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In this paper we derive the moderate deviation principle for stationary sequences of bounded random variables under martingale-type conditions. Applications to functions of φ-mixing sequences, contracting Markov chains, expanding maps of the interval, and symmetric random walks on the circle are given.

Introduction

For the stationary sequence (X i ) i∈Z of centered random variables, define the partial sums and the normalized partial sums process by

S n = n j=1 X j and W n (t) = n -1/2 [nt] i=1 X i .
In this paper we are concerned with the moderate deviation principle for the normalized partial sums process W n , considered as an element of D([0, 1]) (functions on [0, 1] with left-hand limits and continuous from the right), equipped with the Skorohod topology (see Section 14 in [START_REF] Billingsley | Convergence of Probability Measures[END_REF] for the description of the topology on D([0, 1])). More exactly, we say that the family of random variables {W n , n > 0} satisfies the Moderate Deviation Principle (MDP) in D[0, 1] with speed a n → 0 and good rate function I(.), if the level sets {x, I(x) ≤ α} are compact for all α < ∞, and for all Borel sets

-inf t∈Γ 0 I(t) ≤ lim inf n a n log P( √ a n W n ∈ Γ) ≤ lim sup n a n log P( √ a n W n ∈ Γ) ≤ -inf t∈ Γ I(t) . (1) 
The Moderate Deviation Principle is an intermediate behavior between the central limit theorem (a n = a) and Large Deviation (a n = a/n). Usually, MDP has a simpler rate function, inherited from the approximated Gaussian process, and holds for a larger class of dependent random variables than the large deviation principle.

De Acosta and Chen (1998) used the renewal theory to derive the MDP for bounded functionals of geometrically ergodic stationary Markov chains. [START_REF] Puhalskii | Large deviations of semimartingales via convergence of the predictable characteristics[END_REF] and [START_REF] Dembo | Moderate deviations for martingales with bounded jumps[END_REF] applied the stochastic exponential to prove the MDP for martingales. Starting from the martingale case and using the so-called coboundary decomposition due to [START_REF] Gordin | The central limit theorem for stationary processes[END_REF] 

(X k = M k + Z k -Z k+1
, where M k is a stationary martingale difference), [START_REF] Gao | Moderate deviations for martingales and mixing random processes[END_REF] and [START_REF] Djellout | Moderate Deviations for Martingale Differences and applications to φ-mixing sequences[END_REF] obtained the MDP for φ-mixing sequences with summable mixing rate. In the context of Markov chains, the coboundary decomposition is known as the Poisson equation. Starting from this equation, [START_REF] Delyon | Moderate deviation principle for ergodic Markov chain. Lipschitz summands[END_REF] proved the MDP for n -1/2 n k=1 H(Y k ), where H is a Lipschitz function, and Y n = F (Y n-1 , ξ n ), where F satisfies |F (x, z) -F (y, t)| ≤ κ|x -y| + L|z -t| with κ < 1, and (ξ n ) n≥1 is an iid sequence of random variables independent of Y 0 . In their paper, the random variables are not assumed to be bounded: the authors only assume that there exists a positive δ such that E(e δ|ξ 1 | ) < ∞. They strongly used the Markov structure to derive some appropriate properties for the coboundary (see their lemma 4.2).

In this paper we propose a modification of the martingale approximation approach that allows to avoid the coboundary decomposition and thus to enlarge the class of dependent sequences known to satisfy the moderate deviation principle. Recent or new exponential inequalities are applied to justify the martingale approximation. The conditions involved in our results are well adapted to a large variety of examples, including regular functionals of linear processes, expanding maps of the interval and symmetric random walks on the circle.

The paper is organized as follows. In Section 2 we state the main results. A discussion of the conditions, clarifications, and some simple examples and extensions follow. Section 3 describes the applications, while Section 4 is dedicated to the proofs. Several technical lemmas are proved in the appendix.

Results

From now on, we assume that the stationary sequence (X i ) i∈Z is given by X i = X 0 • T i , where T : Ω → Ω is a bijective bimeasurable transformation preserving the probability P on (Ω, A). For a subfield F 0 satisfying F 0 ⊆ T -1 (F 0 ), let F i = T -i (F 0 ). By X ∞ we denote the L ∞ -norm, that is the smallest u such that P(|X| > u) = 0.

Our first theorem and its corollary treat the so-called adapted case, X 0 being F 0 -measurable and so the sequence (X i ) i∈Z is adapted to the filtration (F i ) i∈Z .

Theorem 1 Assume that X 0 ∞ < ∞ and that X 0 is F 0 -measurable. In addition, assume that

∞ n=1 n -3/2 E(S n |F 0 ) ∞ < ∞ , (2) 
and that there exists σ 2 ≥ 0 with

lim n→∞ n -1 E(S 2 n |F 0 ) -σ 2 ∞ = 0 . (3) 
Then, for all positive sequences a n with a n → 0 and na n → ∞, the normalized partial sums processes W n (.) satisfy ( 1) with the good rate function I σ (•) defined by

I σ (h) = 1 2σ 2 1 0 (h ′ (u)) 2 du (4)
if simultaneously σ > 0, h(0) = 0 and h is absolutely continuous, and

I σ (h) = ∞ otherwise.
The following corollary gives simplified conditions for the MDP principle, which will be verified in several examples later on.

Corollary 2 Assume that X 0 ∞ < ∞ and that X 0 is F 0 -measurable. In addition, assume that

∞ n=1 n -1/2 E(X n |F 0 ) ∞ < ∞ , (5) 
and that for all i, j ≥ 1,

lim n→∞ E(X i X j |F -n ) -E(X i X j ) ∞ = 0 . ( 6 
)
Then the conclusion of Theorem 1 holds with

σ 2 = k∈Z E(X 0 X k ).
The next theorem allows to deal with non-adapted sequences and it provides additional applications. Let

F -∞ = n≥0 F -n and F ∞ = k∈Z F k . Theorem 3 Assume that X 0 ∞ < ∞, E(X 0 |F -∞ ) = 0 almost surely, and X 0 is F ∞ -measurable.
Define the projection operators by P j (X) = E(X|F j ) -E(X|F j-1 ) . Suppose that (6) holds and that

j∈Z P 0 (X j ) ∞ < ∞ . (7) 
Then the conclusion of Theorem 1 holds with σ 2 = k∈Z E(X 0 X k ). 

Simple examples, comments and extensions

P Y |M (A) -P Y (A) ∞ . (8) 
For the sequence (X i ) i∈Z and positive integer m , let φ m (n) = sup im>...>i 1 ≥n φ(M 0 , σ(X i 1 , . . . , X im )) and let φ(k) = φ ∞ (k) = lim m→∞ φ m (k) be the usual φ-mixing coefficient. It follows from Corollary 2 that if the variables are bounded, the conclusion of Theorem 1 holds as soon as

k>0 k -1/2 φ 1 (k) < ∞ and lim k→∞ φ 2 (k) = 0 . (9) 
The condition [START_REF] Delyon | Moderate deviation principle for ergodic Markov chain. Lipschitz summands[END_REF] improves on the one imposed by [START_REF] Gao | Moderate deviations for martingales and mixing random processes[END_REF], that is k>0 φ(k) < ∞, to get the MDP for bounded random variables (see his Theorem 1.2).

Comment 5 Application to the functional LIL. Since the variables are bounded, under the assumptions of Theorem 1 or of Theorem 3, the MDP also holds in C[0, 1] for the Donsker process

D n (t) = W n (t) + n -1/2 (nt -[nt])X [nt]+1 .
Hence, if σ 2 > 0, it follows from the proof of Theorem 1.4.1 in [START_REF] Deuschel | Large deviations[END_REF], that the process

{(2σ 2 log log n) -1/2 D n (t) : t ∈ [0, 1]} ( 10 
)
satisfies the functional law of the iterated logarithm. To be more precise, if S denotes the subset of C[0, 1] consisting of all absolutely continuous functions with respect to the Lebesgue measure such that h(0) = 0 and 1 0 (h ′ (t)) 2 dt ≤ 1, then the process defined in ( 10) is relatively compact with a.s. limit set S. In the case of bounded random variables, we then get new criteria to derive the functional LIL. In particular, the functional LIL holds for φ-mixing bounded random variables satisfying [START_REF] Delyon | Moderate deviation principle for ergodic Markov chain. Lipschitz summands[END_REF].

