
HAL Id: hal-00190883
https://hal.science/hal-00190883v1

Submitted on 23 Nov 2007

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A synchronous language at work: the story of Lustre
Nicolas Halbwachs

To cite this version:
Nicolas Halbwachs. A synchronous language at work: the story of Lustre. Third ACM and IEEE
International Conference on Formal Methods and Models for Co-Design, 2005. MEMOCODE ’05.,
Jul 2005, Verona, Italy. pp.3 - 11, �10.1109/MEMCOD.2005.1487884�. �hal-00190883�

https://hal.science/hal-00190883v1
https://hal.archives-ouvertes.fr

A Synchronous Language at Work: the Story of Lustre

Nicolas Halbwachs
Vérimag∗, Grenoble – France

Abstract

We recall the story of the development of the synchronous
data-flow languageLUSTRE and of its industrial transfer
inside the toolsetSCADE. We try to analyse the reasons of
its success, and to report the main lessons we got from the
transfer of an academic concept into real industrial world.

1 Introduction

The design of the synchronous language LUSTREstarted
more than 20 years ago, and resulted in an industrial soft-
ware development tool, SCADE, which is now in use in
many major companies developping embedded software
(avionics, transportation, energy, . . .). It seemed to us that
this quite rare success story in the domain of formal meth-
ods deserves to be reported and analysed, from the point of
view of the problems raised by the industrial transfer of a
new technology: why did it succeed? how could it have
succeeded better?.

So called “embedded systems” are much more fashion-
able nowadays than in the eighties, when they first appeared
in large industrial applications. It is now admitted that this
domain concerns systems presenting one or several of the
following features: (1) they have to run in strong interaction
with their — possibly physical — environment (real time
systems, industrial control, . . .), (2) their development com-
bines software and hardware aspects, (3) they are submitted
to strong non functional constraints (execution time, mem-
ory limitations, fault tolerance, power consumption, . . .),
(4) they are safety-critical — often because of (1), since
they influence physical processes and devices. Because of
(1) and (2), the domain of embedded systems is strongly re-
lated to both control theory and hardware design, and this
is why the inspiration of synchronous languages comes both
from control engineering formalisms and from hardware de-
scription languages.

∗Verimag is a joint laboratory of Université Joseph Fourier, CNRS and
INPG associated with IMAG.

One can wonder why the main three synchronous
languages — Esterel [BG92], Signal [LGLL91] and
LUSTRE [HCRP91] — were all born in France, approx-
imately at the same time, and quite independently. Of
course, at the beginning of the eighties, the idea of syn-
chrony was already in the air, be it in theoretical works
by Milner [Mil81, Mil83], or in “almost synchronous” for-
malisms, like Grafcet (or IEC 1131 Sequential Function
Charts) [BJKS87, DA92] or Statecharts [Har87]. But the
conditions were particularly favourable, both for academic
and industrial reasons:

On the academic side, the three involved teams mixed re-
searchers from control theory and computer science: Jean-
Paul Rigault, Jean-Paul Marmorat and Gérard Berry for Es-
terel, Albert Benveniste and Paul Le Guernic for Signal,
Paul Caspi and the author of this paper for LUSTRE. This
double competence seems to have played an important role
in the design of the languages.

On the other hand, strong industrial needs were appear-
ing: the European and French industry of embedded soft-
ware was faced with some big challenges:

- For the very first time, in the new family of French nu-
clear reactors, called N4, the most critical functions
(in particular, the emergency stop) were realized by
a computer system, the SPIN (for “integrated nuclear
protection system”).

- At the same time was designed the Airbus A320,
which was the very first fully “fly-by-wire” aircraft.

- In railways industry, various automatic subways were
designed (e.g., the VAL [Fer91]) and the successive
versions of the French TGV (very high speed train)
were more and more computerized.

Started in 1984, the development of LUSTRE benefici-
ated from these very good circumstances. After briefly re-
calling the principles of the language (Section 2), we will
detail in Section 3 the main stages of its development, both
from academic and industrial points of view. Section 4 anal-
yses the feedback from industrial usages of the language.
Finally, Section 5 outlines the current evolutions of the lan-
guage and its associated tools.

