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Abstract

Let n = 3. We classify the finite groups which are realised as subgroups of the sphere braid
group B,(S?). Such groups must be of cohomological period 2 or 4. Depending on the
value of n, we show that the following are the maximal finite subgroups of B, (S?): Zy(,—1);
the dicyclic groups of order 4n and 4(n — 2); the binary tetrahedral group Ty; the binary
octahedral group Oy; and the binary icosahedral group 1. We give geometric as well as
some explicit algebraic constructions of these groups in B,(S?), and determine the number
of conjugacy classes of such finite subgroups. We also reprove Murasugi’s classification of
the torsion elements of B,,(S?), and explain how the finite subgroups of B,,(S?) are related
to this classification, as well as to the lower central and derived series of B,,(S?).

1 Introduction

The braid groups B, of the plane were introduced by E. Artin in 1925 [[AT], [AZ]. Braid
groups of surfaces were studied by Zariski [A]. They were later generalised by Fox to
braid groups of arbitrary topological spaces via the following definition [FoN]. Let M
be a compact, connected surface, and let n € N. We denote the set of all ordered n-tuples
of distinct points of M, known as the n'"* configuration space of M, by:

Fuo(M) ={(p1,...,pn) | pie Mand p; # pjifi #j}.
2000 AMS Subject Classification: 20F36 (primary), 20F50, 20E45, 57M99 (secondary).
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Configuration spaces play an important role in several branches of mathematics and
have been extensively studied, see [CQG, [FH]] for example.

The symmetric group S, on n letters acts freely on F, (M) by permuting coordinates.
The corresponding quotient will be denoted by D, (M). The n'" pure braid group P,(M)
(respectively the n' braid group B,,(M)) is defined to be the fundamental group of F, (M)
(respectively of D, (M)).

Together with the real projective plane RP?, the braid groups of the 2-sphere S?
are of particular interest, notably because they have non-trivial centre [[GVB, GGI],
and torsion elements [VB, Md]. Indeed, Van Buskirk showed that among the braid
groups of compact, connected surfaces, B,(S?) and B,,(RP?) are the only ones to have
torsion [[VB]. Let us recall briefly some of the properties of B,(S?) [FVB, [GVB, VB].

If D? < S? is a topological disc, there is a group homomorphism ¢: B, —> B, (S?)
induced by the inclusion. If § € B, we shall denote its image /() simply by . Then
B, (S?) is generated by o7, ..., 0,1 which are subject to the following relations:

0i0; = 0jojif li—j| >2and 1 <i,j<n-1
0;0i410; = 0;410i0;41 forall1 <i <n—2,and

2
Op - Op—20py_10pn—2 0] = 1.

Consequently, B,(S?) is a quotient of B,,. The first three sphere braid groups are finite:
By (S$?) is trivial, By(S?) is cyclic of order 2, and B3(S?) is a ZS-metacyclic group (a group
whose Sylow subgroups, commutator subgroup and commutator quotient group are all
cyclic) of order 12, isomorphic to the semi-direct product Z3 x Z4 of cyclic groups, the
action being the non-trivial one, which in turn is isomorphic to the dicyclic group Dicy
of order 12. The Abelianisation of B, (S?) is isomorphic to the cyclic group ZLo(n-1)- The
kernel of the associated projection ¢: B, (S?) — Zy(n—1y (which is defined by ¢(0;) = 1
forall 1 <i < n —1)is the commutator subgroup I'; (BH(S2)). If w € B,(S?) then &(w)
is the exponent sum (relative to the 0;) of w modulo 2(n —1).

Gillette and Van Buskirk showed that if # > 3 and k € N then B,(S?) has an element
of order k if and only if k divides one of 21, 2(n — 1) or 2(n — 2) [[GVB]. The torsion
elements of B, (S?) and B, (RP?) were later characterised by Murasugi [Md]. For B, (S?),
these elements are as follows:

THEOREM 1 ([MU]). Let n > 3. Then the torsion elements of B,,(S?) are precisely powers of
conjugates of the following three elements:

(a) ag =0y - - 0y—20,_1 (which is of order 2n).

(b)) aq =07 -- -an_p_aﬁ_l (of order 2(n —1)).

(c) ag = 01+ 0y_302_, (of order 2(n — 2)).

The three elements &g, 1 and a; are respectively n'h, (n —1)! and (n — 2)" roots of
A,,, where A, is the so-called “full twist’ braid of Bn(SZ), defined by A, = (01 -+ - 0—1)".
So B, (S?) admits finite cyclic subgroups isomorphic to Zy,, Lon—1yand Zy(,_py. In (GG,
we showed that B, (S?) is generated by ag and «;. If n > 3, A is the unique element
of B, (S?) of order 2, and it generates the centre of B, (S?). It is also the square of the
Garside element (or ‘half twist’) defined by:

Ty = (01 0y-1)(01 -+ 0p—2) -+~ (0102)071.
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For n > 4, B,(S?) is infinite. It is an interesting question as to which finite groups are
realised as subgroups of B, (S?) (apart of course from the cyclic groups {«;) and their
subgroups given in Theorem [[). Another question is the following: how many conju-
gacy classes are there in B, (S?) of a given abstract finite group? As a partial answer to
the first question, we proved in [GGZ] that B,(S?) contains an isomorphic copy of the
finite group B3(S?) of order 12 if and only if n # 1 mod 3.

While studying the lower central and derived series of the sphere braid groups, we
showed that I'; <B4(SZ)) is isomorphic to a semi-direct product of Qg by a free group
of rank 2 [[GGJ|]. After having proved this result, we noticed that the question of the
realisation of Qg as a subgroup of B,,(S?) had been explicitly posed by R. Brown [[ATT]
in connection with the Dirac string trick [[{, N] and the fact that the fundamental group
of SO(3) is isomorphic to Zy. The case n = 4 was studied by J. G. Thompson [[Th]]. In a
previous paper, we provided a complete answer to this question:

THEOREM 2 ([[GG4]). Let n e N, n = 3.
(a) B, (S?) contains a subgroup isomorphic to Qg if and only if n is even.
(b) If n is divisible by 4 then I' (Bn (SZ)) contains a subgroup isomorphic to Qg.

As we also pointed out in [[GG4], for all n > 3, the construction of Qg may be gener-
alised in order to obtain a subgroup {ag, T,) of B, (S?) isomorphic to the dicyclic group
Dicy,, of order 4n.

It is thus natural to ask which other finite groups are realised as subgroups of B, (S?).
One common property of the above subgroups is that they are finite periodic groups
of cohomological period 2 or 4. In fact, this is true for all finite subgroups of B,(S?).
Indeed, by [[GGZ], the universal covering X of F,(S?) is a finite-dimensional complex
which has the homotopy type of S® (we were recently informed by V. Lin that X is
biholomorphic to the direct product of SL(2,C) by the Teichmiiller space of the n-
punctured Riemann sphere [[d]). Thus any finite subgroup of B,(S?) acts freely on
X, and so has period 2 or 4 by Proposition 10.2, Section 10, Chapter VII of [B1]. Since
Ay is the unique element of order 2 of B,(S?), and it generates the centre Z(B,(S?)),
the Milnor property must be satisfied for any finite subgroup of B,(S?). Recall also
that a finite periodic group G satisfies the p?-condition (if p is prime and divides the
order of G then G has no subgroup isomorphic to Z, x Z,), which implies that a Sylow
p-subgroup of G is cyclic or generalised quaternion, as well as the 2p-condition (each
subgroup of order 2p is cyclic). The classification of finite periodic groups is given
by the Suzuki-Zassenhaus theorem (see [[AM, [hd] for example), and thus provides a
possible line of attack for the subgroup realisation problem. The periods of the differ-
ent families of these groups were determined in a series of papers by Golasifiski and
Gongalves [GoGll, [GoG2, [GoG3, GoG4, GoGh, [GoGH], and so in theory we may obtain
a list of those of period 4. A list of all periodic groups of period 4 is provided in [[hd].
However, in the current context, a more direct approach is obtained via the relation-
ship between the braid groups and the mapping class groups of S?, which we shall
now recall.

