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Abstract

The b-chromatic number of a graph G is the largest integer k such
that G has a coloring of the vertices in k color classes such that every
color class contains a vertex that has a neighbour in all other color
classes. We characterize the class of chordal graphs for which the b-
chromatic number is equal to the chromatic number for every induced
subgraph.

1 Introduction

We deal here with finite undirected graphs. Given a graph G and an integer
k > 1, a coloring of G with k colors is a mapping ¢ : V(G) — {1,...,k}
such that any two adjacent vertices u, v in G satisfy c(u) # c¢(v). For every
vertex v, the integer c¢(v) is called the color of v. The sets ¢c~*(1),...,c (k)
that are not empty are called the color classes of c¢. A b-coloring is a coloring
such that every color class contains a vertex that has a neighbour in each
color class other than its own, and we call any such vertex a b-vertex. The
b-chromatic number b(G) of a graph G is the largest integer k such that G
admits a b-coloring with exactly k£ colors. The concept of b-coloring was
introduced in [6] and has been studied among others in [2, 4, 7, 8, 9]. Let
w(G) be the maximum size of a clique in a graph G, and let x(G) be the
chromatic number of G. It is easy to see that every coloring of G with x(G)
colors is a b-coloring, and so every graph satisfies x(G) < b(G). Hoang
and Kouider [4] call a graph G b-perfect if every induced subgraph H of G
satisfies b(H) = x(H). Also a graph G is b-imperfect if it is not b-perfect,
and minimally b-imperfect if it is b-imperfect and every proper subgraph
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of G is b-perfect. Hoang, Linhares Sales and Maffray [5] found a list F of
twenty-two minimally b-imperfect graphs shown in Figure 1, and posed the
following conjecture.

Conjecture 1 ([5]). A graph is b-perfect if and only if it does not contain
any member of F as an induced subgraph.
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Figure 1: Class F = {Fy,..., Fy}

Given a collection H of graphs, a graph G is usually called H-free if no
induced subgraph of G is a member of H. When H consists of only one graph
H, we may write H-free instead of {H }-free. We let Py and C} respectively
denote the graph that consists of a path (resp. cycle) on k vertices. We use
+ to denote the disjoint union of graphs, and nF is the graph which has n
components all isomorphic to F'. For example, 2K is the graph with two



components of size 2, and the first three graphs in F are Ps, Py + P35 and
3P3. We say that two vertices x,y in a graph G are twins if every vertex of
G \ {z,y} that is adjacent to any of x,y is adjacent to both. Note that two
twins may be adjacent or not.

It is a routine matter to check that the graphs in class F are b-imperfect
and minimally so. More precisely, for i = 1,2,3, we have x(F;) = 2 and
b(F;) = 3, and F; admits a b-coloring with 3 colors in which its three vertices
of degree 3 have color 1,2,3 respectively; and for ¢ = 4,...,22, we have
X(F;) = 3 and b(F;) = 4.

We will prove the conjecture in the case of chordal graphs. Recall that
a graph G is chordal [3, 10] if every cycle of length at least four in G has a
chord (an edge between non-consecutive vertices of the cycle). We call hole
any chordless cycle of length at least four. In these terms, a graph is chordal
if and only if it is hole-free.

Theorem 1. Every F-free chordal graph is b-perfect.

Proof of Theorem 1. Suppose that the theorem is false, and let G be a
counterexample to the theorem for which |V (G)|+|E(G)| is minimal. Recall
that, since G is chordal, it satisfies x(G) = w(G) (see [1, 3]). Since G is a
counterexample to the theorem, it admits a b-coloring ¢ with £ > x(G)+1 =
w(G)+1 colors. Fori=1,...,k, let u; be any b-vertex of color i, that is, a
vertex that has a neighbour of each color other than i. Let U = {uq,...,ux}.
Note that, since k > w(G), the set U does not induce a clique. As usual, we
say that a vertex is simplicial if its neighbourhood induces a clique.