2 A flavour of the language

Let us first recall, in a simplified way, the principles of
LUSTRE: A L USTRE program operates onflowsof values.
Any variable (or expression)x represents a flow, i.e., an in-
finite sequence(x0, x1, . . . , xn, . . .) of values. A program
is intended to have a cyclic behavior, andxn is the value of
x at thenth cycle of the execution. A program computes
output flows from input flows. Output (and possibly local)
flows are defined by means of equations (in the mathemat-
ical sense), an equation “x=e” meaning “∀n, xn = en”.
So, an equation can be understood as a temporal invariant.
LUSTRE operators operate globally on flows: for instance,
“x+y” is the flow (x0 + y0, x1 + y1, . . . , xn + yn, . . .). In
addition to usual arithmetic, Boolean, conditional operators
— extended pointwise to flows as just shown — we will
consider only two temporal operators:

• the operator “pre” (“ previous”) gives access to the
previous value of its argument: “pre(x)” is the flow
(nil, x0, . . . , xn−1, . . .), where the very first value
“nil” is an undefined (“non initialized”) value.

• the operator “-> ” (“followed by”) is used to define ini-
tial values: “x -> y” is the flow (x0, y1, . . . , yn, . . .),
initially equal tox, and then equal toy forever.

As a very simple and classical example, the program shown
below is a counter of “events”: It takes as inputs two
Boolean flows “evt” (true whenever the counted “event”
occurs), and “reset” (true whenever the counter should
be reinitialized), and returns the number of occurrences of
“events” which occured since the last “reset”.

node Count(evt, reset: bool)returns(count: int);
let

count = if (true -> reset) then 0
else if evt then pre(count) + 1
else pre(count);

tel

Intuitively, “true -> reset” is a Boolean flow, which is true
at initial instant and whenever “reset” is true; when it is
true, the value of “count” is 0; otherwise, when “event” is
true, “count” is incremented, otherwise it keeps its previous
value.

Once declared, such a “node” can be used anywhere in
a program, as a user-defined operator. For instance, our
counter can be used to generate an event “minute” every
60 “second”, by counting “second” modulo 60 :

mod60 = Count(second, pre(mod60=59));
minute = (mod60 = 0);

Figure 1. A graphical view in Scade

Here, “mod60” is the output of a “Count” node, count-
ing “second”, and reset whenever the previous value of
“mod60” is 59. “minute” is true whenever “mod60”
equals 0.

So, through the notion of node, LUSTREnaturally offers
hierarchical description and component reuse. Data travel-
ing along the “wires” of an operator network can be com-
plex, structured informations.

From a temporal point of view, industrial applications
show that several processing chains, evolving at different
rates, can appear in a single system. LUSTRE offers a no-
tion of boolean clock, allowing the activation of nodes at
different rates.

The graphical counterpart of LUSTRE textual syntax is
obvious; for instance, Fig. 1 is a a SCADE view of the
“minute detector” described before.

3 The design and development of LUSTRE
and SCADE

The initial idea of LUSTRE came from our previous
works [CH86] about modelling real-time systems by means
of time functions. Such a global handling of variable “his-
tories”, together with the inspirating proposal of the Lu-
cid1 language [AW85], suggested us to design a program-
ming language describing variables as timed sequences of
values. Moreover, from his background in control theory,
Paul Caspi knew that this kind of description — we would
say, today, “Matlab/Simulink-like” — was the natural one
for control engineers: from their experience with previous
technologies, they were used to declarative or data-flow for-
malisms, i.e., at high level, differential or finite-difference
equations, and at lower levels, various kind of graphi-
cal networks (block-diagrams, analog networks, switches
schemas, . . .).

1As a matter of fact, the name “LUSTRE” is a French acronym for “syn-
chronous Lucid for real time”.

3.1 The industrial story

Caspi’s intuition was readily confirmed: we found, in
many companies, many in-house development tools based
on this kind of formalisms. The goal of such tools ranged
from simple graphical description (without any idea of
mechanical exploitation) to some attempts in consistency
checking, simulation, and even automatic code generation.
In particular, the Merlin-Gerin company (now Schneider-
Electric), located in Grenoble, was in charge of the devel-
opment of a large part of the SPIN (“integrated nuclear pro-
tection system”). Being aware that they were confronted
to radically new problems, because of the software criticity,
the management people decided to develop their own devel-
opment environment, and they naturally chosed a data-flow
formalism. Our great chance was to collaborate with them
from the very beginning of the design of this environment,
which was called SAGA (for “Assisted Specification and
Automatic Generation”): SAGA was based on LUSTRE,
provided with a mixed graphical/textual syntax, and offered
a simple, but efficient, code generator. Two members of the
LUSTRE team, Eric Pilaud and Jean-Louis Bergerand, were
hired by Merlin-Gerin to supervise the development of the
tool. The use of SAGA was very successful for the design
of the SPIN and several other systems.

