theorem:

THEOREM 9 ([ST]). Let n ¥ 3. The maximal finite subgroups of M0,n are:

(a) Zn�1 if n � 4.
(b) the dihedral group D2n of order 2n.
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(c) the dihedral group D2pn�2q if n � 5 or n ¥ 7.
(d) A4 if n � 4, 10 mod 12.
(e) S4 if n � 0, 2, 6, 8, 12, 14, 18, 20 mod 24.
(f) A5 if n � 0, 2, 12, 20, 30, 32, 42, 50 mod 60.

REMARK 10. In the case n � 3, M0,3 is isomorphic to D6, obtained as a maximal sub-
group in part (b) of Theorem 9, and so its subgroup isomorphic to Z2 is not maximal.
This explains the discrepancy between the value of n in part (a) of Theorems 3 and 9.

Proof of Theorem 3. By Remarks 8, we just need to check that the given groups are those
obtained as extensions of x∆ny by the groups of Theorem 9. We start by making some
preliminary remarks. Let H be one of the finite maximal subgroups of M0,n, and let
G be a finite (maximal) subgroup of BnpS2q of order 2 |H| which fits into the following
short exact sequence:

1 ÝÑ x∆ny ÝÑ G
p|GÝÑ H ÝÑ 1, (4)

where ∆n P G belongs to the centre of G, and is the unique element of G of order 2.
Then G � p�1pHq, and so is unique.

Suppose that y P H is of order k ¥ 2. Then y has two preimages in G, of the form x
and x∆n, say, and x is of order k or 2k. If k is even then by Remarks 8(c), x must be of
order 2k, xk � ∆n and ∆n P xxy. If k is odd then x is of order k (resp. 2k) if and only if
x∆n is of order 2k (resp. k).

A presentation of G may be obtained by applying standard results concerning the
presentation of an extension (see Theorem 1, Chapter 13 of [J]). If H is generated by
h1, . . . , hk then G is generated by g1, . . . , gk, ∆n, where ppgiq � hi for i � 1, . . . , k. One
relation of G is just ∆

2
n � 1, that of Ker ppq. Since Ker ppq � ZpGq, the remaining relations

of G are obtained by rewriting the relators of H in terms of the coset representatives,
and expressing the corresponding element in the form ∆

ε
n, where ε P t0, 1u.

We consider the six cases of Theorem 9 as follows.

(a) H � Zn�1: let y be a generator of H, and let x P G be such that ppxq � y. Then
G � x∆n, xy and |G| � 2pn � 1q. If n is odd then ∆n P xxy, G � xxy, and x is of order
2pn� 1q. If n is even then G � xx∆ny (resp. G � xxy) if x is of order n� 1 (resp. 2pn� 1q),
and G � Z2pn�1q in both cases.

(b) H � D2n: let y, z P H be such that opyq � n, opzq � 2 and zyz�1 � y�1, and let
x, w P G be such that ppxq � y and ppwq � z. So G � x∆n, x, wy and |G| � 4n. From
above, it follows that w2 � ∆n, so G � xx, wy. If n is even then x is of order 2n and
xn � ∆n. The same result may be obtained if n is odd, replacing x by x∆n if necessary.
Further, wxw�1x P Ker ppq. If wxw�1x � ∆n then pwxq2 � 1. So either w � x�1 or
wx � ∆n, and in both cases we conclude that G � xxy which contradicts |G| � 4n.
Hence wxw�1x � 1, and since |G| � 4n, G is isomorphic to Dic4n.
(c) H � D2pn�2q: the previous argument shows that G � Dic4pn�2q.
(d) Suppose that H is isomorphic to one of the remaining groups A4, S4 or A5 of The-
orem 9. Let p � 3 if H � A4, p � 4 if H � S4, and p � 5 if H � A5. Then H has a
presentation given by [Co, CM]:

H � B
u, v

∣

∣

∣
u2 � v3 � puvqp � 1

F
.

Let x, w P G be such that ppxq � u and ppwq � v. Then G � xx, w, ∆ny. From above,
we must have x2 � ∆n. Further, replacing w by w∆n, we may suppose that w3 � ∆n.
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If p � 4 then pxwqp � ∆n, while if p P t3, 5u, replacing x by x∆n if necessary, we may
suppose that pxwqp � ∆n. It is shown in [Co, CM] that x2 � w3 � pxwqp � ∆n implies
that ∆

2
n � 1, so G admits a presentation given by:

G � B
x, w

∣

∣

∣
x2 � w3 � pxwqp

F
.

Thus G � T1 if p � 3, G � O1 if p � 4 and G � I if p � 5. This completes the proof of
the theorem.

REMARKS 11. Let G1, G2 be finite subgroups of BnpS2q.
(a) If they are of odd order then by Remarks 8, G1 and G2 are isomorphic if and only if
ppG1q and ppG2q are isomorphic. So suppose that G1 and G2 are of even order. If ppG1q
and ppG2q are isomorphic then it follows from the construction of Theorem 3 that G1

and G2 are isomorphic. Conversely, suppose that G1 and G2 are isomorphic via an iso-
morphism α : G1 ÝÑ G2. Since ∆n belongs to both, and is the unique element of order 2,
we must have αp∆nq � ∆n, and thus α induces an isomorphism rα : ppG1q ÝÑ ppG2q sat-
isfying rα � p � p � α.
(b) If G1, G2 are conjugate then clearly so are ppG1q and ppG2q. Conversely, suppose
that ppG1q, ppG2q are conjugate subgroups of M0,n. Then there exists g P M0,n such
that ppG2q � gppG1qg�1. If G1 and G2 are of even order, the fact that equation (1) is a
central extension implies that G1, G2 are conjugate. If G1 and G2 are of odd order, let
Li � p�1pppGiqq for i � 1, 2. Then rLi : Gis � 2, and it follows from the even order case
that L1 and L2 are conjugate in BnpS2q. But Li � Gi

²
∆nGi, and its odd order elements

are precisely those of Gi. So the conjugacy between L1 and L2 must send G1 onto G2.

We are now able to prove Proposition 5.

Proof of Proposition 5. Part (a) follows from Remarks 8 and 11. To prove part (b), let
G1, G2 be abstractly isomorphic finite subgroups of BnpS2q, and for i � 1, 2, let Hi �
ppGiq. Then H1 � H2: if the Gi are of odd order then Hi � Gi, so H1 � H2, while if the
Gi are of even order, any isomorphism between them must send ∆n P G1 onto ∆n P G2,
and so projects to an isomorphism between the Hi. From Remarks 11(b), G1 and G2

are conjugate if and only if H1 and H2 are, and so the number of conjugacy classes of
subgroups of BnpS2q isomorphic to G1 is the same as the number of conjugacy classes of
subgroups of M0,n isomorphic to H1. The result follows from the proof of Theorem 3
by remarking that a subgroup of M0,n isomorphic to Z2 (resp. D2r) lifts to a subgroup
of BnpS2q which is isomorphic to Z4 (resp. Dic4r).

