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Abstract

We introduce a general context involving a presheaf A and a subpresheaf B of A. We
show that all previously considered cases of local analysis of generalized functions (defined
from duality or algebraic techniques) can be interpretated as the B-local analysis of sections
of A.

But the microlocal analysis of the sections of sheaves or presheaves under consideration is
dissociated into a ”frequential microlocal analysis ” and into a "microlocal asymptotic anal-
ysis”. The frequential microlocal analysis based on the Fourier transform leads to the study
of propagation of singularities under only linear (including pseudodifferential) operators in
the theories described here, but has been extended to some non linear cases in classical the-
ories involving Sobolev techniques. The microlocal asymptotic analysis can inherit from the
algebraic structure of B some good properties with respect to nonlinear operations.
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1 Introduction

The notion of regularity in algebras or spaces of generalized functions can be formulated in a
general way with the help of sheaf theory. In section 2, when A is a presheaf of algebras or
vector spaces on a topological space X, and B a subpresheaf of A, for each open set Q in X,
we consider B (€2) as the space or algebra of some regular elements of A (2). This leads to the
notion of B-singular support which refines the notion of support of a section u € A () provided
the localization principle (F}) holds: if u and v are global sections of A which agree on each
open set of a family (£;);.; of open set in X, they agree on the union ZLEJIQZ

We can give many examples of this situation in the framework of theories of generalized
functions: distributions [B§] or Colombeau-type algebras [il, [i, B, B, [0]. To illustrate this, let
us consider the following sequence of sheaf embeddings, defined for each ) open set in R™ by

O™ () — L (CX(Q),C) =D () — G(Q) — L (QC(Q), @)

G (Q) being the Colombeau algebra, C the ring of Colombeau’s generalized numbers, G.(Q) the
set of elements in G () with compact support and £ (QC(Q), (E) defined in [[[7] the space of all

continuous and C linear functionals on G.(£2). Each term of the sequence can be considered as
the B () regular space or algebra of the following algebra or space A (). It is the basis for a



local analysis of the elements in A (£2). Some results on propagation of singularities under B-
compatible operators permit to explain and summarize the classical results involving differential
or pseudo-differential ones. But if we want to define a more precise ”microlocal” analysis which
gives some informations not only on the locus, but on the causis of the singularities described
as a fibered space above that locus, we have first to give a precise local characterization of the
singularities under consideration.

A review on the ideas, technics and results on microlocalization is given in section 3. The first
step was to follow the Hormander ideas about the wave front set W F'(u) of a distribution u, whose
construction is deduced from the classical Fourier characterization of smoothness of distributions
with compact support. For a general v € &' (R™) Hérmander introduces the cone X (v) of all n €
R™\0 having no conic neighbourhood V' such that the Fourier transform v is rapidly decreasing
in V. Lemma 8.1.1. in [ proves that if ® € D (R") and v € & (R") then X (®v) C ¥ (v). It
follows that if 2 is an open set in R™ and u € D' (), setting: X, (u) = QZ (Pu); ® € D(Q),

® () # 0, one can define the wave front set of u as WF(u) = {(z,£) € Q x (R™\0);£ € ¥, (u)}.

This way was led in the sheaf A = G of Colombeau simplified algebras by Nedeljkov, Pilipovic
and Scarpalezos [B1] by taking B = G as regular subsheaf of G. This subsheaf, introduced by
Oberguggenberger [BY], generalizes in a natural way in G the regular properties of C* in D’. We
can find in the literature a description of the main properties of Fourier transform of compacted
supported elements in G*(€2), which leads to a frequential microlocal analysis similar to the
Hormander’s one (see [B7] for instance). The crucial point was the conservation of the power of
the lemma 8.1.1. leading to the definition of the generalized wave front set of u € G(£2) denoted
WEy(u).

Recently, A. Delcroix has extended in [[d] the G regularity to a so called G* regularity,
which still preserves the statements of the above quoted lemma, and gives a G frequential
microanalysis. We can chose R such that GR countains an embedding of D’ into G, which is not
the case for G (G N'D' =C is a result of BJ]). Then it becomes possible to investigate the
frequential D’-singularities of u € G(Q).

Inspired by the classical theories, many results on propagation of singularities and pseudod-
ifferential techniques have been obtained during the last years by De Hoop, Garetto, Hérmann,
Gramchev, Grosser, Kunzinger, Steinbauer and others (see [L3, [L§, L9, B, ], R7]). For example,
when u € G(2), Hérmann and Garetto [[[§] obtain characterisations of W F,(u) in terms of inter-
sections of some domains corresponding to pseudodifferential operators similarly to Hérmander’s
characterizations of WF(u) for u € D' () [PJ]. Following the ideas and technics of [[§] and
making use of the theory of pseudodifferential operators with generalized symbols ([, [L]),
Garetto [[[7] has recently extended the definition of WF,(u) when u € G(Q) to the definitions

of WFg(T) and W Fgee(T) when T € L (QC(Q),(E) She can also give a Fourier-transform

characterization of these wave front sets when T is a basic functional. Nevertheless, these very
interesting and deep results are still mainly limited to linear cases, at least in the framework
developed above. More precisely, even when A is a sheaf of factor algebras, we don’t know
any study on the microlocal behaviour of singularities under nonlinear operations by means of
frequential methods based on the Fourier transform.

However, such studies exist in a classical framework involving some spaces of Sobolev type. In
section 8 of [24], Hormander uses the results on microlocal H ég)c—regularity of nonlinear operations
for tempered distributions in &’ (R™) to discuss semi-linear equations, following Rauch [BJ]. By
means of paradifferential techniques some general results for quasilinear equations are given in
Bony M. Then, from a general result on propagation of singularities for pseudo-differential
operators and a Bony’s linearization theorem, Hérmander ([24], section 11) can discuss fully
nonlinear equations and obtain precise propagation results for hyperbolic second order semi-
linear equations. Extensions of the previous results can be found in works of Beals [, ] and



BonylH].

The Fourier transform is still the main tool involved in other generalized cases, where the
G*-regularity is subordinated to an additional condition (such as an estimate on the growth of
derivatives) characterizing a special property such as to belong to an analytic, Gevrey or CF
class in Hormander sense ([R], section 8.4). Tt is the case of "analytic” algebra: G4 studied
by Pilipovic, Scarpalezos and Valmorin [B4], of "Cl class”algebra: G¥ introduced by Marti [B(],
which are subalgebras of G, of "regular Gevrey ultradistributions” algebra: G2 of Bouzar and
Benmeriem [fj] which is a subalgebra of G, the ”generalized Gevrey ultradistributions”. In
these examples, the aim is always to perform the B-frequential microlocalization of generalized
functions from the starting algebra A4 (2), when B is G4, Glor G and A is G or G°. All these
cases are special cases of the more general one obtained when taking A4 = G" which extends the
Colombeau algebra G and B = G"™ which generalizes all the previous regularity cases. The
Fourier transform is still used to characterize the B-regularity with the corresponding constraints.
But this is not so easy or natural. For instance, in [BJ] one starts by giving a characterization of
local GE-regularity by means of some sequence u;, of generalized functions with compact support
whose the Fourier transform wy, verifies an estimate involving a special sequence (L) ;cy- Indeed
uy, is constructed as product of u € G(§2) and a suitable cutoff sequence X}, whose derivatives are
controled up to the order k. This leads to define the GL_wave front set of a generalized function:
WFgL (u) C 2 x (R™\ 0) and prove, by refining the cutoff sequence X}, that its projection on 2
is the GF-singular support of u. Then, WFgL (u) gives a spectral decomposition of sing supp” u.
A generalization of these results to the case of local G -regularity of elements in G" (Q) is
given in [[[3J). They lead to define the G""*-wave front set of G"-generalized functions.

These sophisticated constructions give a synthetic description of the frequential microanalysis
but the proofs seem to tell that the Fourier transform is not really the good tool to perform this
description in the above cases. Perhaps the Fourier-Bros-lagolnitzer transform would permit to
give a better approach of the problem in the future. For the analytic generalized wave front
set, we also can think of refering to boundary values techniques which embed distributions into
hyperfunctions. But we don’t expect results about nonlinear cases in these ways.

We recall here that generalized functions in the initial definition (sections of the sheaf G) are
classes of families (u.)_ of classical functions. But in the definitions of generalized (frequential)
wave front set considered above (when B is G, QR, GA or QL), the parameter ¢ does not
play a specific role. It has only to ensure the correct use of some notions as regularity, rapid
decrease, analyticity, and so on in the definition of the different algebras under consideration.
For example the generalized wave front set of any Dirac-delta function A in the generalized
framework is exactly the same as the classical wave front set of the distribution §. It is still the
same as the generalized wave front set of any power A™ of A without possibility to compare
them. The main reason lies in the structure of Fourier transform. A paradigmatic alternative
can be found in the concept of asymptotic analysis.

The idea of an "asymptotic” analysis [l4, R, B]] of u = [u.] € A (Q) = G(Q) is the following.
Let F be a subsheaf of vector spaces (or algebras) of G. One defines first the sheaf B such that,
for any open set V' in R™, B(V) is the space of elements u = [u;] € A(V) such that u. has a
limit in F (V) when ¢ tends to 0. Then (’)_g (u) is the set of all z € Q such that u agrees with
a section of B above some neighbourhood of x. The F-singular (or B-singular) support of u is
Q\(’)g (u). For fixed x and u, Ny (u) is the set of all » € R such that "u. tends to a section of
F above some neighbourhood of z. The F-singular spectrum of w is the set of all (z,7) € Q xR
such that r € R\ N, (u). It gives a spectral decomposition of the F-singular support of u. As

1
example, take d.(z) = a <£> where p € D(R), ¢ > 0 and [¢ (z)dz = 1. Then, for m > 1,

A™ = [6"] is a generalized function in G(R). Except for m = 1, for which A is associated with
d € D'(R), A™ is not locally associated with an element of D' (V) in any neighbourhood V' of 0.



But, for r > m — 1, [¢"] A™ is locally associated with such an element. It follows that for all m,
the D’-singular support of A™ is {0} but its D’-singular spectrum is the set {(0,0)} if m =1
or {(0,[0,m — 1))} if m > 1. It gives a more precise description of the singularities of A™ that
its D'-singular support and even that its frequential generalized wave front set {(0,R\0)} which
doesn’t depend upon m.

This asymptotic analysis is extended to (C, £, P) algebras. This gives the general asymptotic
framework, in which the net (¢")_ is replaced by any net a satisfying some technical conditions,
leading to the concept of the (a, F)-singular parametric spectrum. The main advantage is that
this asymptotic analysis is compatible with the algebraic structure of the presheaf F asymp-
totically associated to (C, &, P) algebras. Thus the (a, F)-singular asymptotic spectrum inherits
good properties with respect to nonlinear operations when F is a presheaf of topological alge-
bras. Moreover, even when F is a presheaf (or sheaf) of vector spaces (for instance F = D'),
some results on microlocal analysis are still obtained for nonlinear operations (see paragraph
4.3.1) on (a, D')-singular asymptotic spectrum of powers of & functions. In [[4], various examples
of propagation of singularities through nonlinear differential operators are given, connected to
some results of Oberguggenberger, Rauch, Reeds and Travers ([B3, Bd, Bd)).

