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1 Introduction

These notes are the first chapter of a monograph, dedicated to a detailed proof
of the equivariant index theorem for transversally elliptic operators.

In this preliminary chapter, we prove a certain number of natural relations
in equivariant cohomology. These relations include the Thom isomorphism in
equivariant cohomology, the multiplicativity of the relative Chern characters,
and the Riemann-Roch relation between the relative Chern character of the Bott
symbol and of the relative Thom class. In the spirit of Mathai-Quillen, we give
“explicit” representatives of a certain number of relative classes. We believe that
this construction has its interest in the non equivariant case as well. As remarked
by Cartan (see [E]) and emphasized in Mathai-Quillen , computations in
the ordinary de Rham cohomology of vector bundles are deduced easily from
computations in the equivariant cohomology of vector spaces. In particular, we
give here an explicit formula for the relative Thom form Th,e (V) € H*(V, V\M)
of a Euclidean vector bundle p : V — M provided with a Euclidean connection:
Thye (V) = [p* Eul(V), By], where Eul(V) is the Euler class and £y an explicit
form depending of the connection, defined outside the zero section of V, such
that p* Eul(V) = dfy. We similarly give an explicit formula for the relative
Chern character Chyei(op) € H*(V,V \ M) of the Bott morphism on the vector
bundle V, if V is provided with a complex structure. The Riemann-Roch relation

p* (Todd(V)) Chyel(op) = Thya (V)

holds in relative cohomology, and follows from the formulae.

Our constructions in the de Rham model for equivariant cohomology are
strongly influenced by Quillen’s construction of characteristic classes via super-
connections and super-traces. The articles of Quillen [B] and Mathai-Quillen
[ are our main background. However, Quillen did not use relative cohomology
while our constructions are systemically performed in relative cohomology,
therefore are more precise. This relative construction was certainly present in
the mind of Quillen, and we do not pretend to a great originality. Indeed, if
a morphism o : €T — £~ between two vector bundles over a manifold M is
invertible outside a closed subset F', the construction of Quillen of the Chern
character Chg(o) = Str(eAg) is defined using a super-connection A, with zero



degree term the odd endomorphism i(c @ ¢*) and this construction provides
also a form 3 defined outside F' such that the equality Ch(£1) — Ch(E™) =
df holds on M \ F. Thus the couple («,3) of differential forms, with « :=
Ch(E1) — Ch(E7), defines naturally a class Chye(o) in the de Rham relative
group H*(M, M\ F') that we call the Quillen’s relative Chern character. Now, if
a = (a, f) is a closed element in relative cohomology, e.g. « is a closed form on
M and a = df outside F, the couple (o, 8) of differential forms leads naturally
to usual de Rham closed differential forms on M with support as close as we want
from F'. Indeed, using a function y identically equal to 1 on a neighborhood of F,
the closed differential form p(a) := ya+dyx/ is supported as close as we want of
F'. Thus Quillen’s super-connection construction gives us three representations
of the Chern character: the Quillen Chern character Chq (o), the relative Chern
character Chyei(0) and the Chern character Chgyp(o) = p(Chyei(o)) supported
near F. We study the relations between these classes and prove some basic
relations. Our previous article [@] explained the construction of the relative
Chern character in ordinary cohomology. Here these constructions are done in
equivariant cohomology and are very similar.

As an important example, we consider o}, the Bott morphism on a complex
vector bundle g, : ATV — ATV over V, given by the exterior product by v € V.
This morphism has support the zero section M of V. Quillen’s Chern character
Chq(op) is particularly pleasant as it is represented by a differential form with
“Gaussian look” on each fiber of V. However, for many purposes, it is important
to construct the Chern character of o, as a differential form supported near the
zero section of V. More precisely, we here consider systematically the relative
class Chyei(op) in H*(V,V \ M) which contains all information.

A similar construction of the Thom form, using the Berezin integral instead
of a super-trace leads to explicit formulae for the relative Thom class. Again
here, we have three representatives of the Thom classes, the Mathai-Quillen
Thom form which has a “Gaussian look”, the relative Thom form, and the
Thom form with support near the zero section. Our main result is Theorem
Q where these three representatives are given in the equivariant cohomology
of vector spaces.

These explicit formulae allows us to derive the well known relations between
Thom classes in cohomology and K-theory (Theorem @) Here again, follow-
ing Mathai-Quillen construction, we perform all calculations on the equivariant
cohomology groups of an Euclidean vector space, and we apply Chern-Weil
morphism to deduce relations in any vector bundle.

We also include in this chapter proofs of Thom isomorphisms in various
equivariant cohomologies spaces, using Atiyah’s “rotation” construction. For
the case of relative cohomology, we need to define the product in de Rham
relative cohomology and some of its properties. This is the topic of Section E

In the second chapter of this monograph, we will generalize our results to
equivariant cohomology classes with C'~*-coefficients. This will be an essential
ingredient of our new index formula for transversally elliptic operators (see [[[4]).



2 Equivariant cohomologies

2.1 Definitions and notations

If f is a map on a space M, the notation f(x) means, depending of the context,
either the value of f at the point 2 of M, or the function = — f(x) where x is
a running variable in M.

When a compact Lie group K acts linearly on a vector space E, we denote
EX the sub-space of K-invariant vectors.

Let N be a manifold, and let A(NN) be the algebra of differential forms on N.
We denote by A.(N) the sub-algebra of compactly supported differential forms.
We will consider on A(N) and A.(N) the Z-grading by the exterior degree. It
induces a Zz-grading on A(N) in even or odd forms. We denote by d the de
Rham differential. If « is a closed differential form, we sometimes denote also
by « its de Rham cohomology class.

If S is a vector field on N, we denote by £(S) : A¥(N) — A¥(N) the Lie
derivative, and by «(S) : A¥(N) — A*~1(N) the contraction of a differential
form by the vector field S.

Let K be a compact Lie group with Lie algebra €. We denote CP°!(E) the
space of polynomial functions on ¢ and C*°(¥) the space of C*°-functions on €.
The algebra CP°!(£) is isomorphic to the symmetric algebra S(€*) of €.

We suppose that the manifold N is provided with an action of K. We
denote X — VX the corresponding morphism from ¢ into the Lie algebra of
vector fields on N: forn € N,

d
Vo X = e exp(—eX) - nle—o, X €t
Let AP°'(€, N) = (CP°(£) ® A(N))¥X be the Z-graded algebra of equivariant
polynomial functions « : ¢ — A(N). Its Z-grading is the grading induced by the
exterior degree and where elements of £ have degree two. Let D = d — ((VX)
be the equivariant differential:

(Da)(X) = d(a(X)) = oV X )a(X).

Let HP°!(¢, N) := KerD/ImD be the equivariant cohomology algebra with poly-
nomial coefficients. It is a module over CP°(€).

Remark 2.1 If K is not connected, AP°'(¢, N) depends of K, and not only of
the Lie algebra of K. However, for notational simplicity, we do not include K
in the notation.

If g: M — N is a K-equivariant map from the K-manifold M to the K-
manifold N, then we obtain a map g* : AP°!(¢, N) — AP°!(€, M), which induces
a map ¢g* in cohomology. When U is an open invariant subset of N, we denote
by a + a|y the restriction of a € AP°!(¥, N) to U.



If S is a K-invariant vector field on N, the operators £(S) and ¢(S) are
extended from A(N) to CP°'(£) ® A(N): they commutes with the K-action, so
L(S) and (S) acts on AP°! (¢, N). Cartan’s relation holds:

(1) L(S)=DouS)+¢(S)oD.

If N is non-compact, we can also consider the space AP°(€, N) := (CP°!(£) ®
A:(N))X of equivariant polynomial forms (X ) which are compactly supported
on N. We denote by HP°!(¢, N) the corresponding cohomology algebra. If N is
an oriented manifold, integration over N defines a map HE°!(¢, N) — CP!(£)K.
If 7: N — B is a K-equivariant fibration with oriented fibers, then the integral
over the fiber defines a map . : HP°! (¢, N) — HP°!(¢, B).

Finally, we give more definitions in the case of a K-equivariant real vector
bundle p : V — M. We may define two sub-algebras of .AP°'(€,)) which are sta-

ble under the derivative D. The sub-algebra A% (¢, V) consists of polynomial

dec-rap
equivariant forms on V such that all partial derivatives are rapidly decreasing

along the fibers. We may also consider the sub-algebra A% ept(&: V) of K-

equivariant forms on V which have a compact support in the fibersof p: V — M.
The inclusions AR ept(6:V) C APl (8, V) C APO\(E, V) give rise to the natu-

dec-rap
ral maps HEOL pi(BV) = Hggi_rap({%, V) — HPOU(E, V). If the fibers of V are ori-
ented, integration over the fiber defines a map p, : Hggi_wp (6, V) — HPOL(E, M).

Let A (¢, N) be the Zs-graded algebra of equivariant smooth maps « :
t — A(N). Its Zy-grading is the grading induced by the exterior degree. The
equivariant differential D is well defined on A (¢, N) and respects the Zo-
grading. Let H*°(¢, N) := KerD/ImD be the corresponding cohomology algebra
with C*-coefficients. We denote by A%°(¢, N) the sub-algebra of equivariant
differential forms with compact support and by H2°(¢, N) the corresponding
algebra of cohomology. Then H> (¢, N) and H (¢, N) are Zs-graded algebras.
If N is oriented, integration over N defines a map H° (€, N) — C>°(¢)X.

Let V be a K-equivariant real vector bundle over a manifold M. We de-
fine similarly Affec_rap({?,V) and ngc_rap({%,V) as well as A, Cpt({?,V) and
HEer opi(£V).  There are natural maps HX(£,V) — Hg., :(6V) —
Hioerap(8, V) and an integration map Hge. ., (8, V) — H*(¢, M) if the fibers
of V — M are oriented.

After these lengthy definitions, we hope that at this point the reader is still
with us.

If K is the identity (we say the non-equivariant case), then the operator
D is the usual de Rham differential d. We systemically skip the letter ¢ =
{0} in the corresponding notations. Thus the equivariant cohomology group
HPOl(E, N) coincide with the usual de Rham cohomology group H(N). The
compactly supported cohomology space is denoted by H.(N) and the rapidly
decreasing cohomology space by Hdec-rap(V). (In this article, we will only work
with cohomology groups, so the notation H refers always to cohomology).



2.2 Equivariant cohomology of vector bundles

It is well known that the cohomology of a vector bundle is the cohomology of the
basis. The same equivariant Poincaré lemma holds in equivariant cohomology
(see for example [F]). We review the proof.

Let p:V — M be a K-equivariant (real) vector bundle. Let i : M — V be
the inclusion of the zero section.

Theorem 2.2
o The map i* : HP' (€, V) — HP(E, M) is an isomorphism with inverse p*.
o The map i* : H®(¢,V) — H>® (¢, M) is an isomorphism with inverse p*.

Proof. We prove the statement in the C* case. As poi = Idys, we have
’L'* Op* = IdHco(E7M).

Let us prove p* o i* = Idye(e,yy. We denote by (m,v) a point of V with
m € M and v € V,,. For t > 0, let h(t)(m,v) = (m,tv) be the homothety on
the fiber. The transformations h(t) verify h(t1)h(t2) = h(ti1t2) and commute
with the action of K.

Let o € A™(¢,V) be a closed element and let a(t) = h(t)*«. Thus a(0) =
p* 0 i*(«), while a(1) = a. From Formula (fl), we obtain for ¢ > 0:

d 1

) La(t) =1

Here S is the Euler vector field on V : at each point (m,v) of V, S(;, ) = v.
It is easily checked that }(.(S)a(t)) is continuous at ¢ = 0. Indeed, locally
if o =%, v s(X,mv)dmrdvy, aft) = ZIJV[y.](X,m,tv)dm;t"]]dv.j, and

1(S) kills all components with |.J| = 0. Integrating Equation (f]) from 0 to 1, we
obtain:

o —p*oit(a) = D(/O1 %L(S)a(t)dt).

Thus we obtain the relation p* o i* = Idsec ¢,y

2.3 The Chern-Welil construction

Let # : P — B be a principal bundle with structure group G. For any G-
manifold Z, we define the manifold Z = P X Z which is fibred over B with
typical fiber Z. Let A(P X Z)nor C A(P x Z) be the sub-algebra formed by the
differential forms on P x Z which are horizontal: v € A(P X Z)por if (VX)) =0
on P x Z for every X € g. The algebra A(Z) admits a natural identification
with the basic subalgebra

A(P X Z)pas = (A(P X Z)nor).

Let w € (A'(P) ® g)¢ be a connection one form on P, with curvature form
Q =dw+ 1w,w] € (A*(P)nor ® g)¢. The connection one form w defines, for
any G-manifold Z, a projection from A(P x Z) onto A(P X Z)pas-



The Chern-Weil homomorphism
(3) 02 AP (g, Z) — A(Z).

is defined as follows (see [{], [H]). For a G-equivariant form a(X), X € g on Z,
the form ¢Z () € A(Z2) is equal to the projection of a(2) € A(P x Z) on the
basic subspace A(P X Z)pas =~ A(Z).
In the case where Z is the {pt}, ¢Z is the usual Chern-Weil homomorphism
which associates to a G-invariant polynomial @) the characteristic form Q(2).
The main property of the equivariant cohomology differential D proved by
Cartan (see [[f], [f]}) is the following proposition.

Proposition 2.3
(bf oD=do (bf .
Thus a closed equivariant form on Z gives rise to a closed de Rham form on Z.

We can repeat the construction above in the equivariant case.

Let K and G be two compact Lie groups. Assume that P is provided with
an action of K x G: (k,g)(y) = kyg™!, for k € K,g € G,y € P. We assume
that G acts freely. Thus the manifold P/G = B is provided with a left action
of K. Let w be a K-invariant connection one form on P, with curvature form

Q. For Y € ¢, we denote by u(Y) = —(VY)w € C>®(P) ® g the moment of Y.
The equivariant curvature form is

QY)=Q+uY), X et
Let Z be a G-manifold. We consider the Chern-Weil homomorphism
(4) 05 1 AN (g, Z) — A(t, Z).

It is defined as follows (see [[],[]). For a G-equivariant form a on Z, the
value of the equivariant form ¢Z(a) at Y € £ is equal to the projection of
a(Q(Y)) € A(P x Z)% onto the the basic subspace A(P X Z)pas ~ A(Z). For
Z = {pt}, and Q a G-invariant polynomial on g, the form ¢Z(Q)(Y) = Q((Y))
is the Chern-Weil characteristic class constructed in [{], see also [ﬁ>]

Proposition 2.4 The map ¢Z : AP°\(g,Z) — AP°\(¥, Z) satisfies
(bf oD=Do (bf .

Here, on the left side the equivariant differential is with respect to the action
of G while, on the right side, the equivariant differential is with respect to the
group K.

3 Relative equivariant cohomology

Let N be a manifold provided with an action of a compact Lie group K.



3.1 Definition and basic properties

Let F be a closed K-invariant subset of N. To an equivariant cohomology class

on N vanishing on N \ F, we associate a relative equivariant cohomology class.

Let us explain the construction (see [{,[1J] for the non-equivariant case).
Consider the complex AP°!(¢, N, N \ F) with

APl (g, N, N\ F) := AP°!(¢, N) @ AP°'(¢, N\ F)
and differential Diei (v, ) = (Do, oo|y\r — Df3).

Definition 3.1 The cohomology of the complex (AP°' (¢, N, N \ F), Dye1) is the
relative equivariant cohomology space HP°'(¢, N, N \ F).

In the case where K is the identity, we skip the letter £ in the notation. Then
D, is the usual relative de Rham differential and H(N, N \ F) is the usual de
Rham relative cohomology group [f.

The complex AP°!(¢, N, N \ F) is Z-graded : for k € Z, we take

[Pl (e, N, N\ F)]" = [AP (e, )] @ APl (e, N\ F)] P

Since Dye sends [APOI(E,N,N\F)}]C into [APOI(E,N,N\F)]kH, the Z-
grading descends to the relative cohomology spaces HP°!(¢, N, N \ F). The
class defined by a D;e-closed element («, ) € AP (¢, N, N\ F) will be denoted

[a, B].
Remark that HP°(¢, N, N \ F) is a module over HP°!(¢, N). Indeed the
multiplication by a closed equivariant form n € AP°'(¢, N) |

n- (o, B) =M Aa,nne AB),

on AP°l(¢, N, N \ F) commutes with D).

If S is a K-invariant vector field on N, we define on AP°!(¢, N, N \ F) the
operations L(S)(«, 8) := (L(S)a, L(S)B) and ¢(S)(a, B) := (t(S)a, —t(S)5). Tt
is immediate to check that Cartan’ relation (f]) holds

(5) L(S) = 1(S) © Dret + Drer 0 t(S).