3 Realisation of the maximal finite subgroups of BnpS2q
In this section, we analyse the geometric and algebraic realisations of the subgroups
given in Theorem 3.

3.1 The algebraic realisation of some finite subgroups of BnpS2q
The maximal cyclic and dicyclic subgroups of BnpS2q may be realised as follows:
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(a) Z2pn�1q � xα1y.
(b) Dic4n � xα0, Tny [GG4].
(c) The algebraic realisation of Dic4pn�2q is given by the following proposition:

PROPOSITION 12. For all n ¥ 3, the subgroup
A

α0α2α�1
0 , Tn

E
of BnpS2q is isomorphic to

Dic4pn�2q.
Proof. Let x � α0α2α�1

0 . We know that x is of order 2pn� 2q, and that xn�1 � ∆n � T2
n .

Further, by standard properties of the corresponding elements in Bn [Bi], α0σiα
�1
0 �

σi�1 for all i � 1, . . . , n � 2, and TnσiT
�1
n � σn�i for all i � 1, . . . , n � 1. Hence x �

σ2 � � � σn�2σ2
n�1, and

TnxT�1
n � σn�2 � � � σ2σ2

1 � σ�2
n�1σ�1

n�2 � � � σ�1
2 � x�1.

Thus xx, Tny is isomorphic to a quotient of Dic4pn�2q. But Tn R xxy, so xx, Tny contains
the 2pn� 2q � 1 distinct elements of xxy Y tTnu, and the result follows.

REMARK 13. In the special case n � 4, the binary tetrahedral group T1 may be realised

as follows. Let y � σ1σ�1
3 . From [GG4], we know that xy, T4y � Q8. In B4pS2q, we also

have pσ2σ1q3 � pσ2σ3q3 � ∆4 � T2
4 . Then

A
α2

1

E � Z3 acts on xy, T4y as follows:

α2
1 � T4 � α�2

1 � α2
1pT4α�2

1 T�1
4 qT4� α2

1pσ�2
1 σ�1

2 σ�1
3 q2T4 (by the action of T4)� α2

1pσ2σ3q2T4 (using the surface relation of BnpS2q)� pσ1σ2σ2
3 q2 � σ�1

3 σ�1
2 � pσ2σ3q3T4� σ1σ2σ3σ1σ2σ1 � σ�1
1 σ�1

2 σ�1
1 � σ3σ1σ2σ3σ�1

2 T3
4 (as T2

4 � pσ2σ3q3)� T4σ�1
1 σ�1

2 σ3σ2σ3σ�1
2 T3

4 (as σ1 commutes with σ3)� T4σ�1
1 σ3T3

4 (by the Artin braid relations)� T4y�1T�1
4 � y (by the action of T4 on y).

Further,

α2
1 � y � α�2

1 � pσ�1
1 σ�1

2 q2 � σ1σ�1
3 � pσ2σ1q2� pσ�1

1 σ�1
2 q2 � σ�1

3 σ�1
2 � pσ2σ1q3 (as σ1 commutes with σ3)� σ�1

1 σ�1
2 σ�1

1 � σ�1
2 σ�1

3 σ�1
2 � T2

4 (as T2
4 � pσ2σ1q3)� σ�1

1 σ�1
2 σ�1

1 σ�1
3 σ�1

2 σ�1
3 � T2

4 (by the Artin braid relations)� σ�1
1 σ�1

2 σ�1
1 σ�1

3 σ�1
2 σ�1

1 � σ1σ�1
3 T2

4� T�1
4 yT2

4 � T4y (since T2
4 is central).

Hence T1 � Q8 �Z3 � xy, T4y � A
α2

1

E
.

REMARK 14. We also have an algebraic representation of T1 in B6pS2q. Let

γ � σ5σ4σ�1
1 σ�1

2 , and

δ � σ�1
3 σ�1

4 σ�1
5

�
σ�1

2 σ�1
1 σ�1

2

	
σ5σ4σ3.
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Then we claim that xγ, δy � Q8 � Z3 � T1, where the action permutes the elements

i, j, k of Q8. First, γ3 � δ2 � ∆6. We now consider the subgroup H � A
δ, γδγ�1

E
. The

action of conjugation by γ permutes cyclically the elements δ, γδγ�1 and γδ2γ�1, so is
compatible with the action of Z3 on Q8. It just remains to show that H � Q8. Clearly
δ2 � pγδγ�1q2 � ∆6. Let us now prove that

δ�1 � γδγ�1 � δ � γδ�1γ�1. (5)

Set ρ � σ5σ4σ3, γ1 � ργρ�1 and δ1 � ρδρ�1. Then equation (5) is in turn equivalent to:

δ1�1 � γ1δ1γ1�1 � δ1 � γ1δ1�1γ1�1

δ1�1γ1δ1γ1�1δ12δ1�1γ1δ1γ1�1 � 1rδ1�1, γ1s2 � δ1�2 � ∆6.

We shall show that the latter relation holds. Notice that

γ1 � σ5σ4σ3σ5σ4σ�1
1 σ�1

2 σ�1
3 σ�1

4 σ�1
5 � σ5σ4σ5σ3σ4α0.

Thenrδ1�1, γ1s � σ�1
5 σ�1

4 σ�1
5 σ2σ1σ2 � σ5σ4σ5σ3σ4α0 � σ�1

2 σ�1
1 σ�1

2 σ5σ4σ5 � α�1
0 σ�1

4 σ�1
3 σ�1

5 σ�1
4 σ�1

5� σ2α0σ�1
5 α0σ�1

2 σ�1
1 σ�1

2 σ5σ4σ5σ5σ4σ3σ2σ1σ�1
4 σ�1

3 σ�1
5 σ�1

4 σ�1
5� σ2α0σ�1

5 α0σ�1
2 σ�1

1 σ�1
2 σ5σ�1

3 σ�1
2 σ�1

1 σ�1
4 σ�1

3 σ�1
5 σ�1

4 σ�1
5� σ2α0σ�1

5 α0σ�1
2 σ5σ�1

1 σ�1
2 σ�1

3 σ�1
4 σ�1

5 σ1σ�1
1 σ�1

2 σ�1
1 σ�1

3 σ�1
4 σ�1

5� σ2α0σ�1
5 α0σ�1

2 σ5α0σ1σ�1
2 α0� σ2α0σ�1

5 α�1
0 α2

0σ�1
2 σ5α�2

0 α3
0σ1σ�1

2 α�3
0 α4

0� σ2τ�1σ�1
4 σ1σ4σ�1

5 α4
0 � σ2τ�1σ1σ�1

5 α4
0,

since conjugation by α0 permutes cyclically the elements σ1, σ2, σ3, σ4, σ5 and τ � α0σ5α�1
0 .

Thus rδ1�1, γ1s2 � σ2τ�1σ1σ�1
5 α4

0σ2τ�1σ1σ�1
5 α�4

0 α8
0 � σ2τ�1σ1σ�1

5 τσ�1
4 σ5σ�1

3 α8
0.