But after a few years, people at Merlin-Gerin under-
stood that the maintenance and development of such a soft-
ware toolset was not their job, so a software company, Ver-
ilog, was contacted for commercializing the SAGA prod-
uct. Merlin-Gerin being already an important reference for
SAGA, Verilog accepted the challenge: developping such
a tool, with critical constraints of correctness, robustness,
life duration, . . . , was completely new for such a small
company. Being located in Toulouse, Verilog contacted
Aerospatiale (now part of Airbus), which was confronted
with a very similar problem than Merlin-Gerin: for the de-
sign of the onboard software of the Airbus A320, Aerospa-
tiale designed an in-house tool, called SAO (for “Computer
Assisted Specification”), based on principles very similar
to those of SAGA, but which was not intended, at the be-
ginning, to perform the automatic generation of embed-
dable code. A kind of consortium was constituted be-
tween Aerospatiale, Merlin-Gerin, and Verilog to design a
new tool, inspired by both SAO and SAGA. This new tool
was called SCADE (for “Safety Critical Applications De-
velopment Environment”). At this time, VERIMAG was
created as a common laboratory between Verilog and our
academic institutions, in particular to make easier the co-
operation about the design of SCADE. A member of the
LUSTRE team, Daniel Pilaud, was hired by Verilog to head
the SCADE team.

The new big challenge with SCADE, was to comply the
requirements of the avionics certification authorities. In par-

ticular, the avionic norm DO-178B requires that any tool
used for the development of a critical equipment be itself
qualified at the same level of criticity than the considered
equipment. As a consequence, for the code generated by
SCADE to be embeddable, the SCADE code generator had to
be qualified at the same level than the most critical software
(flight software, level A). Let’s say at once that such a qual-
ification has nothing to do with a formal proof of the com-
piler, but is rather a matter of design process, test coverage,
quality of the documentation, requirements traceability, etc.
The SCADE code generator, KCG, is probably the first com-
mercial compiler to be qualified for producing embedded
software for civil avionics. KCG was a prominent argument
for SCADE: not only, as any code generator, it suppresses
the manual coding from data-flow specifications, but more
importantly, since it is qualified, it suppresses the need for
expensiveunit testingfor checking the correctness of this
translation. This is what process people call the change
from the “V” cycle to the “Y” cycle: the lowest part of the
“V”, which consist of coding and unit testing, becomes free
and instantaneous.

In the nineties, the Swedish company Prover-Technology
connected its SAT-based model checker PROVER with
SCADE, thus providing the tool with an integrated verifi-
cation capability. In doing so, they adopted our technique
for specifying properties and assumptions by means ofsyn-
chronous observers.

Then, the industrial story became complicated: Verilog
was bought by the CS group, then sold to Telelogic, which
finally sold SCADE to. . . Esterel-Technologies! Esterel-
Technologies was founded in 1999, mainly to develop an
industrial tool around the Esterel language. The main ap-
plication domain of the Esterel language is circuit CAD,
while the one of SCADE is embedded software, so the two
languages do not compete with each other. They are quite
different externally, but they share the same synchronous
semantic model. So it makes sense to develop both tools
together, and even to try to combine them (see§5). The
purchase of SCADE by Esterel-Technologies was followed
by a resumption of its development (in particular, a gateway
from Simulink/Stateflow [CCM+03] was developed in the
framework of the project IST-RISE), and a strong extension
of its commercial promotion: SCADE is now used all over
the world.

3.2 The research stages

The research about LUSTRE and its associated tools
was driven in the very stimulating context of collabora-
tion/competition with teams working on other synchronous
languages, structured by successive French and European
projects, called C2A, Eureka-SYNCHRON, Esprit/LTR-

SYRF2, SafeAir-II3.

3.2.1 Compilation

The first research topic, after the design of the language
(Jean-Louis Bergerand’s thesis), was of course its compi-
lation. LUSTREcan be quite naturally and easily translated
into sequential imperative code, as a single endless loop

initializations
loop

acquire inputs ;
compute outputs ;
update memories

end

One just has to determine a correct order for computing
outputs and memories, in order to minimize the number of
memories (very often, there is no need of two memories to
deal withx andpre(x)).

However, in the middle of the eighties, the only way of
compiling ESTERELwas to produce an explicit automaton.
We experienced a similar way of compiling LUSTRE (John
Plaice’s thesis). The idea was to specialize the code accord-
ing to the knownpreviousvalues of Boolean expressions:
when “b” is true at some cycle, one knows that “pre(b)”
will be true at the next cycle, and the code can be simplified
accordingly. Of course, the initial cycle can also be special-
ized according to the semantics of the “-> ” operator. So,
with each configuration of the Boolean memories (a state
of the automaton) can be associated a specialized code (the
outgoing transitions, carrying conditions and actions on non
Boolean variables). In cooperation with the ESTERELteam,
the common formatOC was defined [PS87], as a target code
for automata generators, in order to share common tools on
this format, like generators to various target languages (C,
Ada,. . .), minimizers, optimizers, graphical visualizers. . . .