We consider now the following maps.

e The projection j : AP°!(¢, N, N\ F) — AP°! (¢, N) is a degree 0 map defined
by j(a, B) = o

e The inclusion i : AP!(¢, N\ F) — AP°}(g, N, N\ F ) is a degree +1 map
defined by i(8) = (0, 5).

e The restriction r : AP°/(¢, N) — AP°l(E, N\ F) is a degree 0 map defined
by r(a) = aln\ F-



It is easy to see that i, 7,7 induce maps in cohomology that we still denote
by i, 7, 7.

Proposition 3.2 e We have an exact triangle
HPOE,N,N \ F)

HPOL(E, N\ F) HPOL(E, N).

T

e If F C F' are closed K-invariant subsets of N, the restriction map
(o, B) = (a, B|n\F) induces a map

(6) v g HPOU 8, N, N\ F) — HPOl (e, N, N \ F).

e If g is a diffeomorphism of N which preserves F and commutes with
the action of K, then g*(a,3) = (9*a, g*B) induces a transformation g* of
HPOU e, N, N \ F).

Proof. This proof is the same than in the non equivariant-case @ and we
skip it.

The same statements hold in the C*>°-case. Here we consider the complex
A> (€, N, N\ F) with A, N,N\ F) := A>® (¢, N)® A>°(¢, N \ F) and differ-
ential Dy (o, ) = (Da, aln\F — Dﬁ).

Definition 3.3 The cohomology of the complex (A® (¢, N,N \ F), Dyq) is the
relative equivariant cohomology spaces H* (¢, N, N \ F).

The complex A (¢, N, N \ F) is Zy-graded by taking [A>(¢, N, N \ F)| =
[A®(8, N)|° & [A®(, N\ F)]"". Since Dyq send [A®(¢,N,N\ F)]° into
[A% (e, N, N \ F)]“"!, the Zy-grading descends to the relative cohomology spaces
H>® (e, N,N\ F).

Here the space H*™ (¢, N, N \ F') is a module over H>(¢, N).

Lemma 3.4 e We have an exact triangle

H<(E,N,N\ F)

Ho (e, N\ F) Ho(, N).

T

o If FF C F' are closed K-invariant subsets of N, the restriction (a,3) —
(o, BIn\F7) induces a map rp g HP (€, N, N\ F) — H>®(¢,N,N \ F').

e If g is a diffeomorphism of N which preserves F and commutes with
the action of K, then g*(a,3) = (9*a, g*B) induces a transformation g* of
H>(E, N, N\ F).



3.2 Excision

Let x € C*°(N)¥ be a K-invariant function such that x is identically equal to
1 on a neighborhood of F. If 8 € AP°!(¢, N \ F), note that dx A 3 defines an
equivariant form on IV, since dy is equal to 0 in a neighborhood of F'. We define

(7) X AP (g, N, N\ F) — AP°'(¢, N, N \ F)
by IX(«a, B) = (xa + dx A B, x). Then
(8) IX 0 Do) = Doy o IX,

so that IX defines a map IX : HP°!(¢, N, N \ F') — HP°! (¢, N, N \ F).

Lemma 3.5 The map IX is independent of x. In particular, IX is the identity
in relative cohomology.

Proof. If (o, ) is Diyg-closed, then I (a,() — IX*(a,f) =
Drai((x1 — x2)8,0). This shows that IX is independent of . Choosing x = 1,
we see that IX = Id in cohomology.

It follows from the above proposition that we can always choose a repre-
sentative (o, 3) of a relative cohomology class, with « and § supported in a
neighborhood of F' as small as we want. This will be important to define the
integral over the fiber of a relative cohomology class with support intersecting
the fibers in compact subsets. The integration will be defined in Section @

In particular, if F' is compact, we define a map

(9) pe : HPOH (&, N, N \ F) — HE°!(e, N).

by setting p.(a, 8) = xa+dx A B, where y € C®(N)¥ is a K-invariant function
with compact support such that x is identically equal to 1 on a neighborhood
of F.

An important property of the relative cohomology group is the excision
property. Let U be a K-invariant neighborhood of F'. The restriction («, 8) —
(alv, Blu\r) induces a map

vV HPON e, N, N\ F) — HPOU (e, U, U\ F).
Proposition 3.6 The map rU is an isomorphism.
Proof. Let us choose x € C°°(N)X supported in U and equal to 1 in a
neighborhood of F. The map (fl) defines in this context three maps : I% :
APL(E, N, N\ F) — APl (&, N, N\ F), I : AP (8, U, U\ F) — AP (¢, U, U\ F)
and Iy, : APON(E, U, U\ F) — AP°'(¢, N, N \ F).
We check easily that Iy ;0 r¥ = I on AP°l(¢, N, N\ F), and that r¥ o INy =

I on AP°Y(e, U, U \ F). We know after Lemma [.g that I\, and I} are the iden-
tity maps in cohomology. This proves that r¥ is an isomorphism in cohomology.

The same statements holds in the C*°-case.
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Proposition 3.7 e Let U be a K -invariant neighborhood of F. The map rY :
H>®{E, N,N\ F)— H>*({U,U\F) is an isomorphism.
e If F is compact, there is a natural map p, : H® (€, N, N\ F) — H° (¢, N).

3.3 Product in relative equivariant cohomology

Let F; and Fy be two closed K-invariant subsets of N. We will now define a
graded product

HPON e, N, N\ Fy) x HPOU e, N,N \ F5) — HPOU e, N, N\ (F1 N F))
(10) ( a b ) — a<ob.

Let U1 Z:N\Fl, U2 Z:N\FQ so that U:N\(FlﬁFg) :U1UU2. Let
® := (91, Py) be a partition of unity subordinate to the covering U; U Us of U.
By averaging by K, we may suppose that the functions ®;, are invariant.

Since ®; € C> (U)X is supported in U;, the product v +— ®;y defines a
map AP (e, N \ F;) — AP°L(E, N \ (Fy N FY)). Since d®; = —d®, € AU)K is
supported in Uy NUy = N \ (F1 U Fy) , the product v +— d®; A~ defines a map
APOL(E, N\ (F1 U Fy)) — APOL(E, N\ (F1 N FY)).

With the help of ®, we define a bilinear map og : AP°Y(E, N, N \ F}) x
APl N N\ Fy) — AP°Y(E, N, N \ (F1 N Fy)) as follows. For a; := (a4, 3i) €
APl N N\ F}), i = 1,2, we define

a1 ¢ Az = (Oq A azﬁ@(al,az))
with
Ba(ar,az) = ®151 A ag + (—1)1%lay A @28y — (—1)14ldd; A By A Bo.

Remark that all equivariant forms ®, 07 Aasa, a; AP0 and d®1 A By AJs are
well defined on U; UUs. So aj og as € AP (€, N, N\ (Fy N F,)). It is immediate
to verify that

Dyei(ar ¢ a2) = (Drei@1) ¢ a2 + (—1)“11‘@1 0@ (Drela2).

Thus ¢g defines a bilinear map HP°!(¢, N, N \ Fy) x HP°'(¢, N,N \ F,) —
HPOUE, N, N \ (F} N Fy)). Let us see that this product do not depend of the
choice of the partition of unity. If we have another partition ® = (@), ®)),
then & — @) = —(Py — ®,). It is immediate to verify that, if Dye(a1) = 0 and
Dyei(ag) = 0, one has

a1 0 az — a1 0@ a2 = Drel (0, (—D)lel(@) — @)B1 A 52)-
in AP°l(e, N, N \ (F1 N Fy)). So the product on the relative cohomology spaces

will be denoted by ©.

11



Remark 3.8 The same formulae defines a Zo-graded product

H®(E, N, N\ F}) x HO(6,N,N\ F3) — H¥( N, N\ (F N F))
(11) (a , b)) — aob.

We note the following properties, which are well known in the non-equivariant
case.

Proposition 3.9 e The relative product is compatible with restrictions: if
Fy C F| and F5 C F} are closed invariant subsets of N, then the diagram

(12)
HPle, N, N\ Fy) x HPO e, N, N\ ) —= HPol(e, N, N\ (Fy N F))

HPOWE, N, N\ ) x HPO(E, N, N\ F) == HPol(e, N, N\ (F] N FY))

is commutative. Here the r; are the restrictions maps defined in (Ia’)
e The relative product is graded commutative : a1 ©as = (—1)‘“1"‘“2|a2<>a1.

e The relative product is associative.

The same statements holds in the C*°-case.

Proof. The first point follows from the definition. Let U; = N \ Fj,
U/ = N\ F]. Let ®; + ®2 = 1 be a partition of unity on U; U Us. Then
P = (P17, P3) with @ := ®;|y is a partition of unity on Uj U Us. Then, at the
level of equivariant forms, we have Bg (a1, a2)|n\(r/nry) = Bar(ri(a1),r2(az)).
The commutative diagram (L) follows.

The second point is immediate from the definition.

We now prove the third point. Let Fy, F5 and F3 be three closed invariant
subsets of N. Let a; € HP°!(¢, N, N \ F}) for i = 1,2,3. In order to prove that
(a1 ¢ az) o az = aj o (az o az) in HP°Y(¢, N, N \ (F} N F> N F3)) we introduce a
multi-linear map T : Fy x Ea x E3 — HPOY(e, N, N \ (Fy N Fy N F3)) where
E; = HPY(e, N, N \ F}).

Let Ui = N\ F; and U = N\ (Fy N F> N F3). Let D be the data formed by :

e A partition of unity ®; + &5 + ®3 = 1 on Uy U Uy U U3 = U, where the
functions ®; are K-invariant.

e Invariant one forms A1, Ay and Az on U supported respectively in UsNUs,
U, NUs and U; N Us.

12



We suppose that the data D satisfies the following conditions
(13) d®y = Ao — Az, dPy = A3 — Ay, dP3 = A1 — As.
Then we have

(14) DA1(X) = DAs(X) = DA3(X).

We denote ©(X) the equivariant 2-form equal to DA;(X) : ([14) shows that
O(X) is supported in Uy N Uz N Us.

With the help of D, we define a three-linear map Tp from AP°!(€, N, N\ F} ) x
APOL(E, N, N\ Fy) x AP° (¢, N, N\ F3) into AP°! (¢, N, N\ (FiNFyNF3)) as follows.
For a; := (a4, 3;) € AP°Y(&, N, N \ F}), i = 1,2,3, we define Tp(ay,as,az) :=
(041 Nag N\ asz, ﬁp(al, ag,a3)) with

(15) Bplar,az,a3) = ®1frasas + (—1)1*@y0n Bras + (—1)1 %2050, s 83
+(=1)12lA 01 BoB5 — (1)1 F1921 A By o By + (— 1)1 A3 81 Boas
—(=1)1"21©8; 3 3.

Remark that all equivariant forms which appears in the right hand side of (@)

are well defined on U;UU2UU3. So Tp(ag,az,as) € AP (¢, N, N\ (F1NFaNE3)).
The following relation is “immediate” to verify:

Drei(Tp(ar,az,a3)) =
Tp(Dreiar, az, az) +(—1)!"1Tp (a1, Dreias, az) + (—1)171921 T 5 (ay, ag, Dyeras).
Thus Tp defines a three-linear map from from FE; x Ey x FEj3 into
HPONE, N, N \ (Fy N F> N F3)). Let us see that this map do not depend of
the choice of the data D. Let D’ = {®}, A} for i = 1, 2,3} be another data which
satisfies conditions ([L).

We consider the functions f; = ®; — ®; on U. If {i,j,k} = {1,2,3} the
function f; is supported in U; N (U; UUR) = (U;NU;) U (U; NUy). The relations
fi+ fo+ fz3 = 0 on U shows that there exists K-invariant functions 6; on U
such that 0; is supported in U; N Uy, and

fi=02—10s, fo=03—01, f3 =01 —0-.
We see then that
Ay — A} —dby = Ay — Ay — dby = Ay — Ay, — dbs
is an invariant one form on U supported on U; NUs NUs: let us denote it by A.
We have ©(X) — 0'(X) = DA(X).

Then for D,¢-closed elements a;, one checks that Tp(a1, as,a3)—Tp (a1, as,as)
is equal to Dye1(0, —6) = (0, DJ) with

§ = (—=1)!"10101 8285 — (= 1)1 1F1210, 81 an B3 + (—1)11 10381 Bacrg
—(=1)l*=l ABy Bo 5.
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Let us denote T the three-linear map induced by Tp in relative equivariant
cohomology.

Now we will see that the map (a1, ag,a3) — (a1 ¢ az2) ¢ az coincides with T.
Let ¢1 + ¢ = 1 be a partition of unity on Uys := Uy UUs, and let 10+ 93 =1
be a partition of unity on U;2 UUs : all the functions are supposed K-invariant.
Then we take the data D = {®;, A; for i = 1,2,3} defined by the relations:

o & = 1201, o = 1202, P3 = @3,
o Ay = —d(p12)d2, Ao = d(p12)P1, As = —pi12do.

One checks that D satisfies conditions ([Ld), and that for a; € AP°'(e, N, N\ F; )
the following equality

Tp(al, az, ag) = (a1 <>¢ (IQ) <>L,0 as

holds in AP°'(¢, N, N \ (Fy N F> N F3)).
One proves in the same way that the map (a1, as, asg) — a10(azea3) coincides
with T. We have then proved the associativity of the relative product <.

3.4 Inverse limit of equivariant cohomology with support

Let F' be a closed K-invariant subset of IN. We consider the set Fp of all
open invariant neighborhoods U of F' which is ordered by the relation U < V
if and only if V' C U. For any U € Fr, we consider the algebra A{’,Ol({?, N) of
equivariant differential forms on N with support contained in U: o € ABOI(E, N)
if there exists a closed set C, C U such that a(X)|, = 0 for all X € ¢ and all
n € U\ C,. Note that the vector space APUOI (¢, N) is naturally a module over
APOl(g V).

The algebra Agol(E,N ) is stable under the differential D, and we denote
by HgOI(E, N) the corresponding cohomology algebra. Note that H[pJOI({%, N) is
naturally a module over HP°!(¢, N). If U < V, we have then an inclusion
map AY (8, N) < AP°'(¢, N) which gives rise to a map iy : HE' (6, N) —
HEP' (e, N) of HPO!(€, N)-modules.

Definition 3.10 We denote by H%Ol({%, N) the inverse limit of the inverse sys-
tem (H?]OI(E,N%TUJ/; UV € Fr). We will call H%OI(E,N) the equivariant co-
homology of N supported on F.

Note that the vector space H2' (¢, N) is naturally a module over HP'(¢, N).
Let us give the following basic properties of the equivariant cohomology spaces
with support.

Lemma 3.11 o H>%' (¢, N) = {0} if F = 0.
e There is a natural map H2'(e, N) — HP°'(e, N). If F is compact, this
map factors through H5 (8, N) — H2°!(¢, N).
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o If F' C F' are closed K -invariant subsets, there is a restriction morphism
(16) rfOF L HPO (6, N) — HES (e, N).

o If F1 and F5 are two closed K -invariant subsets of N, the wedge product
of forms defines a natural product

(17) HEY (8, N) x HE (8, N) L HE2L L (8, N).

o If F1 C F| and Fy C F} are closed K-invariant subsets, then the diagram

(18) HY (e, N) x HO (6, N) —"—> WYL (8, N)
lrl lrz lr12
H;‘fl(e, N) x H;‘;(e, N)—2 HI;?;Fé (e, N)

is commutative. Here the r' are the restriction morphisms defined in (@)

All the maps in the previous lemma preserve the structures of HP°!(€, N)-
module. The same definition and properties hold in the C*°-case.

Definition 3.12 We denote by H¥ (8, N) the inverse limit of the inverse system
(HF (&, N),ru,v; U,V € Fr). We will call HEF (¢, N) the equivariant cohomology
of N supported on F.

Lemma 3.13 ¢ H (¢, N) = {0} if F = 0.

e There is a natural map H (¢, N) — H>(¢, N). If F is compact, this map
factors through H¥ (¢, N) — H°(¢, N).

e I[f F C F' are closed K -invariant subsets, there is a restriction morphism
rFF  HR (e, N) — HES (8, N).

o If F' and R are two closed K -invariant subsets of N, the wedge product of
forms defines a natural product

(19) HE (6, N) x HE (6, N) L5 HE o, (8, N).

e If Fy C F| and Fy C F} are closed K -invariant subsets, then the diagram

(20) HE (e, N) x 2 (e N) L X (B N)
lrl l[j lr12
%?I’(EaN) X %2,(?,]\7)% H%O{nFZ’(EaN)

15 commutative.
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3.5 Morphism py

If F is any closed invariant subset of IV, we define a morphism
(21) pr: HPU(E, N, N\ F) — HE (¢, N)

of HP°!(¢, N)-modules.