Let ξ � σ2τ�1σ1σ�1
5 τσ�1

4 σ5σ�1
3 . To prove that rδ1�1, γ1s2 � ∆6 � α6

0, it suffices to show

that ξα2
0 � 1. Now

ξα2
0 � σ2τ�1σ1σ�1

5 τσ�1
4 σ5σ�1

3 α2
0 � σ2α0σ�1

5 α�1
0 σ1σ�1

5 α0σ5α�1
0 σ�1

4 σ5σ�1
3 α2

0� σ2α0σ�1
5 α0σ5α�1

0 σ�1
4 σ5σ�1

3 σ4σ�1
2 α0 � σ2α0σ�1

5 α0σ5σ�1
3 σ4σ�1

2 σ3σ�1
1� σ2σ1σ2σ3σ4σ1σ2σ3σ4σ2

5 σ4σ3σ�1
3 σ�1

4 σ�1
3 σ4σ�1

2 σ3σ�1
1� σ1σ2σ1σ3σ4σ�1

1 σ�1
2 σ�1

4 σ�1
3 σ�1

2 σ3σ�1
1 � 1.

This proves the claim, so xγ, δy � T1.
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3.2 The geometric realisation of the finite subgroups of BnpS2q
The geometric realisation of the finite subgroups may be obtained by letting the corre-
sponding subgroup of M0,n act on the sphere with the n strings attached in an appro-
priate manner. For the subgroups Dic4n, Z2pn�1q and Dic4pn�2q, we attach strings to n
symmetrically-distributed points (resp. n� 1, n� 2 points) on the equator, and 0 (resp.
1, 2) points at the poles. For T1, O1 and I, the n strings are attached symmetrically with
respect to the associated regular polyhedron (for the values of n given by Theorem 3)
in the following manner.
(d) Let H � A4 be the group of orientation-preserving symmetries of the tetrahedron.
Then n � 6k� 4, k ¥ 0, and we take k equally-spaced points in the interior of each edge,
plus one point at each vertex (or face).
(e) Let H � S4 be the group of orientation-preserving symmetries of the cube (or octa-
hedron).

(i) n � 12k, k P N: take k equally-spaced points in the interior of each edge.
(ii) n � 12k � 2, k P N: take k � 1 equally-spaced points in the interior of each edge,
plus one point at each vertex and on each face.
(iii) n � 12k� 6, k ¥ 0: take k equally-spaced points in the interior of each edge, plus
one point on each face.
(iv) n � 12k � 8, k ¥ 0: take k equally-spaced points in the interior of each edge, plus
one point at each vertex.

(f) Let H � A5 be the group of orientation-preserving symmetries of the icosahedron
(or dodecahedron), which has 12 faces, 30 edges and 20 vertices.

(i) n � 30k, k P N: take k equally-spaced points in the interior of each edge.
(ii) n � 30k � 2, k P N: take k � 1 equally-spaced points in the interior of each edge,
plus one point at each vertex and on each face.
(iii) n � 30k� 12, k ¥ 0: take k equally-spaced points in the interior of each edge, plus
one point on each face.
(iv) n � 30k� 20, k ¥ 0: take k equally-spaced points in the interior of each edge, plus
one point at each vertex.

In each case, the action of the given group H of symmetries yields the corresponding
maximal finite subgroup of BnpS2q. This follows essentially from the definition of the

boundary operator B : π1pDnpS2qq ÝÑ π0

�
Diff��S2, X

		
in the long exact sequence (2)

which we now describe in detail in our setting. As in Section 1, let X be the basepoint

in DnpS2q, and let ψ : Diff��S2
	 ÝÑ DnpS2q denote evaluation on X. So if g P Diff��S2

	
then ψpgq � gpXq. Let IdS2 be the basepoint in Diff��S2

	
, so that ψpIdS2q � X. Let

β P BnpS2q be a braid, and let f : r0, 1s ÝÑ DnpS2q be a geometric braid which represents
β. So f p0q � f p1q � X, and the loop class x f y in BnpS2q is equal to β. Then f lifts torf : r0, 1s ÝÑ Diff��S2

	
which satisfies rf p0q � IdS2 and ψ � rf � f . Hence ψ � rf p1q �

f p1q � X, and thus rf p1q belongs to the fibre Diff��S2, X
	
. Geometrically, rf is an isotopy

of S2 which realises β on the points of X. Neither rf nor the corresponding endpoint rf p1q
are unique, however all of the possible rf p1q belong to the same connected component of

Diff��S2, X
	

, and so determine a unique element, denoted r rf p1qs, of π0

�
Diff��S2, X

		
,

which is the image under B of β. Thus if rf is an isotopy of S2 which realises β, Bpβq is
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the mapping class of the homeomorphism rf p1q, and corresponds geometrically to just
remembering the final homeomorphism (in particular, one forgets the strings of β).

Conversely, if g P Diff��S2
	

satisfies gpXq � X, let h : r0, 1s ÝÑ Diff��S2
	

be an iso-

topy from hp0q � IdS2 to hp1q � g. Then ψ � h is a loop in DnpS2q based at X, so describes
a geometric braid obtained by attaching strings at the points of X and following the iso-
topy h. In S2 � r0, 1s, the strings are given by tpψ � hptq, tqutPr0,1s � tphptqpXq, tqutPr0,1s.
Thus xψ � hy P BnpS2q is a braid, and by the above construction, Bpxψ � hyq � rhp1qs � rgs.
In other words, a choice of isotopy h between the identity and g P Diff��S2, X

	
allows

us to lift the mapping class rgs to a preimage β � xψ � hy under B which is obtained
geometrically by attaching strings to X during the isotopy h.

Let r : r0, 1s ÝÑ Diff��S2
	

denote rigid rotation through an angle 2π. So rp0q �
rp1q � IdS2 , the loop class xry generates π1

�
Diff��S2

		 � Z2, and thus xψ � ry �
ψ�pxryq � ∆n since ψ� : π1

�
Diff��S2

		 ÝÑ BnpS2q is injective. The second preimage

of rgs under B is obtained by considering the isotopy h1 : r0, 1s ÝÑ Diff��S2
	

which is

the isotopy h followed by r. The braids xψ � hy and xψ � h1y differ by xψ � ry � ∆n, and
thus define the two preimages of rgs under B.

Finally, each finite subgroup H of M0,n is realised by a finite subgroup of isome-
tries of S2 (which are the finite subgroups of SOp3q) [K]. Each element of H admits
two preimages in BnpS2q which differ by ∆n. These preimages thus make up the finite
subgroup B�1pHq of BnpS2q whose order is twice that of H.

4 Position of the finite subgroups of BnpS2q relative to Mura-

sugi’s classification

Let n ¥ 4 be even. For i � 0, 1, 2, let Gi be the set of torsion elements of BnpS2q whose
order divides 2pn� iq. Equivalently, by Theorem 1, Gi is the set of conjugates of powers
of αi. Notice that Gi is invariant under conjugation, Gi XGj � x∆ny for all 0 ¤ i   j ¤ 2,

and G0 Y G1 Y G2 is the set of torsion elements of BnpS2q. For many purposes, it is
often useful to know where a finite subgroup H of BnpS2q lies relative to the Gi. In this
section, we carry out this calculation for all such subgroups.

