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Balancing waveform relaxation for age-structured populations in a

multilayer environment

Luca Gerardo-Giorda∗

November 23, 2007

Abstract

In this paper we present a balancing domain decomposition method of Neumann-Neumann type for the

numerical approximation of an age-structured population diffusing in a multilayer environment. We give a

quasi optimal convergence result for the algorithm via Fourier analysis in a two-layers case, and we address

the variational generalization to an arbitrary number of layers as well as its finite dimensional formulation.

We illustrate our approach with some numerical results.

Keywords: Balancing domain decomposition, population dynamics, multilayer problems

1 Introduction

Over the last decades, in the field of population dynamics, a growing interest developed towards the modelisation
of ecological problems such as the migration of populations or the spread of some epidemical disease. Modeling
such problems involves several features of the population itself, and, in particular, empirical evidence suggests
that both the spatial diffusion of individuals and the internal heterogeneity of the population have to be
taken into account. In this direction, models for the diffusion of structured populations have been formulated
and analyzed, focusing mainly on the case of age-structured populations. Especially in the case of ecological
problems, attention must be paid to the spatial heterogeneities of the medium, whose peculiar characteristics
reflect into the diffusion coefficients. In that order multi-layer models have been developed in the recent years
(see [17] for biological motivations) and analyzed ([9, 4, 5]), mostly from the theoretical point of view.
The mathematical problem describing the spreading of an age-structured population in a bounded region Ω ∈
Rd (d = 1, 2, 3) consists in a reaction-diffusion equation for the population density, together with a given
initial condition, an integral condition at age a = 0, giving the newborns rate, and boundary conditions on
∂Ω depending on the specific features of the population and of the environment: an homogeneous Neumann
boundary condition is used to model Ω as an isolated environment, while an homogeneous Dirichlet boundary
condition models an hostile habitat at the boundary of Ω. For an almost complete review of the results
concerning existence, uniqueness and asymptotic behaviour of the solution of age-structured diffusion models,
we refer the interested reader to the book by A. Okubo and S.A. Levin ([13], Sec.10). In this paper we present
a balancing domain decomposition method of Neumann-Neumann type for the numerical approximation of an
age-structured population diffusing in a multilayer environment.
The paper is organized as follows. In section 2 we state the multilayer problem, while in section 3 the method is
introduced for a two-layers decomposition, and its convergence is analyzed at the continuous level by means of a
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Fourier analysis. In section 4 we first give the variational formulation of the method in order to make it possible
the generalization to an arbitrary number of layers, then we address the finite dimensional formulation of the
method for the multilayer problem. Finally, in section 5, some numerical results illustrating the performance of
the method conclude the paper.

2 Diffusion in a multilayer environment and domain decomposition

The spatial spread of an age-structured population in an isolated environment is commonly governed by a
partial differential equation, with zero-flux boundary condition for the spatial domain. The variables involved
are time, age and space, which will be denoted in the following by t, a and x, respectively, whereas the unknown
is the population density at time t per unit volume and age, that we denote by p(t, a, x). The spatial domain
is Ω ⊂ Rd (d = 1, 2, 3), and we assume the age of the population to be bounded, i.e. there exists a† > 0 such
that a ∈ [0, a†]. The total population at time t is then given by

P (t) =

∫

Ω

∫ a†

0

p(t, a, x) dadx.

The population density p(t, a, x) satisfies the following model problem.
Find p(t, a, x) ∈ C(0, T ;L1(0, a†;H

1(Ω))) such that

∂tp+ ∂ap+ µ(a) p− div (k(a, x)∇p) = g in (0, T ) × (0, a†) × Ω

p(0, a, x) = p0(a, x) in (0, a†) × Ω

p(t, 0, x) =

∫ a†

0

β(a)p(t, a, x) da in (0, T ) × Ω

n · (k(a, x)∇p) = 0 on (0, T ) × (0, a†) × ∂Ω.

(1)

Here n denotes the outward normal to ∂Ω, g is a suitable forcing term, β(a) is the age-specific fertility, and
µ(a) is the age-specific mortality, such that

∫ a†

0

µ(a) da = +∞. (2)

We refer to [14] and references therein for issues concerning existence and uniqueness for the solution of problem
(1). The probability of an individual to reach age a is called survival probability, and is defined as

Π(a) = exp

(
−
∫ a

0

µ(s) ds

)

Owing to (2), the survival probability at age a† vanishes, ensuring that no individual exceeds the maximal age.
One can then introduce a new variable

u(t, a, x) =
p(t, a, x)

Π(a)

and a maternity function m(a) = β(a)Π(a), so that u(t, a, x) satisfies an equation similar to (1), but whose
coefficients are no longer unbounded.
We consider here a population spreading in a stratified environment composed of N layers, with zero flux
boundary conditions. We refer the interested reader to [17] for issues concerning the motivations of such model.

We let Ω =
⋃N

j=1 Ωj , as portrayed in Figure 1, and we denote by Γj = ∂Ωj ∩ ∂Ωj+1 (j = 1, . . . , N − 1) the
interface between the j-th and the (j + 1)-th layer.
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We suppose that the age-specific fertility and the age-specific mortality depend only on the layer, while the
diffusion coefficients depend both on the age and on the layer. On the interface Γj one has to impose the
continuity of the trace and the normal flux, thus the equation in the j-th layer reads

∂tuj + ∂auj − div (kj(a, x)∇uj) = fj in (0, T ) × (0, a†) × Ωj

uj(0, a, x) = u0,j(a, x) in (0, a†) × Ωj

uj(t, 0, x) =

∫ a†

0

mj(a)uj(t, a, x) da in (0, T ) × Ωj

nj · (kj(a, x)∇uj) = 0 on (0, T ) × (0, a†) × (∂Ω ∩ ∂Ωj)

uj(t, a, x) = uj−1(t, a, x) on (0, T ) × (0, a†) × Γj−1

uj(t, a, x) = uj+1(t, a, x) on (0, T ) × (0, a†) × Γj

nj · (kj∇uj) = nj · (kj−1∇uj−1) on (0, T ) × (0, a†) × Γj−1

nj · (kj∇uj) = nj · (kj+1∇uj+1) on (0, T ) × (0, a†) × Γj

(3)

The fertility functions βj(a) are positive function of age: we assume it is measurable and essentially bounded,
namely there exists β+ > 0 such that

0 ≤ βj(a) < β+. (4)

Under this assumption mj(a) ∈ L∞(0, a†), and we assume that the diffusion coefficients are such that, for
all j = 1, . . . , N , kj(a, x) ∈ L∞((0, a†) × Ω) ,and 0 < k0 ≤ kj(a, x) ≤ k+. We refer to [4] for existence and
uniqueness of the solution of (3), and we point out that a non-overlapping domain decomposition procedure to
solve equation (3) is naturally induced by the physics of the problem.