1.1. Fori=1,...,k, vertex u; is not simplicial.

Proof. Suppose on the contrary and up to symmetry that wy is simplicial.
Since u; is a b-vertex, it has a neighbour v; of each color ¢ = 2,..., k. Then
the set {uy,va,...,v;} induces a clique of size k > w(G), a contradiction.
So Claim 1.1 holds.

1.2. G contains a 2K5.

Proof. Suppose that G contains no 2K5. Since U is not a clique, we may
assume up to symmetry that uq,us are not adjacent. By Claim 1.1, vertex
u1 has two neighbours v,v’ that are not adjacent, and vertex us has two
neighbours w,w’ that are not adjacent. Suppose that u; is adjacent to w.
Then u; is not adjacent to w’, for otherwise uy,w, us,w’ induce a hole. One
of v,v’ is not equal to w, say v # w. Also v # w' since u is adjacent to
v and not to w’. If v is not adjacent to wus, then v is adjacent to w’, for



otherwise {u1,v,us,w’'} induces a 2Ks; but then either {uy,v,w’, us, w} or
{u1,v,u2, w} induce a hole. So v is adjacent to us. Then uy is not adjacent to
v', for otherwise {u1,v,v’,us} induces a hole. Then v is adjacent to w’, for
otherwise {u1,v’,uz,w’'} induces a 2K5. But then either {uy,v’,us, w,w'}
(if v/, w are not adjacent) or {v',ug, w,w'} (if v',w are adjacent) induces a
hole. Therefore u; is not adjacent to w. Similarly, u; is not adjacent to w’,
and w9 is not adjacent to any of v,v’. Now v must be adjacent to w, for
otherwise {u1, v, uz, w} induces a 2K5, and by symmetry, to w’ as well. But
then {v, ug, w,w’} induces a hole, a contradiction. So Claim 1.2 holds.

We say that a subgraph of G is big if it contains at least two vertices.
Since G contains a 2Ks, it contains a set S that induces a subgraph with
at least two big components and is maximal with this property. Let R =

V(G)\ S.
1.3. Every vertex of R has a neighbour in every big component of S.

Proof. Suppose on the contrary that some vertex x of R has no neighbour in
some big component C' of S. Then SU{z} induces a subgraph with at least
two big components (of which C' is one), which contradicts the maximality
of S. So Claim 1.3 holds.

1.4. R is a clique.

Proof. Suppose on the contrary that there are two non-adjacent vertices
u,v in R. Consider two big components Z1, Z5 of S. By Claim 1.3, for each
i = 1,2, u has a neighbour u; in Z; and v has a neighbour v; in Z;. Since Z;
is connected, we may choose u;, v; and a path wu;-- - --v; in Z; such that this
path is as short as possible (possibly u; = v;). So no interior vertex of this
path is adjacent to w or v. But then the union of the two paths u;-----vq,
Ug-- - - -v2, plus u and v, forms a hole in G, a contradiction. So Claim 1.4
holds.

1.5. There is a big component Z of S such that every vertex of R is
adjacent to every vertex of every big component of S\ Z.

Proof. Suppose the contrary, that is, there are two big components Zi, Z
of S and vertices x1,x2 of R such that z; has a non-neighbour in Z; and
9 has a no-neighbour in Zs. For each ¢ = 1,2, since Z; is connected and
by Claim 1.3, there are adjacent vertices y;, z; in Z; such that x; is adjacent
to y; and not to z;. If ©1 = x9, then z1-y1-x1-y2-29 is a P5 in G, which
contradicts that G is F-free. So x1 # x2, and by the same argument we



may assume that z; is adjacent to all of Z5 and that xo is adjacent to all of
Zy. By Claim 1.4, vertices x1,x9 are adjacent. Then {x1,z2,y1,y2, 21,22}
induces an Fjy, which contradicts that G is F-free. So Claim 1.5 holds.

Let Z be a big component of S as described in Claim 1.5. Let T'= S\ Z.
So T contains a big component of S. Put Uz =UNZ and Ur =UNT.

1.6. For every vertex a € R and every set Y C Z that induces a connected
subgraph and contains no neighbour of a, there exists a vertex of Z that is
adjacent to all of Y U {a}.