PROPOSITION 15. Let H be a finite subgroup of BnpS2q of order greater than or equal to 3.

(I) Suppose that H is cyclic.

(a) if |H| � 4 and n is even then there exists a subgroup H1 of BnpS2q isomorphic to Z4 non-
conjugate to H. One of H, H1 lies in G0, while the other lies in G2.
(b) if either |H| � 4 and n is odd, or if |H| � 4 then H � Gi, where |H| � 2pn � iq, and
i P t0, 1, 2u.
(II) Suppose that H is a subgroup of a maximal non-cyclic subgroup of BnpS2q.
(a) If H is a non-cyclic subgroup contained in Dic4n or Dic4pn�2q then it is itself dicyclic, of the
form Dic4k, where k ¡ 1 divides n or n� 2 respectively. Further:

(i) if n is odd then H � Gi YG1, where i P t0, 2u and |H| � 4pn� iq.
(ii) Suppose that n is even.
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(1) if k � n (resp. k � n� 2) but k � n
2 (resp. k � n�2

2 ) then H lies in G0 Y G2 and meets both
G0 and G2.
(2) if k � n

2 (resp. k � n�2
2 ) then there exists another subgroup H1 of BnpS2q isomorphic to Dic4k

but non conjugate to H. In this case, one of H, H1 is contained wholly within G0 (resp. G2), and
the other lies in G0 YG2 and meets both G0 and G2.

(b) Suppose that H is a subgroup of a copy of T1 in the case that T1 is maximal.

(i) If H � T1 then H lies in G0 YG1 (resp. G2 YG1) if n � 4 mod 12 (resp. n � 10 mod 12),
and meets both G0 (resp. G2) and G1.
(ii) If H is isomorphic to Z3 or Z6 then it is contained in G1.
(iii) If H is isomorphic to Z4 or Q8 then it is contained in G0 if n � 4 mod 12, and in G2 if
n � 10 mod 12.

(c) Suppose that H is a subgroup of a copy of I in the case that I is maximal.

(i) If H is isomorphic to I then H is contained in G0 (resp. G2) if n � 0 mod 60 (resp. n �
2 mod 60), and lies in G0 YG2 and meets both G0 and G2 if n � 12, 20, 30, 32, 42, 50 mod 60.
(ii) If H is isomorphic to Z3 or Z6 then it is contained in G0 if n � 0, 12 mod 30, and in G2 if
n � 2, 20 mod 30.
(iii) If H is isomorphic to Z5 or Z10 then it is contained in G0 if n � 0, 20 mod 30, and in G2

if n � 2, 12 mod 30.
(iv) If H is isomorphic to Z4 or Q8 then it is contained in G0 if n � 0, 12, 20, 32 mod 60, and
in G2 if n � 2, 30, 42, 50 mod 60.
(v) If H is isomorphic to T1 or to Dic12 then it lies in G0 if n � 0, 12 mod 60, in G2 if n �
2, 50 mod 60, and lies in G0 YG2 and meets both G0 and G2 if n � 20, 30, 32, 42 mod 60.
(vi) If H is isomorphic to Dic20 then it lies in G0 if n � 0, 20 mod 60, in G2 if n � 2, 42 mod
60, and lies in G0 Y G2 and meets both G0 and G2 if n � 12, 30, 32, 50 mod 60.

(d) Suppose that H is a subgroup of a copy of O1 in the case that O1 is maximal.

(i) If H is isomorphic to O1 then it lies in G0 if n � 0 mod 24, in G2 if n � 2 mod 24, and
lies in G0 YG2 and meets both G0 and G2 if n � 6, 8, 12, 14, 18, 20 mod 24.
(ii) If H is isomorphic to T1 then it lies in G0 if n � 0 mod 12, in G2 if n � 2 mod 12, and
lies in G0 YG2 and meets both G0 and G2 if n � 6, 8 mod 12.
(iii) If H is isomorphic to Q16 then it lies in G0 if n � 0, 8 mod 24, in G2 if n � 2, 18 mod 24,
and lies in G0 YG2 and meets both G0 and G2 if n � 6, 12, 14, 20 mod 24.
(iv) If H is isomorphic to Dic12 then it lies in G0 if n � 0, 6 mod 24, in G2 if n � 2, 20 mod
24, and lies in G0 Y G2 and meets both G0 and G2 if n � 8, 12, 14, 18 mod 24.
(v) If H is isomorphic to Z8 then it lies in G0 if n � 0, 8 mod 12, and in G2 if n � 2, 6 mod 12.
(vi) If H is isomorphic to Z4 then there exists another non-conjugate subgroup H1 of BnpS2q
isomorphic to Z4. One of H, H1 is contained in G0 if n � 0, 8 mod 12, and in G2 if n �
2, 6 mod 12, while the other is contained in G0 if n � 0, 6, 8, 14 mod 24, and to G2 if n �
2, 12, 18, 20 mod 24.
(vii) If H is isomorphic to Q8 then there exists another non-conjugate subgroup H1 of BnpS2q
isomorphic to Q8. One of H, H1 is contained in G0 if n � 0, 8 mod 12, and to G2 if n �
2, 6 mod 12, while the other lies in G0 if n � 0, 8 mod 24, in G2 if n � 2, 18 mod 24, and lies
in G0 YG2 and meets both G0 and G2 if n � 6, 12, 14, 20 mod 24.
(viii) If H is isomorphic to Z3 or Z6 then it lies in G0 if n � 0 mod 6 and in G2 if n � 2 mod 6.

Proof. Let H be a finite subgroup of BnpS2q of order at least three.

(I) Suppose first that H is cyclic. Since Gi XGj � x∆ny and |xαiy| � 2pn� iq, the order of
H is sufficient to decide where H lies, unless n is even and H is of order 4, in which case
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there is another non-conjugate subgroup H1 isomorphic to Z4. One of H, H1 is conjugate

to
B

α
n{2
0

F
which is contained in G0, while the other is conjugate to

B
α
pn�2q{2
2

F
which lies

in G2. These two cases may be distinguished easily by checking the permutation of a
generator of H, H1.
(II) Now suppose that H is a subgroup of a maximal non-cyclic subgroup of BnpS2q.
We consider the possible cases in turn.

(a) Firstly, let H be a subgroup of the dicyclic group Dic4n, which up to conjugation
may be assumed to be xα0, Tny � xα0y² Tn xα0y. We first suppose that n is odd. Thenxα0y � G0, and the coset Tn xα0y consists of the elements of Dic4n of order 4, so lies in
G1. The group Dic4n fits into a short exact sequence:

1 ÝÑ Zn ÝÑ Dic4n
gÝÑ Z4 ÝÑ 1.