Ω 2 Ω j Ω NΩ 1

Γ1 Γ2 Γj−1 Γ j ΓN−1

Figure 1: The multilayer domain Ω =
⋃N

j=1 Ωj

2.1 Time discretization

Classical approaches to the numerical solution of (3) integrate along the characteristics in age and time (see
for instance [7, 8, 12]). However, the presence of different time scales in the dynamics suggests the use of
different steps in the discretization of time and age (see [1, 3]). Let us consider a discretization of the interval
(0, T ) into Nt subintervals of lenght ∆t = T/Nt (for simplicity we consider a uniform discretization). For
equation (3) we advance in time by means of a backward Euler scheme, where the initial condition in age is
computed at the previous time step. At each time step, we solve the coupled parabolic problem in age and space:
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Given u0
j (a, x) = u0,j(a, x), find, for n ≥ 1, un

j ∈ L1(0, a†;H
1(Ω)) (j = 1, . . . , N) such that

∂au
n
j − div

(
kj(a, x)∇un

j

)
+ 1

∆tu
n
j = fj + 1

∆tu
n−1
j in (0, a†) × Ωj

un
j (0, x) =

∫ a†

0

mj(a)u
n−1
j (a, x) da in Ωj

nj · (kj(a, x)∇uj) = 0 on (0, a†) × (∂Ω ∩ ∂Ωj)

un
j (a, x) = un

j−1(a, x) on (0, a†) × Γj−1

un
j (a, x) = un

j+1(a, x) on (0, a†) × Γj

nj · (kj∇un
j ) = nj · (kj−1∇un

j−1) on (0, a†) × Γj−1

nj · (kj∇un
j ) = nj · (kj+1∇un

j+1) on (0, a†) × Γj .

(5)

3 A Balancing Neumann-Neumann waveform relaxation method

In each time slab (tn−1, tn), the interface continuities of problem (5) are enforced by means of a waveform
relaxation algorithm of Neumann-Neumann type. Since the diffusion coefficients a priori differ from one layer
to the other, the natural choice is to extend to such situation the Balancing Neumann-Neumann method designed
for pure elliptic problems ([10]).
For sake of simplicity in presentation, we give here the two-domain formulation of the algorithm. We set
Ω = Ω1 ∪ Ω2, we denote the interface between the two subdomains by Γ = ∂Ω1 ∩ ∂Ω2, and the space of traces
on Γ of functions in H1(Ω) by Λ = H1/2(Γ). The algorithm reads as follows.

Step 1: At each time step, given an initial value λn,0 ∈ L1((0, a†); Λ), solve:





∂au
n,l+1
j − div

(
kj(a, x)∇un,l+1

j

)
+

1

∆t
un,l+1

j = fj +
1

∆t
un−1

j in Ωj

un,l+1
j = λn,l on (0, a†) × Γ

un,l+1
j (0, x) = un

j (0, x)

(6)

Step 2: Solve





∂aψ
n,l+1
j − div

(
kj(a, x)∇ψn,l+1

j

)
+

1

∆t
ψn,l+1

j = 0 in Ωj

kjnj · ∇ψn,l+1
j =

kj

k1 + k2

(
k1 n1 · ∇un,l+1

1 + k2 n2 · ∇un,l+1
2

)
on (0, a†) × Γ

ψn,l+1
j (0, x) = 0

(7)

Step 3: Set

λl+1 = λn,l − ϑ

(
k1

k1 + k2
ψn,l+1

1 − k2

k1 + k2
ψn,l+1

2

)
∣∣(0,a†)×Γ

(8)

and iterate until convergence.
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3.1 Convergence analysis

Since the problem in the time slab (tn−1, tn) is linear, it is enough to prove convergence to the zero solution
of the homogeneous problem. For sake of readability, we drop, in the rest of this section, any index referring
to time discretisation, and we set γ = 1

∆t . We prove convergence, via a Fourier analysis, in the case of an
infinite spatial domain Ω = R2, decomposed into Ω1 = R−×R and Ω2 = R+ ×R. We assume that the diffusion
coefficients are constant in each subdomain, and we assume that the solutions uj(a, x, y) (j = 1, 2) decay at
x→ ±∞. The local problems are then set in (0, a†) × Ω1 and (0, a†) × Ω2:

∂auj − div (kj∇uj) + γ uj = 0 in (0, a†) × Ωj

uj(0, x, y) = 0 in Ωj

u1(a, 0, y) = u2(a, 0, y) on (0, a†) × R

n1 · (k1∇u1) = n2 · (k2∇u2) on (0, a†) × R

(9)

We are in the position to prove the following result.

Proposition 3.1 In the case where the plane R2 is decomposed into the left and the right half-planes, and the
diffusion coefficients are constant upon each subdomain, the waveform relaxation algorithm defined in (6)-(8)
applied to (9) converges, provided

0 < ϑ ≤ ϑ∗ = 2
(1 + η2)(1 + η)2

(1 + η2)2 + (1 + η)2
, (10)

where η ∈ (0, 1) is the ratio between the diffusion coefficients.

Proof We prove the result via Fourier analysis. We assume that all functions are extended by 0 for a < 0 and
for a > a†, we perform a partial Fourier transform in the a and y variable, that we denote with F , and we call
ω and ξ, respectively, the corresponding dual variables. The transform F is defined as

F : u(a, x, y) → û(ω, x, ξ) =

∫

R

u(a, x, y)e−i(ωa+ξy) dady,

and, inside each subdomain, we seek for the solution of

(
−kj ∂xx + kj ξ

2 − iω + γ
)
ûj(ω, x, ξ) = 0.