Comment 6 Linear processes. Let (c i ) i∈Z be a sequence of real numbers in ℓ 1 (Z) (absolutely summable). Define X k = i∈Z c i ε k-i where (ε k ) k∈Z is a strictly stationary sequence satisfying ( 6) and [START_REF] Dedecker | An empirical central limit theorem for dependent sequences[END_REF]. Then, so does the sequence (X k ) k∈Z , and the conclusion of Theorem 3 holds. In particular, the result applies if

ε 0 is F 0 -measurable, E(ε 1 |F 0 ) = 0 and lim n→∞ E(ε 2 0 |F -n ) -E(ε 2 0 ) ∞ = 0 .
Comment 7 Non-mixing in the ergodic sense example. The following simple example shows that Theorem 1 is applicable to non-mixing in the ergodic theoretical sense sequences. Moreover it covers a strictly larger class of examples than its Corollary 2. For all k ∈ Z, let

Q k+1 = -Q k where P(Q 0 = ±1) = 1/2 and X k = Q k + Y k where (Y k )
k∈Z is an iid sequence of zero mean and bounded random variables, independent of Q 0 . We can easily check that all the conditions of Theorem 1 hold while the conditions of Corollary 2 are not satisfied.

Comment 8 Stationary ergodic martingales that does not satisfy MDP. Let Y k be the stationary discrete Markov chain with the state space N and the transition kernel given by P(Y 1 = j -1|Y 0 = j) = 1 for all j ≥ 1 and P(Y

1 = j|Y 0 = 0) = P(τ = j) for j ∈ N with E(τ ) < ∞ and P(τ = 1) > 0 which implies that (Y k ) is ergodic. Let X k = ξ k I (Y k =0)
where (ξ k ) is an iid sequence independent of (Y k ) and such that P(ξ k = ±1) = 1/2. Then X k is a stationary ergodic martingale difference which is also a bounded function of an ergodic Markov chain. Straightforward computations show that if τ does not have a finite exponential moment then there exists a positive sequence a n → 0 with na n → ∞ for which (1) does not hold. Thus the MDP principle is not true in general for the stationary sequences satisfying (5) without a certain form of condition (3). A similar example was suggested in Djellout (2002, Remark 2.6).

Comment 9 On Var(S n ) and Theorem 1. Note that if ∞ n=1 n -3/2 E(S n |F 0 ) 2 < ∞, then, by [START_REF] Peligrad | A new maximal inequality and invariance principle for stationary sequences[END_REF] 

lim n→∞ Var(S n ) n = σ 2 = E(X 2 1 ) + ∞ j=0 2 -j E(S 2 j (S 2 j+1 -S 2 j )) .
On the other hand, we shall prove later on that Condition (2) along with (6) are sufficient for the validity of (3). Therefore the conclusion of Theorem 1 holds under ( 2) and ( 6) with σ 2 identified in this remark.

Comment 10 Sequences that are not strictly stationary. The proof of Theorem 3 is based on the exponential inequality from Lemma 22, that was established without stationarity assumption. Therefore, Theorem 3 admits various extensions to non-stationary sequences. The following slight generalization is motivated by the fixed design regression problem Z k = θq k + X k , where the fixed design points are of the form q k = 1/g(k/n), the error process X k is a stationary sequence and we analyze the error of the estimator θ

= n -1 n k=1 Z k g(k/n). If {X i } i∈Z
satisfies the conditions of Theorem 3, and if g is a Lipschitz function, then the process [START_REF] Arcones | The large deviation principle for stochastic processes I[END_REF] with the good rate function J(•) defined by

W n = {n -1/2 [nt] i=1 g(i/n)X i , t ∈ [0, 1]} satisfies
J(h) = 1 2σ 2 1 0 h ′ (u) g(u) 2 du , where σ 2 = k∈Z E(X 0 X k ).
The proof of this result is omitted. It can be done by following the proof of Theorem 3. To be more precise, we start by proving the MDP for the process

W n (t) = n -1/2 [nv -1 (t)]
i=1 g(i/n)X i where v(t) = σ 2 t 0 g 2 (x)dx. For W n (.), the rate function is I σ (.) as in Theorem 1. To go back to the process W n (.), use the change-of-time

W n = W n • v.

Applications

In this Section we present applications to functions of φ-mixing processes, contracting Markov chains, expanding maps of the interval and symmetric random walks on the circle. The proofs are given in Section 4.

Functions of φ-mixing sequences

In this section, we are partly motivated by Djellout et al. (2006, Theorem 2.7), who have proved the MDP for

X k = f (Y k , . . . , Y k-ℓ ) -E(f (Y k , . . . , Y k-ℓ )) where Y k = i∈Z c i ε k-i (11) 
In their Theorem 2.7, [START_REF] Djellout | Moderate Deviations of empirical periodogram and non-linear functionals of moving average processes[END_REF] assume that (i) (ε i ) i∈Z is an iid sequence;

(ii) (condition on c i ) the spectral density of Y k is continuous on [-π, π[; (iii) (condition on ε 0 ) ε 0 satisfies the so-called LSI condition, which implies that E(exp(δε 2 0 )) < ∞ for some positive δ, and that the distribution ε 0 has an absolutely continuous component with respect to the Lebesgue measure with a strictly positive density on the support of µ (see their condition (2.1)); (iv) (condition on f ) the functions ∂ i f are Lipschitz for i = 0, . . . , ℓ.

By applying our main results, we derive the Propositions 11 and 12 stated below. In the case where X k is given by ( 11), the Proposition 11 will allow us to obtain the MDP for a large class of functions. However, we require a stronger condition than (ii), that is we assume that the sequence (c i ) i∈Z is in ℓ 1 (Z), and instead of (iii), we suppose that ε 0 takes its values in some compact intervall [a, b] (this assumption cannot be compared to the LSI condition (iii)). Our method allows to link the regularity of f to the behavior of the coefficients (c i ) i∈Z (in that case, the condition [START_REF] Djellout | Moderate Deviations of empirical periodogram and non-linear functionals of moving average processes[END_REF] given below means that i∈Z w j (2(b-a)|c i |) < ∞ for any j = 0, . . . , ℓ, where w j is the modulus of continuity of f with respect to the j-th coordinate). In addition, our innovations maybe dependent: more precisely, (ε i ) i∈Z is assumed to be a stationary φ-mixing sequence.

We now describe our general results. Let (ε i ) i∈Z = (ε 0 • T i ) i∈Z be a stationary sequence of φ-mixing random variables with values in a subset A of a Polish space X . Starting from the definition (8), we denote by

φ ε (n) the coefficient φ ε (n) = φ(σ(ε i , i ≤ 0), σ(ε i , i ≥ n)).
Our first result is for non-adapted sequences, that is satisfying the representation [START_REF] Dembo | Large Deviations Techniques and Applications[END_REF] below. Let H be a function from A Z to R satisfying the condition

C(A) : for any x, y in A Z , |H(x) -H(y)| ≤ i∈Z ∆ i 1 x i =y i , where i∈Z ∆ i < ∞, Define the stationary sequence X k = X 0 • T k by X k = H((ε k-i ) i∈Z ) -E(H((ε k-i ) i∈Z )) . (12) 
Note that X k is bounded in view of C(A).