It readily appeared that, in contrast with ESTEREL, our
generator produced automata with many redundant states,
thus involving an explosion of the code even for simple pro-
grams. This is why we proposed the first algorithm of “sym-
bolic bisimulation” [BFH90, HRR91], aiming at perform-
ing bisimulation reduction together with the generation of
the automaton. This optimisation, implemented by means
of BDDs technology, was the subject of Pascal Raymond’s
thesis.

Explicit automata can be much more efficient than the
single loop code; however, it is generally also much bigger,
and the size of the code is often a more important criterion
than its efficiency. The size of the automaton may even be
exponential w.r.t. the size of the source program, so the
explicit automaton can rarely be used for real size programs.

2see www-verimag.imag.fr/SYNCHRONE/SYRF/syrf.html
3see www.safeair2.org/

Node2

Node1

=
ok

Figure 2. Comparing two nodes

However, the different ways of generating control automata
were very useful for designing verification tools. Another
influence from ESTERELand the automaton generation was
the introduction ofassertionsin the language: in ESTEREL,
simplerelationsof exclusion or implication between input
signals were introduced to allow the compiler to simplify
the automaton accordingly. In LUSTRE, the relations were
naturally generalized (“assert <expression>”) to indicate
the invariance of arbitrary Boolean expressions.

3.2.2 Specification and verification

LUSTRE program verification was the topic of two theses,
by Anne-Ćecile Glory and Christophe Ratel. As soon as
we had a generator of control automata, we had also an
automatic verification tool for Boolean programs. For in-
stance, to verify that two nodes involving only Boolean vari-
ables and operators behave the same, one just has to con-
nect them as in Fig. 2, compile the resulting program into
an explicit automaton, and check on the resulting code that
the output “ok” is never assignedfalse. This works also
for comparing general nodes, but in a conservative way: if
“ok” is never assignedfalse, the two nodes are equivalent,
otherwise the verification is inconclusive. A more general
verification scheme is given by Fig. 3: in general we want
to prove that, as long as the environment behaves properly
(i.e., satisfies someassumption), the program satisfies some
property. Now, if we restrict ourselves to the verification
of safety properties, both the assumption and the property
can be expressed by some programs, calledsynchronous
observers[HPOG89, HLR93], which receive as input all
the relevant variables, and compute a single Boolean ouput,
which is true as long as the inputs fulfill the considered
property or assumption. The node to be verified is con-
nected to the observers as in Fig. 3, and the verification con-
sists of showing (by model-checking over the control au-
tomaton), that the output “prog ok” can only be set tofalse
if “ env ok” was set tofalse before. Of course, because
of the state explosion, it is better to use specialised verifi-
cation tools than the compiler. A specific model-checker,
called LESAR, was developped for LUSTRE [HLR92]: it
proceeds either by enumerative exploration of the automa-
ton, or by symbolic forward or backward techniques. The
model-checking techniques are classical, but the specifi-

Node

Assum

Prop

env ok

prog ok

Figure 3. Specification with observers

cation by observers is especially natural in a synchronous
declarative language. The same technique was adopted by
Prover-technology when integrating its industrial verifica-
tion tool with SCADE. We developped also a verification
tool, called NBAC [HPR97, JHR99], based on linear rela-
tion analysis, and capable to handle simple (linear) behav-
iors of numerical variables (Bertrand Jeannet’s thesis).

3.2.3 Automatic testing

The same technique of specification with observers was
used to perform automatic testing [OP94, BORZ98,
RWNH98, JRB04]: the assumption observer is used to gen-
erate only realistic test sequences, while the property is used
as an “oracle” to determine whether each test passes or fails.

3.2.4 Hardware description and arrays

An experience was driven in 1989-92, in cooperation with
the Paris Research Laboratory of Digital Equipment, to use
LUSTRE for configuring large FPGAs, which were emerg-
ing at these times (Fréd́eric Rocheteau’s thesis). For this,
the language was extended with a mechanism of arrays
(obviously needed to represent registers and regular ar-
chitectures), which remained in the version 4 of the lan-
guage [RH91].