The solutions ûl+1
1 (ω, x, ξ) and ûl+1

2 (ω, x, ξ) of (6) are given by

ûl+1
1 (ω, x, ξ) = λ̂l(ω, ξ)e

r

k1ξ2+γ−iω

k1
x

ûl+1
2 (ω, x, ξ) = λ̂l(ω, ξ)e

−

r

k2ξ2+γ−iω

k2
x
, (11)

where λ̂l(ω, ξ) denotes the Fourier transform of λl(a, y). Denoting by gl+1 the interface value gl+1 = k1n1 ·
∇ul+1

1 + k2n2 · ∇ul+1
2 , the solutions ψ̂l+1

1 (ω, x, ξ) and ψ̂l+1
2 (ω, x, ξ) of (7) are given by

ψ̂1(ω, x, ξ)
l+1 = gl+1 1√

k1

√
k1ξ2 + γ − iω

e

r

k1ξ2+γ−iω

k1
x

ψ̂2(ω, x, ξ)
l+1 = gl+1 1√

k2

√
k2ξ2 + γ − iω

e
−

r

k1ξ2+γ−iω

k1
x
.

(12)
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Thus we have in (8):

k1

k1 + k2
ψ̂1(ω, 0, ξ)

l+1 +
k2

k1 + k2
ψ̂2(ω, 0, ξ)

l+1 =

=

([
k1

k1 + k2

]2
1√

k1

√
k1ξ2 + γ − iω

+

[
k2

k1 + k2

]2
1√

k2

√
k2ξ2 + γ − iω

)
gl+1.

(13)

Owing to (11),

gl+1 = k1n1 · ∇ul+1
1 +k2n2 · ∇ul+1

2 =

=
(√

k1

√
k1ξ2 + γ − iω +

√
k2

√
k2ξ2 + γ − iω

)
λ̂l(ω, ξ),

(14)

and, letting N1 =
[

k1

k1+k2

]2
, N2 =

[
k2

k1+k2

]2
, the iterative mapping reads

λ̂l+1(ω, ξ) = A(ω, ξ, ϑ) λ̂l(ω, ξ)

where
A(ω, ξ, ϑ) =

= 1 − ϑ

{
N1

(
1 +

√
k2
2ξ

2 + k2γ − ik2ω√
k2
1ξ

2 + k1γ − ik1ω

)
+N2

(
1 +

√
k2
1ξ

2 + k1γ − ik1ω√
k2
2ξ

2 + k2γ − ik2ω

)}
.

With no loss of generality, we assume k1 ≤ k2, and we let z(ω, ξ) =
√

k2
2ξ2+k2γ−ik2ω

k2
1ξ2+k1γ−ik1ω

. It is then easy to see that,

for any (ω, ξ) ∈ R2,

1 < |z(ω, ξ)| =

[
(k2

2ξ
2 + k2γ)

2 + (k2ω)2

(k2
1ξ

2 + k1γ)2 + (k1ω)2

]1/4

≤ k2

k1
, (15)

and the waveform relaxation algorithm is convergent if

|A(ω, ξ, ϑ)| =
∣∣∣1 − ϑ

[
N1

(
1 + z(ω, ξ)

)
+N2

(
1 + [z(ω, ξ)]

−1
)]∣∣∣ < 1. (16)

We have, as [z(ω, ξ)]
−1

= |z(ω, ξ)|−2z̄(ω, ξ),

Re A(z(ω, ξ), ϑ) = 1 − ϑ(N1 +N2) − ϑ

(
N1 +

N2

|z(ω, ξ)|2
)

Re z(ω, ξ)

Im A(z(ω, ξ), ϑ) = −ϑ
(
N1 −

N2

|z(ω, ξ)|2
)

Im z(ω, ξ).

(17)

6



Since Re z(ω, ξ) > 0, and 1 − ϑ(N1 +N2) > 0, we can estimate |A(z(ω, ξ), ϑ)|2 by

|A(z(ω, ξ), ϑ)|2 ≤ [1 − ϑ(N1 +N2)]
2

+ ϑ2

[
N2

1 +
N2

2

|z(ω, ξ)|4
]
|z(ω, ξ)|2

+ 2ϑ2 N1N2

|z(ω, ξ)|2
[
(Re z(ω, ξ))

2 − (Im z(ω, ξ))
2
]

= [1 − ϑ(N1 +N2)]
2

+ ϑ2

[
N2

1 +
N2

2

|z(ω, ξ)|4
]
|z(ω, ξ)|2

+ 2ϑ2 N1N2

|z(ω, ξ)|2 Re [z(ω, ξ)]
2

≤ [1 − ϑ(N1 +N2)]
2

+ ϑ2

[
N2

1 |z(ω, ξ)|2 +
N2

2

|z(ω, ξ)|2 + 2N1N2

]

= [1 − ϑ(N1 +N2)]
2

+ ϑ2

[
N1 |z(ω, ξ)| +

N2

|z(ω, ξ)|

]2
.

Owing to (15), and setting η := k1

k2
, a simple algebraic manipulation provides

|A(z(ω, ξ), ϑ)|2 ≤
[
1 − ϑ

1 + η2

(1 + η)2

]2
+

[
ϑ

1 + η

(1 + η)2

]2

= 1 − 2
1 + η2

(1 + η)2
ϑ+

(1 + η2)2 + (1 + η)2

(1 + η)4
ϑ2 = Φ(η, ϑ).

(18)

The function Φ(η, ϑ) is strictly positive. As the level set Φ(η, ϑ) = 1 consists in the functions ϑ = 0 and

ϑ = 2 (1+η2)(1+η)2

(1+η2)2+(1+η)2 , and, for any fixed η̄ ∈ (0, 1), Φ(η̄, ϑ) is a convex function of ϑ, the convergence condition

(16) is satisfied whenever (see Figure 2)

0 < ϑ < 2
(1 + η2)(1 + η)2

(1 + η2)2 + (1 + η)2
.