Proposition 11 Let (X k ) k∈Z be defined by ( 12), for a function

H satisfying C(A). If k>0 φ ε (k) is finite, then the conclusion of Theorem 1 holds with σ 2 = k∈Z E(X 0 X k ).
For adapted sequences, that is satisfying the representation ( 13) below, we can assume that H satisfies another type of condition. Let H be a function from A N to R satisfying the condition

C ′ (A) : for any i ≥ 0, sup x∈A N ,y∈A N |H(x) -H(x (i) y)| ≤ R i ,
where R i decreases to 0, the sequence x (i) y being defined by (x (i) y) j = x j for j < i and (x (i) y) j = y j for j ≥ i. Define the stationary sequence

X k = X 0 • T k by X k = H((ε k-i ) i∈N ) -E(H((ε k-i ) i∈N )) . (13) 
Proposition 12 Let (X k ) k∈Z be defined by [START_REF] Derriennic | The central limit theorem for Markov chains with normal transition operators, started at a point[END_REF], for a function

H satisfying C ′ (A). If ∞ ℓ=1 R ℓ k≥ℓ φ ε (k -ℓ) √ k < ∞ , (14) 
then the conclusion of Theorem 1 holds with σ 2 = k∈Z E(X 0 X k ). In particular, the condition ( 14) holds as soon as

1. k>0 φ ε (k) < ∞ and k>0 k -1/2 R k < ∞. 2. k>0 R k < ∞ and k>0 k -1/2 φ ε (k) < ∞.
Application to functions of linear processes. Assume that

ε i takes its values in a compact interval A = [a, b] of R, and let (c i ) i∈Z be a sequence of real numbers in ℓ 1 (Z). Let m = inf x∈A Z i∈Z c i x i and M = sup x∈A Z i∈Z c i x i . For a function f from [m, M] Z to
R, let w i be the modulus of continuity of f with respect to the i-th coordinate, that is

w i (h) = sup x∈[m,M ] Z ,t∈[m,M ],|x i -t|≤h |f (x) -f (x (i,t) )| ,
the sequence x (i,t) being defined by x (i,t) j = x j for j = i and x

(i,t) i = t. Assume that for any x, y in [m, M] Z |f (x) -f (y)| ≤ i∈Z w i (|x i -y i |) < ∞ .
Define the random variables Y k = i∈Z c i ε k-i , and let

X k = f ((Y k-i ) i∈Z ) -E(f ((Y k-i ) i∈Z ) (15) 
(note that ( 15) is a generalization of ( 11)). Clearly, X k may be written as in [START_REF] Dembo | Large Deviations Techniques and Applications[END_REF], for a function

H from A Z to R. Moreover, H satisfies C(A) with ∆ i ≤ ℓ∈Z w ℓ (2(b -a)|c i-ℓ |) provided that i∈Z ℓ∈Z w ℓ (2(b -a)|c i |) < ∞ . ( 16 
)
From Proposition 11, if k>0 φ ε (k) < ∞ and if ( 16) holds, then the conclusion of Theorem 1 holds. In particular, the condition ( 16) holds as soon as there exist

(b i ) i∈Z in ℓ 1 (Z) and α in ]0, 1] such that w ℓ (h) ≤ b ℓ |h| α and i∈Z |c i | α < ∞.
Two simple examples of such functions are:

1. f (x) = i∈Z g i (x i ) for some g i such that |g i (x) -g i (y)| ≤ b i |x -y| α for any x, y in [m, M]. 2. f (x) = Π q i=p h i (x i ) for some h i such that |h i (x) -h i (y)| ≤ K i |x -y| α for any x, y in [m, M]. Now, assume that c i = 0 for i < 0, so that Y k = i≥0 c i ε k-i . If f is in fact a function of x through x 0 only, we simply denote by w = w 0 its modulus of continuity over [m, M]. In that case X k = f (Y k ) -E(Y k
) may be written as in [START_REF] Derriennic | The central limit theorem for Markov chains with normal transition operators, started at a point[END_REF] for a function

H satisfying C ′ (A) with R i ≤ w(2|b -a| k≥i |c k |). From item 1 of Proposition 12, if k>0 φ ε (k) < ∞ and if n≥1 n -1/2 w 2|b -a| k≥n |c k | < ∞ , (17) 
then the conclusion of Theorem 1 holds. In particular, if |c i | ≤ Cρ i for some C > 0 and ρ ∈]0, 1[, the condition (17) holds as soon as:

1 0 w(t) t | log t| dt < ∞ .
Note that this condition is satisfied as soon as w(t) ≤ D| log(t)| -γ for some D > 0 and some γ > 1/2. In particular, it is satisfied if f is α-Hölder for some α ∈]0, 1].

Contracting Markov chains

Let (Y n ) n≥0 be a stationary Markov chain of bounded random variables with invariant measure µ and transition kernel K. Denote by • ∞,µ the essential supremum norm with respect to µ. Let Λ 1 be the set of 1-Lipschitz functions. Assume that the chain satisfies the two following conditions:

there exist C > 0 and ρ ∈]0, 1[ such that sup

g∈Λ 1 K n (g) -µ(g) ∞,µ ≤ Cρ n , (18) 
for any f, g ∈ Λ 1 and any m ≥ 0 lim

n→∞ K n (f K m (g)) -µ(f K m (g)) ∞,µ = 0 . ( 19 
)
We shall see in the next proposition that if [START_REF] Gordin | The central limit theorem for stationary processes[END_REF] and ( 19) are satisfied, then the MDP holds in D[0, 1] for the sequence

X n = f (Y n ) -µ(f ) (20) 
as soon as the function f belongs to the class L defined below.

Definition 13 Let L be the class of functions

f from R to R such that |f (x) -f (y)| ≤ c(|x -y|),
for some concave and non decreasing function c satisfying

1 0 c(t) t | log t| dt < ∞ . (21) 
Note that (21) holds if c(t) ≤ D| log(t)| -γ for some D > 0 and some γ > 1/2. In particular, L contains the class of functions from [0, 1] to R which are α-Hölder for some α ∈]0, 1].

Proposition 14 Assume that the stationary Markov chain (Y n ) n≥0 satisfies ( 18) and ( 19), and let X n be defined by [START_REF] Peligrad | Central limit theorem for stationary linear processes[END_REF]. If f belongs to L, then the conclusion of Theorem 1 holds with

σ 2 = σ 2 (f ) = µ((f -µ(f )) 2 ) + 2 n>0 µ(K n (f ) • (f -µ(f ))) .
The proof of this proposition is based on the following lemma which has interest in itself.

Lemma 15 Let u n = sup g∈Λ 1 K n (g) -µ(g) ∞,µ . Let f be a function from R to R such that |f (x) -f (y)| ≤ c(|x -y|)
for some concave and non decreasing function c. Then

K n (f ) -µ(f ) ∞,µ ≤ c(u n ) . Remark 16 If u n ≤ Cρ n for a C > 0 and ρ ∈]0, 1[, and if c(t) ≤ D| log(t)| -γ for D > 0 and γ > 0, then K n (f ) -µ(f ) ∞,µ = O(n -γ ) .
We now give two conditions under which ( 18) and ( 19) hold. Let [a, b] be a compact interval in which lies the support of µ. For a Lipschitz function

f , let Lip(f ) = sup x,y∈[a,b] |f (x)-f (y)|/|x-y|.
The chain is said to be Lipschitz contracting if there exist κ > 0 and ρ ∈]0, 1[ such that

Lip(K n (f )) ≤ κρ n Lip(f ) . ( 22 
)
Let BV be the class of bounded variation functions from [a, b] to R. For any f ∈ BV , denote by df the total variation norm of the measure df : df = sup{ gdf, g ∞ ≤ 1}. The chain is said to be to be BV -contracting if there exist κ > 0 and ρ ∈ [0, 1[ such that

dK n (f ) ≤ κρ n df . (23) 
It is easy to see that if either [START_REF] Puhalskii | Large deviations of semimartingales via convergence of the predictable characteristics[END_REF] or ( 23) holds, then [START_REF] Gordin | The central limit theorem for stationary processes[END_REF] and [START_REF] Peligrad | A new maximal inequality and invariance principle for stationary sequences[END_REF] are satisfied (to see that the condition ( 23) implies [START_REF] Peligrad | A new maximal inequality and invariance principle for stationary sequences[END_REF], it suffices to note that it implies the same property for two BV functions f, g (see ( 52)), and that any Lipshitz function from [a, b] to R can be uniformly approximated by BV functions).