The paper is organized as follows. In section 2 we introduce the local analysis of generalized
functions. Subsections of 2 give the basic ingredients, some examples in algebraic or duality

theories, and define G -local analysis. G-local analysis of functional sections of £ (gc,@>

and F-local analysis for sections of some (C,&,P) algebra are recalled. Section 3 is devoted to
the frequential microlocal analysis, with characterization of G™® and G -local regularities and
corresponding wave front sets. We also give the result proved in [[L7] on the Fourier transform
characterisation of W Fg(T') when T is a basic functional. The asymptotic microlocal analysis
studied in [[[4] is detailed in section 4, with examples and applications to nonlinear partial
differential equations.

2 The local analysis of generalized functions

The purpose of this section is to localize the singularities of some generalized functions. We
refer the reader to [2(] for more details on the sheaf theory involved in the sequel.

2.1 The basis ingredients

The basis ingredients of such an analysis are very simple and general ; even in this subsection
no algebraic condition is required.

e A is a given sheaf of sets (or presheaf with localization principle (F}) in addition) over a
topological space X.

e B is a given subsheaf (or subpresheaf) of A.

Definition 1 : B-global regularity

For any open set Q) in X, the elements in B (2) are considered as regular, and called B-regular
elements of A(Q).
Definition 2 : B-local regularity

An element u € A(S), where Q is any open set in X, is called B-regular at x € Q if there
exists an open neighbourhood V' of x such that the restriction u |y is in B(V).



Definition 3 : B-regular open set

We denote by Oﬁ (u) the set of all x € Q such that u is B-reqular at . We also can write
O8 (u) = {z € Q,3V € Vy,u |ve B(V)}
V. being the family of all open neighbourhoods of x.
This very simple framework suffices to state the following

Definition 4 : B-singular support

For any section u € A(Q2), Q any open set in X, the B-singular support of u is
S (w) =2\ 04 (u).

Remark 1 (i) The gluing principle (Fy) is not needed to get the notion of B-singular support
of a section u € A(Q). More precisely, when {b} is the constant presheaf defined by a gobal
section of B, the localization principle (F1) is sufficient to prove the following: the set

OV (w)y={zeQ VeV, uly =4v}

is exactly the union Q. (u) of the open subsets of @ on which u agrees with b.
Indeed, (Fy) allows to show that u agrees with b on an open subset O of Q if, and only if, it
agrees with b on an open neighborhood of every point of O. This leads immediately to the required
assertion.
Moreover, Q4 (u) = (’);{f} (u) is the largest open set on which u agrees with b, and the B-singular
support of u is a closed subset of its {b}-singular support Sib} (u) =Q\ OE)} (u).
(ii) When the embedding B — A is a sheaf morphism of abelian groups where 0 denote the
null global section, Silo} (u) =Q\ (9;0} (u) is exactly the support of u in its classical definition.
(13i) In contrast to the situation described above for the support or the {b}-singular support,
we need the gluing principle (F3) if we want to prove that the restriction of u to Oﬁ (u) belongs

to B(O% (u)). We make this precise in the following

Proposition 1 Let u € A(2). Set Q5 (u) = Uier, (4);c; denoting the collection of all open
subsets of Q2 such that ulq, € B(S;). Then, if B is a sheaf (even if A is only a prehesaf),

(i) Q5 (u) is the largest open subset O of Q such that u|o is in B(O);

(i7) Q5 (u) = OF(u) and S§ (u) = @\ QF (v).

Proof. (i) For i € I, set ulg, = f; € B(£;). The family (f;);c; is coherent by assumption:
From (F), there exists f € B(Q5 (u)) such that f|g, = f;. But from (Fy), we have f = u on
Uier€; = Q8 (u). Thus u ‘Qf\(“) € B(Q5 (u)), and Q5 (u) is clearly the largest open subset of
having this property.

(i7) First, OF (u) is clearly an open subset of Q. For z € OF (u), set u |y, = f, € B(V,) for
some suitable neighborhood V,.. The open set OF (u) can be covered by the family (V) €07 (u)°

As the family (f,) is coherent, we get from (F») that there exists f € B <Ume(9ﬁ(u) Vm> such that
flv, = fz. From (F}), we have u = f on Ureos (uy Ve and, therefore, u |QB4(U) € B(O8 (u)). Thus

O% (u) is contained in Q5 (u). Conversely, if 2 € Q5 (u), there exists an open neighborhood V;
of z such that u |y, € B(V,). Thus z € OF (u) and the assertion (ii) holds. m



Remark 2 When A is a sheaf and B a subpresheaf of A, we can associate to B a subsheaf of
A as follows. When Q is an open set of X, we note u € B(x) if u € A(Q) is B-regular at x
according to Definition 2. Set

B.(Q)={ucAQ) |V eQueB(x)}.

Let By be the functor Q — B, (Q). We intend to prove that By is a subsheaf of A. The
presheaf structure of A induces immediately the same one for B. and principle (Fy) is also
fullfiled. To prove that the gluing principle (F3) holds, we consider a collection (§3;);c; of open
subset ; of Q such that Q@ = U;cr€); and a coherent family (ul-)iel of elements u; € By (€;).
First, we can glue the u; into u € A(Q). Now, we have to prove that u € B, (2). For any x € Q
choose i such that x € Q;. Then, we have

Therefore there exists V; C Q;, Vi € V, such that u; |y, € B(V;), from what we deduce
uly, = (ule,) lv; = uily, € B(V;)

which proves that u € B (x) for each x € Q. Then By is a sheaf. In fact it is the sheaf associated
to B in the sense of [24]. Its construction is simplified by using the sheaf structure of A. Roughly
speaking, By is constructed thanks to a local procedure which adds many sections to the B ones.
Then, one wishes to compare the corresponding singular supports of the same u € A (). The
answer is given by the following proposition which shows that the singularities of sections of A
don’t decrease when replacing B by Bi.

Proposition 2 Suppose that A is a sheaf and B a subpresheaf of A. Let B, the subsheaf of A
associated to B. Then, for any section u of A over the open set ) of X we have

S5 (u) = Su (u).

Proof. For u € A(Q), the presheaf mapping: B — B, leads immediately to the set inclusion:
S5 (u) D 8" (u). Conversely, let be z € Oﬁ* (u). There exists V' € V, such that u |y € B, (V).
But as x € V, there exists W € V, NV such that

Then z € OF (u). We have proved the inclusion (’)ﬁ* (u) C OF (u) which gives the converse one
for the respective singular supports and leads to the required equality. m

2.2 Some properties of B-singular support

2.2.1 Elementary algebraic properties

Proposition 3 We suppose that B and A are presheaves of K-vector spaces, (resp. algebras).
Let (uj)1<j<p be any finite family of elements in A(§2) and ()\j)1<j<p any finite family of elements
in K. We have: o

Sil ¥ Au) U SE(uwy).
1<5<p 1<5<p

In the resp. case, we have in addition:

SECTI w)c U SZw).

1<j<p 1<j<p

In particular, if u; = u for 1 < j < p, we have S§(uP) C S§(u).

7



Proof. If x € Q is in L OFf (u;), there exists V; in V, such that u; ‘Vj € B(V;). Thus
<j<p

( > /\ju])
1<5<p

N O0Bu;) c O5( 3 Nuj)  (resp. 1<rjj<p 0% (uj) C Oﬁ( II uj>.

1<5<p 1<j<p 1<5<p

n v, € B( n. Vj), which implies

1 1<j<p 1<j<p

S,V € B(1§?§pvj) (resp. < 11 uj)

1<j<p

The result follows by taking the complementary sets in €. m

2.2.2 B-compatible operators and propagation of singularities

We begin by a general result which doesn’t need algebraic assumptions. Let €2 be a given open
subset of X. A presheaf operator A in A () is defined as a presheaf morphism A (©2) — A ()
compatible with restrictions. More precisely if Og denote the category of all open sets in 2, A
may be given by a collection (Av )y, of mappings Ay : A(V) — A(V) such that for each
V e Oq and u € A(Q) we have: Aq (u)|y = Ay (u|y ). Thus we can simplify the notations
and write A instead Ay when acting on sections over V.

Definition 5 Let A be a presheaf operator in A (2). We say that A is locally B-compatible if for
each triple (x,V,v) € Q x V, x B(V) there exists W € V,,, W C V, such that A (v) |w € B(W).

Proposition 4 Suppose that the assumption given in subsection 2.1 are fulfilled. Let A be a
presheaf operator in A () locally B-compatible. Then we have

SA(A (u)) € SZ(u).

Proof. If 2 € Q belongs to OF (u) there exists V in V, such that u |y € B(V). Then, there
exists W € V,, W C V, such that A (ul|y)|w € B(W). We have

Aulv)lw = (AW |v)lw = A [vaw = A(u) lw -
Then z belongs to O%(A (u)), and we have proved that OF(u) ¢ OF(A(u)). The result
follows by taking the complementary sets in €. m

The following weakened form of locally B-compatibility may be more practical for applica-
tions

Definition 6 A presheaf operator A in A () is said B-compatible if for each open set V' of Q
it maps B (V') into itself.

It is easy to see that a B-compatible operator is locally B-compatible but with the above
definition we can get some useful results. The simplest one concerns the composition product,
with an obvious proof.

Proposition 5 If a presheaf operator A in A(Q) is B-compatible, then for any p € N, the
P

. . #ﬁ . .
composition product AP = Ao Ao ...A is B-compatible.

Adding some algebraic hypothesis leads to the following definitions and results as corollaries
of propositions f] and []. When B is a presheaf of algebras and A a presheaf of vector spaces and
a B-module we recall that the external sheaf product B x A — A extending the usual algebra
product B x B — B is defined for any Q € Ox and (b,u) € B(Q) x.A(Q) by (b,u) — bu € A(Q)
with bu |y =b|y u|y for each open set V in .



Definition 7 We suppose that B is a presheaf of algebras and A a presheaf of vector space and
a B-module. Let b be a given element in B (Q). We define the B-operator of multiplication in
A(Q) by the map A (Q2) — A(Q) such that B (u) = bu.

Proposition 6 B is a presheaf operator B-compatible.

Proof. First, we have for each open set V in
B(u)‘v :bu‘v Zb’\/u‘v ZB(U‘V).

When v is in B(V), the external product b|y v agrees with the standard product in the
algebra B (V') and lies in it. Then, for each pair (V,v) € Oq x B(V), B(v) isin B(V). =

Corollary 7 We keep the same assumption as above and consider a family (ba),cq of elements
in B(Q) and another family of B-compatible operators (Aq),cq in A(2) where A is a set of
indices. Then, for any finite part Ay of A, > boAs is a B-compatible operator in A ().

ac

Proof. For each o € 2y and V open set in 2 we have

boAn (u) |V = bo |V Aq (u) |V = bo |V Aq (u |V) =boAa (u |V) .