Proposition 3.14 For any open invariant neighborhood U of F', we choose
X € C®(N)E with support in U and equal to 1 in a neighborhood of F.
e The map

(22) pX (o, B) = xao + dxf3

defines a morphism pX : AP°'(&, N, N \ F) — A[pJOI(?, N) of APl (€, N)-modules.

In consequence, let a € AP°'(E, N) be a closed equivariant form and 3 €
APl N '\ F) such that almr = DB, then pX(a, B) is a closed equivariant
form supported in U.

e The cohomology class of pX(«, 3) in H[pJOI({%, N) does not depend of x. We
denote this class by py(a, B) € HBOI(?, N).

o For any neighborhoods V. C U of F', we have ry v © py = py-

Proof. The proof is similar to the proof of Proposition 2.3 in [IE] We repeat
the main arguments.

The equation pX o Dy = DopX is immediate to check. In particular pX(«, )
is closed, if Do (o, 3) = 0. Directly: D(xa + dx8) = dxa — dxDpS = 0. This
proves the first point. For two different choices y and x’, we have

’

p¥(a, ) =p* (@, 8) = (x—X)a+dx—x)B
= D((x—x")B).
Since x —x’ = 0 in a neighborhood of F, the right hand side of the last equation

is well defined, and is an element of AI[’JOI({%, N). This proves the second point.

Finally, the last point is immediate, since py (o, 8) = py (e, §) = pX(a, ) for
X € C®(N)¥ with support in V C U.

Definition 3.15 Let a € AP°(¢,N) be a closed equivariant form and
B e AP°Y(e, N\ F) such that aly\p = DB. We denote by pp(a, ) € H%Ol({%, N)
the element defined by the sequence py(a, 3) € HBOI({?,N), U e Fr. We have
then a morphism pp : HP'((, N, N\ F) — HPFOI(?,N).

The following proposition summarizes the functorial properties of p.
Proposition 3.16 e If FF C F' are closed invariant subsets of N, then the
diagram

Pr

(23) HPOl(e, N, N \ F) HEOl (6, N)

Pr/

HPOUE, N, N\ F') — == HP\ (¢, N)
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is commutative. Here r1 and v are the restriction morphisms (see (E) and

(i)

o If F1, Fy are closed invariant subsets of N, then the diagram
(24)

HPOl e, N, N\ F1) x HPOUE, N, N\ Fy) —= Hrel(e,N, N \ (Fi N F))

lppl lPFZ \LpFlmFg

H5 (8, ) X HRENEN) Moot (6, N)

is commutative.

Proof. The proof of the first point is left to the reader. Let us prove the
second point. Let W be an invariant open neighborhood of FyNF5. Let V1, V5 be
invariant open neighborhoods respectively of F; and F5 such that Vi NVe C W.
Choose x; € C=(N)¥ supported in V; and equal to 1 in a neighborhood of F;.
Then x1x2 is supported in W and equal to 1 in a neighborhood of F; N F5.
Let @1 + ®2 = 13\ (rnF,) be a partition of unity relative to the decomposition
N\ (FiNFy) = (N\F1)U(N\ Fz), and where the function ®; are K-invariant.

Then one checks easily that

(25) pXt(a1) A p¥*(az) — p¥*¥2 (a1 0 az) =

D((—l)‘al‘mdm(ﬁl%&) - (—1)‘a1‘X1dX2(‘1’1ﬁ1ﬁ2))
for any D,¢j-closed forms a; = (a;, 3;) € AP°'(€, N, N\ F;). Remark that ®;3; 3>
is defined on N\ Fy, so that dxa(®1/6102) is well defined on N and supported in
V5. Thus the equivariant form (71)‘“1‘x2dxl(61<13252) - (71)‘“1‘X1dx2(<1316162)
is well defined on N and supported in V3 N Vo C W. Thus pX!(a1) A pX2(az)

and pX*X2 (a0 ag) are equal in H‘%ﬂ(é, N). As this holds for any neighborhood
W of Fi N Fy, this proves that pg, (a1) A pg,(a2) = Pp A, (a1 © a2).

If we take F/ = N in (RJ), we see that the map pp : HP'(¢, N,N \ F) —
HEON(, N) factors the natural map HPO\(¢, N, N \ F) — HP!(¢, N).

By the same formulae, we define the morphism of Zs-graded algebras:
(26) Prp:HXE,N,N\F)— HF( N),
which enjoys the same properties:

Proposition 3.17 e If FF C F' are closed invariant subsets of N, then the
diagram

(27) H®(E, N, N\ F) —=— H3 (¢, N)
H®(E, N, N\ F') —~>  H%(EN)
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is commutative. Here r1 and v are the restriction morphisms (see (E) and

(i)

o If F1, Fy are closed invariant subsets of N, then the diagram
(28)

HR(,N,N\F) x HOEN,N\F) —2= H¥EN,N\ (FNF))

lppl lppz \LpFlr‘le

HE (¢, N) x  HX(EN) a HE Ap, (8, N)

15 commutative.

If F'is a compact K-invariant subset of IV, we have a natural morphism
(29) HY (6, N) — HPO (e, N).

The composition of pp with this morphism is the morphism p, defined in
(E) . p.(a, B) is the class of pX(a, 3) = xa + dxf3, where x € C>°(N)X has a
compact support and is equal to 1 in a neighborhood of F'.

3.6 Integral over the fiber in relative cohomology

Let m: N — B be a K-invariant fibration, with oriented fibers : the orientation
is assumed to be invariant relatively to the action of K. Recall the definition of
Aggler Cpt({%, N), the sub-algebra of AP°!(E, N) formed by the equivariant forms
which have a support that intersects the fibers of 7 in compact subsets, and of

HEELT Cpt(E, N) the corresponding cohomology space.
We have an integration morphism 7, : AR (£, N) — AP°l(t, B) satisfy-

fiber cpt
ing the following rules:

(30) T (Da) = D(m.(a)),

(31) (T (Y) A ) = v A me(@),

for a € Aggler et (& V) and v € AP°l(¢, B). Thanks to (B() the integration

morphism descends to the cohomology :

Tt HECL (8, N) — HPO\(E, B).

fiber cpt

Note that m, sends HP°'(E, N) to HPO!(¢, B) and that (BI) is still valid in coho-
mology.

Remark 3.18 If U is an invariant open subset of B, we have an integration

morphism m, : A et (&TTHU)) — AP(e,U).
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Let F' be a K-invariant closed subset of N which is compact. We will define
an integration morphism m, : HP°'(¢, N, N \ F) — HP°Y(¢, B, B\ 7(F)) which
makes the following diagram

(32) HPOL(E, N, N \ F) —— H>°l(¢, B, B\ n(F))

HEMNEN)  —— = H°(E,B)
commutative.
To perform the integration, it is natural to choose a representative [, (] of
a relative cohomology class a where o and (3 are supported near F. This can
be done via the Lemma @: let us choose a K-invariant function x which is
compactly supported and is equal to 1 on a neighborhood of F. Let (o, f3) €
AP°l(g, NN \ F). Then the equivariant form yxa + dx3 is compactly sup-
ported and can be integrated over the fiber. Similarly, the form xg belongs
to AEELT ept (& 7Y (B \ 7(F)) and can be integrated over the fiber. The expres-
sion
X (@, B) == (m(xa + dxB), m.(x3))
defines an element in AP°!(¢, B, B\ 7(F)). Since we have the relation 7X o D, =
D, o 3 the map 7 descends to cohomology.
Furthermore, if (o, 8) is Dye-closed, and x1, x2 are two different choices of
functions x, we verify that

(0, 8) = m2%(a, 8) = Drar(m (1 = x2)8).0)

so that the map ¥ is independent of the choice of .
This allows us to make the following definition.

Definition 3.19 Let us choose x € C*°(N) a K -invariant function identically
equal to 1 on a neighborhood of F, and with compact support. Then we define

Tt [HPOU(E, N, N\ F)]F — [HPOU(E, B, B\ m(F))F -t NVrdim B
by the formula : m ([, B]) = [me(xa + dx0), m(xB)]-

If B is a point, then the integral of a € HP°'(¢, N, N \ F) over the fiber is
just the integral over N of the class p.(a) € HE®!(E, N).

The same definition makes sense for equivariant forms with C*°-coefficients
and defines a map m, : H* (¢, N, N\ F) — H>®(¢, B, B\ n(F)).

We now prove

Proposition 3.20 e The diagram (@) 18 commutative

o Let Fy be a compact K -invariant set of N. Let Fy be a closed K -invariant
set in B. Then, for any a € HP°'(¢, B, B\ Fy) and b € HP°!(£, N, N \ F}),
we have

(a0 b) = aom(b)

in HP°Y(E, B, B\ (F1 N 7(Fy))).
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Proof. Let y € C*®(N)X and x’' € C*(B)X be two compactly supported
functions : x is identically equal to 1 on a neighborhood of F and x’ is identically
equal to 1 on a neighborhood of 7(F). For [a,3] € HPO(E, N,N \ F), the
equivariant class p, o m[a, (] is represented by

pX (X, B)) = X'mi (X + dx ) + dx'm. (xB).

On the other hand, the equivariant class 7. o p_.[a, f] is represented by 7. (xa +
dxp3). We check that

pY (mX (@, 8)) = m(xa + dxB) = D((X = Dm(x) )

where (x' — 1)m(x0) is an equivariant form on B with compact support. Then,
the first point is proved.

Let us prove the second point. We work with the invariant open subsets
U=N\(r"Y(F)NF), U = N\7m }(F),U; = N\ F, of N, and the invariant
open subsets U' = B\ (Fy N7 (F)),U; = B\ F1,U, = B\ n(F,) of B. Note
that 7~'U] = Uy and 7='Uj} C Uy : hence 71U’ C U.

Let @14 ®5 = 1 be a partition of unity on U = U1 UUs, and let ] +P, =1 a
partition of unity on U’ = UjUUJ : all the functions are supposed invariant. Let
(a1, 1) and (ag, 32) be respectively the representatives of a € HP°!(¢, B, B\ F})
and b € HP°!(¢, N, N\ F3). The equivariant forms as, 32 are chosen so that their
supports belong to a compact neighborhood of F5.

Then 7. (7*(a) ¢ b) is represented by (a7« (a2), ) with

B = i (®ra2) + (= 1)1y m, (9282) + G170, (dP1Bs) -
B8(1) B8(2) B(3)

On the other hand a ¢ 7, (b) is represented by (a1m.(az), 5) with

B =& Bim. (o) + (=)D a7, (B2) + B1d®) 7. (B2),
B8'(1) B'(2) B’(3)

Note that the equivariant forms (i), 5’(¢) are well defined on B\ (Fy N7 (Fy)).

Lemma 3.21 The equivariant form 6 = P4, (B2) — 7. (D2f2) is defined on
B\ (Fy Nm(Fy)) and supported on B\ (Fy Un(F2)). We have

B=p =D(BNJ),

where the equivariant form 1 A6 is defined on B\ (FyNw(Fy)). It gives the fol-
lowing relation in AP°(¢, B, B\ (F1N7(F))) : (a1me(a2), ) — (a1m.(a2), B) =
Drel (Oa 615)

Proof. The invariant function @5 is defined on U, supported on Us, and
equal to 1 on Uz \ (U NUz). Then its restriction ®3|,-1 () is supported on
7Y (U}) and equal to 1 on 7= 1(U3) \ (Uy N7~ 1(U3)). Similarly the function
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*®) is defined on 7~ 1(U’), supported on m~(U}) and equal to 1 on 7= 1(U}) \
(Ur N7~ 1(Us3)). Hence the difference 7*®4 — @31y is defined on 7= H(U’)
and supported on Uy N7~ (U3). This shows that § = m, ((7*®4 — ®a| -1 (1)) B2)
is defined on U’ and supported on Uj N Uj.

We have

B1AD (5) = ﬁldq)éﬂ'* (ﬁg) — B17ms (d‘bgﬁg) + 61 A ((D/Q']T*(CYQ) — W*((I)Qag))

= —(3)+6) + B A (1 - @)m(az) — m((1 - @1)as))
= —B'(3)+B(3) - B(1) + B(1).
We see also that
(—DIDB) A = —(=D) @Y (Be) + (—1) oy, (D252)
= —p(2)+B(2).

Finally we have proved that D(8, Ad) = 3(1)+ 3(2)+B8(3) — /(1) = 8'(2) —
p(3).

Remark 3.22 If F' is a closed but non-compact subset of N, the morphism
e HPOYE, N, N\ F) — HP\(¢, B, B\ n(F)) is still defined in the case where
the image 7(F) is closed and the intersection of F with each fiber is compact.

The second point of Proposition ) still holds in this case.

3.7 The Chern-Welil construction

Let 7 : P — B be a principal bundle with structure group G. Let w € (A}(P)®
9)“ be a connection one form on P, with curvature form Q = dw + [w,w].

For any G-manifold Z, we define Z = P x¢ Z. If F' is a G invariant closed
subset of Z, then F := P X¢g F is a closed subset of Z. We consider the
Chern-Weil homomorphism

bu: AN, Z, Z\ F)) — A(Z,Z\ F)
defined by ¢, (a, 3) = (¢Z (), f\Fﬁ). We have the relation:
Proposition 3.23 We have d.c © ¢, = ¢, © Dyg.

We can repeat the construction above in the equivariant case. If P is a G-
principal bundle with left action of K, and F' is a G x K-invariant closed subset
of P, we define

Gu t AP, Z,Z\ F) — A8, 2, Z\ F)
by ¢u(a, B) = (640, 62" ).
Proposition 3.24 The map ¢, : AP°\(g, Z, Z\ F) — AP°\(¢, Z, Z\ F) satisfies
@ © Dyl = Drel © @y,

On the left side the equivariant differential is with respect to the action of G
while on the right side, this is with respect to the group K.
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4  Explicit formulae for Thom Classes in relative
cohomology

4.1 The equivariant Thom forms of a vector space

Let V be an Euclidean oriented vector space of dimension d. Consider the
group SO(V) of orthogonal transformations of V' preserving the orientation.
Let s0(V) be its Lie algebra. Consider the projection 7 : V. — {pt} and the
closed subset ' = {0} C V. We denote [, the integration morphism 7, :
HPY(s0(V), V,V \ {0}) — CP(s0(V))3O(V) defined in Section B.4.

In this section, we will describe a generator over CP°(s50(V))S°(V) of the
equivariant relative cohomology space of the pair (V,V \ {0}). This explicit
representative is basically due to Mathai-Quillen [Eﬂ As a consequence, we
obtain the following theorem.

Theorem 4.1 There exists a unique class Thye (V) in HPY(so(V), V,V \ {0})
such that fV Thye (V) = 1. This class is called the relative Thom class.

Before establishing the unicity, a closed form a € AP°(so(V),V,V \ {0}), or
in A°!(so(V),V), or in Ag;’i_rap (s0(V), V), of integral 1 will be called a Thom

form. A Thom class will be the class defined by a Thom form.

We start by constructing Thom forms in the spaces AP°!(so(V), V,V \ {0}),
APl (s0(V), V) and ARS. ., (s0(V), V). The Lie algebra so(V) is identified with
the Lie algebra of antisymmetric endomorphisms of V. Let (ey,...,eq) be an
oriented orthonormal basis of V. Denote by T : AV — R the Berezin integral

normalized by T(e; A--- Aeg) = 1.

Definition 4.2 The pfaffian of X € so(V) is defined by
PE(X) = T(eZrat{Xemererner,

Here the exponential is computed in the algebra NV .

Recall that Pf(X) is an SO(V)-invariant polynomial on so(V) such that
(Pf(X))? = dety (X). In particular this polynomial is identically equal to 0, if d
is odd. We also denote by Pf(X) € AP°(s0(V), V) the function on V identically
equal to Pf(X).

Let x = (ex,x) be the coordinates on V. We consider the equivariant map
fi :650(V) — A(V) ® AV given by the formula

1
(33) fr(X) = —t?||z|? th;dzkek + 3 ;(Xek, eo)er A eg.

For any (real or complex) vector space A, the Berezin integral is extended
toamap T: AQAV — Aby T(a®¢) = aT(§) for « € Aand £ € AV. If
d: A — Ais a linear map, we extend it on A® AV by d(a ® §) = d(a) ® &.
Note that this extension satisfies Tod =d o T.
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The Berezin integral is the “super-commutative” analog of the super-trace
for endomorphisms of a super-space. We now give a construction for the relative
Thom form, analogous to Quillen’s construction of the Chern character. We will
discuss Quillen’s construction of the Chern character in the next chapter (the
formulae we give here for the “super-commutative case” are strongly inspired
by the formulae for the curvature of the super-connection attached to the Bott
symbol: see Section .