Application to iterated random functions. The stationary bounded Markov chain (Y n ) n≥0 with transition kernel K is one-step Lipschitz contracting if there exists ρ ∈]0, 1[ such that

Lip(K(f )) ≤ ρLip(f ) .
Note that if K is one-step Lipschitz contracting then [START_REF] Puhalskii | Large deviations of semimartingales via convergence of the predictable characteristics[END_REF] obviously holds with κ = 1. The onestep contraction is a very restrictive assumption. However, it is satisfied if Y n = F (Y n-1 , ε n ) for some iid sequence (ε i ) i>0 independent of Y 0 , and some function F such that

F (x, ε 1 ) -F (y, ε 1 ) 1 ≤ ρ|x -y| for any x, y in R. ( 24 
)
Remark 17 Under a more restrictive condition on F than [START_REF] Wu | Exponential convergence in probability for empirical means of Brownian motion and of random walks[END_REF], namely

|F (x, z) -F (y, t)| ≤ ρ|x -y| + L|z -t| , (25) 
Delyon et al ( 2006) have proved the MDP for

X n = f (Y n ) -µ(f ) when f is a lipschitz function.
In their paper, the chain is not assumed to be bounded. It is only assumed that E(e δε 1 ) < ∞ for some δ > 0, which implies the same property for X 1 (for a smaller δ) by using the inequality (25).

Application to expanding maps. Let T be a map from [0, 1] to [0, 1] preserving a probability µ on [0, 1], and let

X k = f • T n-k+1 -µ(f ) , W n (t) = W n (f, t) = n -1/2 [nt] i=1 (f • T n-i+1 -µ(f )) Define the Perron-Frobenius operator K from L 2 ([0, 1], µ) to L 2 ([0, 1], µ) via the equality 1 0 (Kh)(x)f (x)µ(dx) = 1 0 h(x)(f • T )(x)µ(dx) . ( 26 
)
The map T is said to be BV -contracting if its Perron-Frobenius operator is BV -contracting, that is satisfies [START_REF] Schmidt | Diophantine approximation[END_REF]. As a consequence of Proposition 14, the following corollary holds.

Corollary 18 If T is BV -contracting, and if f belongs to BV ∪L, then the conclusion of Theorem 1 holds with

σ 2 = σ 2 (f ) = µ((f -µ(f )) 2 ) + 2 n>0 µ(f • T n • (f -µ(f ))) .
Let us present a large class of BV -contracting maps. We shall say that T is uniformly expanding if it belongs to the class C defined in [START_REF] Broise | Transformations dilatantes de l'intervalle et théorèmes limites. Études spectrales d'opérateurs de transfert et applications[END_REF], Section 2.1 page 11. Recall that if T is uniformly expanding, then there exists a probability measure µ on [0, 1], whose density f µ with respect to the Lebesgue measure is a bounded variation function, and such that µ is invariant by T . Consider now the more restrictive conditions: 2. I is the finite union of disjoint intervals (I k ) 1≤k≤n , and

T (x) = a k x + b k on I k , with |a k | > 1. 3. T (x) = a(x -1 -1) -[a(x -1 -1)
] for some a > 0. For a = 1, this transformation is known as the Gauss map.

Remark 19

The case where f (x) = x (that is X n = T nµ(T )) has already been considered by [START_REF] Dembo | Moderate deviations of iterates of expanding maps[END_REF]. However, in this paper, the assumptions on T are more restrictive than the assumptions (a), (b) and (c) above. In particular, they assume that there is a finite partition (I j ) 1≤j≤m of [0, 1] on which T restricted to I k is C 1 and inf x∈I k |T ′ (x)| > 1, so that their result does not cover the case of the Gauss map (Example 3 above).

Symmetric random walk on the circle

Let K be the Markov kernel defined by

Kf (x) = 1 2 (f (x + a) + f (x -a))
on the torus R/Z, with a irrational in [0, 1]. The Lebesgue-Haar measure m is the unique probability which is invariant by K. Let (ξ i ) i∈Z be the stationary Markov chain with transition kernel K and invariant distribution m. Let

X k = f (ξ k ) -m(f ) , W n (t) = W n (f, t) = n -1/2 [nt] i=1 (f (ξ i ) -m(f )) . ( 27 
)
From Derriennic and Lin (2001), Section 2, we know that the central limit theorem holds for n -1/2 W n (f, 1) as soon as the series of covariances

σ 2 (f ) = m((f -m(f )) 2 ) + 2 n>0 m(f K n (f -m(f ))) (28) 
is convergent, and that the limiting distribution is N (0, σ 2 (f )). In fact the convergence of the series in ( 28) is equivalent to

k∈Z * | f(k)| 2 d(ka, Z) 2 < ∞ , (29) 
where f(k) are the Fourier coefficients of f . Hence, for any irrational number a, the criterion (29) gives a class of function f satisfying the central limit theorem, which depends on the sequence ((d(ka, Z)) k∈Z * . Note that a function f such that lim inf

k→∞ k| f (k)| > 0 , (30) 
does not satisfies (29) for any irrational number a. Indeed, it is well known from the theory of continued fraction that if p n /q n is the n-th convergent of a, then |p n -q n a| < q -1 n , so that d(ka, Z) < k -1 for an infinite number of positive integers k. Hence, if (30) holds, then | f(k)|/d(ka, Z) does not even tend to zero as k tends to infinity.

Our aim in this section is to give conditions on f and on the properties of the irrational number a ensuring that the MDP holds in D[0, 1].

a is said to be badly approximable by rationals if for any positive ε, (31) the inequality d(ka, Z) < |k| -1-ε has only finitely many solutions for k ∈ Z. From Roth's theorem the algebraic numbers are badly approximable (cf. [START_REF] Schmidt | Diophantine approximation[END_REF]). Note also that the set of badly approximable numbers in [0, 1] has Lebesgue measure 1.

In Section 5.3 of [START_REF] Dedecker | On mean central limit theorems for stationary sequences[END_REF], it is proved that the condition (29) (and hence the central limit theorem for n -1/2 W n (f, 1)) holds for any badly approximable number a as soon as

sup k =0 |k| 1+ε | f(k)| < ∞ for some positive ε. ( 32 
)
Note that, in view of (30), one cannot take ε = 0 in the condition (32). In fact, for badly approximable numbers, the condition (32) implies also the MDP in D[0, 1]:

Proposition 20 Suppose that a is badly approximable by rationals, i.e satisfies (31). If the function f satisfies (32), then the conclusion of Theorem 1 holds with σ 2 = σ 2 (f ).

Note that, under the same conditions, the process {W n (f, t), t ∈ [0, 1]} satisfies the weak invariance principle in D[0, 1]. Indeed, to prove Proposition 20, we show that the conditions of Corollary 2 are satisfied, but these conditions imply the weak invariance principle (see for instance Peligrad and Utev (2005)). From Comment 5, we also infer that the Donsker process defined in [START_REF] Dembo | Moderate deviations for martingales with bounded jumps[END_REF] satisfies the functional law of the iterated logarithm.

Proofs

Since the proofs of our results are mainly based on some exponential bounds for the deviation probability of the maximum of the partial sums for dependent variables, we present these inequalities, which have interest in themselves.