When v belongs to B(V), A, (v) belongs to B (V) from the hypothesis on A,. Then, the
external product b, |y A (v) agrees with the standard product in the algebra B (V') and lies in
it. Then, for each pair (V,v) € Oq x B(V), by Aq (v) is in B (V') and it is the same for the finite
sum Y baAy (v). m

acAy

Corollary 8 Let P be the polynomial in A () defined for each u € A(Q) by P(u) = Y. bjul
1<j<p
where bj € B (). We suppose that B and A are presheaves of algebras. Then P is B-compatible.

Proof. It suffices to remark that for each j € N the map A; : u — w is a B-compatible
presheaf operator of A (2). Putting o = j in the above corollary gives the result. m
Collecting all these informations we can summarize the previous results in the following:

Proposition 9 We suppose that B is a presheaf of algebras and A a presheaf of vector spaces
and a B-module. A being a set of indices, let (ba),cq be a family of elements in B (2), (Aa)qen
a family of B-compatible operators in A () and (pa) acy @ family of positive integers. Then,
(i) For any finite part Ao of A, > bo AL is a B-compatible operator in A ().
acy
(1) If A is a presheaf of algebras, u — > by (Aq (1))P is a B-compatible operator in A ().
acp

2.3 Examples

Example 1 : C*-local analysis in D' (Q2)
Let A =D, B=C>®. Then, for any distribution u € D' (Q) where Q is an open set of R™

SS” (u) = sing supp (u)

where sing suppu is, in the Hérmander sense, the closet subset aff all x € Q having no neigh-
bourhood in which the distribution u is smooth.



Example 2 : G*-local analysis in G(Q2)

Let A =G and B = G* the “reqular” subsheaf of G, the sheaf of Colombeau’s generalized
functions. G (Q) is defined as the sections of G () having a representative verifying

VK €Q 3p>0VaeN" sup 0% (z) =0 (e7P) ase — 0.
reK
Then
Sg (u) = sing suppg (u)
where sing suppy u 1s the generalized singular support of u defined in the literature as the set of
all © € Q having no neighbourhood V' such that u |y € G (V).

Example 3 : G%-local analysis in G (1)

In [[3] the G®-regularity is extended into a G one. Starting from a set R of sequences of
positive numbers, G* is defined by the sections u € G (Q) having a representative verifying

VK € Q 3(N))50 € R sup [0%u. ()| = O (¢ Nel) as e — 0.
- zeK

Under certain stability conditions on the set R exposed in [13], G® is a subsheaf of differential
algebras of G and when R consists of the set of all bounded sequences, then GF = G*.
Then o
Sg (u) = sing supp™ (u)

where sing supp’™ u is the set of all x € Q having no neighbourhood V such that u|y€ G* (V).

Example 4 : Local analysis of GX-type

In [Bd] one constructs B = G* as a special reqular sub(pre)sheaf of A = G, extending in a
generalized sense the CL classes of Hormander [B3] containing analytic and Gevrey classes and
constructed from an increasing sequence Ly of positive numbers such that Lo=1 and

k < Ly, Lyt < CLg

for some constant C. When taking Li, = k + 1, we obtain the analytic case G studied in
involving special properties of holomorphic generalized functions which give to a sheq,
involvi jal ti hol hi lized functi hich give to G4 a sh
property.

Example 5 : G»*°-local analysis in G7 ()

In [B] Bouzar and Benmeriem introduce a sheaf of algebra G° # G of Gevrey ultradistribu-

tions with another asymptotic scale than the Colombeau one by replacing the estimate O (¢~)
1 1

1 \m __1 _\P
by O <e6 201) (resp. O (eP) by O <e€ 201) )in the definition of moderate (resp. null)
elements When taking Ly = (k+1)7 they can construct a subpresheaf G7° of G%and give a
study of G**°-singularity.

By choosing R as a regular subset of RI_E, Delcroix has extended the G*°-regularity into the
GR one, and in a work in progress Bouzar replaces the classical regularity by the R-regularity
to extend the regular generalized Gevrey ultradistributions. We follow this way in view of
constructing a general model containing all the previous examples but we have to add two other

. A ..
parameters: an asymptotic scale r = (1)), € (R +) and a sequence Lj, of positive numbers such
that Lo=1 and k < Ly, Liy1 < CLy for some constant C'.
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2.4 G"® and G"™!-local analysis in G" (Q)
2.4.1 The G" sheaf of algebras

Let us consider

o £ = C™ as starting sheaf of algebras, for each open set © in R™, C* (§2) is endowed by
the usual family pg o of seminorms

e A a set of indices left-filtering for the given (partial) order relation <.

e an asymptotic scale 7 = (7)), € (Ri)A such that 1i/1{n rx = 0, (or 7y — 0), that is to say:
for each R-neighbourhood W of 0, there exists Ay € A such that

A<Xd=r1r), W

Define the functors X" (resp. N7): Q — X7 () (resp. N7 (Q)) by
X7 (Q) = {(m)A € [C> ()] VK € Q,Ya € N*, 3N € N, px.a (uy) = O (T;N) for ry — o}
NT(Q) = {(um e [C= () VK € Q,Va € N, ¥m € N, pr.o (uy) = O (1) for ry — o}

it is not difficult to prove with the same techniques as Colombeau ones [fj] that X" and N are
respectively a sheaf of differential algebras and a subsheaf of ideals of X"over the ring

X" (C) = {(S)\)A eCrINeN,|sy|=0 (r;N) for r\ — O}.

Then X" /NT = G" is a priori a factor presheaf of Colombeau type. It is well known that G is
a sheaf and even a fine sheaf. The first assumption (a result from Aragona and Biagioni []) is
based on the existence of a C* partition of unity associated to any open covering of © (due to
the fact that R? is a locally compact Hausdorff space). On the other hand, we can notice that
C® is a fine sheaf because multiplication by a smooth function defines a sheaf homomorphism
in a natural way. Hence the usual topology and C* partition of unity define the required sheaf
partition of unity according to the definition in sheaf theory. This leads very easily to the second
assumption, from the well known result that any sheaf of modules on a fine sheaf is itself a fine
sheaf: it is precisely the case of G which is a sheaf of C* modules. And it is the same for
G" which is a fine sheaf of C* modules and also a sheaf of differential algebras over the ring

X" (C) /NT (C) with
NT(C) ={(s1), € C*,Vm € N,|sy| = O (r}") for 7 — 0} .

2.4.2 The G"® subsheaf of G"

The G™® regularity of G" generalizes the G* regularity of G. We begin by defining a regular
subspace R of R"} in the Delcroix sense M2:

Definition 8 A subspace R of ]le_ is regular if R is non empty and

(1) R is “overstable” by translation and by mazimum
YN eR, V(kk)eN, IN'€R, VneN, N(n+k)+k <N (n),
VN1 € R, VN2 € R, AN € R, Vn € N, max (N; (n),N2(n)) <N (n).
(13) For all Ny and N2 in R, there exists N € R such that

V(I1,lo) € N2, Ny(l) + No(lp) < N (I; +12).

11



Then, for any regular subset R of ]RJNr we can set

xR (Q) = {(um e [C= () VK € Q,IN € R,Ya € N, px.o (1) = O <r;N<‘“'>> for y — o}

NTR(Q) = {(um € [C® () VK € Q,Vm € R,Va € N" py o (uy) = O (TT““") for 7y, — o} .

Proposition 10

i) For any reqular subspace R of RY, the functor Q — X™R (Q) defines a sheaf of differential
+
algebras over the ring X" (C).
ii) The set N™®(Q) is equal to N™ (). Thus, the functor N : Q — NR(Q) defines a
(i) (€2) is eq (€) , the f (€) defi
sheaf of ideals of the sheaf X ().
ii1) For any reqular subspaces R1 and Ro of RY, with R1 C Ra, the sheaf X™1 (Q) is a
+
subsheaf of the sheaf X™2 (Q).

Proof. The proof follows the same lines as in the case of G algebras (see [[[J], Proposition
1.). We have to verify that our asymptotic scale (ry), involving a more general parametrization
doesn’t modify the results. We deduce assertion (¢) from the assertion (7) in the definition of R.
For the equality N™ (Q) = N7 (Q), take first (uy), € N™* (). For any K € Q, o € N* and
m € N, choose N € R. From (i) in definition § there exists N’ € R such that N +m < N’. Thus

PK.a(uy) = O (V"f\w(lal)> = O (r") and (uy), € N" (). Conversely for given (uy), € N ()
and N € R we have pg o (uy) = O (riv(‘al)) since this estimate holds for all m € N. For the

sheaf properties we have to replace Colombeau’s estimates by X™® estimates and consider only
a finite number of terms by compactness. Thus, from (ii) in definition § we have the results.
The inclusion X™1 (Q) ¢ ARz (Q) prove (iii). =

According to same arguments as those used for G” the presheaf G"% = X"R/NTR =
X™R/NT turns to be a sheaf of differentiable algebras on the ring X™* (C) /N (C) with

N (K) = {(sp), € Cr ¥m e N,|sy| = O (r}) for ry — 0}, K=RorK=C.
Moreover, from (i) in the above proposition, G is a subsheaf of G".
Definition 9 For any reqular subset R of RIE, the sheaf of algebras (subsheaf of G")
G'R — xmR IR
is called the sheaf of (r, R)-reqular algebras of (nonlinear) generalized functions.

Example 6 Tuking A = ¢ € ]0,1], r. = ¢ and R = RY, we recover the sheaf G of Colombeau
simplified algebras.

Taking A = ¢ € ]0,1], r. = ¢ and R = Bo (the set of bounded sequences), we obtain the sheaf
of G*°-generalized functions [[3]. )

Taking A = ¢ € 10,1], r. = e 7 and R = RI_\]H we obtain the sheaf of so called G*-
generalized functions in /@/

2.4.3 The G"*! subpresheaf of G" and (r,R,L)-analysis

Let Li be an increasing sequence of positive numbers such that Lo=1 and

k < Lg, L1 < CLy

12



for some constant C. According to Hérmander definition given in subsection 8.4 of [2J], we shall
denote by C* the sheaf of K-algebras on R” (K = R or C) such that, for any open set Q C R”

cl(Q) = {u =C*(Q) | VK € Q,3¢> 0,YVa € N, 81612 D% (x)| < ¢ (cLa|)|a}

When L; = k + 1, C¥ is the sheaf A of analytical functions. If Ly = (k+1)* a > 1, CF is
the sheaf G, of the Gevrey class of order a.

It is possible to enlarge the above definition into a generalized one involving three parameters

r, R, L corresponding to a choice of some asymptotic scale r = (ry), € (Ri)A, a regular subset
R of Rl}l, and a sequence L = (Ly),.