For n € N, let M, denote the mapping class group of the n-punctured sphere. We
allow the n marked points to be permuted. If n > 2, a presentation of My, is obtained
from that of B,(S?) by adding the relation A, = 1 [Md, MKY]. In other words, we have




the following central extension:
1— D) — Bn(Sz) - Mon — 1. @

If n =2, By(S?) = Moo = Zy. For n = 3, since M3 = S3, this short exact sequence
does not split, and in fact for n > 4 it does not split either [GVH].

This exact sequence may also be obtained in the following manner [Bi]. Let Diff+(S2)
denote the group of orientation-preserving homeomorphisms of S?, and let X € D, (S?).
Then Diff+(S2,X) = { fe Diff+(S2) ) f(X) = X} is a subgroup of Diff+<82), and we
have a fibration Diff+<82, X) — Diff+(Sz) — D,(S?), where the basepoint of D,,(S?)
is taken to be X, and where the second map evaluates an element of Diff+<82) on X.
The resulting long exact sequence in homotopy yields:

.- — p (Diff*(S% X)) — m (Diff*(S?)) — 11 (Da(S?)

Z B, (S?)
2, (Ditf(S?, X)) — 7o (Diff"(S?)) . (2)
\ Mo R T

The homomorphism &: B, (S?) — My, is the boundary operator which we shall use
in Section B in order to describe the geometric realisation of the finite subgroups of
B,(S?). If n > 3 then m (Diff+(82, X)) = {1} [EE, Hn, Bd], and we thus recover equa-
tion () (the interpretation of the Dirac string trick in terms of the sphere braid groups [J,
Hn, NJ gives rise to the identification of 711 (Diff+<82)) with (Ay)).

In a recent paper, Stukow applies Kerckhoff’s solution of the Nielsen realisation
problem [[K]] to classify the finite maximal subgroups of My ,, [Bi]. Applying his results
to equation (), we shall see in Section [ that their counterparts in B,(S?) are cyclic,
dicyclic and binary polyhedral groups:

THEOREM 3. Let n > 3. The maximal finite subgroups of B, (S?) are:

(a) Zo(p—1yifn =>5.

(b) the dicyclic group Dicay, of order 4n.

(c) the dicyclic group Dicyy_p) if n =5o0rn = 7.

(d) the binary tetrahedral group, denoted by Ty, if n = 4 mod 6.

(e) the binary octahedral group, denoted by O1, if n = 0,2 mod 6.

(f) the binary icosahedral group, denoted by I, ifn = 0,2,12,20 mod 30.

REMARKS 4.

(a) If n is odd then the only finite subgroups of B,,(S?) are cyclic or dicyclic. In the latter
case, the dicyclic group Dicyy, (resp. Dicy(,_)) is ZS-metacyclic [CMI], and is isomorphic
to Zy x Zy (vesp. Zy—p x Z4), where the action is multiplication by —1.

(b) If n is even then one of the binary tetrahedral or octahedral groups is realised as a
maximal finite subgroup of B, (S?). Further, since T; is a subgroup of Oy, Tj is realised
as a subgroup of B, (S?) for all n even, n > 4.



(c) The groups of Theorem Bfand their subgroups are the finite groups of quaternions [Cd].
Indeed, for p, g, r € N, let us denote

{p,q,ry=(A,B,C|AP =BT =C" = ABC).

Then ZZ(;’!—l) = <1’l — 1,n — 1, 1>, DiC4n = <7’l, 2, 2>, DiC4(n_2) = <n — 2, 2, 2>, T1 = <3, 3, 2>,
01 = 4,3,2yand I = (5,3,2). It is shown in [[Cd, CM] that for Ty, O and I, this
presentation is equivalent to:

p3,2) = <A,B ’AP - B3 = (AB)2>,

for p € {3,4,5}, and that the element A” is central and is the unique element of order 2

of (p,3,2).

In Section I, we also generalise another result of Stukow concerning the conjugacy
classes of finite subgroups of M, to B,(S?):

PROPOSITION 5.

(a) Two maximal finite subgroups of B, (S?) are isomorphic if and only if they are conjugate.
(b) Each abstract finite subgroup G of B,(S?) is realised as a single conjugacy class within
B,.(S?), with the exception, when n is even, of the following cases, for which there are precisely
two conjugacy classes:

(i) G = Zy.

(it) G = Dicy,, where r divides 5 or ”7_2

In Section B, we explain how to obtain geometrically the subgroups of Theorem 3,
and we also give explicit group presentations of the cyclic and dicyclic subgroups, as
well as in the special case T for n = 4.

In order to understand better the finite subgroups of B, (S?), it is often useful to
know their relationship with the three classes of elements described in Theorem [l This
shall be carried out in Proposition [[J (see Section @).

The two conjugacy classes of part (B)({]) are realised by the subgroups <ch/ 2> and

[Xgn—z)/ 2> (they are non conjugate since they project to non-conjugate subgroups in

Sn). In Section fj, we construct the two conjugacy classes of part (b)(fi) of Proposition f:

THEOREM 6. Let n > 4 be even. Let N € {n,n —2}, and let x = ag (resp. x = txoocp_oco_l) if
N =n(resp. N =n—2). Set N = 2k wherel € N, and k is odd. Then forj =0,1,...,1, and
q a divisor of k, we have:

(a) By (S?) contains 2/ copies of Dicyia—jy , of the form <x2j‘7, xT, >, wherei =0,1,...,2/ —1.

(b) if0 <i,i' <2/ -1, <x2j‘7, xian> and <x2j‘7, xi'an> are conjugate if and only if i — i is
even.

Another question arising from Theorem P is the existence of copies of Qg lying in
T>(Bx(S?)). More generally, one may ask whether the dicyclic groups constructed above
(and indeed the other finite subgroups of B,(S?)) are contained in I';(B,(S?)). In the
dicyclic case, we have the following result, also proved in Section B
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PROPOSITION 7. Let n > 4 be even, let N € {n,n —2}, and let r divide N. If r does not
divide N/2 then the subgroups of B, (S?) abstractly isomorphic to Dicy, are not contained in
T2(Bn(S?)). If r divides N/2 then up to conjugacy, B,(S?) has a two subgroups abstractly
isomorphic to Dicy,, one of which is contained in T (B, (S?)), and the other not. In particular,
B,,(S?) exhibits the two conjugacy classes of Qg, one of which lies in To(B,,(S?)), the other not.

The corresponding result for the binary polyhedral groups may be found in Propo-
sition [[f. As a corollary of our results we obtain an alternative proof of Theorem [[] (see
Section ).
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2 The classification of the finite maximal subgroups of
B,.(S?)

In this section, we prove Theorem f§. We start by making some remarks concerning the
central extension ().

REMARKS 8. Let G be a finite subgroup of B,(S?).

(a) If H is a finite subgroup of Mg , then p~!(H) is a finite subgroup of B,,(S?) of order
2|H|.

(b) If |G| is odd then A, ¢ G, and so G = p(G). Conversely, if G = p(G) then p|¢ is
injective, and thus A, ¢ G, so |G| is odd.

(c) If |G| is even then A, € G, and so we obtain the following short exact sequence:

1— (A — G2 p(G) — 1, 3)
G|

where p(G) is a finite subgroup of My, of order -

(d) 1f G is a maximal finite subgroup of B,,(S?) then |G| is even, and p(G) is a maximal
tinite subgroup of M ,. Conversely, if H is a maximal finite subgroup of My, then
p~1(H) is a maximal finite subgroup of B, (S?).

We recall Stukow’s theorem:

THEOREM 9 ([ET]). Let n > 3. The maximal finite subgroups of M ,, are:

(a) Zn_]_ l:fn # 4:
(b) the dihedral group Doy, of order 2n.



(c) the dihedral group Dy, _oyif n =50rn =>7.
(d) Agifn =4,10 mod 12.

(e) S4ifn=0,2,6,8,12,14,18,20 mod 24.

(f) Asifn=0,2,12,20,30,32,42,50 mod 60.

REMARK 10. In the case n = 3, M3 is isomorphic to Dg, obtained as a maximal sub-
group in part (b) of Theorem P, and so its subgroup isomorphic to Z; is not maximal.
This explains the discrepancy between the value of # in part (a) of Theorems B and .