We consider the SO(V)-equivariant forms on V defined by

T (em)) ’

-7 ((Z Trer) eft(X)> ,
k

for X € so(V). Here the exponential is computed in the super-algebra A(V) ®
AV.

(34) Ch(X)

(35) 1A (X)

Lemma 4.3 The equivariant form C (X) is closed. Furthermore,

d
(36) S.Cl = =D)).

Proof. The proof of the first point is given in [@] (Chapter 7, Theorem
7.41). We recall the proof. If e € V| we denote by ta(e) the derivation of AV
such that ta(e)v = {e,v) when v € ALV = V. We extend it to a derivation of
A(V) ® AV. We denote by tx(x) the operator ), xrin(er). The equivariant
derivative D which is defined on CP°!(so(V)) ® A(V) is extended to a derivation
of CPY(s0(V)) ® A(V) @ AV. We have ToD = Do T.

It is easy to verify that

(37) (D — 2tin(x)) £ (X) = 0.

The exponential eft(X) satisfies also (D — 2tus(x))(e/* (X)) = 0, since D and
ta(x) are derivations. The Berezin integral is such that T(ia(x)a) = 0 for any
o € A(V) ® AV. This shows that D (T(eft(X))) = 0.

Let us prove the second point. As (D — 2t (x))f:(X) = 0, we have

DoT (X mrer) M) = To(D—200n(x) (3 wxer) o)
= T (((D =260 (0) - (3 nen) )
= T (X drve - 2t]al?) e )

d
— T Zeft(X)) .
(dte

When ¢ = 0, then C% (X)) is just equal to Pf(¥) = 55 Pf(X). When ¢ =1,
then CL(X) = T(e1(¥)) = e~ =" Q(dx, X) is a closed equivariant class with a
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Gaussian look on V' (with @Q(dz, X) a polynomial in dz, X that we will write
more explicitly in a short while). This form was considered by Mathai-Quillen

in @]

Definition 4.4 The Mathai-Quillen form is the closed equivariant form on V
defined by

CL(X):=T (ef1<X>) . X eso(V).

We have n, = Sl Q(t, X, z,dx) where Q(t, X, z,dz) depends polyno-
mially of (¢, X,z,dz) where t € R, X € so(V),z € V,dx € AY(V). Thus, if
x # 0, when ¢ goes to infinity, % is an exponentially decreasing function of ¢.
We can thus define the following equivariant form on V'\ {0} :

(39) 56 = [ (X0t X € so(V).
If we integrate (Bg) between 0 and oo, we get
C% =D(Br) on V\{0}.
Thus the couple (C%, 31) defines a canonical relative class
(39) [PE(S), BA(X)] € HP®(s0(V), V.V \ {0})

of degree equal to dim(V).

Consider now the equivariant cohomology with compact support of V. Fol-
lowing (fJ) we have a map p, : HP°!(so(V),V, V' \ {0}) — HE°(s0(V), V). Thus
[Pf(3), BA(X)] provides us a class

(40) Cv :=p, ([Pf(Z), Br(X)]) € HE (s0(V), V).

As the map p, commutes with the integration over the fiber (see (82)), it is the
same thing to compute the integral of (Bd) or of ([L0).
The orientation on V is given by dx; A --- A dxg.

Proposition 4.5 Let x € C>°(V) be an SO(V)-invariant function with compact
support and equal to 1 in a neighborhood of 0. The form

O3 (X) = v PE(E) + dy / LX)t

is a closed equivariant form with compact support on V. Its cohomology class
in H°(s0(V), V) coincides with Cy : in particular, it does not depend of the
choice of x. For every X € so(V),

1 X

- CV(X) = 17

€d Jv

with €q = (—1)@77‘1/2. Thus éC%‘,(X) is a Thom form in A2 (so(V),V).
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Proof. The first assertions are immediate to prove, since Cy =
Pe ([Pf(%), Bn (X)]) The class of C{ in compactly supported cohomology do
not depend of x. To compute its integral, we may choose x = f(||z||?) where
f € C°°(R) has a compact support and is equal to 1 in a neighborhood of 0.
The component of maximal degree of the differential form dx A n4 (X) is

—2(=1) T (|| ?) el Pe 1 day A - A dag

Hence, using the change of variables z — %x,

v a(-nE [ "zl 2 l|2e=t 121 gy
[eve = 2 [T (] el i) i

1) d(d 1)/ (/f \x||2 —2||$|\2 —IIzIIde) dt.

1(t)

Since for t > 0, I(t) = % (fv

(1) [, ey = (<1 )—“‘2 = 7Tal/2_

Using Mathai-Quillen form, it is possible to construct representatives of a
Thom form with Gaussian look.

) we have [, C¥(X) =

Proposition 4.6 The Mathai-Quillen form Ck(X) is a closed equivariant form
which belongs to Adec rap(50(V), V). For every X € so(V),

1

1
o RSCORat

d(d—1)
2

with eqg = (—1) 74/2. Thus éClA(X) is a Thom form in A% (s0(V), V).

dec-rap

Proof. Indeed, only the term in dxy A dxa A --- A dxg will contribute to
the integral. This highest term is (—1) e lal® gy

We summarize Propositions [i.q and [.q in the following theorem. The fol-
lowing formulae provide explicit representatives for Thom classes in our three
different cohomology spaces:

Theorem 4.7 Let V be an oriented Fuclidean vector space with oriented or-
thonormal basis (e1,...,eq). Let €4 := (—1)d(d271)7rd/2. Let T : AV — R be the
Berezin integral. Let, for X € so(V),

fi(X) = t2|\x||2+t2d$kek+ Z (Xeg,eo)er A eg,
k<l
UR(X) - _7T ((Zxkek)eft(X)> ,
2
X) = b L(X)dt.
%) = [ )
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o Let Thye (V) € HPO(s0(V),V,V \ {0}) be the Thom class represented by
1
€d

e Let Tho(V) € HE(s0(V), V) be the Thom class represented by

(Pf(5),8a(X)), X €so(V).

1 1
;%(X) = (xPE(5) +dxBA(X)), X €so(V).
Here x € C"O(V)SO(V) be an invariant function with compact support and equal
to 1 in a neighborhood of 0.

o Let Thyq(V) € HS;’i_rap(so(V),V) be the Thom class represented by the
Mathai-Quillen form

1 1
SCOl(X)=—T (ef1<X>) . X eso(V).
€d €d
Thus the use of the Berezin integral allowed us to give slim formulae for
Thom forms in relative cohomology, as well as in compactly supported coho-
mology or in rapidly decreasing cohomology.

Let us explain the relation between the Thom forms éC%‘/ and éC}\ For
t > 0, it is easy to see that the forms C{(X) and CY, (X) differ by the differential
of an equivariant form with Gaussian decay. We could deduce this fact as a
corollary of the unicity theorem, that we will prove soon, but we prove it here
directly by giving explicit transgression formulae.
Proposition 4.8 For any t >0, C{, = C% in Hgsi—rap (s0(V), V).

Proof. Fixt > 0. The form Ct = e~*’I2I* P(¢, dx, X) is rapidly decreasing
on V, thus C%, € A*®  (s0(V), V). Define on V\ {0} the equivariant form 3% =

dec-rap
[ mids. We have 3 = e=slel* P(s, X, 2, dx) where P(s, X,z dz) depends
polynomially of (s, X,z,dz). For s = t + u, e~ *lel” = e=tlel* e=ullzl® " thys
Bt is rapidly decreasing when ||z tends to co. The transgression formula (6]
integrated between ¢ and oo shows that C% = D(3%) on V' \ {0}. Thus C¥' :=
XC% + dx 3 is a closed equivariant form belonging to Agz::—rap (s0(V),V). The
two following transgression formulae are evident to prove:

t
Ccy — C%‘,’t =D <X/o nids) and C%‘,’t -CL =D ((X — l)ﬂf\) .
Thus we obtain C{; — C = D(4), where

t
5:=x/ nads + (x — 1)8
0

is an equivariant form defined on V' which is rapidly decreasing. So we have
CY =CLin HEY  (s0(V), V).

dec-rap
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Remark 4.9 In the next sections, we will keep the same notations for the Thom
classes and for their representatives defined in Theorem E

Before going on in proving the unicity, let us give more explicit formulae for
the Thom forms we have constructed.

4.2 Explicit formulae for the Thom forms of a vector space

If I = [i1,d2,...,0p] (with ¢4 < i2 < --- < i4p) is a subset of [1,2,...,d], we
denote by er = e;, Aej, A---Aeg,. If X is an antisymmetric matrix, we denote
by X the sub-matrix ((Xe;,e;)); ;c;, which is viewed as an antisymmetric
endomorphism of the vector space Vi generated by e;,i € I: let P{(X) be its
pfaffian, where V7 is oriented by e;. One sees easily that

(41) eXpcriXevederhes = N"PR(X )er in AV

Only those I with || even will contribute to the sum ([t]), as otherwise the
pfaffian of X; vanishes.

If T and J are two disjoint subsets of {1,2,...,d}, we denote by ¢(I,.J) the
sign such that ey Aey = €(I,J) eryy.

Proposition 4.10 e We have Thyq(V)(X) = Ei (P£(5), Ba(X)) with
X :L'kd:L']
Z V(k,1,7) Pf T) HxlluH—l’
k,I,J

with

1 [J1(1T|+1)
Y = —5 (0T () e De({ky, 10,

Here for 1 < k < d, the sets I,J vary over the subsets of {1,2,...,d} such
that {k} U T U J is a partition of {1,2,...,d}. Only those I with |I| even will
contribute to the sum.

o We have

The(V)(X) = = (£(Jal*) PECE) + 26 (JolP) (3 i) 5, (X))

where [ is a compactly function on R, identically equal to 1 in a neighborhood

of 0.
o We have
1 a2 1] "
Thyiq(V)(X) = e =1 ;( 1)z (1, 1) Pf(ZL)day.
Here T runs over the subset of {1,2,...,d} with an even number of elements,

and I' denotes the complement of 1.
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Proof. Since dxrer and dr;e; commute we have

et Lk durer  — H(l—i—tdmkek)
k
= Z(—l)wd@]e‘]tl‘]l.
J

If we use (i), we get

SiX) = e <pr (Xrye ) (Z(_l)”;”dweﬂ|-f|>

J

2 11011 =1)
(42) = IS (1 ) (-1 PE(EL) dagepust!),

where the I, J run over the subsets of {1,2,...,d} which are disjoint. If we take
t =11in ({), we see that

T (00) = e I 37 (1, 1) (—1) T Pr(BL dap

111" 1-1)
3 —

The third point then follows since (—1)
Equation ([tg) gives also

T \J\(\J\ 1I1071=1)
nh(X) = - izl Zxkek (Ze (I, J)( PE(X0) da g equyt!? |)
1.J

I T]+1)
2

= —e N (1, )e({k}, U T)(~1) PE(XL) 2y day 17,

k,,J
where the sum runs over the partitions {k} UTUJ = {1,...,d}. If we integrate
the last equality between 0 and infinity, and use the formula fOOO et tadt =
iT(24L), we get the first point.
The second point follows from the definition.

Let us give the formulae for Thye1, The, Thyiq for small dimensions. Here f
is a compactly function on R, identically equal to 1 in a neighborhood of 0.

Example 4.11 IfdimV =1, then SO(V) is reduced to the identity. We have

By = _§7T1/2|%| — _%wl/Q sign(z),
so that
Tha(V) = (0, sien(x)),
The(V) = —f'(2?)|z|de,
Thyuo(V) = —r e lol® gz,

T1/2
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Example 4.12 Let V = Re; @ Resy of dimension 2. We have

wldl‘g — $2d$1

KT P 2
so that
Tha(V)(X) = = (PHE).6),
Th(V)(X) =~ (F(lelP)PECE) + £/ (folP)des Adas),
Thuq(V)(X) = %e_llmlﬁ(fPf(%)erxl/\dasg).

Example 4.13 Let V = Re; @ Res @ Res of dimension 3. We have

xl/2

Al
1/2

6/\(X) = ($1<X€2,63>+$2<X€3,61>+1‘3<X€1,62>)

™

+—
Af[®

(.Tldl‘g AN dzrs + xodrs N dx1 + x3dxy A dl‘g)

so that 1
Threl(v)(X) = m(ovﬂ/\(){))

The equivariant form Th(V)(X) is equal to

L (||
E%((xl(Xeg,63)+x2(X63,el)+x3(Xel,eg))(d||x|2)—2dx1/\dx2/\d:133).
The equivariant form Thavg(V)(X) is equal to

1
27‘(‘3/2

e*l\xl\Z (<X€2, €3>d1'1 + <X€37 €1>d1'2 —+ <)(€17 62>d1‘3 — 2d$1 /\dZL'Q /\dl'g) .

4.3 Unicity of the Thom forms of a vector space

The following theorem is well known in the non equivariant case.

Theorem 4.14 o The relative class Thye (V) is a free generator of
HP (s0(V), V,V \ {0}) over CP°(s0(V))SOWV).  Thus Th,e(V) is the unique
class in HP°Y(so(V), V,V \ {0}) of integral 1.

e The equivariant class The(V) is a free generator of HE'(so(V), V) over
CPY(50(V))SOWV) . Thus The(V) is the unique class in H2 (so(V'), V) of integral
1.

e The Mathai-Quillen, class Thyq(V) is a free generator of HES . (s0(V), V)

dec-rap
over CP°(s0(V))SOWV) . Thus Thyq (V) is the unique class in Hgsi_wp(ﬁo(‘/), V)
of integral 1.
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The same theorem holds in the C*°-category.

Proof. We give the proof of the second point first. Let ¢y (X) be a
closed equivariant form with compact support, so that fv ty = 1. We want to
prove that any closed equivariant form a(X) in AP (s0(V'), V) is proportional to
ty(X) in cohomology : a = Qty in HP° (s0(V), V) with Q € CP°'(s0(V))SCV),

Let Ex(v) = —v be the transformation —Idy. We consider the space V x V.
The transformation g(t)(vi,v2) = (cos(t)v1 + sin(t)va, — sin(t)vy + cos(t)ve) is
a one-parameter transformation of V' x V which commutes with the diagonal
action of SO(V') and preserves the pair (V xV,V xV\{(0,0)}). The transforma-
tion g(0) is the identity, while g(5)(vi,v2) = (v2, —v1). Let S: VXV — V xV
be the vector field on V x V associated to the action of the one-parameter
subgroup ¢(t). Thus Sy, v, = (—v2, v1).

We denote by my, w2 the first and second projections of V' x V on V. Let
a1,az be closed equivariant forms in AP°(so(V),V). The exterior product
Ajg = Ty A Tiag belongs to AR (so(V),V x V).

Let us apply the transformation g(t) to Aje. Define

A(t) = g(t)"(Arz).

Then A(0) = 7fa1 A myan while A(5) = w301 A 77 Ex* . If the equivariant
form «; are supported in the balls B(0,7r;) C V, we see that the equivariant
A(t) is supported in the ball B(0,r1 +1r2) CV x V for any t € R.

We have £ A(t) = L(S)A(t) = D((S)A(t)) from Cartan’s relation (). Thus
the cohomology class of A(t) remains constant. We obtain that, for homoge-
neous elements aq, ao,

Tray Amian = mhay Anl Bx*ag = (—1)lllezlt BEx* as A mhay

in HPl(s0(V),V x V).

We now consider the first projection m; : V x V — V and the corresponding
integral over the fiber (m). (see Section B.6). Note that the map (). o 75 :
HE N (s0(V), V) — CP°ls0(V))SOMV) corresponds to the integration map [i,.
Thus we obtain the relation

(/V a2) ap = (—1)leallez] (/V al) Ex* ay

in HPl(s0(V), V).

Let us apply this relation to the couple (o, Ex* ty/). As [}, Ex*ty = (—1)4mV,
we obtain that o = Q(X)ty, with Q(X) = € [, a(X). Thus, if « is not zero,
we can assume that its degree is of same parity that dim V', and we obtain the
relation

(43) o= (/Va) ty

in H2°(so(V), V). This proves that ¢y is unique in cohomology, and is a gen-
erator of H2!(so(V), V).
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The third point is proved in exactly the same way.