Proof. Pick any vertex y in Y. Since Z is connected, and a has a neighbour
in Z by Claim 1.3, there is a shortest path zp-z1-----2, in Z such that zj is
adjacent to a and z, = y. Let ¢ be any vertex in a big component of T'. By
Claim 1.5, vertices a,t are adjacent. Then p = 1, for otherwise zs-21-29-a-t
is a P5. Thus zg is adjacent to both a,y. We show that z; is adjacent to all
of Y. In the opposite case, since Y is connected there are adjacent vertices
y',y” such that zq is adjacent to 3’ and not to 3”; but then y”-y/-zp-a-t is a
Ps5, a contradiction. So Claim 1.6 holds.

1.7. |R| < w(G) — 2.

Proof. By the definition of S, the set T contains two adjacent vertices a, b.
By Claim 1.4, RU{a,b} is a clique. So Claim 1.7 holds.

1.8. Uy #0.

Proof. Suppose on the contrary that Z contains no vertex of U. Consider
the graph G’ = G\ Z. Clearly, G’ is a chordal and F-free graph, and
V(G| + |E(G")] < |V(GQ)| + |E(G)|. We show that ¢ is a b-coloring of G’.
To establish this, consider vertex u; for each ¢ = 1,...,k and consider any
color j # 4. If u; is not in R, then u; has the same neighbours in G' and
in G', so u; is a b-vertex in G'. Now suppose that v; is in R. If u; is in a
component of S of cardinality 1, then N(u;) C R, so u; is a simplicial vertex
by Claim 1.4, which contradicts Claim 1.1. Thus u; is in a big component
of T. Then u; is a neighbour of u; by Claim 1.5 and the definition of Z.
Thus every u; is a b-vertex for ¢ in G’. But then G’ is a counterexample to
the theorem, which contradicts the minimality of G. So Claim 1.8 holds.

1.9. T contains no Py and no 2P;5.

Proof. Suppose on the contrary that T contains a set () of vertices that
induces a Py or a 2P3. Therefore Z contains no Pj3, for otherwise taking



a P3 in Z plus @ would give an induced F5 or F3. Since Z is connected
and contains no Pjs, it is a clique. By Claim 1.8, we may assume that wu;
isin Z. For j = 2,...,k, let v; be a neighbour of u; of color j. Since
{uy,va,..., v} is not a clique, we may assume that vy, v3 are not adjacent.
Since N(u1) C RUZ and both R, Z are cliques, we may assume that v € R
and v3 € Z. By Claim 1.7, R contains at most k — 3 of the v;’s; so we may
assume that vy € Z. Now, if vy is not adjacent to vy, then WU{v1, va, v3,v4}
induces an Fg or Fy; while if v is adjacent to v4 then the same set contains
an induced F5. So Claim 1.9 holds.

1.10. Uy # 0.

Proof. Suppose on the contrary that T contains no vertex of U. Let G’ be
the graph obtained from G by removing all edges whose two endvertices are
in T. Graph G’ satisfies |V(G")| + |E(G")| < |V(G)| + | E(G)| since we have
removed at least one edge because T contains a big component of S. We
will show that (a) ¢ is a b-coloring of G’, (b) G’ is a chordal graph, and
(¢) G" is F-free. These facts will imply that G’ is a counterexample to the
theorem, which will contradict the minimality of G and complete the proof
of the claim.

To prove (a), it suffices to observe that every vertex of U is a b-vertex
for ¢ in G, because the edges we have removed from G to obtain G’ are not
incident with any vertex of U.

To prove (b), observe that in G” all vertices of T" are simplicial (because
their neighbourhood is in R) and thus cannot lie in a hole of G’. Moreover,
G'\T =G\ T. So G’ contains no hole and is chordal.