Proof of Theorem B. By Remarks B, we just need to check that the given groups are those
obtained as extensions of (A, ) by the groups of Theorem P We start by making some
preliminary remarks. Let H be one of the finite maximal subgroups of M, ,, and let
G be a finite (maximal) subgroup of B,(S?) of order 2 |H| which fits into the following
short exact sequence:

11—y —c sy, )

where A, € G belongs to the centre of G, and is the unique element of G of order 2.
Then G = p~!(H), and so is unique.

Suppose that y € H is of order k > 2. Then y has two preimages in G, of the form x
and xA,, say, and x is of order k or 2k. If k is even then by Remarks B({), x must be of
order 2k, x* = A, and A, € (x). If k is odd then x is of order k (resp. 2k) if and only if
xAy is of order 2k (resp. k).

A presentation of G may be obtained by applying standard results concerning the
presentation of an extension (see Theorem 1, Chapter 13 of [[J]). If H is generated by
hy,..., hi then G is generated by g1, ..., 8k, An, Where p(g;) = h; fori = 1,...,k. One
relation of G isjust A2 = 1, that of Ker (p). Since Ker (p) < Z(G), the remaining relations
of G are obtained by rewriting the relators of H in terms of the coset representatives,
and expressing the corresponding element in the form A%, where € € {0, 1}.

We consider the six cases of Theorem [ as follows.

(1) H = Zy_1: let y be a generator of H, and let x € G be such that p(x) = y. Then
G = Ay, xyand |G| = 2(n —1). If nis odd then A, € (x), G = {(x), and x is of order
2(n—1). If niseven then G = (xA,,) (resp. G = (x)) if x is of order n — 1 (resp. 2(n — 1)),
and G = Zy(,_1) in both cases.

(b) H = Dy,: lety,z € H be such that o(y) = n, 0(z) = 2 and zyz~! = y~!, and let
x,w € G be such that p(x) = y and p(w) = z. So G = (A, x,w) and |G| = 4n. From
above, it follows that w?> = A,, so G = (x,w). If n is even then x is of order 2n and
x" = Ay. The same result may be obtained if n is odd, replacing x by xA,, if necessary.
Further, wxw~'x € Ker (p). If wxw~'x = A, then (wx)?> = 1. So either w = x~! or
wx = A,, and in both cases we conclude that G = {(x) which contradicts |G| = 4n.
Hence wxw~'x = 1, and since |G| = 4n, G is isomorphic to Dicyy,.

(c) H = Djy(,_y): the previous argument shows that G = Dicy(,_).

(d) Suppose that H is isomorphic to one of the remaining groups Ay, S4 or As of The-
oremf. Letp =3if H =~ Ay, p=4if H =Sy, and p =5if H =~ As. Then H has a

presentation given by [Cd, CM]:
H = <u,v ‘uz — 0 = (uv)P = 1>.

Let x,w € G be such that p(x) = u and p(w) = v. Then G = {x,w, A,). From above,
we must have x2 = A,,. Further, replacing w by wA,, we may suppose that w3 = A,
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If p = 4 then (xw)P = A,, while if p € {3,5}, replacing x by xA,, if necessary, we may
suppose that (xw)? = A,,. It is shown in [Cd, CM] that x?> = w® = (xw)? = A, implies
that A2 = 1, so G admits a presentation given by:

G=<x,w ’x2=w3 = (xw)P>.

Thus G=Tyif p =3,G = O1if p=4and G = [ if p = 5. This completes the proof of
the theorem.
U

REMARKS 11. Let Gy, G, be finite subgroups of B, (S?).

(a) If they are of odd order then by Remarks B, G; and G, are isomorphic if and only if
p(G1) and p(G,) are isomorphic. So suppose that G; and G, are of even order. If p(Gy)
and p(Gy) are isomorphic then it follows from the construction of Theorem [ that G;
and G, are isomorphic. Conversely, suppose that G; and G, are isomorphic via an iso-
morphism a: G; — G,. Since A, belongs to both, and is the unique element of order 2,
we must have a(A,) = A,, and thus a induces an isomorphism &: p(G1) — p(Gy) sat-
isfyinga@op = poa.

(b) If Gy, Gy are conjugate then clearly so are p(G;) and p(Gz). Conversely, suppose
that p(Gy), p(Gy) are conjugate subgroups of Mg ,. Then there exists ¢ € My, such
that p(G,) = ¢p(G1)g~'. If G1 and G; are of even order, the fact that equation ([) is a
central extension implies that G;, Gy are conjugate. If G; and G, are of odd order, let
L; = p~Y(p(G;)) fori = 1,2. Then [L; : G;] = 2, and it follows from the even order case
that L; and L, are conjugate in B, (S?). But L; = G;]]A,G;, and its odd order elements
are precisely those of G;. So the conjugacy between L1 and L, must send G onto G,.

We are now able to prove Proposition B.

Proof of Proposition pl. Part () follows from Remarks § and [ To prove part (g), let
G1, G, be abstractly isomorphic finite subgroups of B, (S?), and for i = 1,2, let H; =
p(Gj). Then Hy =~ Hj: if the G; are of odd order then H; =~ G;, so H; = Hj, while if the
G; are of even order, any isomorphism between them must send A, € G; onto A, € Gy,
and so projects to an isomorphism between the H;. From Remarks [1(H), G; and G
are conjugate if and only if H; and H; are, and so the number of conjugacy classes of
subgroups of By, (S?) isomorphic to G; is the same as the number of conjugacy classes of
subgroups of My, isomorphic to Hy. The result follows from the proof of Theorem [
by remarking that a subgroup of M, ,, isomorphic to Z, (resp. Dy,) lifts to a subgroup
of B, (S?) which is isomorphic to Z; (resp. Dicy,). O

3 Realisation of the maximal finite subgroups of B, (S?)

In this section, we analyse the geometric and algebraic realisations of the subgroups
given in Theorem f3.

3.1 The algebraic realisation of some finite subgroups of B, (S?)

The maximal cyclic and dicyclic subgroups of B, (S?) may be realised as follows:
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(@) Znn-1) = {a1)-
(b) Dicyy = (ag, Tn) [GGE].

(c) The algebraic realisation of Dicy(,_) is given by the following proposition:

PROPOSITION 12. For all n > 3, the subgroup <ocoocztxal,Tn> of B, (S?) is isomorphic to
DiC4(n_2).

Proof. Let x = agazay . We know that x is of order 2(n — 2), and that x"~1 = A, = T2.

Further, by standard properties of the corresponding elements in B, [Bil, aociay e

oiyq foralli = 1,...,n -2, and T,0;T; ! = 0,,_; foralli = 1,...,n —1. Hence x =
0y 0y_202_ |, and

-1 _ 2 2 -1 -1_ -1
TuxT, " =0p—2-+- 0201 =0, 10, 50y =X .

Thus (x, T;;) is isomorphic to a quotient of Dicy(,_p). But Ty, ¢ (x), so {x, T;;) contains
the 2(n — 2) + 1 distinct elements of (x) u {T,,}, and the result follows. O

REMARK 13. In the special case n = 4, the binary tetrahedral group T; may be realised
as follows. Lety = 0705 '. From [[GGA], we know that {y, Ty) = Qg. In B4(S?), we also
have (0201)% = (0203)% = Ay = TZ. Then <oc%> >~ Zg3 acts on (y, Ty) as follows:
zx% Ty - le_z = oc%(T4oc_2T_1)T4
— a2

2(07 205 1oy 12Ty (by the action of Ty)

N

= a3(0203)?Ty (using the surface relation of B,,(S?))

(01020%)? - o5 102 L (0003)° Ty

= 0102030710207 -01_102_101_1 -(73010203(72_12% (as T7 = (0203)3)
= Tyoy 1(72_ 1(73(77_(73(72_ 1T4? (as 01 commutes with 03)

= Tyoy Y3 T} (by the Artin braid relations)

= Tyy~'T, ! = y (by the action of Ty on y).