3.2.5 Distributed code generation, dynamic scheduling

Code generation from synchronous programs to distributed
architectures is a very challenging topic. We addressed the
problem when the distribution is imposed by the user, e.g.,
by assigning a computation site with each variable. A first
solution was proposed in Alain Girault’s thesis [CGP99],
which consists of (1) replicating the whole sequential code
for each site, (2) slicing the code on each site according to
the variables to be computed locally, and (3) adding com-
munication and synchronization code, assuming a very sim-
ple communication mechanism (fixed size FIFOs). Another
solution, inspired by control theory and industrial uses, was
proposed in Rym Salem’s thesis [CMSW99]: this proposal
does not pretend to implement exactly the synchronous

semantics of the centralized program, but takes advan-
tage of the remaining non-determinism at the interface be-
tween synchronous and asynchronous worlds (mainly asyn-
chronous input sampling). More recently, the problem of re-
ally multicycle programs was addressed: through the mech-
anism ofclocks, LUSTRE allows variables to evolve at dif-
ferent rates; however, even if a variable is “slow”, its com-
putation must take place in the same “short” cycle than other
variables. [SC04] proposes a way of generating truely mul-
ticycle code, where slow tasks are preempted by fast urgent
ones,while strictly respecting the synchronous semantics.

4 Some lessons from industrial use

Let us now report the feedback we perceived from more
than 10 years of industrial use of LUSTRE/SCADE. Some
of our expectations were confirmed, some were not, unex-
pected qualities appeared, together with unexpected needs.

4.1 About our expectations

Synchronous data-flow. First, as said before, Caspi’s ini-
tial idea about the convenience of the formalism for con-
trol engineer was completely confirmed. In particular, the
graphical syntax was completely natural for SCADE users.
This may look strange for programmers — who will gener-
ally prefer the textual LUSTRE syntax, and the capabilities
of a text editor — but the graphical syntax is compulsory for
reaching system designers; as a matter of fact, a graphical
syntax, the SYNCCHARTS [And96], had also to be defined
for ESTEREL.

Formal semantics. The fact that, in contrast with many
control engineering formalisms, LUSTRE be equiped with
a formal, simple, clean , andabstractsemantics, is a more
hidden advantage:

• it probably increases the quality of the programs, be-
cause it improves the quality of understanding of the
language by the users; however, this impact is difficult
to measure.

• it makes formal reasoning about programs easier, but it
is not clear that formal reasoning is an important issue
nowadays in the industry;

• however, it has a tremendous importance for the eas-
iness of compilation, and for the quality of the gen-
erated code. Languages which — like Grafcet, State-
charts, or Simulink — are defined by means of a sim-
ulation algorithm, leave very little freedom for code
generation and optimisation.

• our hope was that, using the formal semantics, a
LUSTRE compiler could be formallyproven. In spite
of a successful attempt by Eduardo Gimenez with the
proof assistant Coq [BC04], the industrial compiler
was never proved. The main problem is probably that,
for the time being, such a proof would not be accepted
by certification authorities.

From clocks to activation conditions. In LUSTRE, the
concept of clock is very similar to the one which plays a
prominent role in SIGNAL : it allows a flow to have val-
ues only at some cycles, and then, to trigger operators only
at these cycles. This quite abstract concept was seldom
used by SCADE users, because it was considered too com-
plicated. As a consequence, it was replaced by a simpler
primitive, called “activation condition”: a Boolean flow can
be attached to a node call as an activation condition: the
node is active only when the condition is true, otherwise its
output keep their previous values (instead of being “absent”
with the clock mechanism).

Formal verification and automatic testing. For the time
being, the conclusion concerning formal verification is mit-
igated. We know of some experiences of property verifi-
cation, using either the industrial Prover-plugin tool, or our
academic prototypes. The technique of observers was apre-
ciated, because it uses the same language for writing pro-
grams and properties. However, formal verification is far
from being a routine task in software design. Even requiring
that people express high level properties and assumptions is
difficult. Moreover, it is difficult to quantify the benefits
of using verification: nobody would admit that it improves
the reliability of final programs (“anyway, my programs are
zero-default!”), and concerning the reduction of costs, it is
not yet admitted that it could reduce the amount of testing
required for code certification. Our hope is to use automatic
testing as a kind of “Trojan horse”: since automatic testing
is well-accepted (since it makes easier an already existing
task), and since the effort needed for automatic testing (i.e.,
writing observers for the assumption and the property) is es-
sentially the same than the one for verification, people can
get used with verification tasks.

4.2 Unexpected features and needs

On the other hand, we discovered other advantages
of LUSTRE/SCADE over existing tools, the importance of
which was neglected before, mainly because they are clas-
sical in modern languages:

• Program structure: in contrast with many control en-
gineering languages, LUSTREproposes a structuration
of programs at arbitrary depth, through the concept of

node, which can be constructed by means of very few
predefined operators. Tools like SAO only offered a
partitionning of programs intosheets, the nesting of
which was not possible; otherwise, the tool was based
on a huge (and continuously increasing) library of pre-
defined operators.