If gpHq � !
0
)

, then H   Zn, and H is cyclic, of order dividing n, so lies in G0. If

gpHq � !
0, 2

)
, then H   Z2n, and again H is cyclic, of order dividing 2n, so lies in G0.

Finally, if gpHq � Z4 then we have

1 ÝÑ H XZn ÝÑ H
gÝÑ Z4 ÝÑ 1,

and H � Zk �Z4, where k divides n. If k � 1 then H � Z4. Since n is odd, H must then

lie in G1. So suppose that k ¡ 1. Then H � B
α

n{k
0 , Tn

F
is dicyclic, and so lies in G0 YG1.

Now suppose that n is even. Then Dic4n fits into the following short exact sequence:

1 ÝÑ Z2n ÝÑ Dic4n
fÝÑ Z2 ÝÑ 1.

If f pHq � !
0
)

then H � Z2n and so lies in G0. If f pHq � Z2 and H XZ2n were of odd

order, then H would be both dicyclic and of order twice an odd number, which cannot
occur. So suppose that f pHq � Z2 and H X Z2n is of even order, 2k, say, where k � n.
If k � 1 then H � Z4, and H may lie in G0 or G2 depending on the permutation of its
generators. So suppose that k ¥ 2. Then H is dicyclic of order 4k. Now

Dic4n � xα0yloomoon�G0

º
Tn

A
α2

0

Eloooomoooon�G0

º
Tnα0

A
α2

0

Eloooooomoooooon�G2

.

The inclusions follow from the fact that the elements of Tn

A
α2

0

E
(resp. Tnα0

A
α2

0

E
) are

conjugate (in Dic4n), Tn P G0, and

πpTnα0q � p1, nqp2, n� 1q � � ��n

2
,

n

2
� 1


 p1, n, . . . , 2q� pnq�n

2


 p1, n� 1qp2, n� 2qp3, n� 3q � � ��n

2
� 1,

n

2
� 1



,

where π : BnpS2q ÝÑ Sn denotes the homomorphism defined on the generators by πpσiq �pi, i� 1q. Thus Tnα0 P G2.
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If k � n
2 then by Proposition 5, there is just one conjugacy class of Dic4k of the formB

α
n{k
0 , Tn

F
, and since n{k is odd, we have

Dic4k � B
α

n{k
0

Flooomooon�G0

º
Tn

B
α

n{k
0

Floooooomoooooon�G2

.

In particular, all of the elements of Dic4k of order 4 belong to G2. Thus Dic4k XpG0zG2q �
∅ and Dic4k XpG2zG0q � ∅.

If k � n
2 then by Proposition 5, there are two non-conjugate copies of Dic4k given byB

α
n{k
0 , Tn

F � B
α

n{k
0

Flooomooon�G0

º
Tn

B
α

n{k
0

Floooooomoooooon�G0

, and

and B
α

n{k
0 , Tnα0

F � B
α

n{k
0

Flooomooon�G0

º
Tnα0

B
α

n{k
0

Floooooooomoooooooon�G2

.

The first copy lies entirely within G0, while the second lies in G0 Y G2 and meets both
G0zG2 and G2zG0.

A similar result holds for Dic4pn�2q: its subgroups are either subgroups of Z2pn�2q,
so lie in G2, or else are dicyclic, of the form Dic4k, where k � n � 2. If k � 1 then the
subgroup in question is xTnywhich lies in G0. If k ¡ 1 then as above, we distinguish two
cases. If k � n�2

2 then there is just one copy of Dic4k which lies in G0YG2 and meets both

G0zG2 and G2zG0. If k � n�2
2 , then setting α12 � α0α2α�1

0 , there are two copies of Dic4k,B
α
1n{k
2 , Tn

F
, which lies in G0 Y G2 and meets both G0zG2 and G2zG0, and

B
α
1n{k
2 , α12Tn

F
,

which is contained in G2.
(b) Suppose that H is a subgroup of a copy of T1 when T1 is maximal, so n � 4 mod 6.
Assume first that H � T1. Since H � Q8 �Z3, all of its order 4 elements are conjugate,
and so all elements of Q8 must lie in the same Gi. Now Q8 � Dic8, so from above,
we must be in one of the cases 2 � n

2 or 2 � n�2
2 . Indeed if n � 4 mod 12 then n �

4 � 12l � 4p1� 3lq, l P N, and so Q8 is contained in G0, while if n � 10 mod 12 then
n � 10� 12l � 2p5� 6lq, l P N, and so Q8 is contained in G2. The remaining elements
of H are of order 3 or 6, and since n � 4 mod 6, lie in G1. So if n � 4 mod 12 (resp.
n � 10 mod 12) then H lies in G0 YG1 (resp. G2 YG1) and meets both G0 (resp. G2) and
G1.

From this, we deduce immediately the following: if H is isomorphic to Z3 or Z6

then it is contained in G1, and if it is isomorphic to Z4 or Q8 then it is contained in G0 if
n � 4 mod 12, and in G2 if n � 10 mod 12.
(c) Suppose that H is a subgroup of a copy of I when I is maximal, so n � 0, 2, 12, 20 mod
30. Assume first that H � I. So I has a subgroup isomorphic to T1, whose copy of Q8

lies entirely in G0 or G2. The subgroups of order 8 of H are its Sylow 2-subgroups, so
are conjugate, and thus all lie either in G0 or in G2. Hence from the analysis of the di-
cyclic case, 2 divides n

2 or n�2
2 . Further, all elements of H of order 4 are contained in one

of its subgroups isomorphic to Q8 (because the order 2 elements of A5 are the product
of two transpositions, and are contained in a subgroup isomorphic to Z2 ` Z2, which
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lifts to Q8 in I). Hence all order 4 elements of H lie either in G0 if 4 � n, or in G2 if
4 � n� 2. The remaining elements of H are of order 3, 6, 5 and 10, and lie in either G0 or
G2 depending on the value of n modulo the order. Thus H lies entirely in G0 (resp. G2)
if n � 0 mod 60 (resp. n � 2 mod 60), and lies in G0 Y G2 and meets both G0 and G2 if
n � 12, 20, 30, 32, 42, 50 mod 60.