Now we prove (¢). Suppose on the contrary that G’ contains a member
F of F. Note that G’ does not contain F; for i = 10,...,22, because every
such F; contains a hole of length 4 or 5, while G’ is chordal. Thus F must
be one of Fi,...,Fy. Graph F must contain two vertices of T that are
adjacent in G, for otherwise F' would be an induced subgraph of G. Let x,y
be two vertices of T' in F' that are adjacent in G. So z,y lie in the same big
component of T', and it follows from Claim 1.5 that the neighbourhood of
each of them in G’ is R. In particular, in F' they are non-adjacent twins.
This immediately implies that F' cannot be Fj, Fy or Fg since such graphs
do not have twins. Thus F' must be one of F», F3, F5, Fg, F7, Fy. Note
that, in each of these six cases, there is up to symmetry only one pair of
non-adjacent twins.

Suppose that F' is either F» or F3. So F' has vertices z,y,a, 21, ..., 2,
edges za, ya, and either (if F'is Fy) p = 4 and {z1, ..., 24} induces a Py, or (if
Fis F3)p==6and{z,..., 2} induces a 2P; with edges z; 22, 2223, 2425, 2526-



As observed above, we may assume that z,y € T and consequently a € R;

then vertices z1,. .., 2, are in a big component of S, and, by Claim 1.5, they
cannot be in T, so they are in Z. Let p = 4. By Claim 1.6, Z contains
a vertex z that is adjacent in G to a,z1,...,24. Then {z,21,...,24,0a,2,y}

induces an Fg in G, a contradiction. Now let p = 6. By Claim 1.6, Z
contains a vertex z that is adjacent in G to a, z1, 22, 23 and a vertex 2’ that
is adjacent in G to a, 24, 25, 26. If 2 # 2/, then {z,2/,21,..., 26} induces an
Fs or F; in G, a contradiction. So z = 2/. But then {z,21,...,26,0a,2,y}
induces an Fy in GG, a contradiction.

Suppose that I is either F5 or Fy. So F has vertices z,y,a,b, 21, ..., zp,
edges xa,xb, ya,yb, ab, az, 2122, 2123, 2223 and either (if F'is F5) p = 3
and azo is an edge, or (if F'is Fy) p = 6 and vertices zy4, 25, 2 induce a Ps
and are adjacent to a. As observed above, we may assume that x,y € T
and consequently a,b € R, and so z1,...,2, € Z. By Claim 1.6, Z contains
a vertex z that is adjacent in G to b, z1, 29, z3. Then z is adjacent to a, for
otherwise {z,a, b, z1 } induces a hole in G. But then {z,a,b, 21, z3, 2} induces
an Fy in G, a contradiction.

Finally suppose that F' is either Fg or Fy. So F' has vertices z,¥, a,b,
z1,..., 24 and edges xa, xb, ya, yb, ab, z1 20, 2123, 2124, 2223, 2224 and possibly
(if F is F7) the edge az;. As observed above, we may assume that z,y € T
and consequently a,b € R and z1,...,24 € Z. By Claim 1.6, Z contains a
vertex z that is adjacent in G to a, 29, 23,24. Vertex z is also adjacent to
z1, for otherwise {z, 21, 23, 24} induces a hole. By Claim 1.6, Z contains a
vertex 2’ that is adjacent in G to b, 21,...,24. If none of 2,2’ is adjacent
to both a,b, then either {z,2',a,b} or {z,2',a,b, 25} induces a hole. So we
may assume, up to symmetry, that z is adjacent to both a,b. But then
{z,a,b,2,29,23,24} induces an Fj in G, a contradiction. Thus Claim 1.10

holds.
1.11. Ur is a clique.

Proof. Suppose on the contrary that ui, us are non adjacent vertices of Urp.
By Claim 1.1, vertex u; has two neighbours v, v’ that are not adjacent, and
vertex us has two neighbours w,w’ that are not adjacent. By Claims 1.4
and 1.5 we have v,v",w,w’ € T. If uy is adjacent to w, then {uy,w,uz, w'}
induces a Py or a hole, which contradicts Claim 1.9 or the chordality of G.
So uy is not adjacent to w, and by symmetry it is not adjacent to w’, and
ug is not adjacent to any of v,v'. If v is adjacent to w, then {v,uy,v',w}
induce a P, or a hole, a contradiction. So v is not adjacent to w, and by
symmetry it is not adjacent to w’, and v’ is not adjacent to any of w,w’.