Exponential bounds for dependent variables

We state first the exponential bound from Proposition 2 in Peligrad, Utev and Wu (2007) that we are going to use in the proof of the main theorem. Lemma 21 Let (X i ) i∈Z be a stationary sequence of random variables adapted to the filtration

(F i ) i∈Z . Then P( max 1≤i≤n |S i | ≥ t) ≤ 4 √ e exp -t 2 /2n X 1 ∞ + 80 n j=1 j -3/2 E(S j |F 0 ) ∞ 2 
In the next lemma, we bound the maximal exponential moment of the stationary sequence by using the projective criteria.

Lemma 22

Let {Y k } k∈Z be a sequence of random variables such that for all j, E(Y j |F -∞ ) = 0 almost surely and Y j is F ∞ -measurable. Define the projection operators by P j (X) = E(X|F j ) -E(X|F j-1 ) . Assume that

P k-j (Y k ) ∞ ≤ p j and D := ∞ j=-∞ p j < ∞ Let {g k , k ∈ N}
be a sequence of numbers and define,

S k = k i=1 g i Y i , M k = max 1≤j≤k S j , G 2 n = n i=1 g 2 i Then, E exp(tM n ) ≤ 4 exp( 1 2 G 2 n D 2 t 2 ) . In particular, P max 1≤k≤n |S k | ≥ x) ≤ 8 exp - x 2 2G 2 n D 2 .
Proof. Start with the decomposition

Y k = ∞ j=-∞ P k-j (Y k ) = ∞ j=-∞ b j P k-j (Y k )/b j where b j = p j /D ≥ P k-j (Y k ) ∞ /D, for any j ∈ Z. Then S m = ∞ j=-∞ b j m k=1 g k P k-j (Y k )/b j .
Thus,

M n ≤ ∞ j=-∞ b j max 1≤m≤n m k=1 P k-j (g k Y k )/b j =: ∞ j=-∞ b j M (j) n where M (j)
n denotes max 1≤m≤n m k=1 g k P k-j (Y k )/b j . Since exp(x) is convex and non-decreasing and b j ≥ 0 with j∈Z b j = 1,

E exp(tM n ) ≤ E exp ∞ j=-∞ b j tM (j) n ≤ ∞ j=-∞ b j E exp(tM (j) n ) .
Consider the martingale difference

U k = g k P k-j (Y k )/b j , j = 1, . . . , n. Since the variables Z k = exp(t(U 1 + • • • + U k )/2) form a submartingale, Doob's inequality yields E exp(tM (j) n ) = E max 1≤k≤n Z 2 k ≤ 4EZ 2 n = 4E exp(t(U 1 + • • • + U n )) .
Applying Azuma's inequality to the right-hand side, and noting that

U k ∞ = |g k | P k-j (Y k ) ∞ /b j ≤ |g k |D , we infer that E exp(tM (j) n ) ≤ 4 exp( 1 2 G 2 n D 2 t 2 ) . Since j∈Z b j = 1, we obtain that E exp(tM n ) ≤ j∈Z b j 4 exp( 1 2 G 2 n D 2 t 2 ) = 4 exp( 1 2 G 2 n D 2 t 2 ) .
Next, to derive the one-sided probability inequality we use the exponential bound with t = x/(G 2 n D 2 ), so

P(M n ≥ x) ≤ E exp(tM n ) exp(-tx) = 4 exp - x 2 2G 2 n D 2 .
Finally, to derive the two-sided inequality we observe that the stationary sequence {-Y j } also satisfies the conditions of the lemma. The proof is complete. ⋄

The next technical lemma provides an exponential bound for any random vector plus a correction in terms of conditional expectations (see also [START_REF] Wu | Exponential convergence in probability for empirical means of Brownian motion and of random walks[END_REF].

Lemma 23 Let {X i } 1≤i≤n be a vector of real random variables adapted to the filtration {F n } n≥1 . Denote B=sup 1≤i≤n X i ∞ . Then, for all δ > 0 and c a natural number with cB/n ≤ δ/2, we have

P( max 1≤i≤n | 1 n i u=1 X u | ≥ δ) ≤ 2 exp(- δ 2 n 64B 2 c ) + P( sup 1≤i≤[n/c] | 1 c ic j=(i-1)c+1 E(X j |F (i-1)c )| ≥ δ 4 ) (33)
Proof of Lemma 23 Let c be a fixed integer and k = [n/c] (where, as before, [x] denotes the integer part of x). The initial step of the proof is to divide the variables in consecutive blocks of size c and to average the variables in each block

Y i,c = 1 c ic j=(i-1)c+1 X j , i ≥ 1 .
Then, for all 1 ≤ i ≤ k we construct the martingale,

M i,c = i j=1 (Y j,c -E(Y j,c |F (j-1)c )) = i j=1 D j,c
and we use the decomposition

P( max 1≤j≤n | 1 n j u=1 X u | ≥ δ) ≤ P( max 1≤i≤k | 1 k i j=1 Y j,c | ≥ δ - cB n ) ≤ P( max 1≤i≤k | 1 k i j=1 Y j,c | ≥ δ/2) ≤ P( max 1≤i≤k 1 k |M i,c | ≥ δ/4) + P( max 1≤i≤k 1 k | i j=1 E(Y j,c |F (j-1)c )| ≥ δ/4) ≤ P( max 1≤i≤k 1 k |M i,c | ≥ δ/4) + P( max 1≤j≤k |E(Y j,c |F (j-1)c )| ≥ δ/4) .
Next, we apply Azuma's inequality to the martingale part and obtain,

P max 1≤i≤k |M i,c | ≥ δk/4 ≤ 2 exp(- δ 2 k 2 32kB 2 ) ≤ 2 exp(- δ 2 n 64cB 2 )
which implies that

P( max 1≤i≤n | 1 n i u=1 X u | ≥ δ) ≤ 2 exp(- δ 2 n 64B 2 c ) + P( max 1≤i≤k |E(Y i,c |F (i-1)c )| ≥ δ/4)
proving the lemma. ⋄

Some facts about the moderate deviation principle

This paragraph deals with some preparatory material. The following theorem is a result concerning the MDP for a triangular array of martingale differences sequences. It follows from Theorem 3.1 and Lemma 3.1 of [START_REF] Puhalskii | Large deviations of semimartingales via convergence of the predictable characteristics[END_REF], (see also [START_REF] Djellout | Moderate Deviations for Martingale Differences and applications to φ-mixing sequences[END_REF], Proposition 1 and Lemma 2).

Lemma 24 Let k n be an increasing sequence of integers going to infinity. Let {D j,n } 1≤j≤kn be a triangular array of martingale differences adapted to a filtration F j,n . Define the normalized partial sums process Z n (t) = n -1/2 [knt] i=1 D i,n . Let a n be a sequence of real numbers such that a n → 0 and na n → ∞. Assume that D j,n ∞ = o( √ na n ) and that for all δ > 0, there exists

σ 2 ≥ 0 such that lim sup n→∞ a n log P 1 n kn j=1 E(D 2 j,n |F (j-1),n ) -σ 2 ≥ δ = -∞ . (34) 
Then, for the given sequence a n the partial sums processes Z n (.) satisfy ( 1) with the good rate function I σ (•) defined in [START_REF] Broise | Transformations dilatantes de l'intervalle et théorèmes limites. Études spectrales d'opérateurs de transfert et applications[END_REF].

To be able to obtain the moderate deviation principle by approximation with martingales we state next a simple approximation lemma from Dembo and Zeitouni (1998, Theorem 4.2.13. p 130), called exponentially equivalence lemma.

Lemma 25 Let ξ n (.) := {ξ n (t) , t ∈ [0, 1]} and ζ n (.) := {ζ n (t) , t ∈ [0, 1]} be two processes in D([0, 1]). Assume that for any δ > 0, lim sup n→∞ a n log P( √ a n sup t∈[0,1] |ξ n (t) -ζ n (t)| ≥ δ) = -∞
Then, if the sequence of processes ξ n (.) satisfies (1) then so does the sequence of processes ζ n (.).