We now consider the other possibilities for subgroups of I: if H is isomorphic to
either Z3 or Z6, it is contained in G0 if n � 0, 12 mod 30, and in G2 if n � 2, 20 mod 30;
if H is isomorphic to either Z5 or Z10, it is contained in G0 if n � 0, 20 mod 30, and
in G2 if n � 2, 12 mod 30; and if H is isomorphic to either Z4 or Q8, it is contained
in G0 if n � 0, 12, 20, 32 mod 60, and in G2 if n � 2, 30, 42, 50 mod 60. Next, if H is
isomorphic to T1, it consists of a copy of Q8 and elements of order 3 and 6, so lies
in G0 if n � 0, 12 mod 60, in G2 if n � 2, 50 mod 60, and lies in G0 Y G2 and meets
both G0 and G2 if n � 20, 30, 32, 42 mod 60. Now suppose that H is isomorphic to
Dic12 � Z3 �Z4 � Z6

²
TnZ6. Since the elements of TnZ6 are of order 4, it follows from

the analysis of the cyclic subgroups that H satisfies the same conditions as in the case
of T1. Finally, if H is isomorphic to Dic20 � Z5 �Z4 � Z10

²
TnZ10, since the elements

of TnZ10 are of order 4, it follows from the analysis of the cyclic subgroups that H lies
in G0 if n � 0, 20 mod 60, in G2 if n � 2, 42 mod 60, and lies in G0 Y G2 and meets both
G0 and G2 if n � 12, 30, 32, 50 mod 60.
(d) Suppose that H is a subgroup of a copy of O1 when O1 is maximal, so n � 0, 2 mod
6. Assume first that H � O1. Then it has a subgroup isomorphic to T1 (which is unique
since S4 has a unique subgroup abstractly isomorphic to A4), and the copy of Q8 lying in
T1 lies entirely in G0 if n � 0, 8 mod 12, and in G2 if n � 2, 6 mod 12. The complement of
this copy of Q8 in T1 consists of elements of order 3 and 6, and so lie in G0 if n � 0 mod 6
and in G2 if n � 2 mod 6 (thus the subgroups of O1 isomorphic to Z3 and Z6 lie in G0

if n � 0 mod 6 and in G2 if n � 2 mod 6). Thus T1 lies in G0 if n � 0 mod 12, in G2 if
n � 2 mod 12, and lies in G0 YG2 and meets both G0 and G2 if n � 6, 8 mod 12.

In order to analyse the remaining possible subgroups Q16, Dic12, Dic20 of O1, as
well as the other copy of Q8 lying in Q16, we must study the elements of HzT1. They
project to elements of S4zA4, which are either 4-cycles, or transpositions. We analyse the
geometric formulation of O1 described in Section 3 as being obtained from the action
of S4 on a cube, with the n strings attached appropriately. The 4-cycles are realised
by rotations by π{2 about an axis which passes through the centres of two opposite
faces. This gives rise to an element of G0 if the n marked points are not these central
points (i.e. if n � 0, 8 mod 12), and to elements of G2 if some of the n marked points
are central points of the faces (i.e. if n � 2, 6 mod 12). The transpositions are realised
by rotations by π about an axis which passes through the centres of two diagonally-
opposite edges. This gives rise to an element of G0 if there are an even number of
marked points on each edge (i.e. if n � 0, 6, 8, 14 mod 24), and to elements of G2 if there
are an odd number of marked points on each edge (i.e. if n � 2, 12, 18, 20 mod 24).
Putting together these results with those for T1, if H � O1, we conclude that it lies in G0

if n � 0 mod 24, in G2 if n � 2 mod 24, and lies in G0 Y G2 and meets both G0 and G2 if
n � 6, 8, 12, 14, 18, 20 mod 24.

Now suppose that H is a subgroup of a copy of O1 isomorphic to Q16. Such sub-
groups are the Sylow 2-subgroups of O1, so are conjugate. If n � 0 mod 24 (resp.
n � 2 mod 24) then O1 lies in G0 (resp. G2), and hence so does Q16. So suppose that
n � 0, 2 mod 24. Any subgroup of O1 isomorphic to Q16 contains elements of order 8
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which lie in O1zT1, and so are associated with the above 4-cycles. Further, H projects
to a subgroup of S4 isomorphic to D8 which is generated by a 4-cycle and a transposi-
tion. Studying the associated rotations as above, if one has fixed points and the other
not then automatically H lies in G0 Y G2 and meets both G0 and G2. This occurs when
n � 6, 12, 14, 20 mod 24. So suppose that n � 8, 18 mod 24.

If n � 8 mod 24 (resp. n � 18 mod 24) then the elements of H corresponding to the
4-cycles and the transpositions of D8 belong to G0 (resp. G2). Further, the remaining
elements of D8 are products of such elements, and so the corresponding elements in
H are also elements of T1 � Q8 �Z3 of order 4. But such elements lie in the Q8-factor.
Since n � 8 mod 12 (resp. n � 6 mod 12), this copy of Q8 lies in G0 (resp. G2), and hence
so does the given subgroup Q16. Summing up, H lies in G0 if n � 0, 8 mod 24, in G2 if
n � 2, 18 mod 24, and lies in G0 Y G2 and meets both G0 and G2 if n � 6, 12, 14, 20 mod
24.

Now suppose that H is a subgroup of a copy of O1 isomorphic to Dic12. If n �
0 mod 24 (resp. n � 2 mod 24) then O1 lies in G0 (resp. G2), and hence so does H. So
suppose that n � 0, 2 mod 24. Any subgroup of O1 isomorphic to H projects onto a
subgroup of S4 isomorphic to S3 which consists of 3-cycles and transpositions. Hence
H is generated by an element of order 4 lying in O1zT1, and an element of order 6,
which lies in T1. The first element belongs to G0 if n � 6, 8, 14 mod 24 and to G2 if
n � 12, 18, 20 mod 24, while the second element belongs to G0 if n � 6, 12, 18 mod 24
and to G2 if n � 8, 14, 20 mod 24. Hence if n � 8, 12, 14, 18 � 24 then H lies in G0 Y G2

and meets both G0 and G2. The product of the two given generators is also of order
4 and so lies in G0 if n � 6 mod 24, and in G2 if n � 20 mod 24. Thus H lies in G0 if
n � 0, 6 mod 24, in G2 if n � 2, 20 mod 24, and lies in G0 Y G2 and meets both G0 and
G2 if n � 8, 12, 14, 18 mod 24.

Now suppose that H is a subgroup of a copy of O1 isomorphic to Z4. There are
two possibilities. If it is contained in the copy of Q8 lying in the subgroup T1, from the
results for Q8, we see that H lies in G0 if n � 0, 8 mod 12, and in G2 if n � 2, 6 mod 12.
The second possibility is that H possesses elements in O1zT1, and emanates from the
rotation of order 2 whose permutation is a transposition. Thus it is contained in G0 if
n � 0, 6, 8, 14 mod 24, and to G2 if n � 2, 12, 18, 20 mod 24.

Finally, suppose that H is a subgroup of a copy of O1 isomorphic to Q8. Again there
are two possibilities. If H lies in the subgroup T1, it is contained in G0 if n � 0, 8 mod 12,
and to G2 if n � 2, 6 mod 12. The second possibility is that it projects to a subgroup of
S4 generated by two transpositions having disjoint support. Such a subgroup thus has
four elements of order 4 in O1zT1 and two in T1. From the results obtained in the case
of Z4, we see that H lies in G0 if n � 0, 8 mod 24, in G2 if n � 2, 18 mod 24, and lies in
G0 YG2 and meets both G0 and G2 if n � 6, 12, 14, 20 mod 24.