But now {uy,v,v’,ug, w,w’'} induces a 2P, which contradicts Claim 1.9. So
Claim 1.11 holds.

By Claim 1.10, there is a vertex v of U in T'. By Claim 1.1, vertex u has
two neighbours ¢,¢' that are not adjacent. By Claims 1.4 and 1.5, we have
t,t' € T. In other words, there is a P t-u-t’ in T.

1.12. Z contains no Py and no 2P;.

Proof. In the opposite case, a Py or 2P3 from Z plus the P3 t-u-t' from T
form an induced Fy or F3 in (G, a contradiction. So Claim 1.12 holds.

1.13. Uz is a clique.

Proof. Suppose on the contrary that u;,us are non adjacent vertices of
Uz. Since Z is connected, it contains a path from u; to us, and since, by
Claim 1.12, Z contains no Py, such a path has length 2, that is, Z contains
a vertex x adjacent to both wui,us. Suppose that some neighbour y # x of
u1 is not adjacent to x. Then y is also not adjacent to us, for otherwise
{y,u1,z,us} would induce a hole; and so y-uj-z-ug is a Py. If y € Z this
contradicts Claim 1.12, and if y € R then us-z-uq-y-t is a Ps, another
contradiction. Therefore, x is adjacent to every neighbour of u; different
from z, and similarly it is adjacent to every neighbour of ug different from
z. By Claim 1.1, u; has neighbours v,v’ that are not adjacent. Suppose
that one of v,v’, say v, is in R. Then, since R is a clique, v’ is in Z, and, by
the preceding argument, we have x # v’ and x is adjacent to v,v’. But then
{v,u1,v", z,t,u,t'} induces an Fj, a contradiction. Thus v, v’ are both in Z.
Likewise, uo has neighbours w,w’ that are not adjacent, and they are both
in Z. If us is adjacent to v, then us, v, u;,v" induce either a P4 or a hole, a
contradiction. Thus us is not adjacent to v, and similarly not to v/, and uy
is not adjacent to any of w,w’. Then v is not adjacent to w, for otherwise
u1-v-w-usg is a Py. Similarly, v is not adjacent to w’, and v’ is not adjacent
to any of w,w’. But now {u,t,t',us,v,v,us, w,w’'} induces a 3P; in G, a
contradiction. So Claim 1.13 holds.

Let Cr be the set of colors that appear in Ur. By Claim 1.10, we have
|Cr| = |Ur| > 1. Let Cz be the set of colors that do not appear in R U Urp.
By Claim 1.1, a member of U must be in a big component of T, and so,
by Claims 1.4, 1.5 and 1.11, RU Uy is a clique; thus |Cz| > 1. Consider
any color j € Cyz. By the definition of U, every member of Ur must have
a neighbour of color j, and by the definition of Cz, any such neighbour



must be in 7. Let w; be one vertex of color j that is adjacent to the most
members of Ur. So w; € T. Suppose that w; has a non-neighbour v in Up.
Let w} be a neighbour of ' of color j. So w’; € T'. Since v’ is adjacent to w]
and not to w;, the choice of w; implies the existence of a vertex u” of Up
that is adjacent to w; and not to w}. But then wj-u"-u-wj is a Py, which
contradicts Claim 1.9. Thus w; is adjacent to all of Ur. Now RUUpr U {w;}
is a clique, which implies |Cz| > 2. Let W = {w; | j € Cz}. Note that W is
not a clique, for otherwise R U Up UW would be a clique of size k (because
it contains a vertex of each color).

For each color j € Cz, the definition of Cz implies that u; is in Z. So
’U2’ > ‘02’ > 2.