Definition 10 Let us define the functors X™™F (resp. N7l ). Q s X7RA(Q) (resp. NTRE(Q))
by
ARE (@) = {(un), € [C= (@)]* VK € 3N € R,3e > 0,3x € A

Va € N, VA < N\ : su}g | D%y (z)] < C’I“;N(‘O{D (cLa|)|a} ,
S
NTRL(Q) = AP RL( Q) NNT(Q) .

Lemma 11 X"RL is q subsheaf of X", N"RL is a sheaf of ideals of X"

Proof. For each Q, X"% () is a subalgebra of X" (Q2), and the restriction and localiza-
tion processes are obvious. Let us try to glue together the bits, giving some family (€;),.;, with

Q= U Qand U; = (u;5), € XL Q) with U; = U; on €; N Q). We begin to define U (z)

1<i<L
as U; (z) when z € Q lies in €;. Clearly U belongs to [C® (Q)]*. Let K € Q. We can cover
K by a finite number of €); : 4,...Q2, such that K = U K;, with K; = K N Q; C ;. This is

1<i<L

possible by choosing €} G Q;,d (9}, ;) < d(K,Q) for 1 <i < p. Then

IN; € R,3c; > 0,3X; € A,V € N", VA < Ag; : sup [D%; 5 (z)] < ciT;Nian (CZ-LM)M
zeK;

From the assumption there exits some Ao € A such that Ay < A\g; and N € R such that
N > N; for 1 <i <p. Set ¢ = maxc;. Then for each o € N™ and A\ < \g we have

1<i<L

sup |D%y (2)] = 3 cr;Ni(\a\) (cL‘a‘)‘al < pcr;N(‘al) (cL‘a|)|a| < CIT;N(\QI) (c/L‘a‘)‘a‘ _
zeK 1<i<p

Thus U belongs to X7 (). It is easy to see that for each Q, N (Q) is an ideal of X% (Q),
and the same proof as above leads to the sheaf structure of N¥. Then we can define a new factor

presheaf of C*-type algebras which is a subpresheaf of G"* and G", according to the definition
of the ideal N""®L (Q) = APRL(Q) NN (Q). =

Definition 11 For any asymptotic scale r = (1)), € (Ri)A, any reqular subset R of RY, and
any sequence L = (Ly,),,, the presheaf of algebras (subpresheaf of G")

gr,’R,L — XT,R,L /NT,R,L

is called the sheaf of (r, R, L)-regular algebras of (nonlinear) generalized functions.
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Example 7 Taking A = ¢ € ]0,1], r. = ¢ , R = Bo (the set of bounded sequences), and some
L = (Lg),, we obtain the presheaf of GX-generalized functions (subpresheaf of G) [B0).
Taking A\ =€ €10,1], 7. =¢ , R = Bo and Ly = k+ 1, we obtain the sheaf of GA-generalized
functions (subsheaf of G) [B4].
1
Taking A = € € ]0,1], r. = e ' R =1DBoand L = (k+1)7, we obtain the presheaf of
G7®-generalized functions (subpresheaf of G7) [@].

Remark 3 We proved that G"™!is a presheaf ; the localization principle (Fy) is not difficult to
prove. However, we lack some suitable partition of unity or other argument which preserve the
X"RL estimates and permit to glue together the bits and get (Fy). But instead of introducing
the sheaf associated to G"™%, one can keep its presheaf structure in the following localization
processes.

Taking A =G" and B = QT’R’L, the QT’R’L—smgulam'ties of u € G"(Q) are localized in

R,L

)(u)

where sing supp(r’R’L)(u) is the set of all x € Q having no neighbourhood V' such that ul|y €

gr,R,L

S (u) = sing supp(r’

GrRL (V). But we cannot prove that Q\sing supp(r’R’L) (u) is the largest open set O such that
u € GVL(O). Due to the lack of the (Fy) principe in lemma 2, we don’t know how to prove
the existence of such an open set.

Remark 4 Following the previous definition 2 of B-local reqularity of an element u € A (), we
can naturally set that u € G"(Q) is locally G~ at x € Q if for some neighbourhood V of z € Q
the restriction |y belongs to GP™L (V), that is to say if for some neighbourhood V of x there
exists a representative (uy)y of u such that (uy|v), belongs to X™™L (V). Let H™ ™1 (Q) be the
set of all u € G" () which are locally G"™ at x € Q. It is not difficult to prove that the sheaf
associated to GP™ is the functor Q +— H"E(Q). It is a subsheaf of algebras of G. But in
the general case, we cannot prove that u € H"™' (Q) has a global representative in X" (Q).
However this is fulfilled when taking r- = e, R = Bo, L, =k + 1, corresponding to the analytic
case studied in [34] involving special properties of holomorphic generalized functions. And then
HRL = GA | the subsheaf of generalized analytic functions of the sheaf G. But when A =G and
B =G4, the QA—singulam'tz'es of u € G(Q) are always localized in

SgA (u) = sing supp™ (u)

where sing supp™ u is the set of all x € Q having no neighbourhood V- such that u|y € G4 (V).
Here, the sheaf structure of G4 provides the following precision: from lemma 2 involving the (Fy)
principe, we can prove that Q\sing supp™ u is also the largest open set O such that u € G4 (O).

2.4.4 Canonical embeddings

Lemma 12 We have the following commutative diagram in which the arrows are canonical
embeddings

CL — (Q°°

! !

gr,R,L N gr,R

Proof. The canonical (pre)sheaf embedding of C* into G"™ (resp. of C* into G"%) is
defined for each open set 2 C R™ in by the canonical map

Cl(Q) — g™l (Q) (resp. C° — G"R): i [uy], with uy = u for A € A
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which is an injective homomorphism of algebras, [uy] being the class of u € CF (Q) (resp.
C™ (£2)) in the factor algebra G"™L (Q) (resp.G™" (©2)). In order to construct the sheaf embed-
ding : grRL _, g*’R, we recall that

XTRE(Q) € XTR(Q) NP (Q) = X (Q) NN (Q)

is a necessary and sufficient condition to embed G"™% (Q) into g (), from which we deduce
the required sheaf embedding. m

Remark 5 When A = ¢ and r. = ¢, we can suppress the symbol r in the previous formulation.
When taking R = Bo, the symbol R becomes co. For example, when we do that simultaneously,
we have

gr — g ;gr,’R — goo ;gr,R,L — gL.
2.5 G-local analysis in £ <gc(Q), @)
2.5.1 Duality in the Colombeau context

Starting from the usual family of semi norms (p;);c; defining the topology of C* (€2) by

pi(f) =pri(f) = sup [0%f (x)]

zeK,|a|<l

the so-called sharp topology of G(Q) [BIJis defined by the family of ultra-pseudo-seminorms
(P;);er such that P; (u) = e~ (%) where vy, is the valuation defined for u = [u.] by

Up, (u) = vp, ((ue),) = sup {b €ER:p;(us) =0 (€b> as € — 0} .
The valuation on the ring C of generalized numbers given for each r = [r.] by
v(r)=wv((re),) =sup {b ER:|u|=0 <€b> as e — O}

leads to the ultra-pseudo-norm on C : |r| L =e v,
It is proved in [[Lf] that a C-linear map 7' : G.(2) — C is continuous for the above topologies
if and only if there exists a finite subset Io C I and a constant C' > 0 such that, for all u € G.(f2)

(T, u)|, < CmaxP; (u).
i€l

In [[7], the topological dual £ (QC(Q), (E) is endowed with the topology of uniform conver-

gence on bounded subsets which is defined by the ultra-pseudo-seminorms

P (T) = sup (T, u)|,
ueB

with B varying in the family of all bounded subsets of G.(9), i.e., for each i € I, supP; (u) < oc.
ueB
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2.5.2 Localization of G-singularities

The sheaf embedding G — L (QC, (E) is defined, for each open set €2 of R™ by the continuous
(as recalled in [[[7]) map
G(O)du— Ty € L(gc(Q),@)

where T, is defined, for v = [u.] € G () and each v = [v,] € G, (), by
(T, v) = [[rue () ve (z)dz] € C

where K is an arbitrary compact set containing suppv in its interior.

From Definition 2.9 in [[7], the G-singular support of T € L (QC(Q), (E) denoted by (singsuppg (T'))
is the complement of the set of all points € €2 such that the restriction of T" to some neighbor-
hood V' of = belongs to G (V). Then we still have with our standard notations (A = £ (gc, (E),

B=0)

singsuppg (T) = SY (T).

£(G..C)

2.6 F-local analysis in (C, £, P)-algebras A (£2)
2.6.1 The algebraic structure of a (C,&,P) algebra

We summarize the construction of the so-called (C, &, P) algebras [[[4, B] which generalize many
cases met in the literature. K is the real or complex field and A a set of indices. C is the factor
ring A/I where I is an ideal of A, a given subring of K. (£,P) is a sheaf of topological K-
algebras on a topological space X. A presheaf of (C, &, P) algebras on X is a presheaf A = H/J
of factor algebras where 7 is an ideal of H, a subsheaf of £*. The sections of H (resp. J) of X
have to verify some estimates given by means of P and A (resp. I).

The above construction needs some technical conditions given in [[[4] on the structure of
C and we suppose that for any open set 2 in X, the algebra £(Q2) is endowed with a family
P(Q) = (pi)icr(a) of semi-norms. Then, we set

H(Q) = Hiae,p) () = {(wnx € [E@)]" | Vi € 1(Q), (pi(un)) € JA]},
T (@) = T, () = { () € [E@) | Vi € 1), (pi(un))y € [Tl }-

The factor H( AP/ J(14,6,7) 1s a presheaf verifying the localization principle (F1) but gen-
erally not the gluing principle (Fz). The element in A(SQ) defined by (ux)yep € Haep)(§2) is
denoted by [uy]. For u € A(Q), the notation (uy)yc, € u means that (ux),c, is a representative
of w.

2.6.2  Association process
We assume further that A is unitary and A is left-filtering for the given (partial) order relation
<. Let us denote by:

e F a given sheaf of topological K-vector spaces (resp. K-algebras) over X containing £ as

a subshealf,
e a a map from R, to Ay such that a(0) =1 (for » € Ry, we denote a (1) by (ax (r)),)-

For (uy)y € H(aep) (£2), we denote by 1i/1{n F(0) ux the limit of (uy), for the F-topology when
it exists. We recall that li/I\n Fovy ux = f € F(Q) iff, for each F-neighbourhood W of f, there

exists A\g € A such that
A<= uy) €W
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We suppose also that we have, for each open subset V C ,

u7(IA,5,73)(V) C {(U)\)A S H(Agﬂp)(V) : lij{n F(V) Ux = 0} .

Now, consider u = [uy] € A(2), » € R4, V an open subset of Q and f € F(V). We say that u
is a (r)-associated to f in V:

if li/r\n F(V) (a)\ (T) U ‘V) = f

In particular, if = 0, u and f are said associated in V. To ensure the independence of the
definition with respect to the representative of u, we must have, for any (nx)x € J(1,.¢7)(€2),
li/r\n Fovyax () maly = 0. As Ji1, ep)(V) is an ideal over A, (ax (r) nx|v)a is in J(1, e p) (V).