�

Remark 3.1 The waveform relaxation procedure (6)-(8) points at solving the interface equation

SuΓ = χ on (0, a†) × Γ

where uΓ ∈ L1(0, a†;H
1/2
00 (Γ)) is the restriction of the exact solution to (0, a†)×Γ, and where S : L1(0, a†;H

1/2
00 (Γ)) →

L1(0, a†;H
−1/2(Γ)) is the Steklov-Poincaré operator, whose action can be expressed in terms of its Fourier trans-

form in the a and y directions as

SuΓ = F−1
(

[Σ1(ω, ξ) + Σ2(ω, ξ)] ûΓ(ω, ξ)
)

uΓ ∈ L1(0, a†;H
1/2
00 (Γ)),
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Figure 2: Contour levels of the function Φ(η, ϑ).

Σ1(ω, ξ) and Σ2(ω, ξ) denoting the symbols of the local Steklov-Poincaré operators in (0, a†)×Ω1 and (0, a†)×Ω2,
respectively. The waveform relaxation procedure (6)-(8) amounts to solve the Richardson iterative procedure
preconditioned by means of the operator T : L1(0, a†;H

−1/2(Γ)) → L1(0, a†;H
1/2(Γ)), defined as

T g = F−1

([
k1

k1 + k2
[Σ1(ω, ξ)]

−1 k1

k1 + k2
+

k2

k1 + k2
[Σ2(ω, ξ)]

−1 k2

k1 + k2

]
g

)

for all g ∈ L1(0, a†;H
−1/2(Γ)). �

An immediate consequence of the preceeding argument is given by the following proposition.

Proposition 3.2 In the case where the plane R2 is decomposed into the left and the right half-planes, and the
coefficients are constant upon each subdomain and equal, the waveform relaxation Neumann-Neumann algorithm
(6)-(8) is an exact preconditioner for the Steklov-Poincaré operator.

Proof Let uΓ ∈ L1(0, a†;H
1/2
00 (Γ)) be the restriction of the exact solution to the interface (0, a†) × Γ, and

let k = k1 = k2. From the above argument, the Steklov-Poincaré operator can be split as S = S1 + S2, and the
action of S1 and S2 can be expressed in terms of their Fourier transform in the a and y directions.
The symbols of the two operators are

Σ1(ω, ξ) = Σ2(ω, ξ) =
√
k2ξ2 + kγ − ikω,

thus
F (S(uΓ)) = Σ1(ω, ξ) ûΓ(ω, ξ) + Σ2(ω, ξ) ûΓ(ω, ξ) = 2

√
k2ξ2 + kγ − ikω ûΓ(ω, ξ).

In a similar way, it can be seen that the symbol of the Neumann to Dirichlet operator is given by

F (T (g)) =

[
1

4

1√
k2ξ2 + kγ − ikω

+
1

4

1√
k2ξ2 + kγ − ikω

]
ĝ(ω, ξ).
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Then, we have

F ([T ◦ S]uΓ) =
1

2

1√
k2ξ2 + kγ − ikω

(
2
√
k2ξ2 + kγ − ikω ûΓ(ω, ξ)

)
= ûΓ(ω, ξ),

namely T ◦ S = Id, and the preconditioner is exact. �

4 Variational formulation and finite dimensional approximation

In this section we go back to the multilayer formulation (5). First, we give a variational formulation of the
single layer problem. Since, for all n ≥ 0, the solution un ∈ L1(0, a†;H

1(Ω)), we choose as test functions any
v ∈ H1(Ω), and we integrate (5) over the spatial domain Ω. The problem can then be recast as follows.

Given u0 ∈ L1(0, a†;Vh), for all n = 1, . . . , Nt, find un ∈ L1(0, a†;H
1(Ω)) such that






d

da
〈un, v〉 +A(a;un, v) = (fn, v) ∀v ∈ H1(Ω)

un(0, x) =

∫ a†

0

m(a)un−1(a, x) da,

(19)

where, for sake of readability, we set with a little abuse of notations fn = f(tn) + 1
∆tu

n−1, where 〈· , ·〉 is the
duality pairing between H1(Ω) and H−1(Ω), (· , ·) is the inner product in L2(Ω), and the bilinear form A(a;u, v)
is given by

A(a;ψ,ϕ) =

∫

Ω

k(a, x)∇ψ · ∇ϕdx+
1

∆t
(ψ,ϕ) ∀ψ,ϕ ∈ H1(Ω).

The boundedness hypoteses on the coefficients of the problem entail continuity and coerciveness for the bilinear
form A(a; ·, ·), and problem (19) has a unique solution un ∈ L2(0, a†;H

1(Ω)) ∩ L∞(0, a†;L
2(Ω)) (see [11]).

We define the global interface as Γ =
⋃N−1

j=1 Γj . We denote by Vj = H1(Ωj) the restrictions of H1(Ω) to Ωj ,

by Λj = L1(0, a†;H
1/2(Γj)) the space of traces upon Γj of functions of L1(0, a†;H

1(Ω)), and by Λ = ⊕N−1
j=1 Λj

the global trace space, endowed with the norm ‖λ‖Λ = supj=1,...,N−1 ‖λj‖Λj
. At each time step, the coupled

problem reads as follows:

Find un
j ∈ L1(0, a†;H

1(Ωj)) (j = 1, . . . , N) such that






d

da
< un

j , vj > +Aj(a;u
n
j , vj) = (fn

j , vj) ∀vj ∈ Vj

un
j = un

j−1 (j = 2, . . . , N) on (0, a†) × Γj−1

un
j = un

j+1 (j = 1, . . . , N − 1) on (0, a†) × Γj

d

da
< un

j+1, Rj+1µ > +Aj+1(a;u
n
j+1, Rj+1µ) = ∀µ ∈ Λj

= (fn, Rj+1µ) + (fn, Rjµ) − d

da
< un

j , Rjµ > −Aj(a;u
n
j , Rjµ),

d

da
< un

j , Rjµ > +Aj(a;u
n
j , Rjµ) = (fn, Rjµ) ∀µ ∈ Λj−1

+(fn, Rj−1µ) − d

da
< un

j−1, Rj−1µ > −Aj−1(a;u
n
j−1, Rj−1µ),

(20)
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where Aj(a; ·, ·) denotes the restriction of the bilinear form A(a; ·, ·) to Ωj , whereas Rjµ denotes any possible
extension of µ to Ωj (j = 1, . . . , N).
The Balancing Neumann-Neumann waveform relaxation reads then, at each time step:

Step 1: Given an initial value λ0 ∈ Λ, solve, for j = 1, . . . , N :






d

da
< un,l+1

j , vj > +Aj(a;u
n,l+1
j , vj) = (fn

j , vj) ∀vj ∈ Vj

un,l+1
j = λn,l

j (j = 1, . . . , N − 1) on (0, a†) × Γj

un,l+1
j = λn,l

j−1 (j = 2, . . . , N) on (0, a†) × Γj−1

un,l+1
j (0, x) = u0

j (x)

(21)

Step 2: Solve, for j = 1, . . . , N :






d

da
< ψn,l+1

j , vj > +Aj(a;ψ
n,l+1
j , vj) = 0 ∀vj ∈ Vj

d

da
< ψn,l+1

j , Rjµ > +Aj(a;ψ
n,l+1
j , Rjµ) = ∀µ ∈ Λj

=
d

da
< un,l+1

j , Rjµ > +
d

da
< un,l+1

j+1 , Rj+1µ > (j = 1, . . . , N − 1)

+Aj(a;u
n,l+1
j , Rjµ) +Aj+1(a;u

n,l+1
j+1 , Rj+1µ) − (fn, Rj+1µ) − (fn, Rjµ)

d

da
< ψn,l+1

j , Rjµ > +Aj(a;ψ
n,l+1
j , Rjµ) = ∀µ ∈ Λj−1

= − d

da
< un,l+1

j−1 , Rj−1µ > − d

da
< un,l+1

j , Rjµ > (j = 2, . . . , N)

−Aj−1(a;u
n,l+1
j−1 , Rj−1µ) −Aj(a;u

n,l+1
j , Rjµ) + (fn, Rjµ) + (fn, Rj−1µ)

ψn,l+1
j (0, x) = 0.

(22)

Step 3: Set, for j = 1, . . . , N

λn,l+1
j = λn,l

j − ϑ

(
kj

kj + kj+1
ψn,l+1

j − kj+1

kj + kj+1
ψn,l+1

j+1

)

|(0,a†)×Γj

(23)

and iterate until convergence.

4.1 Finite dimensional approximation of the single layer problem

We discretize equations (21)-(23) in space by a Galerkin method based on finite elements, and in age by
finite differences. The initial condition is computed by a suitable quadrature rule. We outline the procedure
for the single layer problem (19). Let then Th be a triangulation of Ω, namely Ω =

⋃N
j=1Kj , where each

Kj = TKj
(E) ∈ Th, E being the reference element, a simplex (namely the triangle with vertices (0, 0), (1, 0),

and (0, 1) when d = 2 or the thetrahedron with vertices (0, 0, 0), (1, 0, 0), (0, 1, 0), and (0, 0, 1) when d = 3), or
the unit cube [0, 1]d, and where TKj

is an invertible affine map. We define h as the maximum diameter of the
elements of the triangulation. The associated finite element spaces Xh and Yh (see e.g. [15] for an introduction
to finite element methods) are defined as

Xh =
{
vh ∈ C0(Ω) | vh|Kj

◦ TKj
∈ P1(E)

}
, Yh =

{
vh ∈ C0(Ω) | vh|Kj

◦ TKj
∈ Q1(E)

}
,

where P1(E) is the space of polynomials of degree at most one on E, whereas Q1(E) is the space of polynomials
of degree at most one with respect to each variable on E. We denote by {ϕj | j = 1, . . . , Nh} the usual nodal
basis of the finite element space.
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A semi-discrete problem in space is obtained by applying a Galerkin procedure and choosing the finite dimen-
sional space Vh = Xh, or Vh = Yh, and a fully discrete approximation results from a backward Euler scheme
in age. We let am = m∆a (m = 0, 1, . . . , Na) be a partition of the age interval [0, a†] into Na subintervals of
amplitude ∆a = a†/Na, and we denote by un,m

h the fully discrete approximation of u(tn, am, x). The numerical
scheme for the single layer problem reads as follows.

Given u0
h, for n = 1, . . . , Nt:






un,0
h =

Na∑

m=1

∆a
[
m(am)un−1,m

h

]

for m = 1, . . . , Na, find un,m
h ∈ Vh such that

∆t

∆a
(un,m

h − un,m−1
h , vh) + ∆t A(am;un,m

h , vh) = (un−1,m
h , vh) ∀vh ∈ Vh

(24)

Denoting by Un
h = (un,0

h , un,1
h , . . . , un,Na

h ) the approximate solution at time t = tn, we define the discrete
L1(0, a†;L

2(Ω)) norm as

‖Un
h ‖L1(0,a†;L2(Ω)) =

Na∑

m=0

∆a ‖un,m
h ‖

0
,

where ‖ · ‖0 is the standard L2(Ω) norm. Under some mild assumption on the exact solution, the following
stability and convergence results for the scheme (24) hold (for proof we refer to [3]).

Proposition 4.1 ((Stability)) For any n = 1, . . . , Nt, the following estimate holds:

‖Un
h ‖L1(0,a†;L2(Ω)) ≤

(
1 + ea†β2

+T
) ∥∥U0

h

∥∥
L1(0,a†;L2(Ω))

.

where β+ is the one in (4). �

Proposition 4.2 ((Convergence)) Let Th be a regular family of triangulations on Ω. Assume that the solu-

tion u of the continuous problem is such that, for all t ∈ (0, T ),
∂u

∂a
(t, ·, ·), ∂u

∂t
(t, ·, ·) ∈ L1(0, a†;H

1(Ω)), and

∂2u

∂a2
(t, ·, ·), ∂

2u

∂t2
∈ L1(0, a†;L

2(Ω)). Then, using linear finite elements, the following estimate holds

‖u(tn, ·, ·) − Un
h ‖L1(0,a†;L2(Ω)) ≤

∥∥U0
h − Πhu0

∥∥
L1(0,a†;L2(Ω))

+ Ch ‖u(tn, ·, ·)‖L1(0,a†;H1(Ω))

+ Ch

n∑

p=0

∆t

∥∥∥∥
∂u

∂a
(tp, ·, ·)

∥∥∥∥
L1(0,a†;H1(Ω))

+ Ch

∫ tn

0

∥∥∥∥
∂u

∂t
(t, ·, ·)