Consider any color h € Cr. By the definition of U, every member of Uz must
have a neighbour of color h, and by the definition of Cr and by Claim 1.5,
any such neighbour must be in Z. Let y; be one vertex of color h that is
adjacent to the most members of Uz. So y, € Z. Suppose that y;, has a
non-neighbour v’ in Uz. Let y;, be a neighbour of «’ of color h. So y;, € Z.
Since ' is adjacent to y;, and not to y, the choice of yj, implies the existence
of a vertex u” of Uz that is adjacent to yp and not to yj,. But then yp-u"-
u'-y}, is a Py, which contradicts Claim 1.12. Thus yp, is adjacent to all of
Uz. Let Y ={yp | h € Cr}. So |Y| = |Cr|. Suppose that Y is not a clique.
So there are non-adjacent vertices yg4,ys in Y. Thus |Cr| > 2, and we have
ug,up € Ur. Recall that W is not a clique, so it contains two non-adjacent
vertices w;, w;, and by the definition of W we have u;,u; € Ur. But then
{ygs Yn, wi, uj, wi, wj, ug,up} induces an Fg, a contradiction. Thus Y is a
clique, and so

Y UUyz is a clique of size at least |Cr| + |Cz| > 3.

Let Ry be the set of vertices of R that have at most one neighbour in
Y UUyg, and let Ry = R\ R;y. If some vertex a € Ry has a non-neighbour
v in Y U Uy, then, since a has two neighbours z,2’ in Y U U, we see that
{a,z,2',v,t,u,t'} induces an Fj, a contradiction (recall that t-u-t’ is a P
in T'). Thus every vertex of Ry is adjacent to every vertex of Y U Uy. This
implies Ry # (), for otherwise RUY UUz would be a clique of size k (because
it contains a vertex of each color).

Consider any color ¢ that appears in R;, and let a; be the vertex of
Ry of color £. By the definition of U and R;, every vertex of Uy, except



possibly one, must have a neighbour of color ¢ in Z. Let x, be one vertex
of Z of color £ that is adjacent to the most members of Uz. By the same
argument as above concerning yp, using the fact that Z contains no Py, we
obtain that x; is adjacent to every vertex of Uy that has a neighbour of
color £ in Z. Now we show that x, is adjacent to all of Y U Uz. Suppose
on the contrary that z, has a non-neighbour v in Y U Uyz. If x; has two
neighbours z,2' in Y U Uy, then either t-as-v-2-x¢ is a P5 (if a; is adjacent
to v), or {v, 2,2, x4, ap,t,u,t'} induces an Fy or Fr, a contradiction. So xy
has only one neighbour z in Y U Uz. By the definition of z,, this implies
that Uz = {z, 2’} where 2z’ has no neighbour of color ¢ in 7. Since 2z’ is in
U, it must have a neighbour of color ¢, and this can only be ay. But then
x¢-2-7'-ap-t is a Ps, a contradiction. Thus z; is adjacent to all of Y U Uy.
Now we show that z, is adjacent to all of Ry. For suppose that x; is not
adjacent to some vertex a of Ry. Let 2,2’ be any two vertices in Y U Uy.
Then {x, 2,2, a,t,u,t'} induces an F5, a contradiction. In summary, z, is
adjacent to all of Y UUz U Rs.

Let X = {xy | color £ appear in R1}. So X # (). Suppose that there are
two non-adjacent vertices g, x,, in X. Let ay be a vertex of color £in R;. Let
2,2’ be any two vertices in Y UUy. Then ay is adjacent to x,,, for otherwise
{zg,m, 2,2 ag,t,u,t'} induces an Fg or F;. Then ay is adjacent to 2/, for
otherwise xp-2'-zp-ap-t is a Ps. But then {x,,, 2,2/, as,t,u,t'} induces an
F5, a contradiction. Therefore X is a clique. But now, X UY UUzU R, is a
clique of size k (because it contains a vertex of each color), a contradiction.
This completes the proof of the theorem. [J

Theorem 1 can be generalized slightly as follows.
Theorem 2. FEvery F-free Cy-free graph is b-perfect.