Further,

Wy ocl_z = ((71_1(72_1)2 - (71(73_1 - (0201)?
= ((71_1(72_1)2 - (73_1(72_1 - (0201)° (as o7 commutes with 03)

1l -1 -1 -1 -1 _—1 52 2 _ 3

1l -1 -1 -1 -1 _—1 72 : : -
=0y 0, 07 04 0, 03 -T; (by the Artin braid relations)
_ 1 -1 -1 -1_-1_-1 _ _—1752

=0y 0, 0, 05 0, 07 0105 1}

=T, lyT? = Tyy (since T} is central).
Hence Ty = Qg x Zs = (y, Tyy x {a}).
REMARK 14. We also have an algebraic representation of Ty in Bg(S?). Let

v = 05(7401_102_1, and

0= 03_1(74_1(75_1 ((72_101_102_1) 050403,



Then we claim that {vy,6) =~ Qg x Zs = T, where the action permutes the elements
i,j,k of Qg. First, 7> = 6> = Ag. We now consider the subgroup H = <5, 757_1>. The

action of conjugation by « permutes cyclically the elements J, y6y~! and 74?771, so is
compatible with the action of Zz on Qg. It just remains to show that H = Qg. Clearly
8% = (76771)? = A¢. Let us now prove that

0 loasy .5 = o1y (5)
Set p = 050403, 7' = pyp~ ! and &' = pdp~!. Then equation () is in turn equivalent to:

5/—1 . ,}//5/,)//—1 _5/ _ ,}//5/—1,)//—1
5/—17/5/7/—15/25/—1,)//5/,)//—1 =1
(671,92 =677 = Ae.

We shall show that the latter relation holds. Notice that

1 -1

/ -1 _-1_-1_-1_-1
Y = 050403050407 "0, U5 0y 05 = = 0504050304K(.

Then

1 1 -1 _-1_-1_-1

1—1 1 -1 _—-1_—1 -1 _-1_-1 -1 -1 _-1_-1_—1_—
(6709 = 05 "0, 05 020102 - 050405030400 - 0 "0y 0y 050405 - &y 0 04 O 0y 0O

= (fzzxo(fgloc0(72_1(71_1(72_10504(750504030201(7;1(73_1(75_104_105_1
= 005 tagoy Loy oy tosoy toy to oy tog o to s !

= o0 tagoy tosoy oy oy oy tog toyo oy to tog oy o
= 02a005_10c002_1(75oc001(72_1a0

= (thxoaglocgloc%(72_105oc620c80102_10c630c3

= (72’(_1(7;101(7405_1&% = (72’[_1(71(75_1&3,

since conjugation by ap permutes cyclically the elements 01, 02, 03, 04, 05 and T = agos50, L
Thus

1 8

(7105_1&64% = (77_1'_1

-1 2 1 14— 11 1.8
("L 91 = ot oyos tagonT o105 oy tosog e,

2

Let & = optloq05 ttoy tos05 !, To prove that [6'71, /]2 = Ag = af, it suffices to show

that ¢a3 = 1. Now

1 1 1 1 —1.2

oco(75o<5104_105(73 o
1

(75(73_10c% = (fzocoaglzxa
1

C«x% =0T (71(75_1'm4_ 0105
(74(72_1oc0 = 020(0(75_10(005(73_1(7402_103(71_

1 1 1

= 02a005_1a0(75oc6104_1c75(7§

= 0'20'10'20'30'40'10'20'30'40'520'40'30'3’_10";10'3,_
1. -1 _-1_-1

0'40'2_ 0'30'1_

= 0'10'20'10'30'40'1_10'2_ 0'4_ 0'3_ 0'2_ 0'30'1_1 =1

This proves the claim, so {y,J) = Tj.
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3.2 The geometric realisation of the finite subgroups of B, (S?)

The geometric realisation of the finite subgroups may be obtained by letting the corre-
sponding subgroup of My, act on the sphere with the n strings attached in an appro-
priate manner. For the subgroups Dicyy,, Zy(,—1) and Dicy(, o), we attach strings to n
symmetrically-distributed points (resp. n — 1, n — 2 points) on the equator, and 0 (resp.
1, 2) points at the poles. For T, O and I, the n strings are attached symmetrically with
respect to the associated regular polyhedron (for the values of n given by Theorem [3)
in the following manner.

(d) Let H = A4 be the group of orientation-preserving symmetries of the tetrahedron.
Thenn = 6k +4, k > 0, and we take k equally-spaced points in the interior of each edge,
plus one point at each vertex (or face).

(e) Let H = S4 be the group of orientation-preserving symmetries of the cube (or octa-
hedron).

(i) n =12k, k € N: take k equally-spaced points in the interior of each edge.

(i) n = 12k 4+ 2, k € N: take k — 1 equally-spaced points in the interior of each edge,
plus one point at each vertex and on each face.

(iii) n = 12k + 6, k > 0: take k equally-spaced points in the interior of each edge, plus
one point on each face.

(iv) n = 12k + 8, k > 0: take k equally-spaced points in the interior of each edge, plus
one point at each vertex.

(f) Let H = As be the group of orientation-preserving symmetries of the icosahedron
(or dodecahedron), which has 12 faces, 30 edges and 20 vertices.

(i) n = 30k, k € N: take k equally-spaced points in the interior of each edge.

(i) n = 30k 4+ 2, k € N: take k — 1 equally-spaced points in the interior of each edge,
plus one point at each vertex and on each face.

(iii) n = 30k + 12, k > 0: take k equally-spaced points in the interior of each edge, plus
one point on each face.

(iv) n = 30k + 20, k > 0: take k equally-spaced points in the interior of each edge, plus
one point at each vertex.

In each case, the action of the given group H of symmetries yields the corresponding
maximal finite subgroup of B,(S?). This follows essentially from the definition of the

boundary operator 0: 711(Dy(S?)) — (Diff+<82, X)) in the long exact sequence (@)
which we now describe in detail in our setting. As in Section [l], let X be the basepoint
in D,,(S?), and let ¢: Diff+(S2) —> D,,(S?) denote evaluation on X. So if g € Diff+<82)
then (g) = g(X). Let Ids: be the basepoint in Diff+<Sz), so that ¢(Idg2) = X. Let
B € B,(S?) be abraid, and let f: [0,1] — D, (S?) be a geometric braid which represents
B. So f(0) = f(1) = X, and the loop class {f) in B,(S?) is equal to B. Then f lifts to
f:10,1] — Diff+<S2) which satisfies f(0) = Idg and o f = f. Hence ¢po f(1) =
f(1) = X, and thus (1) belongs to the fibre Diff+<82, X) Geometrically, f is an isotopy

of S2 which realises § on the points of X. Neither f nor the corresponding endpoint f(1)
are unique, however all of the possible f(1) belong to the same connected component of
Diff+(Sz, X), and so determine a unique element, denoted [f(1)], of 7o (Diff+<S2, X)),

which is the image under ¢ of B. Thus if fis an isotopy of S? which realises B, 9(B) is
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the mapping class of the homeomorphism £(1), and corresponds geometrically to just
remembering the final homeomorphism (in particular, one forgets the strings of ).

Conversely, if g € Diff+<Sz) satisfies ¢(X) = X, leth: [0,1] — Diff+(S2) be an iso-
topy from h(0) = Idg to i(1) = g. Then i o his a loop in D,,(S?) based at X, so describes
a geometric braid obtained by attaching strings at the points of X and following the iso-
topy h. In S? x [0,1], the strings are given by {(y o h(t), t)}te[o,l] = {(h()(X), 1)} tepo1)-
Thus (i o h) € B,(S?) is a braid, and by the above construction, o((y o h)) = [h(1)] = [g]-
In other words, a choice of isotopy & between the identity and g € Diff+(82, X) allows

us to lift the mapping class [g] to a preimage B = (P oh) under ¢ which is obtained
geometrically by attaching strings to X during the isotopy h.

Let r: [0,1] — Diff+<Sz) denote rigid rotation through an angle 2. So r(0) =
r(1) = Idge, the loop class (r) generates 7 (Diff+<82)) ~ Zp, and thus (Ppor) =
P.((r)) = Ay, since P.: (Diff+<82)) —> By,(S?) is injective. The second preimage
of [¢] under 0 is obtained by considering the isotopy /’: [0,1] — Diff+(Sz) which is
the isotopy h followed by r. The braids (i o h) and (i o I’} differ by (¢ or) = A,,, and
thus define the two preimages of [¢] under 0.