5 Realisation of finite groups as subgroups of the lower

central and derived series of BnpS2q
In this section, we consider the realisation of the finite subgroups of Theorem 3 as sub-
groups of the lower central ΓipBnpS2qq and derived series pBnpS2qpiqq of BnpS2q. By [GG4],
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we already know that if 4 | n then Γ2pBnpS2qq has a subgroup isomorphic to Q8. If n ¥ 4
is even but not divisible by 4, we may ask if the same result is true if 4 ∤ n. We start by
proving Theorem 6, which is the case of the dicyclic groups. We then then complete the
analysis of the other finite subgroups in Proposition 16.

Proof of Theorem 6. Suppose that n is even. Let N P tn� 2, nu, set N � 2lk where l P N
and k is odd, and let x � α0 (resp. x � α0α2α�1

0 ) if N � n (resp. N � n� 2).

(a) Since BnpS2q has a subgroup xx, Tny isomorphic to Dic4N � Dic2l�2k, the statement
is true for j � 0. So suppose the result holds for some j P t0, 1, . . . , l � 1u. Then BnpS2q
contains 2j copies of Dic2l�2�jk of the form

A
x2j

, xiTn

E
, for i � 0, 1, . . . , 2j � 1. HenceA

x2j�1
, xiTn

E
is a subgroup of

A
x2j

, xiTn

E
isomorphic to Dic2l�1�jk. But since�

xp2j�iqTn


2 � xp2j�iqTnxp2j�iqT�1
n T2

n � ∆n, and

xp2j�iqTn � x2j�1
�

xp2j�iqTn


�1 � x�2j�1
,

it follows that
A

x2j�1
, xp2j�iqTn

E
is also a subgroup of

A
x2j

, xiTn

E
isomorphic to Dic2l�1�jk.

If q is any divisor of k, then replacing x by xq yields also 2j copies
A

x2jq, xiqTn

E
,

i � 0, 1, . . . , 2j � 1, of Dic2l�2�jk{q for j P t0, 1, . . . , lu.
(b) If j � 0, the statement holds trivially. So suppose that j ¥ 1. From part (a),A

x2jq, xiqTn

E
and

A
x2jq, xi1qTn

E
are subgroups of BnpS2q isomorphic to Dic2l�2�jk{q. Under

the Abelianisation homomorphism ξ : BnpS2q ÝÑ Z2pn�1q, ξpxq � n� 1, and

ξpTnq � ξ
�pσ1 � � � σn�1q � � � pσ1σ2qσ1

	 � 1

2
npn� 1q � $&%0 if n

2 is even

n� 1 if n
2 is odd.

Since j ¥ 1, ξpx2jqq � 0. Furthermore,

ξ
�

xiqTn

	 � $&%0 if n
2 � i is even

n� 1 if n
2 � i is odd.

So
A

x2jq, xiqTn

E � Γ2pBnpS2qq if and only if n
2 � i is even. Thus if i � i1 is odd, the

subgroups
A

x2jq, xiqTn

E
and

A
x2jq, xi1qTn

E
cannot be conjugate. But by Proposition 5(b),

these are precisely the conjugacy classes of subgroups isomorphic to Dic2l�2�jk{q. The

result follows.

From this, we may deduce Proposition 7.

Proof of Proposition 7. We use the notation of the proof of Theorem 6. If j � 0 and q is
an odd divisor of n then there is just one conjugacy class of the abstract group Dic4n{q,

which is realised as xxq, Tny. Now xq R Γ2pBnpS2qq, so Dic4n{q � Γ2pBnpS2qq.
18



If j ¥ 1 then as we saw in the proof of Theorem 6,
A

x2jq, xiqTn

E � Γ2pBnpS2qq if and

only if n
2 � i is even. So with i � 0, 1, one of

A
x2jq, Tn

E
and

A
x2jq, xqTn

E
is contained in

Γ2pBnpS2qq, while the other is not.
Finally, let N be the element of tn, n� 2u divisible by 4. Then l ¥ 2, and taking q � k

and j � l � 1, from the previous paragraph, one of
A

xN{2, Tn

E
and

A
xN{2, xkTn

E
(the two

non-conjugate copies of Q8) belongs to Γ2pBnpS2qq, the other not.

We now give the analogous result for the cyclic and binary polyhedral subgroups of
BnpS2q.
PROPOSITION 16. Let G be a finite subgroup of BnpS2q.
(a) Suppose that G is cyclic.

(i) If G is of order 2, then G � Γ2pBnpS2qq if and only if n is even.
(ii) Suppose that G is of order greater than or equal to 3. Then either:

– |G| divides 2pn� 1q in which case G � Γ2pBnpS2qq, or
– |G| divides 2pn� iq, where i P t0, 2u. In this case, G � Γ2pBnpS2qq if and only if |G| divides
n� i.

(b) Suppose that G is a subgroup of order at least 3 of some binary polyhedral subgroup H of
BnpS2q.
(i) Suppose that H � T1 in the case that T1 is maximal. Then G � Γ2pBnpS2qq if G � Z4,Q8,
and G � Γ2pBnpS2qq if G � Z3, Z6, T1.
(ii) Suppose that H � I in the case that I is maximal. Then G � Γ2pBnpS2qq.
(iii) Suppose that H � O1 in the case that O1 is maximal. If G is contained in the subgroup
K of H isomorphic to T1 then G � Γ2pBnpS2qq. If G � K then G � Γ2pBnpS2qq if n �
0, 2, 8, 18 mod 24, and G � Γ2pBnpS2qq if n � 6, 12, 14, 20 mod 24.

Proof. We set Γ2 � Γ2pBnpS2qq. If G is of order 2, then G � x∆ny and as ξp∆nq � npn� 1q,
it follows easily that G � Γ2 if and only if n is even. We assume from now on that
|G| ¥ 3. Since Γ2 is normal in BnpS2q, we may work up to conjugation.

First suppose that G is cyclic. Then by Theorem 1, it is conjugate to a subgroup ofxαiy for some i P t0, 1, 2u. If i � 1 then ξpαj
1q � jn for all j P Z. If α

j
1 P Γ2 then there exists

k P Z such that jn � 2kpn � 1q, thus n � 1 � j, and so j � lpn � 1q for some l P Z. But

then α
j
1 � α

lpn�1q
1 P x∆ny. We conclude that xα1y X Γ2 � x∆ny. Hence G � Γ2.

Suppose then that G is conjugate to a subgroup of xαiy, where i � 0, 2. Set k � |G|.

Then ξpαiq � n� 1, k � 2pn� iq, and up to conjugacy, G � B
α

2pn�iq{k
i

F
. So G � Γ2 if and

only if 2pn � iq{k is even, which is equivalent to k � n � i. Thus if G is conjugate to a
subgroup of xαiy, where i � 0, 2, we have:

G � Γ2 ðñ |G| � n� i. (6)

Now suppose that H is isomorphic to T1 in the case that T1 is maximal, so that
n � 4 mod 6. If G is isomorphic to T1, Z6 or Z3 then the order 3 elements lie in G1z x∆ny,
and from the cyclic case, it follows that G � Γ2. So assume that G is isomorphic to
either Z4 or Q8. Since Q8 is generated by elements of order 4, it suffices to analyse the
case Z4. By Proposition 15, G lies in G0 if n � 4 mod 12, and in G2 if n � 10 mod 12. In
both cases, G � Γ2 by equation (6).
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Now suppose that H is isomorphic to I in the case that I is maximal, so that n �
0, 2, 12, 20 mod 30. We claim that G � Γ2 whatever the value of n. To see this, it suffices
to check that all of the maximal cyclic subgroups Z4, Z6, Z10 of I are contained in Γ2.
This follows easily from Proposition 15 and equation (6).