Proof. Let G be an F-free Cy-free graph. Since G contains no Ps, it contains
no hole Cy with k& > 6. We prove that b(G) = x(G) by induction on the
number of Cy’s contained in G. If G contains no (5, then it is chordal and
the result follows from Theorem 1. So we may now assume that GG contains
a C5. Let z1,...,25 be five vertices such that, for ¢ = 1,...,5 modulo 5,
vertex z; is adjacent to z;y1 and not to ziyo. Let Z = {z1,...,25}. Let x be
a vertex of G\ Z that has a neighbour in Z. If = also has a non-neighbour in
Z, then it is easy to see that ZU{z} contains a set that induces either a Ps,
or a Cy4, or an Fig, a contradiction. Thus z is adjacent to all of Z. Let X
be the set of vertices that are adjacent to Z. Note that X is a clique, for if
it contained two non-adjacent vertices z,y, then {z,vy, 21, 23} would induce

10



a Cy. Suppose that G admits a b-coloring ¢ with k£ > x(G) colors. We may
assume that the colors of ¢ that appear in Z are 1,...,¢, with 3 < £ < 5.
So only the colors £+ 1,...,k may appear in X.

If ¢ = 3, let G’ be the graph obtained from G\ Z by adding three new
vertices a1, as,as that are pairwise adjacent and all adjacent to all of X. If
¢ =4or b5, let G’ be the graph obtained from G\ Z by adding ¢ new vertices
ai,...,ap that are pairwise not adjacent and all adjacent to all of X. In
either case, since X is a clique the new vertices aq,...,a; are simplicial, so
they cannot belong to any hole, and so G’ has strictly fewer C5’s than G.

2.1. b(G') > b(G).

Proof. Let ¢ be the coloring of the vertices of G’ defined by ¢(z) = ¢(x)
if x is a vertex of G\ Z and ¢/(a;) = i for i = 1,...,¢. Clearly, ¢ is a
coloring with k colors. For each i = 1,...,k, let u; be a b-vertex of color
for ¢ in G. Suppose that w; is in G \ Z. Consider a neighbour v; of u; of
color j in G for any j # i. Then either v; isin G\ Z = G\ Z, and in this
case v; is a neighbour of u; of color j in G'; or v; is in Z, and in this case

Jj €{1,...,£} and a; is a neighbour of u; of color j in G’. So u; is a b-vertex
for G’. Now suppose that u; is in Z. Then u; must have a neighbour of
every color 1,...,/ different from %, and since such colors do not appear in

X, they must appear in Z, and so £ = 3 and all colors 4, ...,k appear in X.
Then a; is a b-vertex of color 7 in G’. Thus ¢ has a b-vertex of every color
i=1,...,k So Claim 2.1 holds.

2.2. x(G') < x(G).

Proof. Consider any coloring v of G with x(G). We may assume that the
colors of v that appear in Z are 1,...,h, with 3 < h < 5. Let 7/ be defined
as follows. For z € G\ Z, set +/'(z) = vy(z). If £ = 3, set v/(a;) = i for
i=1,2,3. If £ =4 or 5, set v/(a;) =1 fori=1,...,£. In either case, 7 is a
coloring of G’ with at most x(G) colors. So Claim 2.2 holds.

2.3. G’ is F-free and Cy-free.

Proof. Suppose on the contrary that G’ contains a subgraph F which is
either a member of F or a Cy. Let A ={ay,...,ap}. If F' contains at most
two vertices of A, then, since Z has two adjacent vertices and also two non-
adjacent vertices, we can replace the vertices of F' N A by an appropriate
choice of vertices of Z and we find a subgraph of G that is isomorphic to F,
a contradiction. So F' must contain at least three vertices of A. Note that
in F', the neighbourhood of any of these vertices is equal to FFN X, i.e., they
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are pairwise twins. But this is impossible, because no member of F U {Cy}
has three vertices that are pairwise twins. Thus Claim 2.3 holds.

By Claims 2.1-2.3, G’ is an F-free, Cy-free graph with b(G') > b(G) >

X(G) > x(G’) and G’ has strictly fewer C5’s than G, a contradiction. This
completes the proof of Theorem 2. [
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