Finally, each finite subgroup H of My, is realised by a finite subgroup of isome-
tries of S? (which are the finite subgroups of SO(3)) [K]. Each element of H admits

two preimages in B, (S?) which differ by A,. These preimages thus make up the finite
subgroup 0~!(H) of B, (S?) whose order is twice that of H.

4 Position of the finite subgroups of B, (S?) relative to Mura-
sugi’s classification

Let n > 4 be even. Fori = 0,1, 2, let G; be the set of torsion elements of Bn(Sz) whose
order divides 2(n —i). Equivalently, by Theorem [ll, G; is the set of conjugates of powers
of ;. Notice that G; is invariant under conjugation, G; n G; = (Ay) forall 0 <i <j <2,
and Gy U G1 U G; is the set of torsion elements of B,(S?). For many purposes, it is
often useful to know where a finite subgroup H of B,,(S?) lies relative to the G;. In this
section, we carry out this calculation for all such subgroups.

PROPOSITION 15. Let H be a finite subgroup of B,,(S?) of order greater than or equal to 3.
(I) Suppose that H is cyclic.

(a) if |H| = 4 and n is even then there exists a subgroup H' of B,(S?) isomorphic to Z4 non-
conjugate to H. One of H, H' lies in Gy, while the other lies in G,.

(b) if either |H| = 4 and n is odd, or if |H| # 4 then H < G;, where |H| | 2(n — i), and
ie{0,1,2}.

(I) Suppose that H is a subgroup of a maximal non-cyclic subgroup of B,(S?).

(a) If H is a non-cyclic subgroup contained in Dicyy, or Dicy,_y) then it is itself dicyclic, of the
form Dicyy, where k > 1 divides n or n — 2 respectively. Further:

(i) if nis odd then H ¢ G; U Gy, wherei € {0,2} and |H| | 4(n —1).

(ii) Suppose that n is even.
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(1) ifk | n(resp. k | n—2) but k y 5 (resp. k } ”T_Z) then H lies in Gy u G, and meets both
GO and Gz.

(2) ifk | & (resp. k | “52) then there exists another subgroup H' of B, (S*) isomorphic to Dicy
but non conjugate to H. In this case, one of H, H' is contained wholly within G (resp. Gy), and
the other lies in Gy U Gy and meets both Gy and Go,.

(b) Suppose that H is a subgroup of a copy of Ty in the case that Ty is maximal.

(i) If H = T then H lies in Gy u G1 (resp. G, u G1) if n =4 mod 12 (resp. n = 10 mod 12),
and meets both Gy (resp. Gp) and G;.

(i) If H is isomorphic to Zs or Z¢ then it is contained in G;.

(iii) If H is isomorphic to Z4 or Qg then it is contained in Gg if n = 4 mod 12, and in Gy if
n =10 mod 12.

(c) Suppose that H is a subgroup of a copy of I in the case that I is maximal.

(i) If H is isomorphic to I then H is contained in Gg (resp. Gp) if n = 0 mod 60 (resp. n =
2 mod 60), and lies in Go U G and meets both Gy and Gy if n = 12,20, 30, 32,42, 50 mod 60.
(ii) If H is isomorphic to Z3 or Ze then it is contained in Gg if n = 0,12 mod 30, and in G if
n = 2,20 mod 30.

(iii) If H is isomorphic to Zs or Zyg then it is contained in Go if n = 0,20 mod 30, and in G,
ifn =2,12 mod 30.

(iv) If H is isomorphic to Zy or Qg then it is contained in Gg if n = 0,12,20,32 mod 60, and
in Gy if n = 2,30,42,50 mod 60.

(v) If H is isomorphic to Ty or to Dicyp then it lies in Gg if n = 0,12 mod 60, in Gy if n =
2,50 mod 60, and lies in Go v Gy and meets both Gy and Gy if n = 20, 30, 32,42 mod 60.
(vi) If H is isomorphic to Dicyg then it lies in Go if n = 0,20 mod 60, in G, if n = 2,42 mod
60, and lies in Go U Gy and meets both Go and Gy if n = 12,30, 32,50 mod 60.

(d) Suppose that H is a subgroup of a copy of Oy in the case that Oy is maximal.

(i) If H is isomorphic to Oy then it lies in Go if n = 0 mod 24, in Gy if n = 2 mod 24, and
lies in Go L G, and meets both Go and Gy if n = 6,8,12,14,18,20 mod 24.

(ii) If H is isomorphic to Ty then it lies in Gy if n = 0 mod 12, in Gy if n = 2 mod 12, and
lies in Go U G, and meets both Gy and Gy if n = 6,8 mod 12.

(iii) If H is isomorphic to Q14 then it lies in Gy if n = 0,8 mod 24, in Gy if n = 2,18 mod 24,
and lies in Gy u Gy and meets both Gy and Gy if n = 6,12,14,20 mod 24.

(iv) If H is isomorphic to Dicyy then it lies in Go if n = 0,6 mod 24, in G, if n = 2,20 mod
24, and lies in Gy U Gy and meets both Go and Gy if n = 8,12,14,18 mod 24.

(v) If H is isomorphic to Zg then it lies in G if n = 0,8 mod 12, and in Gy if n = 2,6 mod 12.
(vi) If H is isomorphic to Z4 then there exists another non-conjugate subgroup H' of B, (S?)
isomorphic to Zs. One of H, H' is contained in Gy if n = 0,8 mod 12, and in Gy if n =
2,6 mod 12, while the other is contained in Gy if n = 0,6,8,14 mod 24, and to Gy if n =
2,12,18,20 mod 24.

(vii) If H is isomorphic to Qg then there exists another non-conjugate subgroup H' of By, (S?)
isomorphic to Qg. One of H, H' is contained in Gy if n = 0,8 mod 12, and to Gy if n =
2,6 mod 12, while the other lies in Gy if n = 0,8 mod 24, in Gy if n = 2,18 mod 24, and lies
in Go U Gy and meets both Go and Gy if n = 6,12,14,20 mod 24.

(viii) If H is isomorphic to Z3 or Ze then it lies in Go if n = 0 mod 6 and in Gy if n = 2 mod 6.

Proof. Let H be a finite subgroup of B,,(S?) of order at least three.

(D) Suppose first that H is cyclic. Since G; n G; = (Ay) and [(&;)| = 2(n — i), the order of
H is sufficient to decide where H lies, unless 7 is even and H is of order 4, in which case
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there is another non-conjugate subgroup H’ isomorphic to Zs. One of H, H’ is conjugate

n/2 (n—2)/2

to <tx0 > which is contained in Gy, while the other is conjugate to ( a, > which lies

in G,. These two cases may be distinguished easily by checking the permutation of a
generator of H, H'.

(II) Now suppose that H is a subgroup of a maximal non-cyclic subgroup of B,(S?).
We consider the possible cases in turn.

(a) Firstly, let H be a subgroup of the dicyclic group Dicy,, which up to conjugation
may be assumed to be {xg, T;,) = {wo) 1T, {xp). We first suppose that n is odd. Then
{ap) = Gp, and the coset T, (wg) consists of the elements of Dicy, of order 4, so lies in
G1. The group Dicy, fits into a short exact sequence:

1—>Zn—>DiC4ni>Z4—>1.

If g {6}, then H < Zjy, and H is cyclic, of order dividing n, so lies in Go. If
2

{6, } then H < Zjy,, and again H is cyclic, of order dividing 2n, so lies in Gy.
Fmally, if g(H) = Z4 then we have

1—HnZ, — H-27, 1,

and H =~ Z; x Z4, where k divides n. If k = 1 then H =~ Z4. Since n is odd, H must then
lie in G1. So suppose that k > 1. Then H = <ch/ k, Tn> is dicyclic, and so lies in Gg U Gj.

Now suppose that 7 is even. Then Dicy, fits into the following short exact sequence:

1— Zp, —> Dicyy, 1> 7y —> 1.