Thus, our claim follows from the above assumption.
When taking X = R, F = D', A =]0,1], A=G, V = Q, r = 0, the usual association
between u = [ue] € G () and T € D' () is defined by

a(0) .
u~T <= u ~ T <= lim pq) u =71.
D/(Q) 5_>0 D (Q) €

Using the previous notations and according to the previous assumption we have, for any open
set 2 in X

Taner (@) € AF (@) = { (1) € Hiaep)(©) + T o) a =0}
Set
Fa(Q) = {u € AQ) | F(ur), €u, If € F(Q) : li/r\n F(Q) Ur = f}

F4(82) is well defined because if (1)), belongs to J(1, ¢ p)(£2), we have li/r\n F(@) M = 0. Moreover,

F4 is a subpresheaf of vector spaces (resp. algebras) of A. Roughly speaking, it is the presheaf
whose sections above some open set € are the generalized functions in A4 (Q2) associated to an
element of F (2).

2.6.3 Localization of F-singularities

We refer to definition and results given in section 2 and take here B = F4. When u belongs
to A (), we can consider the set 0% (u) (= OF (u)) of all z € Q having a neighborhood V' on
which w is associated to f € F (V), that is:

Oh(w)={zecQ |IVeV,:uly € FalV)},

V., being the set of all the neighborhoods of x. This leads to the following definition: The
F-singular support of u € A(f) is denoted S (u) and defined as

Sk (u) = N0 (u).
Since the support of u € A() is defined by
supp(u) = Q\O4 (u) with Oq(u)={x€Q|IV eV, :uly =0},

it is clear that S (u) is a closed subset containing supp(u).
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2.6.4 Some results

We can directly deduce the algebraic properties of 8% (u) (see [[4]) from subsection 2.2. For
the differential ones we suppose that F is a sheaf of topological differential vector spaces, with
continuous differentiation, admitting £ as a subsheaf of topological differential algebras. Then
the presheaf A is also a presheaf of differential algebras with, for any o € N” and u € A (),

0% = [0%uy], where (uy), is any representative of u.

The independence of 3*u on the choice of representative follows directly from the definition of
J(14,6,p)-) The behaviour of 8% (u) under differential operations is linked to the following

Proposition 13 Under the above hypothesis 0% is a F 4-compatible presheaf operator of A ().

Proof. Let V be any open set of 2. We have
Fa(V) = {v e A(V) | F(va), €v, Af e F(V) li/r\n F(V) VA = f}

Le be v € F4(V) Then 0%v has a representative 0%v), verifying
li[{n F(V) 0%y = 6°‘f S f(V)

and 0%v is in F4(V). =
This result permits to obtain in the following subsection all the expected results on the
propagation of local F 4-singularities under differential operations.

Example 8 Taking £ = C*; F =D'; A= G leads to the D'-singular support of an element of
the Colombeau algebra. this notion is complementary to the usual concept of local association in
the Colombeau sense. We refer the reader to [2§, [29] for more details.

Example 9 Those following examples are considered for X =R?%, £ =C® and A= G.

(i) Take u € oq (C*(Q)), where oq : C*(Q) — G () is the well known canonical embedding.
Then S§" (u) =0, for all p € N.

(i) Take p € D (R), with [ ¢ (z) dz =1, and set - (z) = Lo (z/e). As p. 1?%]13) 5, we have:

SgD/ ([pe]) = {0}. We note also that Sgcp ([pe]) = {0}. (Indeed, for any K € R* =R\ {0} and ¢
small enough, @, is null on K and, therefore, . C%g ): 0.)
(t43) Take u = [u;] with uc(x) = esin(z/e). We have, for all K € R, limpg o(u:) = 0, for all

K € R, whereas limpg 1 (u:) does not exists, for | > 1. Therefore
S w)y =0, 8§ (u)=R.
Remark that we have, for any (p,q) € NZ, with p < q, and u € G, Sgp (u) C qu (u).

Example 10 : D _,-local analysis in G7 (2)

In [21] Gramchev proves the embedding of some spaces of ultradistributions in G (Q). In
[8] Benmeriem and Bouzar prove the imbedding of Ef,_, () (the Gevrey ultradistibutions with
compact support and 30 — 1 indice) into G () (which is in fact in relation with the index
20 —1). The imbeding of Df,_1(Q2) (the Gevrey ultradistibution of 30 — 1 indice) into G7 () is
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also proved. However if u € G7 () it is possible to define an association with an ultradistribution
(for example of D5, _1(2)) in the following way: for T € Di () and [u:] = u € G7 (Q) we set
un~T <= limouszT.

£ g
/
D351

It suffices to verify that 3" ') =< (ue), € 5, (), lim Jue = 0 p contains N°(Q2) to en-

£ —

3o—1
sure that the previous definition don’t depends upon the representative (u.). of v € G7 ().
The subspace of G* (Q2), the Gevrey generalized ultradistributions associated to ultradistributions

Déofl (Q) is

/
P3o_1

Déa_l’gg(Q) 1s well defined because the limit doesn’t depend on the representative of u.

One can consider Ogé"*l(u) “the set of all x in the neighbourhood of which wu is associated
to an ultradistribution”
Ogir=(u) = { € Q/IV € V() :u |y € Dh,_, ()}
where V(z) is the set of all the open neighbourhoods of x. The D§,_,-asymptotic singular support
of u € G° () is obtained by taking A= G and B =D}, _,

(u).

/
DSO‘ 1

_ Dy,
Sga"H(u) = A\OG™!

2.7 B-compatibility of differential or pseudo-differential operators

Here is a list of particular cases of subpresheaf B of presheaf A of interest to us:

B: (> CL gL goo gR ga,oo gr,R gr,R,L g ]:A
A:D D G G G ¢ G g L(QC(Q),@) A

B is always a presheaf (or a sheaf) of differential algebras and A is a differential B-module
with a differentiation 0% (o € 2 = N") extending the B-one. Then in each case and each open
set V in Q (open set of X = R") it is easy to prove that 0%v maps B (V) into itself. Thus 9%
is a presheaf operator B-compatible in A () according to Definition . If we give now a family
(ba) qenn Of elements in B (€2), then, P(0)= > 0,0 is a B-compatible operator in A (£2) from

laf<m

Corollary .
Moreover at least in some cases, when A is D', (resp.G, £ <gc( ) ~>) a pseudo-differential

operator A can be defined in A (Q). Setting b(z,&) = (2m)™" Y b, (z) (i€)* when b, belongs to
la|<m
C*> (), the differential operator P(9)= > bna0“ verifying the formula

laf<m

P(O)u () = [rne™b(x, )(E)dE = [ [opne’ @ b(x, &)uly)dyde

maps D () into C* (2). Via the theory of oscillatory integrals, the above formula can be
extended into

= [ Jan€ T a(z, y, )u(y)dyde
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which defines a pseudo-differential operator A [RJ] when a = a(z,y,¢) in S5 (2 x Q2 x R™) of
Hoérmander symbols of order m and type (p,d). A extends continuously to a map &' () —
D' (Q).

We can find (for example in [[1]) a definition of generalized pseudo-differential operators with
generalized symbols extending the classical one. The set S;’L (€ x R™) of generalized symbols
can be described [[[7] as the algebra Gsms (2 x R™) based on 85 (2 x R") and obtained as a Gp-

module by choosing F = o0 (82 x R") Then, the pseudo dlﬁerentlal operator with generalized
symbols b € §;’?§ (Q x R™) is the map G. () — G () given by

Au = [, e b(z, U (€)dE = [fRneixgbe(waf)ae(f)df

One can define more generally pseudo differential operators by means of symbols in gg% (2 x 2 xR
and generalized oscillatory integrals (see [[[5]). Such an operator A is given by

A= [ fo e a(w,y, uly)dyde = | [ formne (@, y, uc (y)dyd]

which defines a generalized function in G (2) when w is in G, (£2).
We can find in ([[]], def. 2.5) an extension of the action of A to the dual £ <QC(Q),@>
namely

AT (u) =T ("Au) ,u € Ge(Q)
where ‘A (the transpose of A) is the pseudo-differential operator defined by

When A is D', (resp.G, L <QC(Q),@)), it is proved in each case that if A is a properly

supported pseudo-differential operator, it maps A (Q) into itself. Moreover, when B is C*,
(resp.G*°, G), for each open set V in Q, A maps B (V) into itself. In other words A is a
B-compatible operator in A (£2).

Therefore proposition ] allows to deduce the classical inclusions

SA(P(d)u) € S (u)
or SB(Au) ¢ SE(u)

from the presheaf property of an operator B-compatible.
Through Proposition f], we can even obtain some non linear results, when A is a presheaf of
algebras as

SA( X ba (0%u)™) € S (u)

laj<m

or S5 (Au)P ¢ SE(u)

where p is any positive integer and (pa),en- any given family of positive integers.

Remark 6 In Definition 1.3 of [i4], a functional T € L <gc Q) ,(E) is said to be basic if it
is of the form (T,u) = [(T.,uc)] where (T;)
following condition

is a net of distributions in D' (Q) satisfying the

£

VK €Q3jeNdnpe (0,1] Yue Dk (Q) Ve € (0,n]|T: (u)] < sup 0% (x)].
zeK, |a|<j
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When T is a basic functional in L <QC(Q),@), Theorem 2.10 proves that the inclusion

singsuppg (AT') C singsuppg (T)

is valid for any pseudo differential operator A with amplitude in 5’;“5 (Q x Q x R™) and a fortiori
when A is properly supported. In this case our above remark on the presheaf property of an

operator B-compatible shows that this result remains valid for any functional in £ (G, (2),C).

3 The frequential microlocal analysis

After a short overview of classical results in distribution theory and propagation of singularities
under linear and nonlinear operators, we will give a characterisation of the local regularity in
the two more general cases of generalized functions which summarize the other ones. This leads
to the definition of corresponding wave front sets which gives a general frequential microanalysis
of generalized singularities.

3.1 Microlocal analysis in distribution spaces
3.1.1 Wave front set and microlocal regularity of product

As it is recalled in Introduction it follows from Lemma 8.1.1. in [PJ that if Q is an open set in
R™ and u € D' (), one can set: X, (u) = QZ (Pu); @ € D(N), ¢ (x) # 0 and define the wave
front set of u as
WE(u) = {(z,§) € 2 x (R"™\0);€ € Xy (u)} .

Then, if u € D' (Q) and (z,£) € Q x (R™\0), u is said to be in Hé‘s’)c at (z,¢) if (z,€) ¢
W F(u —wv) for some v € Hy) (R™). The microlocal regularity of products is proved in
Theorem (8.3.3 in [R4]): Let u; € H(y,) (R"), j = 1,2.Then

(1) urug € Hloc) outside W F(uy) if s1 >n/2 and s1 + s2 > n/2.