• Compiler efficiency: we expected the code efficiency
to be the major gain with respect to previous tools. In
fact, some users were also impressed by the efficiency
of the compiler, some existing tools taking hours to
compile even simple programs!

• Detection of instant loops: In LUSTRE, it is forbid-
den for a variable to instantly depend on itself (with-
out a “pre” in the loop): it is callled acausality error.
It was noticed that this detection by the compiler of
instant loops may highlight specification inconsisten-
cies which would be left hidden when programming
with a sequential imperative language: in such a lan-
guage, the order in which the statements are written
just silently cut the loop, at some arbitrary point.

The question of causality: modular and separate
compilation. As said before, synchronous languages
raise the problem of causality errors (instantaneous self-
dependence). The exact detection of causality errors is un-
decidable, since it can depend on arbitrary data properties.
So it is necessarily approximated: some executable pro-
grams are rejected by the compiler. In LUSTRE, this ap-
proximation is especially rough, since the detection is done
syntactically. However, it appeared not only that this rough
detection was not disturbing for users, but that it was even
too sophisticated: in SCADE, the criterion is even stronger4,
since it is forbidden that an input of a node instantaneously
depend on an output of this node (i.e., not only there should
be a “pre” in the loop, but it should appear outside the node,
see Fig 4). This simplification has a huge consequence:
nodes can be compiled separately (in contrast with all other
synchronous languages), since the correct order of compu-
tations inside the node cannot depend on the way it is called.
Of course, separate compilation is an important topic for
real-life applications. It is also important for code trace-
ability, which is often required for certification: the code
generated for a node, or a node call, is clearly identified as
a contiguous block in the whole object code.

5 And now . . .

Let’s conclude by an overview of ongoing research and
development around LUSTREand SCADE.

4according to some compiling options, which are used for separate
compilation and code traceability. Other options allow the same criterion
than in LUSTRE.

Allowed in LUSTRE

Forbidden in SCADE

Allowed in LUSTRE

Allowed in SCADE

pre pre

Figure 4. Causality in LUSTREand SCADE

First, some strong evolutions of the language are still go-
ing on. These evolutions are often prototyped thanks to
Marc Pouzet’s “Lucid synchrone” [CP95, CP98] which is
a higher order extension of LUSTRE (or a kind of merge of
LUSTREand ML):

• Arrays: The array mechanism introduced in LUSTRE-
V4 [RH91] aimed at describing regular circuits. It ap-
peared that it is not convenient for software implemen-
tation, because V4 arrays cannot be compiled into ar-
rays (updated with loops) in the target code: presently,
they are expanded into as many variables as array ele-
ments. In [Mor02], a new mechanism of arrays is pro-
posed, provided with a small number ofiterators, sim-
ilar to those of functional programming. Experiments
show that this new mechanism is powerful enough for
most pratical applications, and can lead, of course to
tremendous reduction of the code size. Moreover, this
mechanism permits also an original technique [MM04]
for generic verification of programs containing arrays.

• State machines:It is known for long that the data-
flow style is sometimes inconvenient in some situa-
tions, where the system to be described is naturally
sequential, or automaton-like. Several attempts have
been made to mix imperative and data-flow descrip-
tionss [JLRM94, MR98]. Presently, a weakenned ver-
sion of the SYNCCHARTS, called “Safe State Ma-
chines” (SSM), is being introduced into SCADE.

• Packaging and genericity: LUSTRE is still quite
poor concerning such classical topics as encapsula-
tion, packaging, genericity,. . . , which are essential
for large designs, libraries definition and reuse. We
are currently introducing mechanisms for defining
generic packages, encapsulating definitions of con-
stants, types, functions and nodes, and possibly tak-
ing as static parameters constants, types functions and
nodes. This could lead, some day, to an “object ori-
ented LUSTRE”.

The new ways of compiling LUSTREtowards distributed
architectures, and event-trigered tasking (cf.§3.2.5) remain
to be transferred in the industrial tool. Another topic about

code generation is intra-instant scheduling: in some appli-
cations, the basic cycle is considered too long with respect
to some input-output required delays. In such cases, one
would like to influence the static scheduler inside the com-
piler, so that some input acquisitions be scheduled “close
to” some output computations and emissions. Such a fea-
ture is possible in the SAXO compiler [WBC+00] for
ESTEREL. It is under investigation for LUSTRE[CCM+03].