∥∥∥∥
L1(0,a†;H1(Ω))

dt

+ C∆t

∫ tn

0

∥∥∥∥
∂2u

∂t2
(t, ·, ·)

∥∥∥∥
L1(0,a†;L2(Ω))

dt+ C∆a

n∑

p=0

∆t

∥∥∥∥
∂2u

∂a2
(tp, ·, ·)

∥∥∥∥
L1(0,a†;L2(Ω))

(25)

where the constant C > 0 is independent of h, ∆a, and ∆t. �

4.2 Finite dimensional approximation of the multi-layer problem

We focus on the time slab (tn−1, tn). The matrix associated to problems (21)-(22), at age am, is given in Ωj by

Aj(a
m) = ∆t∆aSj(am) + (∆t+ ∆a)M j ,
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where Sj(am) and M j are the local stiffness and mass matrices, respectively, defined as

Sj
pq(a

m) =

∫

Ωj

k(am)∇ϕq∇ϕp dx M j
pq =

∫

Ωj

ϕpϕq dx.

If we decompose the local degrees of freedom in internal and interface degrees of freedom, the matrix Aj(a
m)

can be decomposed into

Aj(a
m) =

[
A0

j (a
m) Bj(a

m)

B̃T
j (am) Āj(a

m)

]
,

where A0
j is the block corresponding to the interaction between internal points, Āj is the block corresponding

to the interaction between interface points, whereas Bj and B̃T
j are the ones corresponding to the interaction

between internal and interface points. As the spatial domain is decomposed into strips, after a suitable reordering

of the unknowns, the solution at age am is un,m =
(
u

n,m
1 ,λn,m

1 ,un,m
2 , . . . ,un,m

N−1,λ
n,m
N−1,u

n,m
N

)T
, while the forcing

term is fn,m =
(
fm

1 ,f
m
Γ1
,fm

2 , . . . ,f
m
N−1,f

m
ΓN−1

,fm
N

)T

, where we have denoted by um
j and fm

j = ∆tM ju
n,m−1
j +

∆aM ju
n−1,m
j the restrictions of the solution and the forcing term to Ωj , and by λn,m

j and fm
Γj

the trace on
the interface Γj of the solution and the forcing term at age am, respectively. The coupled problem at age am is
then given by

A(am)un,m = fn,m,

where

A(am) =





Am
11 Am

1Γ1

Am
Γ11

Am
Γ1Γ1

Am
2Γ1

Am
Γ12

Am
22 Am

2Γ2

. . .
. . .

. . .

Am
ΓN−2N−1 AN−1N−1 Am

N−1ΓN−1

Am
ΓN−1N−1 Am

ΓN−1ΓN−1
Am

NΓN−1

Am
ΓN−1N Am

NN





,

where we have set Am
ij = Aij(a

m). By splitting the interface matrices

AΓjΓj
(am) = A

(j)
ΓjΓj

(am) +A
(j+1)
ΓjΓj

(am),

where A
(i)
ΓjΓj

(am) is the contribution to AΓjΓj
(am) coming from the domain Ωi (i = j, j + 1), the matrices

associated to the restriction of the bilinear form Aj(a
m; ·, ·) to domain Ωj at age am, corresponding to the

discretization of the local Neumann problems, are given by

Am
j =




A

(j),m
Γj−1Γj−1

Am
jΓj−1

0

Am
Γj−1j Am

jj Am
jΓj

0 Am
Γjj A

(j),m
ΓjΓj



 ,

for j = 2, . . . , N , and

Am
1 =

[
Am

11 Am
1Γ1

Am
Γ11

A
(1),m
Γ1Γ1

]
Am

N =

[
A

(N),m
ΓN−1ΓN−1

ANΓN−1

AΓN−1N ANN

]
.
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Aside, the matrices associated to the local Dirichlet problem are

Dm
j =




IdΓj−1 0 0
Am

Γj−1j Am
jj Am

jΓj

0 0 IdΓj



 ,

for j = 2, . . . , N , and

Dm
1 =

[
Am

11 Am
1Γ1

0 IdΓ1

]
Dm

N =

[
IdΓN−1

0
ANΓN−1

ANN

]
.

We drop hereafter any index referring to time discretization, in order to improve readability. The discrete
waveform relaxation algorithm then reads, inside each time step, as follows.

Given λ0 = (λ1,0, . . . ,λNa,0) ∈ ΛNa , for k ≥ 1

• Solve, for m = 1, . . . , Na:






Am
11u

m,l+1
1 = fm

1 −Am
1Γ1
λ

m,l
1

Am
jju

m,l+1
j = fm

j −Am
jΓj
λ

m,l
j−1 −Am

Γj−1jλ
m,l
j j = 2, . . . , N

Am
NNu

m,l+1
N = fm

N −ANΓN−1
λ

m,l
N−1

• Solve, for m = 1, . . . , Na:




Am

11 Am
1Γ1

Am
Γ11

A
(1),m
Γ1Γ1








ψ

m,l+1
1

µ
m,l+1
1,1



 =

=




0

fm
Γ1 +Am

Γ11
u

m,l+1
1 +A

(1),m
Γ1Γ1

λ
m,l
1 +Am

2Γ1
u

m,l+1
2 +A

(2),m
Γ1Γ1

λ
m,l
1



 ,





A
(j),m
Γj−1Γj−1

Am
jΓj−1

0

Am
Γj−1j Am

jj Am
jΓj

0 Am
Γjj A

(j),m
ΓjΓj









µ
m,l+1
j,j−1

ψ
m,l+1
j

µ
m,l+1
j,j




=

=





fm
Γj−1

−Am
Γj−1ju

m,l+1
j−1 −A

(j−1),m
Γj−1Γj−1

λ
m,l
j−1 −Am

jΓj
u

m,l+1
j −A

(j),m
ΓjΓj

λ
m,l
j

0

fm
Γj

+Am
Γjju

m,l+1
j +A

(j),m
ΓjΓj

λ
m,l
j +Am

jΓj
u

m,l+1
j+1 +A

(j+1),m
ΓjΓj

λ
m,l
j+1




,
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


A

(N),m
ΓN−1ΓN−1

ANΓN−1

AΓN−1N ANN








µ

m,l+1
N,N−1

ψ
m,l+1
N



 =

=




fm

ΓN−1
+Am

ΓN−1Nu
m,l+1
N−1 −A

(N−1),m
Γ1Γ1

λ
m,l
N−1 −Am

NΓN−1
u

m,l+1
N −A

(N),m
Γ1Γ1

λ
m,l
N−1

0



 .