(s2
(13) ugug € Hfg)c outside W F(uy) if s1 <n/2 and s; +s2 —n/2>s>0.
(141) urug € Hé:f+szfn/2) outside WF (uy) UW F(ug) if s1+ s2 > 0.

3.1.2 Pseudo-differential operators

We recall that the space S} (R™ x R™) of symbols of order m and type (p,d) consist in all
a € C* (R™ x R") such that

OL0F al,€)| < Cap(1 + g0+

with 0 <0 < p < 1. We consider here the simplified case 8™ = S7; which defines a pseudo-
differential operator (belonging to OpS™)

a (@, D)u(x) = [e""%a(z,€) 0 (€) de
which maps continuously S (R™) into L (R™)NC (R™). It extends for every s € R to a continuous
map H(s) (Rn) - H(sfm) (Rn)

If Q is open then a continuous linear map A : D (2) — C*(Q) is said to be a pseudo-
differential operator of order m in £ (an element of U™ (Q)) if for any ¢,1) € D (£2) the operator
S(R™) 3> u— pA(Yu) is in OpS™. If u € £ () and A € ¥ (), then Au € D' (Q) is well
defined and leads to the inclusion

sing suppAu C sing suppu
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which is the projection of the microlocal property
WF (Au) C WF (u)

when A is properly supported and u belongs to D’ (Q).
The propagation of non characteristic regularity for semi-linear equations studied in [BH] is
given by

Theorem (8.4.13 in [P4]): Let u € Hé‘s’ik) (), where 2 is an open set in R™ and s > n/2, be

a solution of the semi-linear equation
P(z, D)u = f (2, Jyu)

where Jyu = (8“u)‘a§k|, f and the coefficients of P are C* and k is smaller than the order m

of P(z,D). If P is noncharacteristic at (x,€) € Q x (R™\0), it follows that u € Hé(2)§+mfn/2)
at (x,§).

3.1.3 Application of paradifferential calculus

The paradifferentiel calculus of Bony [[] is based on some regularization of non smooth symbols.
We don’t intend to develop this theory here but look at it as a powerfull tool to prove good
results for nonlinear problems such as the following

Theorem (10.3.6 in [R4]): Let u € Hég-cl—m—l/Z) (Q), s > max((n —1) /2, n/4), and assume that

u verifies the quasilinear differential equation

> aa(x, Jpm—1u(x))0% + c(z, Jp—1u(z)) =

|a|=m

where aq and ¢ are C*°. Then it follows that u € Hé(2)§+mfn/2) at every non characteristic point
(z,€).

3.1.4 Propagation of singularities

Roughly speaking we know that under some conditions for linear or pseudo-differential equations,
the singularities of solutions propagate along bicharacteristics This remains valid for nonlinear
equations in the sense of
Theorem (11.4.1 in R4): Let u € Hf;’im) (Q),s > n/2 + 1,be a real valued solution of the
differential equation

F(z, Jpu(z)) =0

where F € C®. If o < 2s —n/2, then the set of (xz,n) € Q x (R™\0) where u ¢ Hégim—l)
is contained in the characteristic set and it is invariant under the Hamilton flow defined by the
principal symbol of the linearized equation.

Beals [, f] has studied the case of second order hyperbolic equations (extended by [ff] to

arbitrary order) for which we can give a special version as

Theorem (11.5.10 in [B4]: Let u € Hé‘s’)c (Q),s > n/2 be a solution of of the hyperbolic second
order semi-linear equation

P(z,0) = f(z,u)
where f € C®. If u € Hég)c at a characteristic point (x,£) and if s <o < 3s—n+ 1,it follows
that u € Hé‘s’)c at the bicharacteristic ~y through (z,§).
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3.2 The frequential microlocal analysis in G"

We refer the reader to [13, for more details.

3.2.1 Characterization of G""®-local regularity

We consider an open subset Qof R? and the Schwartz space S (2) of rapidly decreasing functions
defined on €2, endowed with the family of seminorms Q () = (,uq@)(q a)enxne defined by

fga (f) = sup (1 + [z])?[0%f (z)|.
€

The space of "rough”rapidly decreasing functions can be defined as

5.(Q) = {f € C(Q) [Vg €N, pgo(f) < +00}.

In order to make easier the comparison between the distributional case and the generalized
case, we begin by recalling the classical theorem and complete it by some equivalent statements
given in the following result (Theorem 16 in [[2]): for u in & (R™), the following equivalences

hold:
(i) uwe C>®(R") ( .7:(u) € S (R")
(iv) F(u) € (9' (R")
< (v) .7:()6(’)’ (R™).
where F is the classical Fourier transform defined as topological automorphism of S (]Rd). The
result is based on the following inclusions

S(R") C S, (R") C O (R") € O¢ (R,
F (€' (R™) € O¢ (R"); O¢ (R™) N O (R™) = S (R).

The Fourier transform has been extended to some spaces of rapidly decreasing generalized
functions (like G5 (R™) = Xs (R") /Ns (R™)) and more completely described in [[J] in the frame-
work of R-regular spaces. We can point out that in any framework, the elements with compact
support have always a Fourier transform.

Definition 12 Let R be a reqular subset of RI_\]F and € an open subset or R™. Set

AGR ) = {(f). €S, (@ [IN €R, Vg eN, g (f) =0 (@) asx—0},
NE (@ = { (). e so@ ‘wv €RY, Vg e N, pigo(f) =0 (1) as A —0}.

One can show that Xg’*R () is a subalgebra of S, (Q)(O’l] and that Ng () is an ideal of
Xg’*R (©). (The proof is similar to that of Proposition 1 in [[L2]).

Definition 13 The algebra G2 (Q) = XQ*R () /N () is called the algebra of (r,R)-regular
rough rapidly decreasing generalized functions.

Theorem 14 Let 29 € 2 C R" and u € G"(Q). Then, u is G"' at z¢ (in the sense of

deﬁmtzon 2) iff there exist some neighbourhood W of xo, some ¢ € D (W), ¢ (x0) # 0, such that
R

ou € Gg¥ (R™)
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Proof. (Sketch). Let u be an element in G” (Q) G"* at x¢. There exists a neighbourhood
W of zg such that u|y € G"® (W). We can extend any given ¢ € D (W), o (z¢) # 0, into
@ € D (R?) such that $u € Gk (RY) = Gc (R")NG™R (R™). We follow the arguments of Theorem
22 in [[1J], replacing the e-estimates by the ry-ones. This leads to prove that ;5-1\1 € QST;R (R™).
Conversely, this last assertion with the above hypothesis permits to prove that pu € gnr (R™),
and then there exits a neighbourhood V of zy such that u|y € G"® (V). In this last part
one needs to define an inverse Fourier transform F~! in QZ;R (R™) for which one introduces the
space ggR (R™) of (r,R)-regular bounded generalized functions such that F~! (gg;R (R")) C

QER (R™). The result follows from the equality QER (R") NG. (R") = G"R (R") NG, (R"). m

3.2.2 The G""-generalized wave front set

Definition 14 An element u € G" () is said to be microlocally (r, R)-regular at (xg,&) € 2 X
(R\0) (we set: u € GNR (x0,&)) if there exist some neighbourhood W of xg, some ¢ € D (W),

¢ (zg) # 0, some conic neighborhood T of &y such that pu € Ggrk (T).

Definition 15 The G"®-generalized wave front set of u € G" (Q), denoted by WFR) (u) is the
complement in Q x (R™\0) of the set of all pairs (x9,&o) such that u is microlocally (r, R)-regular

at (an 50) .
Theorem 15 The projection of WFTR) (u) in Q is equal to sing supp”"™ (u).

The proof follows from the arguments involved in [R3] using lemma 8.1.1.

Example 11 taking A = € € ]0,1], r. = ¢ and R = Bo (the set of bounded sequences), we
obtain the G microlocal analysis of elements in G , @/
taking A\ = ¢ €10,1] and r. = €, we obtain for any R the G& microlocal analysis of elements

in G [1g.

3.2.3 Characterization of G"*'-local regularity

When starting from previous cases (like G, G® or G¥) the problem is to change simultaneously
the asymptotic scale into a new one, and the G*°-regularity subordinated to L-conditions into
GR-regularity subordinated to L-conditions. To do that we have to mix carefully the techniques
used in [[1] and [BO]. This study is done in [L3]. In this subsection, we only give the definitions
and results without proofs.

Theorem Let z9 € 2 C R" and u € G" (). Then, u is G"™ at xq (in the sense of Definition
2) iff there exist some neighbourhood W of xq, a compact K such W C K € 2, a sequence of
functions xy each in D () and valued in [0, 1] with xpu =u on W, a representative (uy),of
u, a reqular sequence N € R, a positive constant ¢, and Ao € A such that for all £ € R

(*) k€ NVA < do, [l @n (€)] < ery VP (eLi)®

3.2.4 The gr’RvL—generalized wave front set

Definition 16 An element w € G" () is said to be microlocally (r,R,L)-regular at (xo,&) €
Qx (R™\0) (we set: u € GTL (20, &) ) if there exist a neighborhood W of zg, a conic neighborhood
I' of &, a sequence (uyp = xpu) ey of generalized functions where each Xy, is valued in [0, 1] and
is in Di (), with W C K € Q, uy, being equal to w in W, a sequence N € R, a positive constant
¢, and \g € A such that (1) holds when & € T.
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Definition 17 The G"R-L-generalized wave front set of ue G" (Q), denoted by WFRL) (v)
is the complement in Q x (R™\0) of the set of all pairs (xo,&) such that w is microlocally
(r, R, L)-regular at (x9,&p).

W FRL () is a closed subset of Q x (R™\0), and its projection in € is given by the following
result:
Th Th . . (T,'R,L) . . . (r,R,L)

eorem The projection of WF (u) in Q is equal to sing supp (u) .

Example 12 Taking A =€ € 10,1, r. = , R = Bo (the set of bounded sequences), we obtain
for any L the G* microlocal analysis of elements in G [34].

Taking A =€ €)0,1], r. =¢ , R = Bo and Lj, = k + 1, we get the G microlocal analysis of
elements in G [34].