In dealing with dependent random variables, to brake the dependence, a standard procedure is to divide first the variables in blocks. This technique introduces a new parameter, and so, in order to use a blocking procedure followed by a martingale approximation, we have to establish a more specific exponentially equivalent approximation, as stated in the following lemma:

Lemma 26 For any positive integer m, let k n,m be an increasing sequence of integers going to infinity. Let {d (m) j,n } 1≤j≤kn,m be a sequence of triangular array of martingale differences adapted to a filtration F (m) j,n . Define the normalized partial sums process Z (m)

n (t) = n -1/2 [kn,mt] i=1 d (m) i,n . Let a n be a sequence of positive numbers such that a n → 0 and na n → ∞. Assume that for all m ≥ 1 sup 1≤j≤kn,m d (m) j,n ∞ = o( √ na n ) as n → ∞ (35) 
and that for all δ > 0, there exists σ 2 ≥ 0 such that

lim m→∞ lim sup n→∞ a n log P 1 n kn,m j=1 E((d (m) j,n ) 2 |F (m) (j-1),n ) -σ 2 ≥ δ = -∞ . ( 36 
)
Let {ζ n (t) , t ∈ [0, 1]} be a sequence of D[0, 1]-valued random variables such that for all δ > 0,

lim m→∞ lim sup n→∞ a n log P( √ a n sup t∈[0,1] |ζ n (t) -Z (m) n (t)| ≥ δ) = -∞ (37) 
Then, the processes ζ n (.) satisfy ( 1) with the good rate function I σ (•) defined in (4).

Proof. Define the functions

A 1 (δ, n, m) = a n log P( sup t∈[0,1] |ζ n (t) -Z (m) n (t)| ≥ δ) ; A 2 (δ, n, m) = a n log P   sup t∈[0,1] 1 n [kn,mt] j=1 E((d (m) j,n ) 2 |F (m) (j-1),n ) -tσ 2 ≥ δ   A 3 (δ, n, m) = log ( sup 1≤j≤kn,m d (m) j,n ∞ ) -log ( √ a n n) .
Observe that the functions A i , i = 1, 2, 3 satisfy the conditions of Lemma 30 from Appendix and so, we can find a sequence m n → ∞ such that the martingale difference sequence (d (mn) j,n ) satisfies the conditions of Lemma 24. We then derive that the sequence of processes Z (mn) n (.) satisfies (1) and, by applying Lemma 25, so does the sequence ζ n (.) . ⋄

Proof of Theorem 1

Let m be an integer and k = k n,m = [n/m] (where, as before, [x] denotes the integer part of x).

The initial step of the proof is to divide the variables in blocks of size m and to make the sums in each block

X i,m = im j=(i-1)m+1 X j , i ≥ 1.
Then we construct the martingales,

M (m) k = [n/m] i=1 (X i,m -E(X i,m |F (i-1)m ) := [n/m] i=1 D i,m
and we define the process {M We start by proving (36). Notice first that {D i,m } i≥1 is a rowwise stationary sequence of bounded martingale differences. We have to verify

lim m→∞ lim sup n→∞ a n log P   1 n [n/m] j=1 E(D 2 j,m |F (j-1)m ) -σ 2 ≥ δ   = -∞ . (38) 
Notice that

E(D 2 j,m |F (j-1)m ) = E(X 2 j,m |F (j-1)m ) -(E(X j,m |F (j-1)m)
)) 2 and that, by stationarity 

1 n [n/m] j=1 (E(X j,m |F (j-1)m )) 2 ∞ ≤ E(S m |F 0 ) 2 ∞ m . Also 1 n [n/m] j=1 E(X 2 j,m |F (j-1)m ) -σ 2 ∞ ≤ m -1 E(S 2 m |F 0 ) -σ 2 ∞ + (1 -km/n)σ 2 . Consequently lim sup n→∞ 1 n [n/m] j=1 (E(D 2 j,m |F (j-1)m ) -σ 2 ∞ ≤ E(S m |F 0 ) 2 ∞ m + m -1 E(S 2 m |F 0 ) -σ 2 ∞ which is
|S [nt] -M (m) k (t)| ≥ δ = -∞ . ( 39 
)
Notice first that sup

t∈[0,1] |S [nt] -M (m) k (t)| ≤ sup t∈[0,1] | [nt] i=[k t]m+1 X i | + sup t∈[0,1] | [k t] i=1 E(X i,m |F (i-1)m )| ≤ o( √ na n ) + max 1≤j≤[n/m] | j i=1 E(X i,m |F (i-1)m )|.
Then, by using Lemma 21 we derive that

a n log P a n n max 1≤j≤[n/m] | j i=1 E(X i,m |F (i-1)m )| ≥ δ ≤ a n log(4 √ e) - δ 2 m 2( E(S m |F 0 ) ∞ + 80 ∞ j=1 j -3/2 E(S jm |F 0 ) ∞ ) 2 .
which is convergent to -∞ when n → ∞ followed by m → ∞, by Lemma 29.

Proof of Corollary 2 and Remark 5

Notice that obviously, by triangle inequality and changing the order of summation, ( 5) implies [START_REF] Billingsley | Convergence of Probability Measures[END_REF]. So, in order to establish both Corollary 2 and Remark 5, we just have to show that condition (2) together with (6) imply condition (3). This will be achieved by using the following two lemmas.

First let us introduce some notations. Let S a,b = S b -S a and set

∆ r,∞ = ∞ j=r 2 -j/2 E(S 2 j |F 0 ) ∞ , ∆ ∞ = E(X 2 1 |F 0 ) 1/2 ∞ + ∞ j=0 2 -j/2 E(S 2 j |F 0 ) ∞ .
By Peligrad and Utev (2005), ∆ 0,∞ < ∞ is equivalent to [START_REF] Billingsley | Convergence of Probability Measures[END_REF].

Lemma 27 Assume that X 0 is F 0 -measurable and that E(X 2 1 |F 0 ) ∞ < ∞. Let n, r be integers such that 2 r-1 < n ≤ 2 r . Then

E(S 2 n |F 0 ) ∞ ≤ n E(X 2 1 |F 0 ) 1/2 ∞ + 1 2 r-1 j=0 2 -j/2 E(S 2 j |F 0 ) ∞ 2 ≤ n∆ 2 ∞ .
Moreover, under (2), n -1 E(S 2 n |I)η ∞ → 0 as n → ∞ , where I is the σ-field of all T -invariant sets and

η = E(X 2 1 |I) + ∞ j=0 2 -j E(S 2 j (S 2 j+1 -S 2 j )|I) .
In particular, if E(X i X j |F -∞ ) = E(X i X j ), for any i, j in Z, then

η = σ 2 = E(X 2 1 ) + ∞ j=0 2 -j E(S 2 j (S 2 j+1 -S 2 j )) .
Proof. The proofs of the first three statements are almost identical to the proof of the corresponding facts in Proposition 2.1 of [START_REF] Peligrad | A new maximal inequality and invariance principle for stationary sequences[END_REF]. The only changes are to replace everywhere the L 2 -norm x by the L ∞ -norm x ∞ and the usual expectation E(X) by the conditional expectation E(X) = E(X|F 0 ). The last statement follows from Proposition 2.12 in [START_REF] Bradley | Introduction to Strong Mixing Conditions[END_REF], since for all i, j,

E(X i X j |I) = E(E(X i X j |F -∞ )|I) = E(X i X j ) . ⋄
Lemma 28 Assume that X 0 is F 0 -measurable and that E(X 2 1 |F 0 ) ∞ < ∞. Suppose that the conditions (2) and ( 6) are satisfied. Then,

n -1 E(S 2 n |F 0 ) -σ 2 ∞ → 0 as n → ∞
Proof. By Lemma 27, it is enough to show that