• Set, for m = 1, . . . , Na:

λ
m,l+1
j = λ

m,l
j − θ

[
kj

kj + kj+1
ψ

m,l+1
j +

kj+1

kj + kj+1
ψ

m,l+1
j+1

]
, j = 1, . . . , N − 1,

and iterate until convergence.

5 Numerical Results

In this section we provide some numerical tests to show the effectiveness of the method. We consider diffusion
coefficients that are uniform in age and heterogeneous in space, with the ratio δk = k1/k2 up to 104. The
numerical simulations are run on Matlab R© 6.5.
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Figure 3: Maternity function (left) and initial age-space profile (right) for the numerical tests

5.1 A two-domains problem

In this first series of tests we consider a population spreading in a one dimensional environment constituted of
two layers. We solve problem (20) on the domain Ω = [0, 1], and we assume a† = 100 as maximal age. We
choose ∆a = 2, as well as ∆t = 1. We let Ω = Ω1∪Ω2, with Ω1 = (0, α), Ω2 = (α, 1), and we discretize problem
(20) in space via P1 finite elements. We use an uniform mesh in space, with h1 = h2 = 1/100, and, at each
time level, we use in (24) a Simpson quadrature rule over two adjacent subdomains to compute the intial value
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δk T = 1 T = 3 T = 6 T = 9 T = 12 T = 15 T = 20

1 13 11 11 10 10 10 10
10 17 15 14 14 14 14 13
102 23 20 20 20 19 19 19
103 26 23 23 23 22 22 22
104 32 27 27 26 26 25 25

Table 1: Two subdomains, α = 0.5: iteration counts per time step, ‖λk+1 − λk‖Λ/‖λk‖Λ < 10−6.

for the parabolic (in age and space) problem. We consider a non-symmetric initial distribution of population
(with respect to both space and age) given by

u0(x, a) = e
−

„

(a−30)2

200 +100(x−0.4)2
«

,

and we take the mortality and fertility function as

µ(a) =
1

a† − a
, β(a) =






0 if a ≤ a1

β(a− a1)
α−1e−

(a−a1)
ϑ

ϑαΓ(α)
if a1 < a < a2

0 if a ≥ a2,

where we set a1 = 17, a2 = 70, β = 7, α = 5, and ϑ = 3.
We plot in Figure 3 the resulting maternity function and the initial profile of the problem.
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Figure 4: Time evolution of the profile at age a = 20 (left), and age-space profile at time T = 5 (right), δk = 100.

In Table 1 and 2 we report the iteration counts at different time levels for two different positions of the interface,
α = 0.5 and α = 0.7. The stopping criterion is given by ‖λk+1−λk‖Λ/‖λk‖Λ < 10−6. The number of iterations
increases with the amplitude of the jumps in the diffusive coefficients, but the algorithm appears to be robust
with respect to the position of the interface and with respect to the evolution in time. In Figure 2 we report
the time evolution of the space profile of individuals of age 20, and the age-space profile of the solution at time
T = 5, with δk = 100. The jump in the normal derivative due to the high heterogenity of the spatial medium
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δk T = 1 T = 3 T = 6 T = 9 T = 12 T = 15 T = 20

1 17 11 11 10 10 10 10
10 22 14 14 14 14 13 13
102 32 20 19 19 19 18 18
103 37 23 22 22 22 21 21
104 44 26 26 25 25 25 25

Table 2: Two subdomains, α = 0.7: iteration counts per time level, ‖λk+1 − λk‖Λ/‖λk‖Λ < 10−6.

is clearly visible.

5.2 Influence of the number of subdomains

In this series of tests we analyze the scalability of the method with respect to the number of subdomains. We
consider the domain Ω = (0, 1) decomposed into 2, 4, 8, and 10 subdomains of equal size, and we consider a black
and white coloring, where each subdomain is surrounded by subdomains with different diffusion coefficients.
The mesh size in space is the same for all subdomains (h = 1/100), the time and age step are ∆t = 1, and
∆a = 2. We give in Table 3 through 5 the iteration counts at different time levels for decompositions into 4, 8,
and 10 subdomains, with different ratios between the diffusion coefficients. The number of iterations shows the
same pattern observed in the two-domains decomposition: it increases with the ratio of the diffusion coefficients
but it remains reasonable, and it shows robustness with respect to the evolution in time.
We then focused on scalability, chosing δk = 100. We report in Table 6 the iteration counts with respect to
the subdomain decomposition. Evidence is an increase with the number of subdomains, albeit the algorithm
appears to be stable with respect to the evolution in time, see Figure 5 and 6.
Two comments are in order. On the one hand, in all the simulations the number of iterations needed to solve
the coupled problem at the first time level is higher (significantly in some cases) than the number of iterations
needed to solve the coupled problem at subsequent time levels. This is quite unsurprising, and it is a consequence
of the kind of problem we are dealing with. Indeed, the initial condition is constituted only of individuals older
that a certain age, whereas at time T = 1 offsprings appear where no individual was present earlier and the
algorithm has to deal with it. This is a peculiar feature of the first time level, which no longer reproduces in
the rest of the computation, owing to the smoothing properties of the parabolic problem. On the other hand,
the increase in the average number of iterations per time step is significant with the increase of the number
of subdomains, thus the introduction of a suitable coarse space becomes mandatory, and it is currently under
investigation. Aside, we plot in Figure 7 (left) the time evolution of the space profile of individuals of age

δk T = 1 T = 3 T = 6 T = 9 T = 12 T = 15 T = 20

1 22 21 20 19 19 19 19
10 32 28 27 26 25 25 24
102 43 37 36 35 34 34 33
103 45 38 37 37 36 36 35
104 45 39 38 37 37 36 35

Table 3: Four subdomains: iteration counts per time step, ‖λk+1 − λk‖Λ/‖λk‖Λ < 10−6.