1
Taking X\ = € €10,1], 7. = e 7', R = Bo and Ly, = (k + 1)°, we obtain the G micolocal
analysis of elements in G° [4].

3.2.5 Propagation of singularities under differential (or pseudo-differential) oper-
ators

a) We can summarize the first investigations in the following results proved in [[LJ]
Proposition Suppose that (a,u) is in G" (2) x G" (Q), we have

(i) If a € GPR(Q) (resp. a € GPRL(Q)), then WFR) (au) ¢ WETR) (v)

(resp. WEFTRL) (qu) ¢ WFERL) (y))

(i3) WETR) (9%u) € WFTR) (u) and WETRL) (9%y) ¢ WFERL) (y).
Proposition Let P (0) = Y a,0 a differential operator in G" (Q).

|| <m

If the coefficients ay, lie in G™™ (Q) (resp. in GT™F (Q)), then we have
WFTR) (P (9)u) € WETR) (4) (resp. WFERE) (P (9)u) c WFTRL) (y)

b) In the special case of G singularities of G, we can quote the results based on pseudodifferential
operators and pseudodifferential techniques. In [[§] analogues of Hérmander definition of the
distributional wave front set given in [RJ] are obtained by characterizations of generalized wave
front set in terms of intersection over some non-ellipticity domains. This intersection is taken
over all slow scale pseudo-differential operators a € SZZ (€ x R™) (def. 1.1) verifying some other
regularity conditions. More precisely, if Flls.(a) denote the set of all (z,£) € Q x T*(2)\0
where a is slow scale micro-elliptic (def. 1.2), Theorem 2.1 proves that for all u € G (Q)
WFy(u) = WFs(u) := a(x,D)eQTWO(Q)Ellsc (a)°
a(z,D)ueG>(Q)

where pr\I’O (©2) denote the set of all properly supported slow scale operators of order 0.
Another pseudo-differential characterisation of WF, (u) is given by Theorem 2.1.1 which
proves that for all u € G ()
WEF, (u) =NChar (A)

where the intersection is taken over all classical properly supported classical pseudo-differential
operators A such that Au belongs to G* (Q).

Following these characterizations some refined results on propagation of singularities can
be obtained. For example, Theorem 3.1 proves that if A = a(x, D) is a properly supported
pseudo-differential operator with slow scale symbol and u € G (2)

WFy (Au) C WE, (u) C WE, (Au) U Ell. (a)°.

25



3.3 The frequential microlocal analysis in £ (QC(Q), @)

3.3.1 The generalized wave front set WFEg (1)

Inspired by the results and definitions of [Lg] recalled in the previous subsection, Garetto (Def.
3.3, [I7]) defines the G-wave front set of a functional T' € £ (QC(Q), (E) as

WFg (T) = N Bl (a)°.
g (T) e o) (a)

a(z,D)TegG(Q)

And even the G>®-wave front set of T' is defined in the same way by replacing G (Q2) by
G* (Q). Proposition 3.5 shows that the projection on 2 of WFEg (T) is exactly singsuppgT .
When A is a properly supported pseudo-differential operator with symbol a € g;’f(; (Q x R™),
the inclusion
WFg (AT) C WFg (T)

can be refined by introducting the concept of G-microsupport of a, denoted psuppg (a). It is
the complement of all (z,&) € Q x T (Q2)\0 where a is G-smoothing (Def.3.6). Then we have
(Corollary 3.9)

WFEg(a(x,D)T) C WFg(T) N psuppg (a) .

This result is reformulated in terms of G-microsupport of the operator A (usuppg (A)) in the
form
WFg (AT) C WFg (T) N psuppg (A)

where the G-microsupport of A is defined (Def.3.11) by

psuppg (A) == N psuppg (a).
a€Ss (IXR™)

a(z,D)=A

3.3.2 Fourier transform characterisation of T' and propagation of singularities

When ¢ € D () and T € D’ (2), we recall that the regularity of ¢T can be measured by the
rapid decay of its Fourier transform in some conic region I' C R™\0. Following this idea, Garetto
introduces the subset Gs o (I') of G, (R™) (algebra of tempered generalized functions) such that

Gso(l) = {u = [u] € G, (R") VI € R 3N € N sup (1 + |¢])! |ue (z)] = O (e) ase — O}
zel

which is similar to G&% (T') introduced in Definition [[3
This leads to the Fourier transform characterization of T' given in

Theorem 3.15 of [[§] (or 3.10 of [[q)): Let T be a basic functional in L <gc Q) ,(E) Then

(x,8) ¢ WFg(T) if and only if there exist a conic neighbourhood of & and a cutoff function
® € D () with ® (x) =1 such that

F(®T) C Gsp(T).

Then an extension of Theorem 4.1 in [IF] follows:
Theorem 4.1 in [[7: If A= a(x,D)is a properly supported pseudo-differential operator with

symbol a € SZ (Q xR™) and T a basic functional in L (QC Q) ,(6), then

W Fg (AT) C WEg (T) C WFg (AT) U Ell,, (a)° .
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4 The asymptotic microlocal analysis

Let © be an open set in X. Fix u = [uy] € A(R) and x € Q. The idea of the (a, F)-microlocal
analysis is the following: (u)), may not tend to a section of F above a neighborhood of z, that
is, there may not exist V € V, and f € F (V) such that li/I\n F(v) ux = [. Nevertheless, in this
case, there may exist V€ V,, r > 0 and f € F (V) such that li/r\n Fvy ax(r)uy = f, that is
[ax(r)uy |v] is in the subspace (resp. subalgebra) F4(V) of A(V') introduced in Subsection 2.5.
These preliminary remarks lead to the following concept and results which we summarize from

the results given in 2§, P9, [4].

4.1 The (a, F)-singular parametric spectrum

We recall that a is a map from Ry to A4 such that a(0) = 1 and F is a presheaf of topological
vector spaces (or topological algebras). For any open subset Q of X, u = [uy] € A(Q) and x € Q,
set

N(a,]:),a,‘ (u) = {T’GR+ | ElVGVm, Elfej:(V) . ll/I\n .'F(V) ((l)\(’l“)uAh/):f}
—{reRy | Ve [m(mlv] e £V},

It is easy to check that N, r) ., (u) does not depend on the representative of u. If no confusion
may arise, we shall simply write

N(a,]—'),:v (u) = Nx(u)
Assume that:
(a) For all A € A

V(r,s) € Ry, ax(r+s) <ax(r)a(s),

and, for all » € R\ {0}, the net (ay (7)), converges to 0 in K
(b) F is a presheaf of Hausdorff locally convex topological vector spaces.

Then, from Theorem 7 in [[4] we have, for u € A(Q):

(1) If r € Ny(u), then [r,4+00) is included in N, (u). Moreover, for all s > r, there exists
V €V, such that: li/r\n Fv) (@x(s)ux|y) = 0. Consequently, N, (u) is either empty, or a sub-

interval of R,..
(1) More precisely, suppose that for z € €, there exist r € Ry, V € V, and f € F(V),
nonzero on each neighborhood of x included in V, such that h/Ixn 7oy (ax(r)ux|y) = f. Then

Ny (u) = [r,4+00) .
(73i) In the situation of (i) and (ii), we have that 0 € N,(u) iff Ny(u) = Ry. Moreover, if
one of these assertions holds, the limits 1i[1£n F(v) (ax(s) ux|v) can be non null only for s = 0.

Now, we set

E(a,}'),x(u) = Eﬂc(u) = R4 \N(u),
R, 7).z (u) = Ry(u) = inf Ny (u).

According to the previous remarks and comments, ¥, r) »(u) is an interval of Ry of the form
[0, R, 7). (u)) or [0, R, 7). (u)], the empty set, or Ry. This leads to the following

Definition (4 in [[4]) The (a,F)-singular spectrum of u € A(Q) is the set

S (w) = {(z,r) € A xRy |1 € Ty(u)}.
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Example (4 in [[4]))Set X = R4, £ =C®, F =CP (p € N=NU{+o0}), f € C®(Q). Set
u = [(e_lf)e] and v = [(e7!|ln¢| f)e] in A(Q) =G (Q). Then, for all x € R,

Nig,crye (W) = [1,4+00) ,  Ngcoryz (v) = (1,4+00) ,  Rigcr) e (u) = Rg,cr)e (v) = 1.

Remark (5 in [[4]) We have: (g 7 ,(u) = @ iff Nigr)o(u) =Ry and, according to Theorem T
in [[4], iff 0 € N 7). (), that is, there exist (V, f) € Vo xF(V) such that li/{n Fvy (@x(0)ux|v) =

f- As ax(0) = 1, this last assertion is equivalent to x € O (u). Thus X 7).(u) = @ iff
This remark implies directly the:

Proposition (8 in [[4]) The projection of the (a,F)-singular spectrum of u on Q is the F-
singular support of wu.

4.2 Some properties of the (a, F)-singular parametric spectrum

Notation For u = [uy] € A(Q), li/r\n Fovy (@x(r)ux|y) € F (V) means that there exists f €
F (V) such that li/r\n 7o) (ax(r)uxlv) = f.

4.2.1 Linear and differential properties
It is easy to prove that for any u,v € A(2), we have
S (u+0) € 8P () ST (v).
As a corollary: for any u, ug, u; in A(€Q) with
(@) u=up+u (i) S () = 2,
we have: Sff’f) (u) = Sff’f) (uq).

Assume that F is a sheaf of topological differential vector spaces, with continuous differen-
tiation, admitting £ as a subsheaf of topological differential algebras. Then the sheaf A is also
a sheaf of differential algebras with, for any o € N and u € A (Q),

0% = [0%uy], where (uy), is any representative of u.

The independence of 3%u on the choice of representative follows directly from the definition of
T(1a..p)-) 1t follows that if w is in A(€) and g in (), for all 0%, o € N, we have

S (go*u) c SET) (u).
This leads to the more general statement: Let P(9) = Z Co0% be a differential polynomial
laj<m

with coefficients in F(2). For any u € A(Q2), we have

S (P@)u) € ST (w).
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4.2.2 Nonlinear properties

When F is a presheaf of algebras, the (a,F)-singular spectrum inherits new properties with
respect to nonlinear operations. It is the purpose of following results.

Theorem (15 in [[[4)) We suppose that F is a presheaf or algebras. For u and v € A(S), let
D; (1=1,2,3) be the following disjoint sets:

Dy = S{()\(Sh(w) NS4(v) 5 Dy =SH(0)\(S%(u) NSL(v)) 5 Dz =Sk (u) N &G (v).
Then the (a,F)-singular asymptotic spectrum of uv verifies
S (wv)  {(2,Su(u), 2 € D1} U{(2,54(v)), 2 € Do} U{(x, E(u,v)),x € D3}
where (for any x € D3)

[0, sup ¥ (u) + sup X (v)] if ¥z(u) # Ry and ¥,(v) #R
Eolu,v) = { Ry if ¥u(u) = Ry or S,(v) = Ry " ’

Corollary (16 in [[l4)) When F is a presheaf of topological algebras, for u € A()) and p € N*,
we have -
87 () € {(@, Hyo(w)), @ € ST (w)}

[0, psup 3y (u)] if Xp(u) # Ry

where Hp,m(u) = { R, if Em(u) =Ry

4.3 Some examples and applications to partial differential equations

In this subsection we shall give some examples of (a, F)-singular spectra of solutions to nonlinear
partial differential equations given in ([[[4], subsection 4.2). Throughout we shall suppose that
A=]0,1], X =R4, E=C® F=CP (1<p<oo)or F=7D),a.r)=e". The results will hold
for any (C, &, P)-algebra

A=Haer)/T1.ePr)
such that (ac(r)), € A4 for all » € Ry and the hypothesis given in 2.6.2 holds.