Finally, we are also using LUSTRE for modelling, sim-
ulating, and verifying non synchronous systems: For in-
stance, so called “globally asynchronous, locally syn-
chronous” systems (GALS) can be modelled [HB02] by
introducing controlled non-determinism through the use of
additional inputs (oracles), possibly restricted by assertions.
Some experiences are driven also concerning the simulation
of circuits descriptions at transaction level in SystemC.

References

[And96] C. Andŕe. Representation and analysis of re-
active behaviors: a synchronous approach. In
IEEE-SMC’96, Computational Engineering in
Systems Applications, Lille, France, July 1996.

[AW85] E. A. Ashcroft and W. W. Wadge. LUCID, the
data-flow programming language. Academic
Press, 1985.

[BC04] Y. Bertot and P. Castéran.Interactive Theorem
Proving and Program Development - Coq’Art:
The Calculus of Inductive Constructions. Texts
in Theoretical Computer Science. An EATCS
Series, Springer Verlag, 2004.

[BFH90] A. Bouajjani, J.-C. Fernandez, and N. Halb-
wachs. Minimal model generation. In R. Kur-
shan, editor,International Workshop on Com-
puter Aided Verification, Rutgers (N.J.), June
1990.

[BG92] G. Berry and G. Gonthier. The Esterel syn-
chronous programming language: Design, se-
mantics, implementation.Science of Computer
Programming, 19(2):87–152, 1992.

[BJKS87] A.D. Baker, T.L. Johnson, D.I. Kerpelman,
and H.A. Sutherland. Grafcet and SFC as fac-
tory automation standards. InAmerican Con-
trol Conference, pages 1725–1730, 1987.

[BORZ98] L. du Bousquet, F. Ouabdesselam, J.-L.
Richier, and N. Zuanon. Lutess: testing en-
vironment for synchronous software. InTool
support for System Specification Development
and Verification. Advances in Computing Sci-
ence, Springer, 1998.

[CCM+03] P. Caspi, A. Curic, A. Maignan, C. Sofronis,
S. Tripakis, and P. Niebert. From simulink
to scade/lustre to tta: A layered approach for
distributed embedded applications. InLCTES
2003, San Diego, CA, June 2003.

[CGP99] P. Caspi, A. Girault, and D. Pilaud. Auto-
matic distribution of reactive systems for asyn-
chronous networks of processors.IEEE Trans-
actions on Software Engineering, 25(3):416–
427, 1999. Research report INRIA 3491.

[CH86] P. Caspi and N. Halbwachs. A functional
model for describing and reasoning about time
behaviour of computing systems.Acta Infor-
matica, 22:595–697, 1986.

[CMSW99] P. Caspi, C. Mazuet, R. Salem, and D. Weber.
Formal design of distributed control systems
with Lustre. In Proc. Safecomp’99, volume
1698 of Lecture Notes in Computer Science.
Springer Verlag, September 1999.

[CP95] P. Caspi and M. Pouzet. A functional extension
to LUSTRE. In Eighth International Symp. on
Languages for Intensional Programming, IS-
LIP’95, Sidney, May 1995.

[CP98] Paul Caspi and Marc Pouzet. A Co-
iterative Characterization of Synchronous
Stream Functions. InCoalgebraic Methods
in Computer Science (CMCS’98), Electronic
Notes in Theoretical Computer Science, 28-29
March 1998.

[DA92] R. David and H. Alla.Petri nets and Grafcet:
tools for modelling discrete event systems.
Prentice Hall, New York, 1992.

[Fer91] D. Ferbeck. The VAL product line. InAPM’91
Conference, Yokohama, 1991.

[Har87] D. Harel. Statecharts: A visual approach to
complex systems.Science of Computer Pro-
gramming, 8(3), 1987.

[HB02] N. Halbwachs and S. Baghdadi. Synchronous
modeling of asynchronous systems. InEM-
SOFT’02. LNCS 2491, Springer Verlag, Octo-
ber 2002.

[HCRP91] N. Halbwachs, P. Caspi, P. Raymond, and
D. Pilaud. The synchronous dataflow program-
ming language LUSTRE. Proceedings of the
IEEE, 79(9):1305–1320, September 1991.

[HLR92] N. Halbwachs, F. Lagnier, and C. Ratel. Pro-
gramming and verifying real-time systems by
means of the synchronous data-flow program-
ming language LUSTRE. IEEE Transactions
on Software Engineering, Special Issue on the
Specification and Analysis of Real-Time Sys-
tems, pages 785–793, September 1992.