1 n E(S 2 n |F 0 ) -E(S 2 n ) ∞ → 0 as n → ∞
We prove this lemma by diadic recurrence. For t integer, denote

A t,k = E(S 2 t |F -k ) -E(S 2 t ) ∞ .
Then, by the properties of conditional expectation and stationarity, for all t ≥ 1

A 2t,k = E(S 2 2t |F -k ) -E(S 2 2t ) ∞ ≤ E(S 2 t |F -k ) -E(S 2 t ) ∞ + E(S 2 t,2t |F -k ) -E(S 2 t ) ∞ + 2 E(S t S t,2t |F -k ) -E(S t S t,2t ) ∞ ≤ 2 E(S 2 t |F -k ) -E(S 2 t ) ∞ + 2 E(S t S t,2t |F -k ) ∞ + 2|E(S t S t,2t )| .
Using a standard martingale decomposition (see also Hall and Heyde, 1980), we define

θ j,m = ∞ t=0 E(ξ j+t,m |F j+m-1 ) = 2m-2 k=0 E(ξ j+k,m |F j+m-1 ) .
and observe that

θ 0,m ∞ = 2m-2 k=0 m-1 i=k-m+1 P i (X k ) ∞ ≤ 2m i∈Z P 0 (X i ) ∞ < ∞ . (43) 
Then, E(θ j+1,m |F j+m-1 ) = θ j,mξ j,m and thus,

k j=1 ξ j,m = θ 1,m -θ k+1,m + k j=1 d j,m . (44) 
where d j,m := θ j+1,m -E(θ j+1,m |F j+m-1 ) is a stationary bounded martingale difference. Moreover,

k j=1 X j = k j=1 d j,m + R k,m , (45) 
where

R k,m := θ 1,m -θ k+1,m + k j=1 [X j -E(X j |F j+m-1 ) + E(X j |F j-m )] .
First, we show that R k,m is negligible for the moderate deviation. We notice that by (43) it is enough to establish that

R ′ k,m := k j=1 [X j -E(X j |F j+m-1 ) + E(X j |F j-m )] is negligible. Observe that X j -E(X j |F j+m-1 ) + E(X j |F j-m ) = |t|≥m P j-t (X j ) and j∈Z P 0 X j -E(X j |F j+m-1 ) + E(X j |F j-m ) ∞ ≤ ∞ |k|≥m P 0 (X k ) ∞ =: D m (46) 
Now, the exponential inequality given in Lemma 22 entails that

P max 1≤k≤n k j=1 E[X j -E(X j |F j+m-1 ) + E(X j |F j-m )] ≥ δ n/a n ≤ 8 exp - δ 2 n a n 2nD 2 m
The last inequality together with [START_REF] Dedecker | An empirical central limit theorem for dependent sequences[END_REF] and Lemma 25 reduces the theorem to the MDP principle for bounded stationary martingale difference {d j,m ; j ∈ Z}.

Then, by Lemma 26, it remains to verify that lim m→∞ lim sup

n→∞ a n ln P 1 n n j=1 (E(d 2 j,m |F j+m-1 ) -σ 2 ) ≥ δ = -∞ .
In order to prove this convergence, by Lemma 23, applied with B = 2

ℓ∈Z P 0 (X ℓ ) ∞ 2 , it is enough to establish that lim m→∞ lim sup n→∞ 1 n n j=1 (E(d 2 j,m |F m-1 ) -σ 2 ) ∞ = 0 .
Since {d j,m } is a martingale difference, it follows from the decomposition (44) and ( 43), that it remains to prove that lim m→∞ lim sup

n→∞ 1 n E n j=2m-1 ξ j,m 2 |F m-1 -σ 2 ∞ = 0 . ( 47 
) Write n j=2m-1 ξ j,m 2 = n i=2m-1 ξ 2 i,m + 2 n i=2m-1 (N +i)∧n j=i+1 ξ i,m ξ j,m + 2 n i=2m-1 n j=N +i+1 ξ i,m ξ j,m .
Notice that, since ξ j,m = Σ j+m-1 k=j-m+1 P k (X j ), we get

1 n n i=2m-1 n j=N +i+1 E ξ i,m ξ j,m |F m-1 ∞ ≤ 1 n n i=2m-1 ∞ j=N +i+1 E ξ i,m ξ j,m |F m-1 ∞ ≤ 1 n n i=2m-1 i+m-1 k=i-m+1 P k (X i ) ∞ ℓ≥N P k (X i+ℓ ) ∞ ≤ i∈Z P 0 (X i ) ∞ |ℓ|≥N/2 P 0 (X ℓ ) ∞ → 0
as N → ∞, uniformly in n, and so, (47) is implied by

lim m→∞ lim sup n→∞ 1 n E n i=2m-1 ξ 2 i,m + 2 n i=2m-1 (N +i)∧n j=i+1 ξ i,m ξ j,m |F m-1 -σ 2 N ∞ = 0 , (48) 
where

σ 2 N = E(X 2 0 ) + 2E(X 0 X 1 ) + • • • + 2E(X 0 X N -1 ). Write ξ i,m = X i + (ξ i,m -X i ). By condition (6), we easily get that lim m→∞ lim sup n→∞ 1 n E n i=2m-1 X 2 i + 2 n i=2m-1 (N +i)∧n j=i+1 X i X j |F m-1 -σ 2 N ∞ = 0 , hence (48) holds since X i -ξ i,m ∞ ≤ |k|≥m P 0 (X k ) ∞ → 0 as m → ∞ . ⋄

Proof of Proposition 11

Let F k = σ(ε i , i ≤ k). From Theorem 4.4.7 in Berbee (1979), there exists (ε ′ i ) i>0 distributed as (ε i ) i>0 and independent of F 0 such that

E(1 {ε k =ε ′ k , for some k ≥ n} |F 0 ) ∞ = φ ε (n) .

Proof of Lemma 15

Let (Y i ) i≥1 be the Markov chain with transition Kernel K and and invariant measure µ. From Lemma 1 in Dedecker and Merlevède (2006), we know that there exists Y * k distributed as Y k and independent of Y 0 such that sup

g∈Λ 1 K k (g) -µ(g) ∞,µ = E(|Y k -Y * k ||Y 0 ) ∞ .
For any f such that |f (x)f (y)| ≤ c(|x -y|), we have

K k (f ) -µ(f ) ∞,µ = E(f (Y k )|Y 0 ) -E(f (Y * k )|Y 0 ) ∞ ≤ E(c(|Y k -Y * k |)|Y 0 ) ∞ .
Since c is concave and non decreasing, we get that

K k (f ) -µ(f ) ∞,µ ≤ c(E(|Y k -Y * k ||Y 0 )) ∞ ≤ c( E(|Y k -Y * k ||Y 0 ) ∞ ) ,
and the proof is complete. ⋄

Proof of Corollary 18

Let (Y i ) i≥1 be the Markov chain with transition Kernel K and invariant measure µ. Using the equation ( 26) is easy to see that (Y 0 , . . . , Y n ) is distributed as (T n+1 , . . . , T ). Consequently, for f in L, Corollary 18 follows from Proposition 14 and Condition [START_REF] Schmidt | Diophantine approximation[END_REF].

Assume now that f is BV . We shall prove that the sequence X i = f (Y i )µ(f ) satisfies the conditions ( 5) and ( 6) of Corollary 2. Since K is BV -contracting we have that E(X k |Y 0 ) ∞ = K k (f )µ(f ) ∞,µ ≤ dK k (f ) ≤ Cρ k df , so that (5) is satisfied. On the other hand, applying Lemma 1 in Dedecker and Prieur (2007), we have that, for any l > k ≥ 0,

E(X k X l |Y 0 ) -E(X k X l ) ∞ ≤ C(1 + C)ρ k df 2 , (52) 
so that (6) holds. This completes the proof of Corollary 18 when f is BV . ⋄

Proof of Proposition 20

To prove Proposition 20, it suffices to prove that the sequence X i = f (ξ i )m(f ) satisfies the conditions ( 5) and ( 6) of Corollary 2. Let • ∞,m be the essential supremum norm with respect to m.