Let us prove the first point. To prove the fact that Th,e (V) is a generator of
HPOY(s0(V),V,V \ {0}), we apply the same one parameter transformation g(t)
which acts on V' x V and preserves the subset {(0,0)} C V' x V. Here we use
the product ¢ from

HP s0(V),V x V,(V\ {0}) x V) x HP(s0(V),V x V,V x (V' \ {0}))

into HP!(so(V),V x V,V x V \ {(0,0)}). For a couple (a1, as) of Dye-closed
elements in AP°!(so(V),V,V \ {0}), we consider the product

7 (ay) o w5 (az) € AP s0(V),V x V,V x V'\ {(0,0)})

and their transformations g(¢)*(7w}a; ¢ m3a2) which are in the same cohomology
class. We need the

Lemma 4.15 We have the following equality
g9(5)" (a1 o3 (az)) = (—=1)leallezl e Bx* o o mi oy
in HP (so(V),V x V,V x V' \ {(0,0)}).

Proof. We consider the covering V' x V '\ {(0,0)} = U; U Uz where U; :=
(VAN{0}) x V and Uz =V x (V \ {0}). Let ® = (®1,P5) a partition of unity
subordinate to this covering: the functions ®; are supposed SO(V)-invariant.
We have also the group of symmetry generated by 6 := g(5). We have §(U;) =
Us, 0(Uz) = Uy and 6%(z,y) = (—x, —y). We can suppose that the functions @y
are invariant under 62, and that 0*(®;) = ®s.
Let ap = (ap,fk) € AP so(V),V,V \ {0}), k = 1,2. Recall that

Tiay o Thaz is equal to (mfay A Tias, Be(mial, mhaz)) with

Bo(miay, m5a2) =

175/ Ahan 4+ (—D)|%rfag A @78y — (—1)14ld®y A 7t By AT Bs.

Then 0*(1Fa1 o9 Tha2) is equal to (0*(7faq A mhaz), 0*(Bs(a1,az))). We know
already that 0*(7a; A mhas) is equal to (—1)l9lle2lz Ex* ap A w5, Let us
compute

0% (Be (71 a1, m302))
= 0" (®umiBi Amsas + (~D)niar A @am3fh — (~1)lddy A By AT )

= Oomifi Al Ex* as 4 (—1)4lnia; A B Ex 3,
7(71)‘a1‘d(1)2 A W;ﬂl N 7'(1< Ex* 62

= (71)|a1||a2|ﬂq>(7rf Ex* as, m3a1).

So the elements 6*(1Fa; o m5as) and (—1)1elle2lr* Ex* ay og m5a; coincide in
APl (50(V),V x V,V x V' \ {(0,0)}).
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We have proved that

Tiay o mhay = (—1)‘“1\\a2\7rf Ex* as o myay
holds in HP°!(so(V),V x V,V x V \ {(0,0)}) for any couple (a1,as) in
HP (s0(V),V,V \ {0}). Then we consider the integral over the fiber of 7
and we apply Proposition . The rest of the proof is the same.

Remark 4.16 At the level of equivariant forms, Equality (@) can be precised
as follows. We have the following equality in AP°(so(V),V):

(44) a(X) = ( / a<X>) v (X) + D(E)(X)

where § = (—1)WV)+ (7)), (fol L(S)A(t)) , and A(t) = g(t)*(mfaAms Ex" ty).
We have also a control on the support of the equivariant form 0. If a and ty

are supported respectively in the balls B(0,7) and B(0,¢) of V, the form ¢ is
supported in the ball B(0,r + €).

Since the map p, : HP?!(so(V),V,V \ {0}) — HE(s0(V), V) sends the class
Thye (V) to the class The(V'), Theorem shows that p, is an isomorphism.
We can precise this property as follows. We have p, = j o Pyoy Where

pyoy : HP (s0(V), V, V' \ {0}) — HPp) (s0(V), V) and

J Higy (s0(V), V) = HE (s0(V), V).
is a natural map (see Lemma B.11J): let us recall its definition. A class in
H?Si (s0(V'), V) is defined by a collection [yr] € HE ' (s0(V), V), where U runs
over the open neighborhood of {0}, and such that ry y/[yv/] = [yu] for U C U.
The image of ([yy])u by 7 is the class defined by the closed the equivariant form

v in HE®(s0(V), V), for any relatively compact open neighborhood U.

Theorem 4.17 e The maps j and pyoy are isomorphisms.
e Similarly, the maps pgoy : H®(so(V),V,V \ {0}) — HEDy (s0(V),V) and
J:HG (50(V), V) = HX(s0(V), V) are isomorphisms.

Proof. Since p, =jo Pio} is an isomorphism, it is enough to prove that
Jj is one to one. Let ([yu])v an element in the kernel of j : for any relatively
compact open neighborhood U of {0}, we have vy = 0 in HE!(s0(V), V). If we
show that vy = 0 in H[pJOl(so(V), V), it gives that ([yuy])uv = 0. Let U’ = B(0,r)
be a ball and 0 < € << 1 such that B(0,r + €) is included in U.

We use (@) with the closed equivariant form ~y: supported in the ball
B(0,), and a Thom form ¢y supported in the ball B(0, €). We have the following
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relation in A{’,Ol (so(V),V)

o (X) = /V wm) v (X) + D(8)(X)
— D))

since v = yu = 0 in HE(s0(V), V). This proves that v = ry.p (yv7) = 0 in
HE (s0(V), V).

4.4 Explicit relative Thom form of a vector bundle and
Thom isomorphism

Let M be a manifold. Let p := V — M be a real oriented Euclidean vector
bundle over M of rank d. In this section, we will describe a generator over
H(M) of the relative cohomology space of the pair (V,V \ M). We will use
Chern-Weil construction.

Recall the sub-space Agper cpt(V) C A(V) of differential forms on V which
have a compact support in the fibers of p : V — M. We have also defined
the sub-space Agec-rap(V). The integration over the fiber is well defined on the

three spaces AP°I(E,V,V\ M), Aggler pt (&) and Agi_rap({?, V) and take values
in A(M). A Thom form on V will be a closed element which integrates to the

constant function 1 on M.

The bundle V is associated to a principal bundle P — M with structure
group G = SO(V), where V = R?. We denote so(V) by g. An element y € P
above x € M is by definition a map y : V' — V), conserving the inner product
and the orientation. Thus P is equipped with an action of SO(V): g-y = yg~*:
V=V,

Definition 4.18 Let w be a connection one form on P, with curvature form 2.
The Euler form Eul(V,w) € A(M) of V — M s the closed differential form on
M defined by

Eul(V,w) :i= Pf (_23) .

™

The class of Eul(V, w), which does not depend of w, is denoted Eul(V) € H(M).

Remark 4.19 Since the pfaffian vanishes on so(V) when dimV is odd, the
Euler class Eul(V) € H4(M) is identically equal to 0 when the rank of V is odd.

Consider the Chern-Weil map
02 AP(g, Z) — A(2)

where the manifold Z is the {pt}, V, or Z = V \ {0}: hence the quotient
manifold Z = P xg Z are respectively M, V and V \ M. In order to simplify
the notations we denote all these maps by ¢.,. The map ¢, maps AL° (g, V) to

Aﬁber cpt (V) and ApOl (97 V) to Adec—rap(v)'

dec-rap
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Recall the equivariant differential forms defined in Theorem @ :

Tha(V) € AP(g,V,V\{0}),
Tho(V) € AP(g,V),
Thuq(V) € AP (g, V).

dec-rap

We can take the image of these forms via the Chern-Weil map. We consider
the transgression form By, € AY"1(V'\ M) defined by By, = du(Br)-

Definition 4.20 e The relative form Thyq(V,w) € A4V, V \ M) is the image
of Thye1 (V) € AP (g, V,V \ {0}) by the Chern-Weil map ¢, :

1 *
Thwl(vvw) = ; (p Pf(%)a Bv,w) .
e The form Theiper cpt(V,w) € Aflpey opi(V) is defined as the image of The(V) €
AP°l(g V) by the Chern-Weil map ¢,
o The Mathai-Quillen form Thyq(V,w) € Agec_mp(V) is defined as the im-

age of Thyig(V) € AP (g, V) by the Chern-Weil map ¢, :

dec-rap

The form Th,q (V,w) is relatively closed, since By is defined on V\ M and sat-
isfies dBy , = p* Pf(%). The forms Thgber opt(V,w) and Thyq(V,w) are closed
de Rham differential forms. We denote Thye1(V), Theber cpt(V) and Thyq(V)
the corresponding cohomology classes. Since the map ¢, commutes with the
integration over the fiber, these cohomology classes images are Thom classes.

We obtain the analog of Theorem .

Theorem 4.21 .

o The relative class Thye(V) is a free generator of H(V,V\ M) over H(M).
Thus Thye1 (V) is the unique class in H(V,V\ M) with integral 1 along the fiber.
We say that Thye (V) is the Thom class in H(V,V \ M).

o The class Thaper cpt(V) is a free generator of Hever cpt(V) over H(M).
Thus Theper cpt (V) is the unique class in Haper cpt(V) with integral 1 along the
fiber. We say that Theber cpt(V) is the Thom class in Heaper cpt(V).

o The Mathai-Quillen class Thaq(V) is a free generator of Haec-rap(V) over
H(M). Thus Thyg(V) is the unique class in Haec-rap(V) with integral 1 along
the fiber. We say that Thyq(V) is the Thom class in Haec-rap(V)-

Proof. The proof is the same than the proof of Theorem . We work on
the sum of vector bundles V &V over M and we relate the identity on V& V to
the exchange of the two copies of V via a one-parameter transformation group.

From the explicit formulae for Thgper cpt, Thyg, we obtain the following
proposition.
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Proposition 4.22 The restriction of the Thom classes Thaper cpt(V) or Thaq (V)
to M is the Euler class Eul(V).

Let us give explicit expressions for the forms Thye(V, w), Thaper cpt(V, w) as
well as Thyq(V,w). Let us fix an oriented orthonormal basis (e1,...,eq) of
V. We write w = Zk,l wkgEf where Eé“ is the transformation of V' such that
Eé“(ei) = §; pe¢. Here wye are 1-forms on P and wye = —wei. The curvature 2
is Q= Zk,é Qe Ef where Qi = dwre + Zj wie N\ W

The connection V on V — M induced by the connection form w is the
operator V = d+w acting on (C*®(P)®V )% with values in (A'(P)n,®V)¢. The
Chern-Weil map ¢, : A®(g,V) — (A(P X V)hor)¢ admit a natural extension

¢ 1 (C=(g) @ A(V) @ AV)E — (A(P X V)hor ® AV)E

such that To ¢ = ¢~ o T.
Let f; € (CP°!(g) ® A(V) ® AV)Y be the map defined in (B3). The element
[ := ¢ (ft) is defined by the equation

1
(13) = I e 5 3 e e

where 1; = dx;+), weize is a horizontal 1-form on Px V. If I = {i; < --- <3}
is a subset of [1,2,...,d], we denote by n; the product n;; A -+ An;,.

Let 7%, € (C*°'(g) ® A(V))% be the transgression forms defined in (B4). The
element ¢, (n%) € A(P X V)pas satisfies

du(nf)) = —duoT (X wrer) )
k
—Toqﬁa((z.rkek)ef‘(x))
k
7T((sz€k)ef"w).
k

We use the same notations as in Proposition .

Proposition 4.23 e The form By, = ¢,(8x) is defined in A(P X (V\{0}))bas
by the relation

o0
Byw = */ T (( E Trek) e~ Nzl +t Xk mrent 3 Xy Queennes )
0

More explicitly,
TETJ
Byw = Z V(k,1,5) Pt (QTI) ||$H|J|+1'

kI,J
o The form Thaper cpt(V,w) is defined in A(P x V)pas by the relation

1
Thﬁber cpt (V, w) =

a(x P{(2) + dxBy.w)-
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where x is a SO(V)-invariant function on V, identically equal to 1 in a neigh-
borhood of 0.
o The form Thyq(V,w) is defined in A(P x V)pas by the relation

Thyo(V,w) = é T (e ol T montd B ncennee .

More explicitly

1 —zl? 11 B
S Y GO En P

I even

ThMQ(V, w) = (

This gives an explicit expression of fy ,, and thus of Thye (V,w) in functions
of the variables x;, dz; on V, the connection one forms wy, and the curvature
forms Q, of an Euclidean connection on M.

The form Thymg(V, w) is the representative with Gaussian look of the Thom
form constructed by Mathai-Quillen [fLT].

We also obtain:

Theorem 4.24 o The map H(V,V\ M) — Hn (V) is an isomorphism.
o If M is compact, the map H(V,V\ M) — H.(V) is an isomorphism.

4.5 Explicit equivariant relative Thom form of a vector
bundle and Thom isomorphism

We can repeat the construction above in the equivariant case. Assume now that
V is a K-equivariant vector bundle. Then V is associated to a K-equivariant
principal bundle P — M with structure group G = SO(V). The principal
bundle P is provided with an action of K x G. If y : V. — V), is an orthonormal
frame, then (g, k) -y = kyg~?! is a frame over kx.

Let w be a K-invariant connection one form on P, with curvature form €.
For Y € ¢, we denote by pu(Y) = —(VY)w € C*°(P) ® g the moment of ¥ € ¢.
The equivariant curvature form is Q(Y) = Q + u(Y), Y € &

Consider the Chern-Weil maps

wa : ApOI(gv Z) I ApOI(éa Z)
where the manifold Z is the {pt}, V, or Z = V' \ {0}. See ([) for the definition.

Definition 4.25 Let w be a connection one form on P, with curvature form
Q. The equivariant Euler form Eul(V,w) € AP°Y (&, M) of V — M is the closed
equivariant form on M defined by

Eu(V,w)(Y) := Pf < QQ(Y)> ,Yet

™

In other words, Eul(V,w) is the image by the Chern-Weil map ¢, of the invari-
ant polynomial X +— Pf(—%). The class of Eul(V,w), which does not depend

of w, is denoted Eul(V) € HPO!(¢, M).
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As integration over the fiber commutes with the Chern-Weil construction,
the image by ¢, of Thom classes are Thom classes. We define the transgression
form By ,(Y) € AP°(e, V' \ M) by

By.w(Y) = (6 (Br) (V)

Definition 4.26 e The relative equivariant form Th.e(V,w) € AP° (€, V, V\ M)
is the image of Thye (V) € AP°Y(g, V,V'\ {0}) by the Chern-Weil map ¢,,. More
explicitly, forY € ¢

Thea(V,0)(V) = — (p" PHEXD) By o (V)

T
o We define the equivariant form Thaper opt(V,w)(Y) € AEELT ept (&) as

the image of Th.(V) € AP°(g,V) by the Chern-Weil map @y, :
Thaber ept(V,w)(Y) := (¢ The(V))(Y).

o We define the Mathai-Quillen form Thyq(V,w)(Y) € AR (€, V) as the

dec-rap

image of Thyq(V) € AP (g, V) by the Chern-Weil map ¢,,:

dec-rap
Thyo(V,w)(Y) := (¢ Thug(V))(Y).

The equivariant form Thye (V,w) is relatively closed, since Sy , is defined on
V\ M and satisfies D(By.,) = p* Pf(£). The equivariant forms Theper cpt(V, w)
and Thyq(V,w) are closed equivariant differential forms. We denote Thye1(V),
Théber cpt (V) and Thaq(V) the corresponding equivariant cohomology classes.
Since the map ¢, commutes with the integration over the fiber, these cohomol-
ogy classes images are equivariant Thom classes.

With the same proof as the non equivariant case, we obtain the following
Theorem.

Theorem 4.27 e The relative class Thya(V)(Y) is a free generator of
HEO (6, V),V \ M) over HPN (e, M). Thus Thy(V) is the unique class in

dec-rap

HPM e, Y,V \ M) with integral 1 along the fiber. We say that Thye (V) is the

rel

equivariant Thom form in HY.  (8,V,V\ M).

dec-rap

o The equivariant class Thever cpt(V)(Y) is a free generator onggler ept (&)

over HP'(&, M). Thus Thaper ept(V) is the unique class in HEELT Cpt(E, V) with
integral 1 along the fiber. We say that Thaper opt(V) is the equivariant Thom

form in HEELT Cpt(E, V).

e The Mathai-Quillen class Thyq(V)(Y) is a free generator onggi_rap({?, V)
over HPOY (&, M). Thus Thyq(V) is the unique class in Haecrap(€, V) with inte-
gral 1 along the fiber. We say that Thyq(V) is the equivariant Thom form in

Hdec—rap (E, V) .
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Proof. The proof is the same than the proof of Theorem .

From the explicit formulae for Theper cpt(V,w)(Y), Thamq(V,w)(Y), we ob-
tain the following proposition.

Proposition 4.28 The restriction of the equivariant Thom class Theper Cpt(V)
(or Thmq(V)) to M is the equivariant Euler class Eul(V).

Let us give explicit expressions for the equivariant forms Thaper cpt(V, w)(Y)
as well as Thyq(V,w)(Y) : we will express them as K-equivariant map from £
into A(P X V)pas. We use the same notations as in Proposition .