Now suppose that H is isomorphic to O1 in the case that O1 is maximal, so that n �
0, 2 mod 6. Again it suffices to consider the maximal cyclic subgroups Z4, Z6 and Z8 of
O1. Applying Proposition 15 and equation (6), we obtain the following results:

– if G is isomorphic to Z8, it projects to a subgroup of S4 generated by a 4-cycle. Then
G � G0 if n � 0, 8 mod 12, and G � G2 if n � 2, 6 mod 12, and so G � Γ2 if n �
0, 2, 8, 18 mod 24, and G � Γ2 if n � 6, 12, 14, 20 mod 24.
– if G is isomorphic to Z6 then G � Γ2.
– if G is isomorphic to Z4, there are two possibilities. If G lies in the subgroup K of O1

isomorphic to T1 then G � Γ2. Otherwise G is generated by an element of order 4 not
belonging to K, in which case we obtain the same answer as for Z8.

Since every cyclic subgroup of order 3 of O1 is contained in one of order 6, this gives
the results if G is cyclic. Suppose now that G � K. Then G is generated by the elements
of order 6 and the elements of order 4 belonging to K, so G � Γ2.

If G is abstractly isomorphic to Q16 then it is generated by elements of order 8,
elements of order 4 lying in K, and elements of order 4 not lying in K. From above, we
have that G � Γ2 if n � 0, 2, 8, 18 mod 24, and G � Γ2 if n � 6, 12, 14, 20 mod 24.

If G is abstractly isomorphic to Q8 then there are two possibilities: either G lies in
K, so is contained in Γ2, or else it is generated by elements of order 4 not belonging
to K. In this case, from above, G � Γ2 if n � 0, 2, 8, 18 mod 24, and G � Γ2 if n �
6, 12, 14, 20 mod 24.

Finally, suppose that G is abstractly isomorphic to Dic12. Then it projects to a copy
of S3 in S4. From above, it follows that G � Γ2 if n � 0, 2, 8, 18 mod 24, and G � Γ2 if
n � 6, 12, 14, 20 mod 24.

REMARK 17. Having dealt with the behaviour of the finite subgroups relative to the
commutator subgroup of BnpS2q, one might ask what happens for the higher elements

of the lower central series
!

ΓipBnpS2qq)
nPN

and of the derived series
"�

BnpS2q	piq*
i¥0

of

BnpS2q. But if n � 2 (resp. n ¥ 5), the lower central series (resp. derived series) of BnpS2q
is stationary from the commutator subgroup onwards [GG3]. It just remains to look at
the derived series of B4pS2q. Recall from that paper that pB4pS2qqp1q is a semi-direct
product of Q8 by a free group F2 of rank two, that pB4pS2qqp2q is a semi-direct product
of Q8 by the derived subgroup pF2qp1q of F2, that pB4pS2qqp3q is the direct product of x∆4y
by pF2qp2q, and that pB4pS2qqpi�1q � pF2qpiq for all i ¥ 3. Thus there is a copy of Q8 which
lies in pB4pS2qqp2q but not in pB4pS2qqp3q. The full twist remains until pB4pS2qqp3q, and thenpB4pS2qqp4q is torsion free.

6 A proof of Murasugi’s theorem

Let H1, H2 be isomorphic finite cyclic subgroups of M0,n. From Theorem 9, if n is odd,
or if n is even and |H1| � |H2| � 2 then H1 and H2 are conjugate. If n is even, there
are exactly two conjugacy classes of subgroups of M0,n of order 2, and thus there are
exactly two conjugacy classes of subgroups of BnpS2q of order 4.
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It follows from Section 2 that:

PROPOSITION 18. Let G1, G2 be isomorphic finite cyclic subgroups of order m of BnpS2q. If n
is odd, or if n is even and m � 4 then G1 and G2 are conjugate. If n is even, there are exactly
two conjugacy classes of subgroups of BnpS2q of order 4.

If n is even then α
n{2
0 and α

pn�2q{2
2 are of order 4, and they generate non-conjugate

subgroups since their images in Sn are not conjugate, which yields the two conjugacy
classes of Z4 of Proposition 18. From this, we may deduce Theorem 1.

Proof of Theorem 1. Let x P BnpS2q be a torsion element. Then xxy is contained in a max-
imal cyclic subgroup C of one of the maximal finite subgroups G of BnpS2q given by
Theorem 3.

First suppose that n is odd. Then G is one of Z2pn�1q, Dic4n and Dic4pn�2q, and so C
must be one of Z2pn�1q, Z2n, Z2pn�2q and Z4. Hence C is isomorphic to xα1y, xα0y, xα2y
and

B
α
pn�1q{2
1

F
respectively. So by Proposition 18, x is conjugate to a power of one of

α0, α1 and α2 which proves the theorem in this case.

Now suppose that n is even. If C � Z4 then C is conjugate to one of
B

α
n{2
0

F
orB

α
pn�2q{2
2

F
, and the result holds. So suppose that C � Z4. If G is one of Z2pn�1q, Dic4n

and Dic4pn�2q, then C is one of Z2pn�1q, Z2n, Z2pn�2q, and so is isomorphic to xα1y, xα0y,
and xα2y respectively. If G � T1 (so n � 4 mod 6) then C � Z6, and so is conjugate toB

α
pn�1q{3
1

F
. If G � O1 (so n � 0, 2 mod 6) then C � Z6 or C � Z8, and so is conjugate toB

α
n{3
0

F
or

B
α
pn�2q{3
2

F
. Finally, if G � I (so n � 0, 2, 12, 20 mod 30) then C is isomorphic

to one of Z6 or Z10. If C � Z6 then C is conjugate to
B

α
n{3
0

F
if n � 0, 12 mod 30 or

to
B

α
pn�2q{3
2

F
if n � 2, 20 mod 30. If C � Z10 then C is conjugate to

B
α

n{5
0

F
if n �

0, 20 mod 30 or to
B

α
pn�2q{5
2

F
if n � 2, 12 mod 30. In all cases, x is conjugate to a power

of one of α0, α1 and α2, which completes the proof of the theorem.
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[GoG6] M. Golasiński and D. L. Gonçalves, Spherical space forms – homotopy types and self-
equivalences for the group pZ{a �Z{bq �TL2, preprint, 2007.
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[GG3] D. L. Gonçalves and J. Guaschi, The lower central and derived series of the braid groups BnpS2q
and BmpS2z tx1, . . . , xnuq, preprint, March 2006, arXiv:math/0603701.
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