If f(H) = {6} then H < Zj, and so lies in Go. If f(H) = Z; and H n Zy, were of odd
order, then H would be both dicyclic and of order twice an odd number, which cannot
occur. So suppose that f(H) = Z; and H n Zy, is of even order, 2k, say, where k | n.
If k = 1 then H = Z4, and H may lie in Gy or G depending on the permutation of its
generators. So suppose that k > 2. Then H is dicyclic of order 4k. Now

Dicy,, = @Z [1Tn <[X%> [ ] Tuao <[X%> )

=Go cGo cGy

The inclusions follow from the fact that the elements of T), <IX%> (resp. Thag <IX%>) are
conjugate (in Dicyy,), T, € Go, and

1(Taag) = (1, n)(2,n—1)- - (gg +1> (Ln,...,2)

n

_ (n) (g) (1,n—1)(2,n—2)(3,n—3)---(5 1,7 +1),

where 77: B, (S?) — S, denotes the homomorphism defined on the generators by 7t(c;) =
(i,i + 1). Thus TanO € Gz.
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If k t § then by Proposition [, there is just one conjugacy class of Dicyy of the form
<tx6’/ k, T, >, and since n/k is odd, we have

Dicy = <tx6’/k> [1Tx <tx6’/k> .
— —_—
CGO CGZ

In particular, all of the elements of Dicyy of order 4 belong to G,. Thus Dicy, n(Go\Gz) #
@ and Dicy n(G2\Gp) # .
If k | & then by Proposition [, there are two non-conjugate copies of Dicyy given by

<tx6’/k, Tn> = <ocg/k> [1Tx <tx6’/k>, and
—_—— —_—
CGO CGO
(01" Tuto) - <“o )L T < 7

The first copy lies entirely within Gp, while the second 11es in Gg u G, and meets both
Go\Gz and Gz\Go.

A similar result holds for Dicy(,_p): its subgroups are either subgroups of Z,(,_),
so lie in Gy, or else are dicyclic, of the form Dicy, where k | n — 2. If k = 1 then the
subgroup in question is (T}, ) which lies in Gy. If k > 1 then as above, we distinguish two
cases. Ifk y ”T_z then there is just one copy of Dicy which lies in Gg U G and meets both

and

Go\G2 and G\Gy. If k | =2 then setting o, = ocotxzoca , there are two copies of Dicy,
< ok Tn>, which lies in Gy U G, and meets both Gy\G, and G;\Gy, and < n/ K ol Tn>,

which is contained in Gj.

(b) Suppose that H is a subgroup of a copy of T1 when T; is maximal, so n = 4 mod 6.
Assume first that H = T;. Since H =~ Qg x Z3, all of its order 4 elements are conjugate,
and so all elements of Qg must lie in the same G;. Now Qg = Dicg, so from above,
we must be in one of the cases 2 | 5 or2 | © 2 Indeed if n = 4 mod 12 then n =
44121 = 4(1+3Il),1 € N, and so Qg is Contamed in Gp, while if n = 10 mod 12 then
n=10+12] = 2(5+6l),1 € N, and so Qg is contained in G,. The remaining elements
of H are of order 3 or 6, and since n = 4 mod 6, lie in G;. So if n = 4 mod 12 (resp.
n =10 mod 12) then H lies in Gy u Gy (resp. G2 U G1) and meets both Gy (resp. G,) and
G1.

From this, we deduce immediately the following: if H is isomorphic to Z3 or Zg
then it is contained in Gy, and if it is isomorphic to Z, or Qg then it is contained in Gy if
n =4 mod 12, and in G, if n = 10 mod 12.

(c) Suppose that H is a subgroup of a copy of I when I is maximal, son = 0,2,12,20 mod
30. Assume first that H = I. So I has a subgroup isomorphic to T;, whose copy of Qg
lies entirely in Go or Go. The subgroups of order 8 of H are its Sylow 2-subgroups, so
are conjugate, and thus all 11e either in Gy or in G,. Hence from the analysis of the di-
cyclic case, 2 divides 5 or T Further, all elements of H of order 4 are contained in one
of its subgroups isomorphic to Qg (because the order 2 elements of A5 are the product
of two transpositions, and are contained in a subgroup isomorphic to Z, @ Z,, which
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lifts to Qg in I). Hence all order 4 elements of H lie either in Gy if 4 | n, or in G, if
4 | n —2. The remaining elements of H are of order 3, 6,5 and 10, and lie in either Gy or
G, depending on the value of n modulo the order. Thus H lies entirely in Gg (resp. Go)
if n = 0 mod 60 (resp. n = 2 mod 60), and lies in Gy U G, and meets both Gy and G; if
n =12,20,30,32,42,50 mod 60.

We now consider the other possibilities for subgroups of I: if H is isomorphic to

either Zs or Zg, it is contained in Gg if n = 0,12 mod 30, and in G, if n = 2,20 mod 30;
if H is isomorphic to either Zs or Zj, it is contained in Gy if n = 0,20 mod 30, and
in Gy if n = 2,12 mod 30; and if H is isomorphic to either Z4 or Qg, it is contained
in Ggif n = 0,12,20,32 mod 60, and in G, if n = 2,30,42,50 mod 60. Next, if H is
isomorphic to Tj, it consists of a copy of Qg and elements of order 3 and 6, so lies
in Gy if n = 0,12 mod 60, in G, if n = 2,50 mod 60, and lies in Gy U G, and meets
both Gy and G, if n = 20,30,32,42 mod 60. Now suppose that H is isomorphic to
Dicip = 73 x 7y = Ze || TnZeg. Since the elements of T;,Z¢ are of order 4, it follows from
the analysis of the cyclic subgroups that H satisfies the same conditions as in the case
of Ty. Finally, if H is isomorphic to Dicyy = Zs x Zyg = Z1g L1 TuZy, since the elements
of T,,Zy are of order 4, it follows from the analysis of the cyclic subgroups that H lies
in Gy if n = 0,20 mod 60, in G, if n = 2,42 mod 60, and lies in Gy U G, and meets both
Go and G if n = 12,30, 32, 50 mod 60.
(d) Suppose that H is a subgroup of a copy of O; when O; is maximal, so n = 0,2 mod
6. Assume first that H = O;. Then it has a subgroup isomorphic to T; (which is unique
since S4 has a unique subgroup abstractly isomorphic to A4), and the copy of Qg lying in
T; lies entirely in Gy if n = 0,8 mod 12, and in G; if n = 2,6 mod 12. The complement of
this copy of Qg in T; consists of elements of order 3 and 6, and so liein Gg if n = 0 mod 6
and in G; if n = 2 mod 6 (thus the subgroups of O; isomorphic to Z3 and Z lie in Go
if n = 0mod 6 and in G; if n = 2 mod 6). Thus T; lies in Gy if n = 0 mod 12, in G, if
n =2 mod 12, and lies in Gy U G, and meets both Gy and G, if n = 6,8 mod 12.

In order to analyse the remaining possible subgroups Qj4, Dicyy, Dicyy of Oy, as
well as the other copy of Qg lying in Q14, we must study the elements of H\T;. They
project to elements of S4\ A4, which are either 4-cycles, or transpositions. We analyse the
geometric formulation of O; described in Section P as being obtained from the action
of S4 on a cube, with the n strings attached appropriately. The 4-cycles are realised
by rotations by 7/2 about an axis which passes through the centres of two opposite
faces. This gives rise to an element of Gy if the n marked points are not these central
points (i.e. if n = 0,8 mod 12), and to elements of G, if some of the n marked points
are central points of the faces (i.e. if n = 2,6 mod 12). The transpositions are realised
by rotations by 7t about an axis which passes through the centres of two diagonally-
opposite edges. This gives rise to an element of Gy if there are an even number of
marked points on each edge (i.e.if n = 0, 6, 8,14 mod 24), and to elements of G; if there
are an odd number of marked points on each edge (i.e. if n = 2,12,18,20 mod 24).
Putting together these results with those for Ty, if H =~ O;, we conclude that it lies in Gy
if n =0 mod 24, in G, if n = 2 mod 24, and lies in Gy U G, and meets both Gy and G, if
n=6,8,12,14,18,20 mod 24.