We denote by p(Y) the moment of Y € € with respect to the connection
V = d+ w. By definition pu(Y) = L(Y) — Vyy = —(VY)w where VY is the
vector field on P associated to Y € €. Thus u(Y"), viewed as a SO(V)-invariant
map from P into so(V), satisfies

u(Y) = =3 (wre, VY) B
k.0

For the equivariant curvature we have Q(Y) =3, , Qe (Y)E} with

Qe (Y) = dwpe + ije A wij — (wre, VY).

J

As usual in equivariant cohomology, formulae for equivariant classes are
obtained from the non equivariant case by replacing the curvature 2 by the
equivariant curvature.

Proposition 4.29 e The transgression form By ., (Y') is defined by the following
formula : for' Y € ¥ we have

By (V) = 7/ T ((Z spen) eI H T mect Tyl eV ennes )
0
More explicitly,

QY Lk
Bow(¥) = " Aer P (242 S
k,1,J

o Let x be a SO(V) invariant function on V, identically equal to 1 in a
neighborhood of 0. We have thus

1
Thiper e (V@) (V) = = (XPI) + difv(Y)) ¥ et

e We have
Thyg(V,w)(Y) = l T (e—l\z|\2+2k Nrer+s 3 oo Qe (YerAeg )’ Y et
€d
More explicitly

1 —zl? 1] I
Thyq(V,w)(Y) = (ﬁ)—d/Qe ll= Z (=1)=€(I,1') Pf(#)nl,, Y et
I even
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We obtain similarly:

Theorem 4.30 o The map py, : HP' (e, V,V \ M) — HES' (&, V) is an isomor-
phism.

o If M is compact, the map p, : HP°'(¢,V,V \ M) — HP(E, V) is an iso-
morphism

5 The relative Chern character

Let N be a manifold equipped with an action of a compact Lie group K.

5.1 Quillen’s Chern form of a super-connection

For an introduction to the Quillen’s notion of super-connection, see [@]

Let F be a complex vector bundle on N. Let V be a connection on F. The
curvature V2 of V is a End(F)-valued two-form on N. Recall that the (non-
normalized) Chern character of F is the de Rham cohomology class Ch(F) €
H(N)* of the closed differential form Ch(V) := Tr(eV’).

Suppose now that F is a K-equivariant vector bundle, and suppose that V
is K-invariant. For any X € €, we consider uV (X) = £(X) — Vyx which is an
End(F)-valued function on N: here £(X) is the Lie derivative of X, acting on
A(N,F), and Vyx is equal to «(VX)V. Then Ch(V)(X) = Tr(eV +#" () ig
a closed equivariant form on N: its class Ch(F) € H> (¢, N) is the equivariant
Chern character of F.

More generally, let £ = ET®E~ be an equivariant Zs-graded complex vector
bundle on N. We denote by A(N,End(£)) the algebra of End(€)-valued dif-
ferential forms on N. Taking in account the Zs-grading of End(£), the algebra
A(N,End(€)) is a Zs-graded algebra. The super-trace on End(€) extends to a
map Str : A(N,End(£)) — A(N).

Let A be a K-invariant super-connection on &£, and F = A? its curvature,
an element of A(N,End(€))". Recall that, for X € €, the moment of A is the
equivariant map

(46) pt e — A(N,End(€))"

defined by the relation p*(X) = £(X) — [1(V X), A]. We define the equivariant
curvature of A by

(47) F(X)=A%+,4X), Xet

We usually denote simply by F the equivariant curvature, keeping in mind
that in the equivariant case, F is a function from ¢ to A(N,End(£))*.

Definition 5.1 (Quillen) The equivariant Chern character of (€, A) is the equiv-
ariant differential form on N defined by Ch(A) = Str (eF) (e.g. Ch(A)(X) =
Str (F9) ).
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The form Ch(A) is equivariantly closed. We will use the following transgression
formulas:

Proposition 5.2 e Let Ay, fort € R, be a one-parameter family of K -invariant
super-connections on £, and let %At € A(N,End(€))~. Let Fy be the equivari-
ant curvature of A;. Then one has

(48) % Ch(A¢) = D (Str ((%At) oF )) .

o Let A(s,t) be a two-parameters family of K-invariant super-connections.
Here s,t € R. We denote by F(s,t) the equivariant curvature of A(s,t). Then:

d d d d
- ZA F(sit) y _ 2 ~A F(s)
ds Str ((dt (5,1)) ) dt Str ((ds (5,1)) )
1
_ d wk(s,t) (4 (1-w)F(s.t)
=D (/0 Str ((dSA(s,t))e (th(s,t)) e )du .

These formulae are the consequences of the two following identities. See [@],
chapter 7.
o If we denote by A¢(X) the operator A — ¢(VX) on A(N,End(£)), then we
have the relation:
F(X) = Ae(X)? + L(X).

o If o is an equivariant map from £ to A(N, End(€)), then one has
D (Str(a(X))) = Str[Ae(X), a(X)].

Then, using the invariance by K of all terms involved, the proof of Proposi-
tion @ is entirely similar to the proof of Proposition 3.1 in [@]

In particular, the cohomology class defined by Ch(A) in H*> (¢, N) is inde-
pendent of the choice of the super-connection A on £. By definition, this is the
equivariant Chern character Ch(&) of €. By choosing A = V* @& V™~ where V*
are connections on £F, this class is just Ch(£+) — Ch(£7). However, different
choices of A define very different looking representatives of Ch(E).

5.2 The relative Chern character of a morphism

Let £ = £ET @ £~ be an equivariant Zo-graded complex vector bundle on N and
o :ET — £~ be a smooth morphism which commutes with the action of K. At
each point n € N, o(n) : & — & is a linear map. The support of o is the
K-invariant closed subset

Supp(o) = {n € N | o(n) is not invertible}.

Definition 5.3 The morphism o is elliptic if Supp(c) is compact.
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Recall that the data (E7,€7,0) defines an element of the equivariant K-
theory K% (N) of N when o is elliptic. In the following, we do not assume o
elliptic. Inspired by Quillen [[IJ], we construct a cohomology class Chyei(o) in
H>(¢, N, N \ Supp(0)).

The definition will involve several choices. We choose invariant Hermitian
structures on £ and an invariant super-connection A on £ without 0 exterior
degree term. This means that A = Zj>1 A(j), where A} is a connection on
the bundle £ which preserves the grading, and for j > 2, the operator A
is given by the action of a differential form wy; € A7(N,End(€)) on A(N, ).
Furthermore, wy;) lies in A’ (N,End(€)™) if j is even, and in A7 (N, End(€) ") if
j is odd.

We define, with the help of the invariant Hermitian metric on €%, the dual
of the morphism o as an equivariant morphism o* : £~ — £T. Introduce the
odd Hermitian endomorphism of £ defined by

(49) vg:(g ‘g)

*

c¥o 0

Then v2 = is a non negative even Hermitian endomorphism
a 0 oo"

of £. The support of ¢ coincides with the set of elements n € N where the
spectrum of v2(n) contains 0.

Definition 5.4 We denote by h,(n) > 0 the smallest eigenvalue of v2(n).

Consider the family of super-connections A7 (t) = A+itv,, t € Ron £. The
equivariant curvature of A“(t) is thus the map

(50) F(o, A, t)(X) = 202 + it[A, vs] + A% + A (X), X et

with 0 exterior degree term equal to —t?v2 + u‘[%] (X). As the super-connection

A do not have 0 exterior degree term, both elements it[A,v,] and A? are sums
of terms with strictly positive exterior degrees. For example, if A = VT @ V™
is a direct sum of connections, then it[A,v,] € A'(N,End(€)7) and A% €
A?(N,End(&)™).

Consider the equivariant closed form Ch(c, A, #)(X) := Str (eF(@AD(),

Definition 5.5 The Quillen Chern character form Chg (o) attached to the con-
nection A is the closed equivariant form

Ch(o, A, 1)(X) := Str (e—v3+i[AavaJ+A2+uA<x>) :
Consider the transgression form

(51) (o, A, 1)(X) := — Str (wa eF<avAvt><X>) .
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As iv, = %A”(t), we have % Ch(o,A,t) = —D(n(o, A, t)). After integration, it
gives the following equality of equivariant differential forms on N

(52) Ch(A) — Ch(o, A,¢) = D ( /0 Cn(o A, s)ds) ,

since Ch(A) = Ch(o, A, 0).
We choose a metric on the tangent bundle to N. Thus we obtain a norm
|| = || on AT} N ® End(&,,) which varies smoothly with n € N.

Proposition 5.6 Let K1 x Ky be a compact subset of N x .
e There exists cst > 0 such that, if (n, X) € K1 x Ks,

53 eF@AD(X) () < est (1 + ¢)ImN e he M for all ¢ > 0.
( :

o The differential forms Ch(o, A t)(X) and n(o,A,t)(X) (and all their partial
derivatives) tends to 0 exponentially fast when t — oo uniformly on compact
subsets of (N \ Supp(o)) x t.

Proof. To estimate || eF@40&) || we employ Proposition 7.3 of the

Appendix, with the variable z = (n,X) and the maps R(n,X) = v2(n),
S(n, X) = p(n)(X), and T(t,n, X) = it[A, v,](n) + A%(n). The same estimate
holds for || D(9) - e¥(@ADX) || when D(9) is differential operator on N x &.
Hence the second point follows from the fact that inf,cx, ho(n) > 0 when the
compact subset Kq lies inside N \ Supp(o).

The former estimates allows us to take the limit ¢ — oo in (p9) on the open
subset N\ Supp(c). We get the following important lemma (see [[3, [[J] for the
non-equivariant case).

Lemma 5.7 We can define on N \ Supp(o) the equivariant differential form
with smooth coefficients

(54) B(o,A)(X) = /000 n(o, A t)(X)dt, X et
We have Ch(A)|n\supp(e) = D (B(0, A)).

We are in the situation of Section f The closed equivariant form Ch(A)
on N and the equivariant form 3(o, A) on N \ Supp(c) define an even relative
cohomology class [Ch(A), B(o, A)] in H> (¢, N, N \ Supp(0)).

Proposition 5.8 e The class [Ch(A), B(c0,A)] € H™(¢, N, N \ Supp(c)) does
not depend of the choice of A, nor on the Hermitian structure on €. We denote
it by Chyei(0) and we call it Quillen’s relative equivariant Chern character.

o Let F be an invariant closed subset of N. For s € [0,1], let 05 : ET — £~
be a family of equivariant smooth morphisms such that Supp(cs) C F. Then all
classes Chyel(os) coincide in H (¢, N, N\ F).

Proof. The proof is identical to the proof of Proposition 3.8 in [[[J] for the
non equivariant case.
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5.3 Tensor product

Let &1, &5 be two equivariant Zs-graded vector bundles on N. The space £ ® &5
is a Zy-graded vector bundle with even part & ® & @ £ ® £, and odd part
ErRES@E ®ES.

Remark 5.9 If Ey and Es are super vector spaces, the super-algebra End(E7)®
End(Es) is identified with the super-algebra End(E; ® E2) via the following rule.
For vy € Eq1,v3 € B2, A € End(E1), B € End(FE2) homogeneous

(A 024 B)(’Ul X ’1}2) = (—1)‘B||’U1|A’U1 X BUQ.

The super-algebra A(N,End(&; ® &2)) can be identified with
A(N,End(&1)) ® A(N,End(&2)) where the tensor is taken in the sense of super-
algebras. Then, if A € A°(N,End(&£;)7) and B € A°(N,End(&;)~) are odd
endomorphisms, we have (4 ® Idg, + Idg, ® B)? = A2 ® Idg, + Idg, ® B2,

Let oy : & — & and 09 : & — &£, be two smooth equivariant morphisms.
With the help of K-invariant Hermitian structures, we define the morphism

01009 (E10E)T — (E1®&)

by 01 ® 09 := 01 ®Idg2+ +Idgl+ R o9 +Id5f ® o5+ o] ®Idg;.

Let vy, and v,, be the odd Hermitian endomorphisms of &£, &> associated
to o1 and oy (see (1)). Then vy, 00, = v, ® Ide, +Idg, ® vy, and v2

01002
v2 ®Ide, + Idg, ® v2,. Thus the square v2 o, is the sum of two commuting

non negative Hermitian endomorphisms vgl ® Idg, and Idg, ® vgz. It follows
that

Supp(o1 ® 02) = Supp(o1) N Supp(oa).

We can now state the main result of this section.

Theorem 5.10 (The relative Chern character is multiplicative) Let
01,09 be two equivariant morphisms over N. The relative equivariant coho-
mology classes

o Cha(ok) € HX(E, N, N \ Supp(ox)), k =1,2,
e Chrei(o1 ® 02) € H*(E, N, N \ (Supp(o1) N Supp(02)))
satisfy the following equality
Chyei(o1 © 02) = Chyei(01) © Chyer(02)

in H>°(¢, N, N\ (Supp(c1)NSupp(o2))). Here o is the product of relative classes

(see (1))

Proof. The proof is identical to the proof of Theorem 4.3 in [@] for the
non equivariant case.
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5.4 The equivariant Chern character of a morphism

Let 0 : ET — £ be an equivariant morphism on N. Following Subsection @,
we consider the image of Chye (o) through the map H* (¢, N, N \ Supp(c)) —
Hg‘;pp(a) (¢, N): the following theorem summarizes the construction of the image.

Theorem 5.11 e For any invariant neighborhood U of Supp(c), take x €
C>®(N)X which is equal to 1 in a neighborhood of Supp(c) and with support
contained in U. The equivariant differential form

(55) c(o, A, x) = x Ch(A) + dx (0, A)

is equivariantly closed and supported in U. Its cohomology class cy(o) €
HE (8, N) does not depend of the choice of (A, x) and the Hermitian structures
on E. Furthermore, the inverse family cy (o) when U runs over the neighbor-
hoods of Supp(o) defines a class

Chaup(0) € Moo (8 N)-

The image of this class in H* (¢, N) is the Chern character Ch(E) of €.

o Let F be an invariant closed subset of N. For s € [0,1], let 05 : ET — £~
be a family of smooth morphisms such that Supp(cs) C F. Then all classes
Chgup(os) coincide in HEP (¢, N).

Definition 5.12 When o is elliptic, we denote by
(56) Che(o) € HZ(E, N)

the cohomology class with compact support which is the image of Chgyp(o) €
Hgipp(g) (¢, N) through the canonical map Hgipp(a) (&, N) — H(¢,N).

A representative of Ch.(o) is given by c(o, A, ), where y € C®(N)¥ is

chosen with compact support, and equal to 1 in a neighborhood of Supp(o) and
c(o, A, x) is given by Formula (F5).

We will now rewrite Theorem for the equivariant Chern characters Chgyp
and Ch.. Let o1 : & — & and 09 : & — &, be two smooth equivariant
morphisms on N. Let 01 @ 02 : (€1 ® 52)+ — (&1 ® &2) be their product.

Following ([Lg), the product of the elements Cheyp(o%) € Hpp(or) (& N) for
k = 1,2 belongs to Hg; (8, N) = HS o pp(o100) (B N).

o1)NSupp(o2)

Theorem 5.13 e We have the equality
Chgup(01) A Cheup(o2) = Chgup(o1 ©@ 02) in Hgflpp(m@@)(é, N).
e [f the morphisms 01,09 are elliptic, we have

Chc(o1) A Che(oz) = Che(og ©® 02) in H°(E, N).
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Proof. This follows from Theorem and the diagram (4).

The second point of Theorem has the following interesting refinement.
Let 01,02 be two equivariant morphisms on N which are not elliptic, and as-
sume that the product o1 @04 is elliptic. Since Supp(o1)NSupp(o2) is compact,
we consider equivariant neighborhoods Uy, of Supp(oy) such that Uy NUs is com-
pact. Choose yj € C*°(N)¥ supported on Uy, and equal to 1 in a neighborhood
of Supp(o). Then, the equivariant differential form c(o1, A1, x1) Ac(oz2, Ag, x2)
is compactly supported on N, and we have

Che(o1 ©® 02) = c(o1, A1, x1) Ac(02, A2, x2) in HZ(E N).

Note that the equivariant differential forms c(oy, Ak, xx) are not compactly
supported.

5.5 Retarded construction

We have defined a representative of the Chern characters Chyei (o) and Chgyp (o)
using the one-parameter family A7 (¢) of super-connections, for ¢ varying between
0 and co. Quillen’s Chern character Chg (o) = Ch(o, A, 1) is another represen-
tative. We will compare them in appropriate cohomology spaces in the next
section.