20 in the four domains subdivision case. Again, the jump in the normal derivative consequence of the high
heterogeneity of the medium is clearly appreciable. In Figure 7 (right) we also plot the traces of the interface
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δk T = 1 T = 3 T = 6 T = 9 T = 12 T = 15 T = 20

1 39 36 34 33 33 32 31
10 52 46 44 43 43 42 40
102 69 62 59 58 57 56 54
103 83 73 71 70 69 68 66
104 85 76 74 72 71 70 69

Table 4: Eight subdomains: iteration counts per time step, ‖λk+1 − λk‖Λ/‖λk‖Λ < 10−6.

δk T = 1 T = 3 T = 6 T = 9 T = 12 T = 15 T = 20

1 51 50 48 47 46 45 44
10 67 66 63 61 60 59 58
102 90 88 84 82 81 79 77
103 111 108 104 102 101 99 97
104 116 112 108 106 105 103 101

Table 5: Ten subdomains: iteration counts per time step, ‖λk+1 − λk‖Λ/‖λk‖Λ < 10−6.

SD T = 1 T = 3 T = 6 T = 9 T = 12 T = 15 T = 20

2 23 20 19 19 19 18 18
4 43 37 36 35 34 34 33
8 69 62 59 58 57 56 54
10 90 88 84 82 81 79 77

Table 6: Iteration counts per time level for different subdomain decompositions: < 10−6, δk = 102.
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Figure 5: Convergence history with respect to the number of subdomains at different time steps: T = 1 (left)
and T = 10 (right), δk = 100.

variables and the space profile of individuals of age 20 at convergence after a longer computation (T = 30) for
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Figure 6: Iteration counts vs the number of subdomains at different time levels, δk = 100.

the eight domains subdivision case: the interface variables show the typical age profile resulting from the linear
problem we are considering.
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Figure 7: Left: time evolution of the profile at age a = 20 for a decomposition into 4 subdomains (δk =
100). Right: interface variables and profile of the solution (in a = 20), at convergence at time T = 30 for a
decomposition into 8 subdomains (δk = 100).

6 Conclusions

We propose here a generalization of the balancing Neumann-Neumann algorithm, devised for purely elliptic prob-
lems, to approximate the solution of the diffusion of an age-structured population in a multilayer environment.
The proposed algorithm appears to be robust in terms of iteration counts with respect to the heterogeneities
in the viscosity coefficients, and the long time simulation. As the performance of the method degradates with
the number of subdomains, further investigations will focus, on the one hand, on the development of a suitable
coarse space to speed up the convergence in the multidomain situation, and on the testing of Optimized Schwarz
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Waveform Relaxation (recently proposed for advection-diffusion-reaction equations by M.J. Gander at al. [6]),
to such framework. On the other hand such approach will be extended to the numerical approximation of a
nonlinear model, where the nonlinearity is located not only in the diffusion coefficients, but also in the fertility
or mortality functions, that can depend upon the total population. Finally, the algorithm will be tested on
more complex situations of practical interest.

References

[1] B.P. Ayati and T. Dupont. Galerkin methods in age and space for a population model with nonlinear
diffusion. SIAM J. Num. Anal., 40(3):1064–1076, 2002.

[2] C. Cusulin and L. Gerardo-Giorda. A domain decomposition method for the diffusion of an age-structured
population in a multilayer environment. In Domain Decomposition Methods in Science and Engineering
(Proceedings of the DD17 Conference), pages 461–468. Springer-Verlag, 2007.

[3] C. Cusulin and L. Gerardo-Giorda. A FEM-Galerkin approximation for diffusion in age-structured popu-
lation dynamics. Technical report, HAL - Hyper Article on Line, 2007. http://hal.archives-ouvertes.fr/hal-
00183067 - submitted.

[4] C. Cusulin, M. Iannelli, and G. Marinoschi. Age-structured diffusione in a multi-layer environment. Non-
linear Analysis: Real World Applications, 6(1):207–223, 2006.

[5] C. Cusulin, M. Iannelli, and G. Marinoschi. Convergence in a multi-layer population model with age-
structure. Nonlinear Analysis: Real World Applications, 8:887–902, 2007.

[6] M.J. Gander and L. Halpern. Optimized Schwarz Waveform Relaxation for advection reaction diffusion
problems. SIAM Journal on Numerical Analysis, 45(2):666–697,, 2007.

[7] M.-Y. Kim. Galerkin methods for a model of population dynamics with nonlinear diffusion. Num. Meth.
Partial Differential Equations, 12:59–73, 1996.

[8] M.-Y. Kim and E.-J. Park. Characteristic finite element methods for diffusion epidemic models with
age-structured populations. Comput. Math. Appl., 97:55–70, 1998.

[9] N. Kinezaki, K. Kawasaki, F. Takasu, and N. Shigesada. Modeling biological invasion into periodically
fragmented environments. Theor. Popul. Biol., 64:291–302, 2003.

[10] P. Le Tallec and M. Vidrascu. Generalized Neumann-Neumann preconditioners for iterative substructuring.
In Petter E. Bjørstad, Magne Espedal, and David Keyes, editors, Domain Decomposition Methods in
Sciences and Engineering. John Wiley & Sons, 1997. Proceedings from the Ninth International Conference,
June 1996, Bergen, Norway.

[11] J.-L. Lions and E. Magenes. Non-Homogeneous Boundary Value Problems. Springer-Verlag, New York –
Berlin – Heidelberg, 1972.

[12] F.A. Milner. A numerical method for a model of population dynamics with spatial diffusion. Comp. Math
Appl., 19(31), 1990.

[13] A. Okubo and S. A. Levin. Diffusion and ecological problems: modern perspectives. Springer, New York,
2001.

[14] A. Okubo and S.A. Levin. Diffusion and ecological problems: modern perspectives. Springer, New York,
2001.

19



[15] A. Quarteroni and A. Valli. Numerical Approximation of Partial Differential Equations. Springer-Verlag,
Berlin, 1994.

[16] A. Quarteroni and A. Valli. Domain Decompostion Methods for Partial Differential Equations. Oxford
University Press, 1999.

[17] N. Shigesada and K. Kawasaki. Biological invasions: theory and practice. Oxford University Press, New
York, 1997.

20