Now suppose that H is a subgroup of a copy of O; isomorphic to Q6. Such sub-
groups are the Sylow 2-subgroups of Oj, so are conjugate. If n = 0 mod 24 (resp.
n = 2 mod 24) then Oj lies in Gy (resp. Gz), and hence so does Q14. So suppose that
n # 0,2 mod 24. Any subgroup of O; isomorphic to Q14 contains elements of order 8
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which lie in O;\T1, and so are associated with the above 4-cycles. Further, H projects
to a subgroup of S4 isomorphic to Dg which is generated by a 4-cycle and a transposi-
tion. Studying the associated rotations as above, if one has fixed points and the other
not then automatically H lies in Gg U G2 and meets both Gy and G;. This occurs when
n =6,12,14,20 mod 24. So suppose that n = 8,18 mod 24.

If n = 8 mod 24 (resp. n = 18 mod 24) then the elements of H corresponding to the
4-cycles and the transpositions of Dg belong to Gy (resp. G). Further, the remaining
elements of Dg are products of such elements, and so the corresponding elements in
H are also elements of Ty =~ Qg x Zs of order 4. But such elements lie in the Qg-factor.
Since n = 8 mod 12 (resp. n = 6 mod 12), this copy of Qg lies in Gy (resp. G2), and hence
so does the given subgroup Q. Summing up, H lies in Gy if n = 0,8 mod 24, in Gy if
n = 2,18 mod 24, and lies in Gy U G, and meets both Gy and G, if n = 6,12,14,20 mod
24.

Now suppose that H is a subgroup of a copy of O; isomorphic to Dicjp. If n =
0 mod 24 (resp. n = 2 mod 24) then Oq lies in Gy (resp. G»), and hence so does H. So
suppose that n # 0,2 mod 24. Any subgroup of O; isomorphic to H projects onto a
subgroup of S4 isomorphic to S3 which consists of 3-cycles and transpositions. Hence
H is generated by an element of order 4 lying in O;\T;, and an element of order 6,
which lies in T;. The first element belongs to Gy if n = 6,8,14 mod 24 and to G, if
n = 12,18,20 mod 24, while the second element belongs to Gy if n = 6,12, 18 mod 24
and to G, if n = 8,14,20 mod 24. Hence if n = §8,12,14,18 = 24 then H lies in Gy u Gy
and meets both Gp and G,. The product of the two given generators is also of order
4 and so lies in Gy if n = 6 mod 24, and in G, if n = 20 mod 24. Thus H lies in Gy if
n=0,6mod 24, in G, if n = 2,20 mod 24, and lies in Gy u G, and meets both G and
Gy if n = 8,12,14,18 mod 24.

Now suppose that H is a subgroup of a copy of O; isomorphic to Z4. There are
two possibilities. If it is contained in the copy of Qg lying in the subgroup Tj, from the
results for Qg, we see that H lies in Gg if n = 0,8 mod 12, and in G, if n = 2,6 mod 12.
The second possibility is that H possesses elements in O1\T;, and emanates from the
rotation of order 2 whose permutation is a transposition. Thus it is contained in Gy if
n=0,6,814 mod 24, and to G, if n = 2,12,18,20 mod 24.

Finally, suppose that H is a subgroup of a copy of O; isomorphic to Qg. Again there
are two possibilities. If H lies in the subgroup T7, it is contained in Gy if n = 0,8 mod 12,
and to Gy if n = 2,6 mod 12. The second possibility is that it projects to a subgroup of
S4 generated by two transpositions having disjoint support. Such a subgroup thus has
four elements of order 4 in O\T; and two in T;. From the results obtained in the case
of Z4, we see that H lies in Gy if n = 0,8 mod 24, in G, if n = 2,18 mod 24, and lies in
Go U G and meets both Gy and G; if n = 6,12,14,20 mod 24.

O

5 Realisation of finite groups as subgroups of the lower
central and derived series of B, (S?)

In this section, we consider the realisation of the finite subgroups of Theorem Jj as sub-
groups of the lower central T';(B,,(S?)) and derived series (B, (S?)®) of B,,(S?). By [GG4],

17



we already know that if 4 | n then T'»(B,,(S?)) has a subgroup isomorphic to Qg. If n > 4
is even but not divisible by 4, we may ask if the same result is true if 4 { n. We start by
proving Theorem [, which is the case of the dicyclic groups. We then then complete the
analysis of the other finite subgroups in Proposition [[6,

Proof of Theorem B Suppose that 1 is even. Let N € {n —2,n}, set N = 2'k where ] € N
and k is odd, and let x = ag (resp. x = ocooczzxal) if N =n (resp. N =n —2).

(a) Since B,(S?) has a subgroup (x, T,;) isomorphic to Dicyy = Dicy2;, the statement
is true for j = 0. So suppose the result holds for some j € {0,1,...,] — 1}. Then B,(S?)

contains 2/ copies of Dicyi12-j, of the form <x2j,xiTn>, fori = 0,1,...,2/ —1. Hence

i+1 ; . j ; . . . .
<x2] , Xt Tn> is a subgroup of <x2’, xlTn> isomorphic to Dicy+1-j,.. But since

. 2 i i

. . . —1 .
J j+1 ja _0j+l
2@ H)T, 52 (x(z +1)Tn> _ 2

it follows that <x2j+1, x@+) Tn> is also a subgroup of <x2j, xiTn> isomorphic to Dicyr 41—
If g is any divisor of k, then replacing x by x7 yields also 2/ copies <x2j‘7,xian>,

i=0,1,...,22 -1, 0f DiC21+2_jk/q forje{0,1,...,1}.

(b) If j = 0, the statement holds trivially. So suppose that j > 1. From part (@),

<x2j”f L xi Tn> and <x2j‘7 L xl Tn> are subgroups of B, (S?) isomorphic to Dicyi2-j; /- Under

the Abelianisation homomorphism ¢: By (S?) — Zy(,_1, &(x) = n —1, and

0 if 5 is even
n—1 if%isodd.

¢(Tn) = ‘3((01 S Op1) (0102)01) = %n(n -1) = {
Since j > 1, &(x?7) = 0. Furthermore,

; 0 if 2 +1iiseven
4T\ = 2
é‘(x n) {n—l if 7 +1iis odd.
So <x2j‘7, xian> < T(B,(S?)) if and only if § +i is even. Thus if i — i’ is odd, the

subgroups <x2j‘7 , x4 Tn> and <x2j”7, X' Tn> cannot be conjugate. But by Proposition B(B),
these are precisely the conjugacy classes of subgroups isomorphic to Dicyr+2-j .. The
result follows.

U
From this, we may deduce Proposition [A.

Proof of Proposition f]. We use the notation of the proof of Theorem . If j = 0 and g is
an odd divisor of n then there is just one conjugacy class of the abstract group Dicyy, ,,

which is realised as (x7, T),). Now x7 ¢ I';(B,(S?)), so Dicyy g & [5(B,(S?)).

18



If j > 1 then as we saw in the proof of Theorem B, <x2j”f, x4 Tn> < T5(B,(S?)) if and
only if 7 + i is even. So withi = 0,1, one of <x2j‘7, Tn> and <x2j 1, x19 Tn> is contained in
I5(B,,(S?)), while the other is not.

Finally, let N be the element of {n, n — 2} divisible by 4. Then ! > 2, and taking g = k
and j = [ — 1, from the previous paragraph, one of <xN 2 Tn> and <xN/ 2 kan> (the two
non-conjugate copies of Qg) belongs to T'»(B,,(S?)), the other not. O

We now give the analogous result for the cyclic and binary polyhedral subgroups of

B, (S$?).

PROPOSITION 16. Let G be a finite subgroup of B, (S?).

(a) Suppose that G is cyclic.

(i) If G is of order 2, then G < T2(B,(S?)) if and only if n is even.

(i) Suppose that G is of order greater than or equal to 3. Then either:

— |G| divides 2(n — 1) in which case G ¢ T'y(B,(S?)), or

— |G| divides 2(n — i), where i € {0,2}. In this case, G < T2(B,(S?)) if and only if |G| divides
n—i.

(b) Suppose that G is a subgroup of order at least 3 of some binary polyhedral subgroup H of
B, (S?).

(i) Suppose that H = Ty in the case that Ty is maximal. Then G < T5(B,,(S?)) if G = Zy, Qs,
and G & To(By(S?)) if G = Z3, Zs, T.