Consider any T' € R. We have Ch(o, A, T) = D(8(0, A, T)) with 8(0, A, T) =
f;o n(o, A, t)dt. It is easy to check that the following equality

(57) (Ch(A),ﬂ(o, A)) - (Ch(a, A,T), B(o, A, T)) =

T
D,q (/ n(o, A, t)dt, O)
0

holds in A>(¢, N, N \ Supp(o)). Hence we get the following
Lemma 5.14 For any T € R, the relative Chern character Chye (o) satisfies

Chrel(a):[Ch(o,A,T),ﬂ(o,A,T)} in H=(E,N, N\ Supp(c)).

Using Lemma , we get
Lemma 5.15 For any T > 0, the class Cheup(0) can be defined with the forms
c(o, A, x,T) = x Ch(o, A, T) +dx B(o,A,T).
Proof. It is due to the following transgression

T
(58) clo, A x) — c(o, A, x,T) = D(X/O n(o, A, t)dt),

which follows from (@)

In some situations the Quillen’s Chern form Chg(o) = Ch(o, A, 1) enjoys
good properties relative to the integration. So it is natural to compare the
equivariant differential form c(o, A, x) and Ch(c, A, 1).

45



Lemma 5.16 We have
1
c(o,A, x) — Chg(o) =D (X/o n(o, A, s)ds) + D((x —1)8(0, A, 1))

Proof. This follows immediately from the transgressions (53) and (5g).

5.6 Quillen Chern character with Gaussian look

As we have seen, Mathai-Quillen gives an explicit representative with “Gaussian
look” of the Thom class of a Euclidean vector bundle ¥V — M. Similarly,
they give an explicit representative with “Gaussian look” of the Bott class of a
complex equivariant vector bundle ¥V — M. The purpose of this paragraph is to
compare the Mathai-Quillen construction of Chern characters with “Gaussian
look” and the relative construction.

Let V be a real K-equivariant vector bundle over a manifold M. We denote
by p : V — M the projection. We denote by (x,€) a point of V with x € M
and &€ € V,. Let £F — M be two K-equivariant Hermitian vector bundles. We
consider a K-equivariant morphism o : p*£T — p*£~ on V.

We choose a metric on the fibers of the fibration V — M. We work under
the following assumption on o.

Assumption 5.17 The morphism o : p*€T — p*E~ and all its partial deriva-
tives have at most a polynomial growth along the fibers of V — M. Moreover
we assume that, for any compact subset K of M, there exist R > 0 and ¢ > 0
such that* v2(z,€) > c||&||* when ||€]| > R and = € K.

Let V= V* ® V™ be a K-invariant connection on & — M, and consider
the super-connection A = p*V so that A?(t) = p*V + itv,. Then, the form
Ch(o, A, 1)(X) has a “Gaussian” look.

Lemma 5.18 The equivariant differential forms Ch(o, A, 1)(X) and B(o, A, 1)(X)
are rapidly decreasing along the fibers.

Proof. The equivariant curvature of A7(t) is
F(1)(X) = pF(X) — 02 4 itlp"V, ]
Here F € A%(M,End(£)) is the equivariant curvature of V.
To estimate eF () (X), we apply Lemma [.9 of the Appendix, with H = t2v2,

and R = —p*F —it[p*V,v,], S = p*(X). The proof is very similar to the proof
of Lemma 5.17 in [@] for the non equivariant case and we skip it.

Theorem 5.19 Quillen’s Chern character form Chq(o) € A ., (8, V) repre-

sents the image of the class Chsup(0) € HS, () (8, V) in Hioe 1ap (8, V).

Proof. The proof is entirely analogous to Proposition 5.18 in [12] and we
skip it.

IThis inequality means that ||o(z, &)w|? > c||€||?|jw||? for any w € E.
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5.7 A simple example

Thus there are three useful representations of the equivariant Chern character of
a morphism o: the relative Chern character Chyei(a) € H*®(8,V,V \ Supp(o)),
the Chern character with support Chsup(0) € Hgy, () (¢ V) and (in the case
of vector bundles) the Chern character with Gaussian look. We will describe
these explicit representatives in the three cohomology spaces in a very simple
example.

Recall the following convention. Let V = VT @& V™~ be a Zs-graded finite
dimensional complex vector space and A a super-commutative ring (the ring of
differential forms on a manifold for example). Consider the ring End(V) @ A.
Let {ei}?i:“fv+ be a basis of VT and {fj}?i:rrfvi a basis of V~. Consider the odd
endomorphism M} : V' — V such that M}(e;) = f;, and sending all other basis
elements of V' to 0. Similarly, consider the odd endomorphism Rf : V' — V such
that R(f;) = e;, and sending all other basis elements of V to 0.

Convention 5.20 Let a € A. The matrix written with a in column i and row
j, and O for all other entries, represents M; ® a in the ring End(V) ® A. The
matric written with a in column dim V™ + j and row i, and O for all other
entries, represents R} @ a in the ring End(V) ® A.

Let U(1) = K be the circle group. We identify the Lie algebra u(1) of U(1)
with R so that the exponential map is 6 — e,

Consider the case where V = R? ~ C and K = U(1) acts by rotation:
t-z=tzforz€ Candt € U(l). Take ET =V x AV and E~ =V x AlV.
The action of U(1) on E* =C x C is t - [z,u] = [tz,u]. The action of U(1) on
E-=CxCist-[z,u] = [tz, tu].

We consider the Bott symbol o0(z) = z which produces the map o3 ([z, u]) =
[2, zu] from ET to E~. Then, the bundle map o, commutes with the action of
U(1) and defines an element of KOU(l)(]RQ). Recall that the Bott isomorphism
tell us that K?J(l)(R2) is a free module over K?J(l)(pt) = R(U(1)) with base oy.

We choose on E* the trivial connections VT =V~ =d. Let A= VT @ V™.
The moment of A is the map

“A(9)<8 z%)'

The equivariant curvature F(6) of A is equal to p*(#), thus we have the
following formula for the equivariant Chern character

(59) Ch(A)(#) =1—¢".

With the conventions of .20, the equivariant curvature F(t) of the super-
connection A% (t) := A + itv,, is written in matrix form as

o —t?)? 0 0  —itdz 0 0
F(t)w)( o 212 )Ttz 0 )T o i )

47



for 6 € u(1) ~ R. We compute e¥ () using Volterra’s formula. We obtain

eF(t)(g) _ e_t2‘2‘2 1+ (g’(z@) — g(Z@))thZdE . ztg(z@)dE
itg(i0)dz e +g'(i0)t?dzdz

where ¢(i6) = eiew_l. Hence Str(cF®©)) = —g(i6)(i0 + t2dzdz) e+ 11", Here

n(ow, A t)(0) = iStr<<0 E>6F<t><e>)
z 0
= 9g(i0)(zdz — zd2) ¢ eI

For z # 0, we can integrate t — (o, A, t)(#) from 0 to oo and we obtain

zdz —Zdz

Take f € C*°(R) with compact support and equal to 1 in a neighborhood of
0. Let x(2) := f(|z]?).

Similarly to the Thom form, we can give formulae for the three different
representatives of the Chern character.

Proposition 5.21 e The class Chye(op) € H™(u(1),R?%,R? \ {0}) is repre-
sented by the couple of equivariant differential forms:

o e —1zdz—zZdz
17619
T30 2|z|?

e The Chern character with compact support is represented by the equivariant
differential form

C(Ub,AvX) = X(l *ew)JFdXﬂ(Uva)

e -1 2y (112 -
7 (—f(|z| )ib + f'(|#] )dz/\dz).

o Quillen’s Chern character with Gaussian look Chg(oy) is represented by
the equivariant differential form

e —1
7

e l=l® (10 +dzNdZ).

Comparing with Example , we see that the Chern character form in all
of these different versions is proportional to the Thom form

i@_l

Ch(0y)(0) = (2im) ——Th(V)(6).

We will see in the next section that this identity generalizes to any Euclidean
vector spaces.
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6 Comparison between relative Thom classes and
Bott classes:Riemann Roch formula

Let p : V — M be a K-equivariant Euclidean vector bundle over M of even
rank. Here we compare the relative Chern character of the Bott symbol and the
relative Thom class. Both classes live in the relative equivariant cohomology
space H*(¢,V,V\ M). The formulae relating them is an important step in the
proof of the Grothendieck-Riemann-Roch relative theorem [E], as well as the
Atiyah-Singer theorem [fl, f]. As usual, the relation is deduced from an explicit
computation in equivariant cohomology of a vector space.

6.1 The relative equivariant Bott class of a vector space

We consider first the case of an oriented Euclidean vector space V' of dimension
d = 2n. Let
c: Cl(V) — Endc(S)

be the spinor representation of the Clifford algebra of V. We use the conven-
tions of [f][chapter 3] for the spinor representation. In particular, as a vector
space, the Clifford algebra is identified with the real exterior algebra of V. The
orientation of V gives a decomposition & = ST & S~ which is is stable under
the action of the group Spin(V') C CI(V).

We consider the Spin(V)-equivariant vector bundles S := V x S* over V :
recall that the action of Spin(V) on the base V is through the twofold covering
7 : Spin(V) — SO(V).

The Clifford module § is provided with an Hermitian inner product such
that c(z)* = —c(z), for x € V. We work with the equivariant morphism
oy S‘J/r — S, defined by: for z € V,

oy (z) == —ic(z) : ST — S~

Then the odd linear map v, (z) : S — S is equal to —ic(z). We choose on Si
the trivial connections VT = V~ = d. Thus the super-connection A; := A+itv,
is

At = d —+ tC(SC)

The Lie algebra spin(V) of Spin(V) is identified with the Lie sub-algebra
A2V of CI(V) and the exponential map is the exponential inside the Clifford
algebra. The differential of the action of Spin(V) in Sis Y — ¢(Y). We denote
by Y € spin(V) — Y7 € s0(V) the differential of the homomorphism 7 (it is an
isomorphism). We need the function j%//Q :50(V) — R defined by

X/2 _ —X/2
P/2(X) = det /2 (76 ° ) .

X/2

Then ji/*(X) is invertible near X = 0 as ji/*(0) = 1.
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For Y € spin(V'), the moment u(Y) = L(Y) — [A¢, (VY] is equal to c(Y).
Hence the equivariant curvature of the super-connection A; is the function F; :
spin(V) — A(V,Endc(S)), given by

(60) Fy(Y) = —t*|z|® + ¢ duger + Y Yicrer.
k k<l
Here Y = >, Yuer Aep € spin(V) and c(Y) = >°,, Yucke : we have
denoted by ¢ the odd endomorphism of S produced by e, € V' C CI(V).
This formula is very similar to the form f; that we used to construct the
Thom form, see Subsection @ For Y € spin(V), we write

T 1 T
ft(Y> = —t2|‘x||2+t;dxkek+§kz<lykl er N\e;

—tQHl‘HQ +tZdl‘k€k + ZYM er N ej.
k k<l

In order to compute the relative Chern character of o we follow the strategy

of [][Section 7.7]. However, our convention for the Chern character Ch(A) =

Str(e*”) is different from the one of [{], which decided that Ch(A) = Str(e™*").
Thus we carefully check signs in our formulae.
We consider in parallel the closed equivariant forms on V'

Ch(A)(Y) = Str (eFt<Y>) . CLYT):=T (eff<Y’>) .Y € spin(V).

In the first case, the exponential is computed in the super-algebra End(S) ®
A(V) and in the second case, the exponential is computed in the super-algebra
AV) @ AV.

We also consider in parallel the equivariant forms

ne(Y) = —Str ((Zxkcwe“(”) L h(YT) :T<<Zxkek>eﬂ<w>>.
k

k

Proposition 6.1 Let Y € spin(V). We have
Ch(A)(Y) = (=20)" i/2(YT) CL(YT), nh(Y) = (=20)" i/ >(Y™) nh(Y™).

Proof.  The first identity is proved in [[f][Section 7.7] with other con-
ventions. For clarity we perform the computations. We fix Y € spin(V) ~
A%V and we take an oriented orthonormal base (e;) of V such that Y =

Y or_q Ake2k—1 A eoi. Hence j%//Q(YT) = HkSi’;\—:’“. For 1 < k < n, let

By = t(dzak—1Cor—1 + dxarcCar) + AkCak—1Cok
b = t(drag_1€2k_1 + draresr) + Apeak_1 A eap.
Since B;B; = B;B; and b;b; = b;b;, we have eFi(Y) = o=tll=|? I, eB* and

ft(Y7) = o=t lal® I, obr
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Lemma 6.2 We have
Sin A\, — A cos A\g
A%
sin /\k sin /\k
(A — t?dwop—1dzar)Cop—_1Co +
)\k )\k

in A(V,Endc(S)), and
e =1+ (\g — t?dwo_1dray)ear—1 A eap, + t(drog_1e25—1 + draesy)
in A(V)®@ AV.

Proof. The identity for e’ is obvious since (bx)* = 0 when i > 2. When \;, = 0
the identity for e®* can be proved directly since (dzar_1Cor_1 + draxcor)’ = 0
for i > 2. When Ay # 0 we can write

eBr = cos A\ +t%(

Ydzok—1dToK +

(dzok—1Ca—1 + dzarcCor)

Br = Mg (Cgk,1 + t/\lzldl'gk)(CQk — t/\lzldxgk,ﬁ — t2/\;1d$2k,1d1'2k.

If we let & = cop—1 + Ay 'droy and & = cop, — tA; 'dwog_1, then & = €3 = —1,
£1és + €261 = 0 and the & commute with dzai_1dxai. Thus, we see that

Br _ eAkflfze*tzz\gldrqudrzk

= (cos A\, +sin A& &) (1 — 2N, dao—1daar)

e

(cos Ak +sin A(cop—1 + A, dl‘gk)(CQk — t)\lzldxgk_l)) X
(1= 275 drap- 1oz ).
Since Str(cy - - €2,) = (—2i)™ and Str(c;, -+~ ¢;,) = 0 for | < 2n, Lemma f.9
gives that Ch(A:)(Y) = (—24)" ( e ) (Y7) where
CL(Y™) =e 1ol T (A, — 2dmop—_1 dwa).
We found also that n%(Y) = (—24)" (‘]%//QUR) (Y™) with

nh(Y7) = —te t Il ZH#k()\i — 1?dwa;—1dra; ) (Tardror—1 — Top—_1dTay).
e

The difference of the Chern character of the bundles S‘f with trivial connec-
tion d is Ch(S7)(Y) — Ch(S;7)(Y) = Ch(Ag)(Y). By the preceding calculation,
we obtain

Ch(Ao)(Y) = (=20)" §i/* (V) Pt (7).

To compute the relative Chern character of the morphism oy we need the

Spin(V')-equivariant form

Be(Y) = / T )dt

which is defined on V x {0}. By Proposition p.1], we obtain
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Lemma 6.3 The Spin(V)-equivariant form B.(Y) and BA(YT) = OOO nh (YT)dt
are related on V x {0} by

Be(Y) = (=201 > (YT)BA(YT), Y € spin(V).

We then obtain the following comparison between the Thom classes and the
Chern characters of the symbol oy .

Theorem 6.4 o We have the following equality in H>* (spin(V),V,V \ {0})
(61) Chye(0v)(Y) = (2im)" 3/ *(Y7) Thia (V)(Y7).

e We have the following equality in H (spin(V), V)
(62) Che(ov)(Y) = (2im)" /*(¥7) The(V)(Y7).

e We have the following equality in Hg,. ., (spin(V), V)
(63) Chg(ov)(Y) = (2im)" ji/*(Y7) Tha(Y").

6.2 The Bott class of a vector bundle

Let M be a manifold equipped with the action of a compact Lie group K. Let
p:V — M be an oriented K-vector bundle of even rank 2n over M.

6.2.1 The Spin case

We assume that V has a K-equivariant spin structure. Thus V is associated to
a K-equivariant principal bundle P — M with structure group G = Spin(V).
We denote by g the Lie algebra spin(V).

Let w be a K-invariant connection one form on P, with curvature form €.
For X € ¢, we denote by p(X) = —(VX)w € C*®(P)®g the moment of X. The
equivariant curvature form is Q(X) = Q+ u(X), X € €. For any G-manifold Z,
we consider the Chern-Weil homomorphisms

o7 A®(,2) — A™(t, 2)

where Z = P x5 Z.

Let Sy = P X S be the corresponding K-equivariant spinor bundle over
M. Let p*Spyr — V be the pull-back of Sy to V by the projection p: V — M.
We have p*Syr = P x5 Sy where Sy = V' x S is the trivial bundle over V.

Let VM be the connection on Sy — M induced by the connection form
w: VM := d + c(w) where c is the representation of Spin(V) on S.