[HLR93] N. Halbwachs, F. Lagnier, and P. Raymond.
Synchronous observers and the verification of
reactive systems. In M. Nivat, C. Rattray,
T. Rus, and G. Scollo, editors,Third Int. Conf.
on Algebraic Methodology and Software Tech-
nology, AMAST’93, Twente, June 1993. Work-
shops in Computing, Springer Verlag.

[HPOG89] N. Halbwachs, D. Pilaud, F. Ouabdesselam,
and A.C. Glory. Specifying, programming
and verifying real-time systems, using a syn-
chronous declarative language. InWorkshop
on Automatic Verification Methods for Finite
State Systems, Grenoble. LNCS 407, Springer
Verlag, June 1989.

[HPR97] N. Halbwachs, Y.E. Proy, and P. Roumanoff.
Verification of real-time systems using linear
relation analysis.Formal Methods in System
Design, 11(2):157–185, August 1997.

[HRR91] N. Halbwachs, P. Raymond, and C. Ratel.
Generating efficient code from data-flow pro-
grams. InThird International Symposium on
Programming Language Implementation and
Logic Programming, Passau (Germany), Au-
gust 1991. LNCS 528, Springer Verlag.

[JHR99] B. Jeannet, N. Halbwachs, and P. Raymond.
Dynamic partitioning in analyses of numerical
properties. In A. Cortesi and G. Filé, editors,
Static Analysis Symposium, SAS’99, Venice
(Italy), September 1999. LNCS 1694, Springer
Verlag.

[JLRM94] M. Jourdan, F. Lagnier, P. Raymond, and
F. Maraninchi. A multiparadigm language
for reactive systems. In5th IEEE Interna-
tional Conference on Computer Languages,
Toulouse, May 1994. IEEE Computer Society
Press.

[JRB04] E. Jahier, P. Raymond, and P. Baufreton.
Case studies with lurette v2. InFirst Inter-
national Symposium on Leveraging Applica-
tions of Formal Method, ISoLa 2004, Paphos,
Cyprus, October 2004.

[LGLL91] P. Le Guernic, T. Gautier, M. Le Borgne, and
C. Le Maire. Programming real time applica-
tions with SIGNAL . Proceedings of the IEEE,
79(9):1321–1336, September 1991.

[Mil81] R. Milner. On relating synchrony and asyn-
chrony. Technical Report CSR-75-80, Com-
puter Science Dept., Edimburgh Univ., 1981.

[Mil83] R. Milner. Calculi for synchrony and asyn-
chrony.TCS, 25(3), July 1983.

[MM04] F. Maraninchi and L. Morel. Arrays and con-
tracts for the specification and analysis of reg-
ular systems. InFourth International Confer-
ence on Application of Concurrency to System
Design (ACSD), Hamilton, Ontario, Canada,
June 2004.

[Mor02] L. Morel. Efficient compilation of array iter-
ators for Lustre. InFirst Workshop on Syn-
chronous Languages, Applications, and Pro-
gramming, SLAP02, Grenoble, April 2002.

[MR98] F. Maraninchi and Y. Ŕemond. Mode-
automata: About modes and states for reac-
tive systems. InEuropean Symposium On
Programming, Lisbon (Portugal), March 1998.
Springer Verlag.

[OP94] F. Ouabdesselam and I. Parissis. Testing syn-
chronous critical software. In5th International
Symposium on Software Reliability Engineer-
ing (ISSRE’94), Monterey, USA, November
1994.

[PS87] J. A. Plaice and J-B. Saint. The LUSTRE-
ESTEREL portable format. Unpublished re-
port, INRIA, Sophia Antipolis, 1987.

[RH91] F. Rocheteau and N. Halbwachs. Implement-
ing reactive programs on circuits, a hardware
implementation of LUSTRE. In REX Workshop
on Real-Time: Theory in Practice, DePlas-
molen (Netherlands), pages 195–208. LNCS
600, Springer Verlag, June 1991.

[RWNH98] P. Raymond, D. Weber, X. Nicollin, and
N. Halbwachs. Automatic testing of reactive
systems. In19th IEEE Real-Time Systems
Symposium, Madrid, Spain, December 1998.

[SC04] N. Scaife and P. Caspi. Integrating model-
based design and preemptive scheduling in
mixed time- and event-triggered systems. In
Euromicro conference on Real-Time Systems
(ECRTS’04), Catania, Italy, June 2004.

[WBC+00] D. Weil, V. Bertin, E. Closse, M. Poisse, P. Ve-
nier, and J. Pulou. Efficient compilation of Es-
terel for real-time embedded systems. InIn-
ternational Conference on Compilers, Archi-
tecture, and Synthesis for Embedded Systems
(CASES), San Jose, 2000.