(ii) Suppose that H = I in the case that I is maximal. Then G = T'2(B,(S?)).

(iii) Suppose that H = Oq in the case that Oy is maximal. If G is contained in the subgroup
K of H isomorphic to Ty then G < T2(B,(S?)). If G ¢ K then G < T»(B,(S?)) if n =
0,2,8,18 mod 24, and G ¢ T»(B,(S?)) if n = 6,12,14,20 mod 24.

Proof. We set Ty = I'(B,,(S?)). If G is of order 2, then G = {(A,,)and as &(A,) = n(n — 1),
it follows easily that G < I'; if and only if n is even. We assume from now on that
|G| = 3. Since I'; is normal in B, (S?), we may work up to conjugation.

First suppose that G is cyclic. Then by Theorem [[ it is conjugate to a subgroup of
{a;y for somei € {0,1,2}. Ifi = 1 then c:,‘(tx]l) = jn forall j € Z. If uc]l € I'; then there exists
k € Z such that jn = 2k(n — 1), thusn—1 | j,and so j = [(n — 1) for some [ € Z. But
then lX]1 = txll(n_l) € (Ap). We conclude that (a1) n T, = (A,). Hence G ¢ TI'».

Suppose then that G is conjugate to a subgroup of («;), where i = 0,2. Set k = |G|.

.Z(H_i)/k>. So G cTIjifand

1
only if 2(n —1)/k is even, which is equivalent to k | n —i. Thus if G is conjugate to a
subgroup of («;), where i = 0,2, we have:

Then ¢(a;) =n—1,k | 2(n —i), and up to conjugacy, G = <oc

Gcl) <= |G| | n—i. (6)

Now suppose that H is isomorphic to T; in the case that T; is maximal, so that
n =4 mod 6. If G is isomorphic to Ty, Zg or Z3 then the order 3 elements lie in G1\ (A,,),
and from the cyclic case, it follows that G ¢ I';. So assume that G is isomorphic to
either Z4 or Qg. Since Qg is generated by elements of order 4, it suffices to analyse the
case Zy. By Proposition [[5, G lies in Gy if n = 4 mod 12, and in G; if n = 10 mod 12. In
both cases, G  I'; by equation (f).
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Now suppose that H is isomorphic to I in the case that I is maximal, so that n =
0,2,12,20 mod 30. We claim that G < I';, whatever the value of n. To see this, it suffices
to check that all of the maximal cyclic subgroups Zi, Zs, Z1¢ of I are contained in I'.
This follows easily from Proposition [§ and equation (f).

Now suppose that H is isomorphic to O; in the case that O; is maximal, so that n =
0,2 mod 6. Again it suffices to consider the maximal cyclic subgroups Zy4, Z¢ and Zg of
O;. Applying Proposition [§ and equation (f), we obtain the following results:

— if G is isomorphic to Zg, it projects to a subgroup of S; generated by a 4-cycle. Then
G c Gyifn =0,8mod12, and G ¢ Gy if n = 2,6 mod 12, andso G c I, if n =
0,2,8,18 mod 24, and G ¢ I'; if n = 6,12,14,20 mod 24.

— if G is isomorphic to Ze then G < I'y.

— if G is isomorphic to Z,, there are two possibilities. If G lies in the subgroup K of O
isomorphic to T; then G < I';. Otherwise G is generated by an element of order 4 not
belonging to K, in which case we obtain the same answer as for Zg.

Since every cyclic subgroup of order 3 of O; is contained in one of order 6, this gives
the results if G is cyclic. Suppose now that G = K. Then G is generated by the elements
of order 6 and the elements of order 4 belonging to K, so G c I';.

If G is abstractly isomorphic to Q16 then it is generated by elements of order 8,
elements of order 4 lying in K, and elements of order 4 not lying in K. From above, we
havethat Gc I, ifn=0,2,8,18 mod 24,and G ¢ I if n = 6,12,14,20 mod 24.

If G is abstractly isomorphic to Qg then there are two possibilities: either G lies in
K, so is contained in I'y, or else it is generated by elements of order 4 not belonging
to K. In this case, from above, G < I, if n = 0,2,8,18 mod 24, and G ¢ I, if n =
6,12,14,20 mod 24.

Finally, suppose that G is abstractly isomorphic to Dicj,. Then it projects to a copy
of S3 in S4. From above, it follows that G c I, if n = 0,2,8,18 mod 24, and G & I’ if
n=6,12,14,20 mod 24. O

REMARK 17. Having dealt with the behaviour of the finite subgroups relative to the
commutator subgroup of B, (S?), one might ask what happens for the higher elements

of the lower central series {Fi(Bn (SZ))}neN and of the derived series {(Bn (Sz)) (i)} of
i=0

B, (S?). Butif n # 2 (resp. n > 5), the lower central series (resp. derived series) of By (S?)
is stationary from the commutator subgroup onwards [[GGJ]. It just remains to look at
the derived series of B4(S?). Recall from that paper that (B4(S?))() is a semi-direct
product of Qg by a free group F, of rank two, that (B4(S?))? is a semi-direct product
of Qg by the derived subgroup (F2)™) of Iy, that (B4(S?))®) is the direct product of (A4)
by (F2)®, and that (B4(S?))+D = (F,)® for all i > 3. Thus there is a copy of Qg which
lies in (B4(S?))® but not in (B4(S?))®). The full twist remains until (B4(S?))®, and then
(B4(S?))® is torsion free.

6 A proof of Murasugi’s theorem
Let Hj, H; be isomorphic finite cyclic subgroups of M ,,. From Theorem B, if # is odd,
or if n is even and |H;| = |Hy| # 2 then H; and H, are conjugate. If n is even, there

are exactly two conjugacy classes of subgroups of My, of order 2, and thus there are
exactly two conjugacy classes of subgroups of By (S?) of order 4.
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It follows from Section [ that:

PROPOSITION 18. Let Gy, G, be isomorphic finite cyclic subgroups of order m of B, (S?). If n
is odd, or if n is even and m # 4 then Gy and Gy are conjugate. If n is even, there are exactly

two conjugacy classes of subgroups of B,(S?) of order 4. O
If n is even then Dég/ % and txgn_z)/ 2 are of order 4, and they generate non-conjugate

subgroups since their images in S, are not conjugate, which yields the two conjugacy
classes of Z4 of Proposition [[§. From this, we may deduce Theorem [I|.

Proof of Theorem .. Let x € B,,(S?) be a torsion element. Then (x) is contained in a max-
imal cyclic subgroup C of one of the maximal finite subgroups G of B,(S?) given by
Theorem .

First suppose that 7 is odd. Then G is one of Zj(,_1), Dicg, and Dicy(,—), and so C
must be one of Zy(,_1), Zon, Zyn—2y and Zy. Hence C is isomorphic to {a1), {ao), {x2)

and <oc§n_1)/ 2> respectively. So by Proposition [[§, x is conjugate to a power of one of
«p, x1 and oy which proves the theorem in this case.

Now suppose that n is even. If C = Z4 then C is conjugate to one of <¢x3/ 2> or

<agn—2)/2>, and the result holds. So suppose that C # Z,. If G is one of L (n-1), Dicgy

and Dicy(,_»), then C is one of Zy(,_1y, Zon, Zo(n—y), and so is isomorphic to {a1), {ao),
and (a) respectively. If G = T; (so n = 4 mod 6) then C = Zg¢, and so is conjugate to

<[X§n_1)/3>. If G=0; (son=0,2mod 6) then C = Z¢ or C = Zg, and so is conjugate to

<tx6’/ 3> or <tx§”_2)/ 3>. Finally, if G = I (so n = 0, 2,12,20 mod 30) then C is isomorphic
to one of Z¢ or Zjy. If C = Zg then C is conjugate to <Dég/3> if n = 0,12 mod 30 or
to <[X£n_2)/3> if n = 2,20mod 30. If C = Zjg then C is conjugate to <oc61/5> ifn =

0,20 mod 30 or to <oc§n_2)/ 5> if n =2,12 mod 30. In all cases, x is conjugate to a power

of one of ap, &1 and ay, which completes the proof of the theorem. O
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