4.3.1 On the singular spectrum of powers of the delta function

We can compare the (a, CP)-singular spectrum and the (a,D’)-singular spectrum of powers of
the delta function. Given a mollifier of the form

1
v (T) = ¢ (E>, z € R? where p € D(RY), >0 and [ (z)dr =1,
€ £

its class in A(RY) defines the delta function §(z) as an element of A(R?). Its powers are given
by (m € N)

m m 1 m °
o =[] = [ (2) )
Clearly, the C%-singular spectrum is given by
8@ (5m) = (0,10, md)).

Differentiating ¢ (z) and observing that for each derivative there is a point x at which this
function does not vanish we obtain the (a, C?)-singular spectrum of §™ :

S (E™) = (0.10,md + p)).

29



Given now a test function ¢ € D(R?), we have

m 1 m
[er@ue s = [ g e @i do
thus the (a, D’)-singular spectrum of §™ is
S%’D/)(ém) =g form=1, S%’D/)(ém) = (0,[0,md — d[) for m > 1.

4.3.2 The singular spectrum of solutions to semilinear hyperbolic equations

The singular spectrum of solutions of a semilinear transport problem

Opue(z,t) + Nz, t)0puc(x,t) = F(us(x,t)), zeR, teR
(P2 { Ue(x,0) = upe(z), z€R

where A and F' are smooth functions of their arguments. may decrease or increase with respect
to the one of the data, depending on the function F'. We observe that by a change of coordinates
we may assume without loss of generality that A = 0.

a) For F(uc(x,t)) = —ud(z,t) (the dissipative case: Example 8 in [[4]), the problem (Py) has
the solution

V2t (z) +1 V2t +1/ud (x)
When the initial data are given by a power of the delta function, ug.(x) = ¢*(z), the solution
formula shows that u.(x,t) is a bounded function (uniformly in €) supported on the line {z = 0}.
Thus u.(z,t) converges to zero in D'(Rx]0, c0[), and so

ug(:c, t) _ qu—:(x) _ 1

8¢ (wo) = (0,10,m —1]),  S¢LP(w) = 2.
b) For F(us(x,t)) = /1 +u2(z,t), z€R, t>0 ([4], Example 9), the problem (F) has the

solution
Ue(w,t) = uge(x) cosh t + /1 + ud_(x) sinht.

b1) with a delta function as initial value, that is, upe () = @< () we obtain

/ / we(, ) (2, t) dodt = / / (gp(m) cosht + /2 + ¢2(z) sinht>¢(ex,t) dzdt
~ / / (p(a) cosht + ()] sinh £ (0, 1) s
for ¢» € D(R?). Thus in this case
ST (o) = 8§ () = 2.

by) with the derivative of a delta function as initial value, ug.(z) = ¢.(x), a similar calcula-
tion shows that

// ue(z, t)(x, t) dedt = // (Lp(x) cosht + é\/m sinht)z/;(ax,t) dxdt

and so , /
Si o) =2, SETw = {0, 1> 0,0 <r <1},
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Example 10 in [[[4] shows that it is quite possible for the singular spectrum to increase with
time.
¢) when taking F(u(z,t)) = (uc(z,t) + 1)) log (uc(z,t) + 1), 2 € R, t > 0, the problem (F)
has the solution ,

us(z,t) = (uog(x) + 1)e ,

provided wg. > —1 in which case the function on the right hand side of the differential equation
is smooth in the relevant region. To demonstrate the effect, we take a power of the delta function
as initial value, that is ug-(x) = ¢*(x). Then

SE o) ={(O.r):0<r<m =1}, ST w) ={(0.t,1) :£>0,0 <7 <me' — 1}

4.3.3 Blow-up in finite time

In situations where blow-up in finite time occurs, microlocal asymptotic methods allow to extract
information beyond the point of blow-up. This can be done by regularizing the initial data and
truncating the nonlinear term. This is shown in Example 11 of [@] for a simple situation.

The problem to be treated is formally the initial value problem

Opu(z,t) = u?(x,t), z€R, t>0

u(z,0) = H(z), ze€R
where H denotes the Heaviside function. Clearly, the local solution u(x,t) = H(z)/(1—t) blows
up at time ¢ = 1 when 2 > 0. Choose x. € C* (R) with

0<xe(2) <1; xelz)=11if 2| <e7%, xe(2) =0if |z2| >1+7°, s> 0.

Further, let H.(z) = H * ¢ (x) where ¢, is a mollifier as in [L.3.1. One considers the regularized
problem

Opus(z,t) = Xe (us(z, 1)) ud(2,t), z€R, t>0

ue(z,0) = He(x), z€R.

When 2 < 0 and ¢ is sufficiently small, u.(z,t) =0 for all ¢ > 0. For > 0, u.(z,t) =1/(1 — t)
as long as t < 1 —&®. The cut-off function is chosen in such a way that |x.(z)z?| < (1
for all z € R. Therefore,

e < (14 &%) always and Qyue = 0 when |ue| > 1+ %,

Some computations and estimates permit to obtain the following C°-singular support and
(a, C?)-singular spectrum (for a.(r) = ") of u = [u.]:

SS (1) = 81 (u) U Sy (u) with Sy(u) = {(0,4) :0 <t < 1} ;5 So(u) = {(a,t) 1 2 > 0,¢ > 1},

S5 () = (S1(u) x {0}) U (Sa(u) x [0,5]).

These results give a microlocal precision on the the blow-up: The C%-singularities (resp.
(a, C?)-singularities) of u are described by means of two sets: Si(u) and Sy (u) (resp. Si(u)x {0}
and Sy(u) x [0, s]). The set Si(u) (resp. Si(u) x {0}) is related to the data C° (resp. (a,C))-
singularity. The set Sa(u) (resp. Sa(u)x [0, s]) is related to the singularity due to the nonlinearity
of the equation giving the blow-up at ¢ = 1. The blow-up locus is the edge {z > 0,t = 1} of Sa(u)
and the strength of the blow-up is measured by the length s of the fiber [0, s| above each point of
the blow-up locus. This length is closely related to the diameter of the support of the regularizing
function x. and depends essentially on the nature of the blow-up: Changing simultaneously the
scales of the regularization and of the cut-off (i.e. replacing € by some function h(e) — 0 in the
definition of ¢. and x.) does not change the fiber and characterizes a sort of moderateness of
the strength of the blow-up.
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4.3.4 The strength of a singularity and the sum law

We point out the following remark ([[[4], subsection 4.3): when studying the propagation and
interaction of singularities in semilinear hyperbolic systems, Rauch and Reed [Bf] defined the
strength of a singularity of a piecewise smooth function. This notion is recalled in the one-
dimensional case. Assume that the function f : R — R is smooth on | — 0o, zg] and on [zg, oo
for some point g € R. The strength of the singularity of f at xq is the order of the highest
derivative which is still continuous across xy. For example, if f is continuous with a jump in the
first derivative at xo, the order is 0; if f has a jump at x¢, the order is —1. Travers [B9] later
generalized this notion to include delta functions. Slightly deviating from her definition, but in
line with the one of [B], it is possible to define the strength of singularity of the k-th derivative
of a delta function at xg, 0X6(z — x¢), by —k — 2.

The significance of these definitions is perceived in the description of what Rauch and Reed
termed anomalous singularities in semilinear hyperbolic systems. This effect is demonstrated in
a paradigmatic example, also due to [3(], the (3 x 3)-system

O+ 0 )ulz,t) = 0, u(,0) = uo(x)
(**) (O — Oz)v(z,t) = 0, v(x,0) = vo(x)
ow(z,t) = u(z,t)v(z,t), w(z,0) =0
Assume that ug has a singularity of strength nqy > —1 at 1 = —1 and vy has a singularity

of strength ny > —1 at x93 = +1. The characteristic curves emanating from x; and xzo are
straight lines intersecting at the point x = 0, t = 1. Rauch and Reed showed that, in general,
the third component w will have a singularity of strength nz = ny + ng + 2 along the half-ray
{(0,¢) : t > 1}. This half-ray does not connect backwards to a singularity in the initial data
for w, hence the term anomalous singularity. The formula ng = ni + ny + 2 is called the sum
law. Travers extended this result to the case where ug and vy were given as derivatives of delta
functions at 1 and x5. We are going to further generalize this result to powers of delta functions,
after establishing the relation between the strength of a singularity of a function f at xzg and
the singular spectrum of f * ..

We consider a function f : R — R which is smooth on (—o0,z¢] and on [zg,00) for some
point o € R; actually only the local behavior near zg is relevant. A mollifier ¢.(z) = 1p(%) is
fixed as in and the corresponding embedding of D'(R) into the (C, &, P)-algebra A(R) is
denoted by ¢. In particular, ¢(f) = [f * ¢¢].

If f is continuous at xg, then lim._q f * ¢. = f in C°. If f has a jump ¢, this limit does
not exist in C%, but lim._ge" f * ¢. = 0 in C° for every r > 0. The following result is
Proposition (16 in [14]) Let o € R. If f: R — R is a smooth function on (—oo, o] and on
[z0,00) or f(z) = 0Fd(x — xq) for some k € N, then the strength of the singularity of f at x
is —n if and only if

E(a,Cl),aco (L(f)) = [0, n].
Here n € N and ac(r) =¢".

When returning to the model equation we find that the sum law remains valid when the initial
data are powers of delta functions. Suitable (C, &, P)-algebras A(R) and A(R?) are exhibited in
which the initial value problem can be uniquely solved. When the scale is taken as a.(r) = ",
the following result is obtained:

Proposition (17 in [[4]) Let ug(z) = 6™(x + 1), vo(x) = 6™(x — 1) for some m,n € N*. Let
w € A(R?) be the third component of the solution to problem (F1). Then w(x,t) vanishes at all
points (z,t) with © # 0 as well as (0,t) with t <1, and

S (a,c1y, 0.0 (w) € [0,m + n]
for t > 1.
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4.4 Microlocal characterisation of some regular subalgebras

We recall that the subsheaf G of reqular Colombeau functions of the sheaf G is defined as
follows [BZ): Given an open subset Q of R? the algebra G>() comprises those elements u of
G(Q) whose representatives (u.). satisfy the condition

VK e, 3meN, Yl e N:pg (u:) =o(e"™) as e — 0.

In relation with regularity theory of solutions to nonlinear partial differential equations, a
further subalgebra of G(£2) has been introduced in [BJ] — the algebra of Colombeau functions of
total slow scale type. It consists of those elements u of G(§2) whose representatives (u.). satisfy
the condition

VK €Q, Vr>0, YVl e N:pg (u:) =0(c") as e — 0.

The term slow scale refers to the fact that the growth is slower than any negative power of € as
¢ — 0. Both previous properties can be characterized by means of the singular spectrum.

We find in ([[[4], subsection 4.4) the proof of the corresponding characterisations. Let u €
G(Q), then:

(i) (Proposition 18) u belongs to G°(€) if and only if X, ey . (u) # Ry for all z € €.

(i1) (Proposition 19) w is of total slow scale type if and only if X, o), (u) C {0} for all
x € Q.
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