Note that E(X n |ξ 0 ) ∞ = K n (f )m(f ) ∞,m , and that

K n (f )(x) -m(f ) = k∈Z *
cos n (2πka) f(k) exp(2iπkx) .

By assumption, there exists C > 0 such that sup

k =0 |k| 1+ε | f (k)| ≤ C. Hence n>0 K n (f ) -m(f ) ∞,m √ n ≤ C k∈Z * |k| -1-ε n>0 | cos(2πka)| n √ n . (53) 
Here, note that there exists a positive constant K such that, for any 0 < a < 1, we have n>0 n -1/2 a n ≤ Ka(1a) -1/2 (to see this, it suffices to compare the sum with the integral of the function h(x) = x -1/2 a x ). Consequently, we infer from (53) that Applying this result with η = ε/2, we infer from (54) that n>0

K n (f ) -m(f ) ∞,m √ n ≤ 2CKD N ≥0
2 (N +2)(1+ε/2) N max

2 N ≤k≤2 N+1 k -1-ε < ∞ ,
so that the condition (5) of Corollary 2 is satisfied. The condition (6) of Corollary 2 follows from the inequality (5.18) in [START_REF] Dedecker | On mean central limit theorems for stationary sequences[END_REF]. ⋄

Appendix

This section collects some technical lemmas. The proof of the following lemma is left to the reader since it uses the same arguments as in the proof of Proposition 2. The following lemma gives a simple fact about convergence.

Lemma 30 Let A j (x, n, m), j = 1, . . . , J, x > 0, be real valued functions such that for each j, n, m the function A j (x, n, m) is non-increasing in x > 0 and assume that, for any x > 0, lim sup 

  (a) T is uniformly expanding. (b) The invariant measure µ is unique and (T, µ) is mixing in the ergodic-theoretic sense. (c) 1 f µ 1 fµ>0 is a bounded variation function. Starting from Proposition 4.11 in Broise (1996), one can prove that if T satisfies the assumptions (a), (b) and (c) above, then it is BV contracting (see for instance Dedecker and Prieur (2007), Section 6.3). Some well known examples of maps satisfying the conditions (a), (b) and (c) are: 1. T (x) = βx -[βx] for β > 1. These maps are called β-transformations.

  . Now, we shall use Lemma 26 applied with d (m) j,n = D j,m , and verify the conditions (36) and (37).

n>0K

  n (f )m(f ) being true because (1-| cos(πu)|) ≥ π(d(u, Z))2 . Since a is badly approximable by rationals, then so is 2a. Hence, arguing as in the proof of Lemma 5.1 in[START_REF] Dedecker | On mean central limit theorems for stationary sequences[END_REF], we infer that for any positive η there exists a constant D such that2 N+1 -1 k=2 N 1 d(2ka, Z)≤ D2 (N +2)(1+η) N .

  5 in Peligrad and Utev (2005) by replacing the L 2 norm by the L ∞ norm. Lemma 29 Under condition (2),E(S m |F 0 ) ∞ √ m → 0 and 1 √ m ∞ j=1 E(S mj |F 0 ) ∞ j 3/2 → 0 as m → ∞.

  x, n, m) = -∞ .Then for any u n → ∞, there exists m n → ∞ such that m n ≤ u n and, for any x > 0 and j = 1, . . . , J,lim sup n→∞ A j (x, n, m n ) = -∞Proof. First, we observe that by considering the functionA(x, n, m) = max 1≤j≤J A j (x, n, m) ,the lemma reduces to the case J = 1.Construct a strictly increasing positive integer sequences ψ k and n k such that for all n ≥ n k ,A(1/k, n, ψ k ) ≤ -k . Let g(n) = k for n k < n ≤ n k+1 starting with k = 1 and g(n) = 1 for n ≤ n 1 . Then, g(n) is non-decreasing, g(n) → ∞ and for all n > n 1 such that n k < n ≤ n k+1 (and so g(n) = k). n g(n) = n k < n Now, let G(n) be a positive integer sequence such that G(n) ≤ g(n) and G(n) → ∞. Then, n G(n) ≤ n g(n) = n k < nHence, there exists G(n) such thatψ G(n) ≤ u n , n G(n) ≤ n and G(n) → ∞ .Finally, let m n = ψ G(n) . Then, obviouslym n ≤ u n and m n → ∞ .On the other hand, for any x > 0 and n such that x ≥ 1/G(n), since A(x, n, m) is non-increasing in x, we haveA(x, n, m n ) ≤ A(1/G(n), n, m n ) = A(1/G(n), n, ψ G(n) ) ≤ -G(n) → -∞which proves the lemma. ⋄

  smaller than δ/2 provided m is large enough, by the first part of Lemma 29 from Appendix and condition (3). This proves (38).

	It remains to prove (37), that means in our notation that for any δ > 0
	lim m→∞	lim sup n→∞	a n log P	a n n	sup t∈[0,1]

 [START_REF] Arcones | The large deviation principle for stochastic processes I[END_REF]Supported in part by a Charles Phelps Taft Memorial Fund grant and NSA grant, H98230-07-1-0016.

Using for the last two terms the bound from Lemma 27, the Cauchy-Schwartz inequality and stationarity, we have

by recurrence, for all r ≥ m and all k > 0, we derive

Now notice that, by stationarity and triangle inequality

and that by Lemma 27

Then, starting from (41) and using (40) and (42), we derive that for r ≥ m + 1,

As a consequence lim sup

Then, we first let k → ∞ and by Condition 6 it follows that lim k→∞ B m,k = 0. Then, we let m tend to infinity and by Condition (2), we derive

To complete the proof of the lemma we use the diadic expansion n = Σ r-1 k=0 2 k a k where a r-1 = 1 and a k ∈ {0, 1} and continue the proof as in Proposition 2.1 in Peligrad and Utev (2005). ⋄

Proof of Theorem 3

Fix a positive integer m and define the stationary sequence

) i∈Z be the sequence defined by ε

Denoting by E ε (•) the conditional expectation with respect to ε, we infer from C(A) that

Consequently, by the φ-mixing property, we obtain the upper bound

k ). We have

Clearly, by C(A) and the φ-mixing property,

which tends to zero as l tends to infinity. In the same way

), and let (η

Consequently, applying C(A) once more, we have that

which tends to zero as k and l tends to infinity. This completes the proof. ⋄

Proof of Proposition 12

We shall apply Corollary 2. We use the same notations as for the proof of Proposition 11. With these notations, we have

and by the φ-mixing property,

Now, by C ′ (A) again,

Consequently, since φ ε (0) > 0, the condition ( 5) is implied by [START_REF] Deuschel | Large deviations[END_REF]. It remains to prove [START_REF] Dedecker | Inequalities for partial sums of Hilbert-valued dependent sequences and applications[END_REF]. We start from the decomposition (49). By (51),

and E(X

Hence, in view of ( 14), these two terms converges to zero as k and l tend to infinity. From (50) and condition C ′ (A), we have that

which again converges to zero as k and l tend to infinity. This completes the proof. ⋄

Proof of Proposition 14

It suffices to prove that for any f in L, the sequence X i = f (Y i )µ(f ) satisfies the conditions ( 5) and ( 6) of Corollary 2. Note first that (6) holds because of [START_REF] Peligrad | A new maximal inequality and invariance principle for stationary sequences[END_REF] and because any continuous function from [0, 1] to R can be uniformly approximated by Lipschitz functions.

From Lemma 15, we have that

for some concave non decreasing function c. Consequently (5) holds as soon as k>0 k -1/2 c(Cρ k ) is finite, which in turn is equivalent to [START_REF] Peligrad | A maximal L p -inequality for stationary sequences and its applications[END_REF].