Let x : V — p*V be the canonical section. We consider now the K-
equivariant morphism on V, oy : p*S]J\} — p*S,,, defined by

oy = —ic(x).
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We consider the family of super-connections on p*Sy; defined by A7V = p* VM +
te(x). In the previous section we worked with a family A; of super-connections
on the trivial bundle § x V' — V. Let Ch(oy, A, t) € A®(¢,V) and Ch(A;) €
A>(g,V) be the corresponding Chern forms. Let n(oy, A, t) € A>®(E V) and
n' € A*(g,V) be the corresponding transgression forms.

Lemma 6.5 We have the following equalities:
¢o (Ch(Ay)) = Ch(oyp,At) in A®(EV),

and
o (nt) =n(oy,At) in A®(EV\M).

Proof. See [[i], Section7.7.

Let VY be the connection on ¥ — M induced by the connection form w :
VY = d+ 7(w) where 7 : Spin(V) — SO(V) is the double cover. Let F¥Y(X) =
(VY —1(VX))?+ L(X), X €t be the equivariant curvature of VY.

Definition 6.6 We associate to the K -equivariant (real) vector bundle V — M
the closed K -equivariant form on M defined by

FY(X) _EFY(X)
2

PMHVYNX) = det V2 X et

FY(X) ’

We denote j'/2(V)(X) its cohomology class in H>®(&, M). It is an invertible
class near X = 0 and its inverse j*/2(V)(X) ™! is the equivariant A-genus of V.

It is easy to see that the image of the invariant polynomial Y +— j%//Q Y7
by the Chern-Weil homomorphism ¢,, is equal to j'/2(VY) (see [[], Section7.7).

We consider the sub-space A .. ...(€,V) C A®(E,V) of K-equivariant forms
on V which have a compact support in the fibers of p : V — M. Let Hg§ ., ¢ (£, V)
be the corresponding cohomology space. The Chern-Weil homomorphism ¢,, :
A>(g,V) — A®(¢,V) maps the sub-space A (g, V) into AR, (8 V).

Consider now the equivariant morphism oy on V. The support oy is equal
to M, hence its relative Chern Character Chye1(oy) belongs to H™ (¢, V, V\ M).

If we take the image of the equalities of Theorem @ by the Chern-Weil
homomorphism ¢, we obtain the following

Proposition 6.7 We have the equalities:

Chyel(oy) = (2im)"p* (j1/2<V)) Thia(V) in H®(,V,V\ M).

Chaver cpt(0v) = (2im)"p" (i/20))) Thaver cpt(V) i Hifer epa (8 V).

Chglov) = 2im)"p" (i'/2(V)) Thiq(V) it Hiierap(t,V):

93



6.2.2 The Spin® case

We assume here that the vector bundle p : ¥V — M has a K-equivariant Spin°®
structure. Thus V is associated to a K-equivariant principal bundle P¢ — M
with structure group G° := Spin®(V).

Let U(1) := {e"} be the circle group with Lie algebra of u(1) ~ R. The
group Spin®(V) is the quotient Spin(V) xz, U(1), where Zy acts by (—1,—1).
There are two canonical group homomorphisms

7 : Spin®(V) — SO(V) , Det: Spin®(V) — U(1)
such that 7¢ = (7, Det) : Spin®(V) — SO(V) x U(1) is a double covering map.

Definition 6.8 The K -equivariant line bundle Ly := P°® Xpey C over M is
called the determinant line bundle associated to the Spin® structure on V.

Let Vv be an invariant connection on Ly, adapted to an invariant Hermitian
metric. Let FXV(X), X € E be its equivariant curvature 2-form. Even if the
line bundle Ly, does not admit a square root, we define (formally) the Chern
character of the square root as follows.

Definition 6.9 The Chern character Ch(I[ql,/Q) € H™(¢, M) is defined by the
. . 1gly (X)
equivariant form ez .
Since the spinor representation extends to Spin®(V'), the Spin® structure on
V induces a K-equivariant spinor bundle S§; := P° Xge S on M. Like in the
Spin case, one considers the K-equivariant morphism o%, : p*SJC\jIr — p*Sy
defined by 0§, = —ic(x) where x : V — p*V is the canonical section.

Proposition 6.10 We have the equalities

Chra(o%) = (2im)"p* (72(V) Ch(Lyf?)) Thea(V) in H*(E,V,V\ M).

Chﬁber cpt (J\C}) = (2Z7T)np* (j1/2 (V) Ch(Lil}/2)) Thﬁber cpt (V) in Hfoi?)er cpt (Ev V)
Cho(09) = (2im)"p* (32(V) Ch(LY*)) Thu(V) in Hiierap(® V).

Proof. It is an easy matter to extend the proof of the Spin case. The Lie
algebra of spin®(V') of Spin®(V) is identified with spin(V) x R.

First one consider the the case of an oriented Euclidean vector space V
of dimension 2n equipped with Spin®(V')-equivariant vector bundles S‘C,’i =
V x 8* over V. Recall that the action of Spin®(V') on the base V is through
7¢ ¢ Spin®(V) — so(V). Here S©* are the spinor spaces ST but with the
(extended) action of Spin®(V).

Then we consider the Spin®(V')-equivariant morphism of, : S‘C/’Jr — Sy,
defined by o, = —ic(x). The Spin°(V)-equivariant curvature of the super-
connection A; = d + tc(x) is

(64) Fy(Y,0) = Fy(Y) +i0, (V,0) € spin(V),
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where F;(Y) is the Spin(V)-equivariant curvature compute in (0). Then we
get the easy extension of Proposition @

Lemma 6.11 We have the following equality in AS°(spin®(V), V)
(65) Che(0$)(Y,0) = (2im)" e 53/* (V") The(V)(Y7).

We come back to the situation of the K-equivariant vector bundle ¥V — M.
We consider a K-invariant connection one form w on the Spin®(V')-principal
bundle P¢ — M.

We prove Proposition @ after taking the image of @) by the Chern-Weil

homomorphism ¢,,. Note that ¢,,(¢?) = Ch(IL1/?) in H> (&, M).

6.2.3 The complex case

In this section we treat the special case where the Spin® structure comes from
a complex structure.

We assume that p : V — M is a K-equivariant complex vector bundle
equipped with compatible Hermitian inner product and connection VY. We
consider the super-vector bundle AcV — M, where AcV — M means that we
consider V as a complex vector bundle.

We consider now the K-equivariant morphism on V, O'g : p* (/\g V) —
p*(AcV), defined by

oy (v) = =i (uUv) —e(v)) on  AE V),

where ((v) and e(v) are respectively the contraction by v (¢(v)(w) = (v,w))
with respect to the Hermitian metric a nd the wedge product by v. Since
(1(v) — e(v))* = —||v]|?, we know that the support of 0 is the zero section of
V.

Let FY(X), X € € be the equivariant curvature of VV.

Definition 6.12 The equivariant Todd form of (V,VY) is defined by for X
small, by

Todd(VY)(X) := det ¢ (ﬁ%) .

We denote Todd(V) its cohomology class in H> (¢, M).

v
Remark that the inverse det ¢ (%

defined for any X € &.

) of the equivariant Todd form is

Proposition 6.13 We have the equalities:
Chyei(03) = (2im)"p" (Todd(V) ') Thyat(V) in H™(E,V,V\ M),

Chﬁber cpt (O—g)

Chg(oy)

(2,”r)np* (TOdd(V)il) Thﬁber cpt (V) iIl Hg%er cpt (Ev V)a
(2im)"p* (Todd(V) ") Thuq(V) i Hiterap(E, V).
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Proof. The complex structure on the bundle V induces canonically a Spin®
structure where the bundle of spinors is A¢V. The corresponding determinant
line bundle is Ly := AF**V. Then one has just to check that

J2(V) Ch(Iy/?) = Todd (V)
and we conclude with Proposition .

7 Appendix

We give proofs of the estimates used in this article. They are all based on
Volterra’s expansion formula: if R and S are elements in a finite dimensional
associative algebra, then

(66) e(B+5) — oR Z/ 1R Ges2R G ... GoskR skt R g ... ds
k=172

the volume of A, for the measure dsq - - - dsy, is %

Now, let A = ®7_,A; be a finite dimensional graded commutative algebra
with a norm ||- || such that ||ab|| < ||al|||b]]. We assume Ay = C and we denote by
Ap = @l A;. Thus w?™ =0 for any w € A;. Let V be a finite dimensional
Hermitian vector space. Then End(V) ® A is an algebra with a norm still
denoted by || - ||. If S € End(V), we denote also by S the element S ® 1 in
End(V) ® A.

where Ay is the simplex {s; > 0;s1 + s2 + -+ - + sk + sp+1 = 1}. We recall that

Remark 7.1 In the rest of this section we will denote cst(a,b, - --) some positive
constant which depends on the parameter a,b, .. ..

7.1 First estimates

We denote Herm(V') C End(V') the subspace formed by the Hermitian endo-
morphisms. When R € Herm(V'), we denote m(R) € R the smallest eigenvalue

of R : we have

o] e

Lemma 7.2 Let P(t) = >.1_, Z—k, Then, for any S € End(V)® A, T €
End(V)® Ay, and R € Herm(V'), we have
le=FHSHT || < emm @ el¥lp(||T)).

Proof. Let c=m(R). Then || e “®| = e "¢ for all u > 0. Using Volterra’s
expansion for the couple sR,sS, we obtain || e3(=F+5) || < e=5¢esI5Il | Indeed,
SRS = e=sR 4 572 | I with

I = sk/ e S Semo sl Gem ot gy . dy,.
Ay

o6



The term Ij, is bounded in norm by %HSer_SC. Summing in k, we obtain
” efs(R+S)

o(—R+8)+T

| < e sceslSll for s > 0. We reapply Volterra’s expansion to compute
as the sum

q
e B+S | Z/ S (—BHS) o esk (SRS p sk (ZRES) go g,
E>17 Bk

Here the sum in k is finite and stops at k = ¢. The norm of the k*" term is
bounded by % e~¢elSl||T||*. Summing up in k, we obtain our estimate.

For proving Proposition @, we need to consider the following situation.
Let E be a (finite dimensional) vector space. We consider the following smooth
maps

e z— S(z) from E to End(V) ® A.
o (t,x) — t?R(z) from R x E to Herm(V).
o (t,x) — T(t,x) = To(x) + tT1(z) from R x E to End(V) ® A;.

Proposition 7.3 Let D(9) be a constant coefficient differential operator in x €
E of degree r. Let K be a compact subset of E. There exists a constant cst > 0
(depending on K, R(x), S(x), To(x), T1(x) and D(9)) such that
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‘ S cst (1 + t)2r+q e—tzm(R(m))7

for all (z,t) € K x R=0.
Here the integer q is highest degree of the graded algebra A.

Corollary 7.4 Let U be an open subset of E such that R(x) is positive definite
for any x € U, that is m(R(x)) > 0 for all x € U. Then the integral

/Oo eftzR(z)JrS(ac)JrT(t,x) dt
0

defines a smooth map from U into End(V) @ A.

Proof. We fixabasisvi,...,v, of E. Let us denote J; the partial derivative
along the vector v;. For any sequence I := [iy,...,1i,] of integers iy, € {1,...,p},
we denote J; the differential operator of order n = |I| defined by the product
HZ:l Dy,

For any smooth function g : E — End(V) ® A we define the functions

Is

and the semi-norms ||g|xc » := sup,cx ||g||»(z) attached to a compact subset K
of E. We will use the trivial fact that ||g||,(z) < ||g]|lm(z) when n < m. Since

(z) := sup |10 - g(z)|
n |11<n
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any constant differential operator D(9) is a finite sum ), asds, it is enough to
proves (B7) for the d;.

First, we analyze Oy - (e’tZR(z)). The Volterra expansion formula gives

(68) ai . (e—tQR(z)) _ —t2/ e—sltZR(m) ai . R(.’L‘) e—SQtzR(m) dSl,
A

1

and then [|8; - e " B@) || < |R||y(z) (1 4 )% e~ ™E®) for (z,1) € E x RO,
With (@), one can easily prove by induction on the degree of J; that: if
|I| = n then

(69) Ha} . eftZR(z)

‘ < CSt(n) (1 + ||R||n($))n (1 + t)2n efth(R(z))

for (z,t) € E x RZ%. Note that (§9) is still true when I = ) with cst(0) = 1.

Now we look at 9y - (e*tzR(zHS(I)) for |I| = n. The Volterra expansion

formula gives e~t" R(@)+5(@) — o~t*R(x) 4. > e Zi(z) with
Z(z) = / o1 (PR §(5) o2 RE) §(g) ... §(a) o1 (RO dg, . dg
Ag

The term 0j - Zi(x) is equal to the sum, indexed by the partitions (we allow
some of the I; to be empty.) P := {I1,Is,..., [op41} of I, of the terms

(70) 24(P) (@) =

/ (811 'eisl(tZR(I))) (812 S(SC)) e (812k S(ZL')) (812k+1 'eisk+1(t2R(m))) dSl s dSk
Ay

which are, thanks to (@), smaller in norm than

wt (151, @) .
(1) est(P) (14| Bl g (2) " A (14 ) e (R,
The integer n}, ny, are respectively equal to the sums |[I;| + |I3] 4+ - - + [ Logy1],
|Io|+|1a|+- - -+|I2k|, and then nfs+np = n. The constant cst(P) is equal to the
products cst(|1|)cst(|13]) - - - est(|lary1]). Since the sum ) cst(P) is bounded
by a constant cst’(n), we find that

(72) Ha] .eftzR(I)JrS(I)

| < est/(n) (141 R@)) 112 e

for (x,t) € E x RZ%. Note that ([72) is still true when I = ) with cst’(0) = 1.
Finally we look at Oy - (e’tZR(IHS(””)JrT(t*””)) for |I| = n. The Volterra ex-

pansion formula gives e~ R@)+5@)+T(t2) — o~t*R(z)+S(@) 4 >or_y Wi(x) with

Wi() = / 1 (CER@TS@) Py 7). Tt 2) e+ (CPR@+S@) 4o - s
Ay
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Note that the term Wjy/(x) vanishes for k > ¢q. If we use ([2), we get for
(z,t) € E x R20 :

k
101 - W(@)l| < est”(n) (IToln(@) + I Taln(2))

n 2n+k
(1 + ||R||n(x)) % olISln(x) g—tm(R(x))

Finally we get for (z,t) € E x R=0 :

(73) HaI . e—t2R($)+S(LE)+T(t,LE) < CSt”(n) (1 " HRHn(x))nx

_ 2m xT
P(HTOHn(»’C) + HT1||n(:c)) elSlIn@) (1 4 p)2nta o=t m(R(@)

where P is the polynomial P(z) = ZZ:O i—?
So @) is proved with

est = est”(n) sup { (14 1Rl (@) P (ITolla(2) + |71 (@) oS-}

7.2 Second estimates

Consider now the case where E = W x £ : the variable z € E will be replaced
by (y,X) € W x £. We suppose that the maps R and T are constant
relatively to the parameter X € ¢.

Let £ = K’ x K be a compact subset of W x . Let D(9) be a constant
coefficient differential operator in (y, X) € W x ¢ of degree r : let ry be its
degree relatively to the variable y € W.

Proposition 7.5 There exists a constant cst > 0, depending on K, R(y), S(y, X),
To(y), Ti(y) and D(9), such that

(74) HD(@) . e_tQR(y)+S(y,X)+T(t,y)

‘ < st (14¢)>rwta e~ m(RW))

for all (y,X,t) € K' x K" x RZ°. Here q is the highest degree of the graded
algebra A.

Proof. We follow the proof of Proposition @ We have just to explain
why we can replace in (57) the factor (14 ¢)%" by (1 +)2"w.
We choose some basis v1,...,vr, of W and Xi,..., X, of €. Let us denote

d}, 07 the partial derivatives along the vector v; and X;. For any sequence

Ti={i1, ... in, JU{j1s s ing}
I(1) 1(2)
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of integers where iy, € {1,...,m1} and ji € {1,..., 72}, we denote J; the differ-
ential operator of order |I| = n; 4 ny defined by the product [[;_, 9} [, 95, .

We first notice that O Ce~ PR —  if I(2) # 0. Now we look at 9y -
(e_tzR(y)*‘S(y’X)) for I = I(1) UI(2). The term Z;(P) of (f() vanishes when
there exists a sub-sequence I541 with I511(2) # 0. In the other cases, the
integer ny = |I1|+|I3|+ - -+|l2pt1| appearing in (1) is smaller than |1(1)] = n4.
So theQinequalities (E) and (F3) hold with the factor (1 4 #)2 replaced by
(14 ¢)2m.

The preceding estimates hold if we work in the algebra End(£) ® A, where
€ is a super-vector space and A a super-commutative algebra.
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